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A, M. Stagg

SUMMARY

A Maximum Likelihood technique is applied to provide estimates of the mean
and standard deviation of the parent (log—normal) population of a sample of
fatigue test results, for the case when the gample consists of some specimens
that have not broken as well as specimens that have failed. The estimates
produced by this method of analysis are compared with those given by the
suitable application of a technique developed by Gupta and with those resulting
from a graphical procedure suggested by Weibull and Johnson. The samples used
for these comparisons were fictitious, being obtained from an assumed parent
population by a Monte Carlo technique, and, although limited in number and
scope, they indicate that the Maximum Likelihood technique gives reasonable

approximations to the population parameters.

Use of the most suitable of the mentioned methods of analysis to correlate
early service failures with a test failure should enable a check to be made on
the validity of the fatigue monitoring process being applied to the service

aircraft,

*Replaces RAE Technical Report 70145 - ARC 32594,
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1 INTRODUCTION

Economic servicing of a group of structures which are subject to fatigue
failures depends upon an efficient system of stocking spares (i.e. neither too
many nor too few at any time) and, when the failures are of a fail-safe
nature, upon an efficient inspection system (i.e. neither too seldom nor too
often). Overstocking results in the wastage of space, whilst understocking
leads to aircraft being unserviceable for too long. Too many inspections mean
a large bill for the man hours spent inspecting needlessly, whilst too few
inspections will create a hazard to the safety of the aircraft., Similarly the
economic utilization of such a group of structures requires efficient planning
so that too many structures are not unserviceable at any one time, thus keeping

to a minimum the number of structures needed to cover the usage requirements.

Clearly a knowledge of the exact times to occurrence of cracks in each
part of the structure on every structure would provide the ideal basis both for
economic servicing and for economic utilization of a group of structures,
However, fatigue strength is, like all macroscopic material properties, subject
to inherent scatter and so the nearest approach to this ideal situation that
can be attained in practice is a knowledge of the probabilitiss that the various
parts of each structure should have failed by any time in the life of the

structure,

The estimation of these probabilities of failure of the individual com=-
ponents of a structure is based either on the various times to failure of the
corresponding individual components, as derived from the fatigue test of the
complete structure, or on calculations of the times to failure of the various
components, In general the two factors, expense and time, restrict the number
of fatigue tests of the complete structure, i.e. full scale tests, that are
made on any one design of aircraft. TFor example it is unusual for more than one
full scale aircraft specimen to be tested under fatigue loading, whilst in some
cases no full scale tests at all have been carried out., Thus it is important to
obtain any extra information that can add confidence either to the deductions
made from the full scale test or to the results of the calculations, when no
tests have been carried out, for this added confidence would be carried through
to the estimation of the probabilities of failure and thence would lead to more

efficient fleet planning and servicingl.



In the particular case of the fatigue test of a complete airframe, cracks
of minor importance (in fail-safe structures they may even be of major import-
ance) will usually occur in various positions throughout the test airframe
structure before any catastrophic failure takes place. Provided that the
loading distribution applied to the test airframe is at least reasonably
representative of service conditions and that the specimen is reasonably repre-
sentative of service aircraft, cracks will occur in service aircraft in some at
least of the various positions indicated by the full scale test., If the test
loading is not representative of service conditions cracks may occur inservice in
pesitions other than those indicated by the full scale test. By correlating
the times to occurrence of cracks in some of the service aircraft, additional
confidence can be derived for the estimates of the times to occurrence of cracks
in the other aircraft of the fleet, Clearly the benefit gained by this type of
correlation would be minimal if nearly all the aircraft of the fleet have to be
cracked before the correlation can be carried out., Thus a method of analysis
is required for a fleet of aircraft in which some members have already cracked

but in which the majority of members remain uncracked.

In this Report the Principle of Maximum Likelihood2 is applied to the
solution of this problem and the parameter estimates thus obtained are compared

with estimates given by three other modes of analysis.

2 PRESENT METHODS OF ANALYSIS

The most common graphical procedure for the analysis of a sample containing
both failed and unfailed members is an adaptation of the procedure used for
analysing samples consisting only of failed specimens (see Appendix)., The intro-
duction of non-failures produces problems in the allccation of a mean order
number to be associated with each member of the sample., The "usual' method of
overcoming this difficulty is to treat each member, whether failure or non-
failure, as a failed item and to obtain the corresponding mean or median ranks
accordingly. Then, when these ranks are plotted against the value of the
property considered on probability paper, only those members of the sample which
have actually failed are used. In this way the unfailed members of the sample
influence the ranks associated with the failed members but are not themselves

explicitly involved in the final graphical analysis.

A further adaptation of this 'usual' technique is proposed by both
3 . . . . . .
Johnson™ and We1bu114 for estimating the parameters of the parent Weibull distri-

bution for a sample containing both failed and unfailed members. Their proposed



method of analysis follows exactly the same lines as the 'usual' procedure
outlined gbove but differs in the values of the mean order numbers allocated to
the failed members of the sample (see Appendix). Although in the original
references this method of analysis was proposed for application to samples from
Weibull distributions and the estimation of the two parameters appropriate to
that form of distribution, the technique is equally valid for the estimation of

the mean and standard deviation when the parent population is log-normal,

The problem of parameter estimation for a sample that is censored in such
a way 'that the (n-k) smallest or greatest observations out of a sample of size
n are censored' was studied theoretically by Guptas. The type of sample to
which Gupta's method of analysis is suitable is produced by testing n
specimens simultaneously and stopping the test when k specimens have failed,
so that all the other (n-k) specimens are known to have values greater than
the kth failure, the individual values being known. This is not quite the
situation achieved in aircraft usage, where the aircraft do not all accumulate
fatigue damage at the same rate and in fact do not all enter service at the
same time, This results in the non—failures often being interspersed amongst
the failures. However, by suitable approximations, involving the loss of a
certain amount of data, Gupta's technique can be applied to the present problem

to give an estimate of the population parameters.

In an effort to avoid the loss of any relevant data that is provided by
the non-failures in a sample the Principle of Maximum Likelihood, as used by
Gupta, 1s applied in this Report to the more general problem when the failures
and non-failures are interspersed. As in Gupta's work the parent distribution
is assumed to be normal, the variate being the logarithm of the time to
failure under fatigue loading, and the mean and standard deviation of this
parent population are estimated by the analysis., However, whereas the situa-
tion Gupta studied enabled him to standardize the process to some degree, thus
simplifying the analysis and allowing the presentation of tables of certain
standardized variables to help in the solution of his type of problem, the
present, more general situation leads to ne such standardization., Each
situation must be analysed from fundamental principles as an entirely new

situation,

3 MAXTMUM LIKELTHOOD ANALYSIS, GENERAL CASE

The method of analysis proposed in this Report for the analysis of a
sample containing both failures and non—failures depends on the Principle of

Maximum Likelihoodz, whereby the likelihood of observing the sample in



existence is maximized for variations in the position and extent, but not
shape, of the parent population which is assumed to be normal. The values of
the estimated parameters that give this Maximum Likelihood are then taken as
the best estimates of the population parameters. The normal distribution has
two parameters u and ¢ and so the likelihood of observing the sample is

maximized for both of these parameters simultaneocusly,

Taking m and s as the postulated population parameters of the distri-
bution of y = log x where x is the time to crack occurrence, the probability

density function of y = log x will be defined by

1 e—(y—m)z/Zsz
8 f2_1r

py) dy = dy . (1)
Consider a fleet of aircraft of which n members have already cracked at a
particular station after lives X 3KyseeX and of which ¢ mewmbers remain
uncracked after lives LT DT TRRE No stipulations are made about the
relative magnitudes of the x's.

The probability that aircraft (n + i), i = 1,2,...c should not have
failed by the time X o4i (the life it has achieved to date) will be given by
the area under the distribution defined by equation (1)} to the right of the

ordinate at Yoei = 108 (Xn+i) (Fig.1l) and so

oo
2
1 f (v -~ m) .
P, ., = exp ¢ = ———m—">=—} dy i=1,2,...c, (2)
(n+1) s ¥2r { 232 }
Y (n+i)

Also the probability that aircraft i (i = 1,2,...n) should have failed at a
dx

life between X, -5 and x; + %; will be given by (Fig.2)

2

P. 1 exp{-(l'—m)—}ay i=1,2,...n (3)

fl

* s 27 232

~ Sx\ _ _ 8x
where &y = log (%i +'§;) log (Xi 3 ), and

8x 1is very small.



Thus the total probability P that, with parent population parameters
postulated as m and s, the present situation of the fleet should be
observed will be given by the product of the individual probabilities for each

aircraft, for these are all independent of one another. Then

ﬁ L7 2 T 1 vy - oy
P = exp - 3 ( . ) d -4 (—i————) § }
(22 [ o () ofTT () -

i=1

n+i

which reduces to

i=c +oo 2 i=n v. - m 2
o L e () T e o (2) o)
P = —mm8m— —_— exp [ - =] dt exp — | =—=—— 1} Sy} .
(s Jﬁﬁ)n . {fiﬂ 2 } . { 2 °
i=1 (yn+i-m/s) i=1

ceas (4)

If the best estimates of the mean and standard deviation derived from this

estimator P are denoted by m and § respectively, the conditions required

for the caleculation of these values are

& 0 and 2 0 at m=f and s = §
98 om
and also
2 2
2P o amda 22 o .
2 2
08 am

These conditions are equivalent to

1P 3 _ lsp _ 3 _ I
7 o P (log P) 0 and e — (log P) 0
with & (5)
2 2
jl%; < 0 and jL}i <0
2
a8 om -

Taking equations (4) and (5) together then gives the values of the best

estimates m and &£,



4 'ALL FAILED' VERSION OF GENERAL CASE

It is instructive to consider the case of 'all failed', i.e,

Equation (4) reduces to

1 1 i;“
P = ———————exp - —= (y. —m)” &y . (6)
(s Jfﬁ)n 252 i=1 1

Now Oy is an arbitrarily chosen small interval and plays no part in determin-

ing the relative magnitudes of P for different combinations of m and s and

thus will not affect the position of the maximum, although it will change its

magnitude. Thus without loss of generality dy can be put equal to 1 for all
p i 2
i=1,2,...n. Then log P = congtant - n log s - —5 Z (yi - m)
2g" i=l
3 log P i 3 log P o, im Gy - m”
am 2 -z (yi -m o 98 T §'+ .Z 3 - (D
s i= i=1 8
Also
32P 3 31 P 9P 3log P 32 1 P
= 2 [pllog * SE808F spl 0B C
2 3s 98 Js LE 2
as 3s
~ " 3 log P 82P 32 log P ]
Therefore at m and § s =28 " = R - = P ——m
38 2 2
3s as
> (8)
32P 82 1 P
Similarly at m and § = pl 28 7
Z 2 J
am om
From equation {8)
2 2 im (y, - m)°
3 > 2 2 Y A
am s as s i=1 s
. . a2
1 et - n L (y - 111)
equations (5) and (7) give = Z (y. -m) =0 and -—+ Z =3 =0
g“i=1 1! § i=1 s



. i=n ¥i A
or m = Z —
i=1
> (10)
2 im Gy - @
and g = Z .
. n
i=1 .
Substitution of these values for @ and 32 in equation (9) makes both
32P 2P
— and —x less than 0, for P is positive, and so the conditioms (5)
am 08

are satisfied.

Comparison of these results, equation (10),with the standard 'best'

estimates, m, and s for the parent mean u and standard deviation o

1
respectively, where

1’

i 1 .
i=n log x,

m o= L an
1—_—

2 i=n (log x; - ml)2

s] = 121 ) (12)

show that the Maximum Likelihood estimation m for the parent mean 1y is
identical to the standard 'best' estimation m for the parent mean u when
all the members of the sample have failed. On the other hand the Maximum
Likelihood estimator § for the parent standard deviation o is biassed,
whilst the standard 'best' estimator §; has been rendered unbiassed, This
point is discussed fully by Kendall, who, however, only considers the

'all failed' case where the estimate of the mean can be made without any

reference to the standard deviation.

For in our terminology

2 2
oPF _ 3 lp dlog P{ _ oP3log P pd_log P )
om 98 am as am as am os

But when m =M and s = 8, §ml%§_£.= 0

and so

2 i=n
3 _ , 3% logP _ )2
mas | . mas | P{.El o ‘“)}{ 53}'

1
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2p

Thus T has zerc expectation when m=m and so @ and § are independent

of one another.

In the more general case considered in this Report the two parameters will
no longer be independent as can be seen from the form of equation (4) and thus
they must be estimated simultaneously. Attempts at an analytical solution to
the general equations (4) and (5) were unsuccessful and so numerical solutions
to particular problems were obtained from a computer programme written in
Mercury Autocode to be run on the Manchester University Atlas computer. The
programme entails a simple search through values of P calculated for paired
values of postulated m and s and picks that pairing which maximises the
calculated P. The result of the calculations and search is a two—way table of
log P with regard to m and s and centred on @ and §, the estimates

that give the maximum value to P (or log P).

5 CONFIDENCE IN ESTIMATES., GENERAL CASE

An approximate evaluation of the standard errors of the estimates of the
mean and standard deviation resulting from the above analysis can also be made
from the values of log P in the two-way table mentioned above. From Ref.2

the asymptotic variance-covariance matrix is given by the reciprocal of the

matrix
o 1 P 3 1 P
(2. et 0
T s o=5

where © in the present case defines the two parameters m and s, 9 1is the

value of 6 at the Maximum Likelihood condition, i.e. & defines m and 3,

and 61 and 62 are m and s respectively, The same reference also shows

that
3 log P 3 log P 32 log P 32 log P
. = {2 =208 - - E | m}m—=— (14)
aer aes N aer EE] A 38 36
5=0 S /B=p r s

where E denotes the expectaticn.

Now for the case considered in this Report the expectations of the second
order partial differentials, equation (14), are not known and so are replaced
by the estimates of these differentials at the Maximum Likelihood conditiom,

Thus equations (13) and (14) combine to give
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Fs A A 32 ].O P 32 lo P
var (m) covar (m,s) —————%—— _“BET%E— .
om A oA m, S

m,s
~ . (15)

A A A 82 10 P 82 10 P

covar (m,s) var (s) —ﬁa— T —-—-—--%—-
m,S a5 A g

32 log P 32 log P
The estimates of ———-—%%—— and m————%—m at the Maximum

3m 38
M,S m, 8

Likelihood point (m,s) are made using the approximate equation

d2y

dx2 h

~ y(x + h) = 2y(x) + y(x - h)
2

and taking the values of 1log P from the two-way table produced in assessing

A

m and The validity of this approximation 1s checked by taking three

g.
different values of h and comparing the values thus obtained for
2 2 2
9 log b and S log® . Similarly 2 log® is estimated
2 2 am 9ds A A
am AA BS A A m,
m,s »S
using the approximate form

2
2y
(Bz ax)
7, X

»

y(x + h,z + d)+y(x—h,z~d) = y(x + h,z - d) -~ y(x -~ h,z + d)
4hd

and this approximation is also checked by comparing the values derived for three

different sets of values of h and d. Equation (15) results in the three

equations below, where the differentialg are estimates at the Maximum

Likelihood point

ﬁ
2
A 32 log P 82 log P 82 log P 32 log P
var (m) = - . -
2 2 2 om J3s
EE om 3s
2 2 2 2 2
- a1 P o0 1 P P 27 1 P
var (§) = - 218 // gL 2 leg?. ( T ) $ (16)
am om RT:]
a o 82 log P 32 log P 32 log P 82 log P ;
and covar (m,s) = Sm 5a // mnz . 352 - p—— . )
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Thus p the coefficient of correlation between m and s is given by

- a 2 2 } 2 :
o = covar (m,s) - (8 log P)/ (8 log P) (B 1°LP)
Yvar (@) var (8) om 3s Bmzﬁ 352

The computer programme written to estimate m and 8 also includes

instructions to estimate wvar (ﬁ), var (§), covar (m,5) and the coefficient
of correlation, according to the above equations, Using these values an idea

N

can be gained of the confidence that can be placed on the estimates @ and S§.

6 CONFIDENCE IN ESTIMATES, 'ALL FAILED' CASE

The 'all failed' case can be treated analytically as an example of the
above procedure; however the equalities will be exact and not approximate.

From equations (18) and (19)

2
o log P - _n
E { 2 "
om s
2 i=n
E{-—-—L-a Log P} -z as E J (y, -m? =ns® (17)
9 i=1
8 ] i
82 log P i=n
E — = 0 as E iZ (yi -m) =0 .
J
Equations (16) and (17) then give
a2
var (m) = (stz
a2
var (8) = (;i
covar (ﬁ,§) = 0

which are the usual results and show that m and s, the Maximum Likelihood

estimates of the mean and standard deviation, are independent of one another,
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7 NUMERICAL EXAMPLES

Practical verification of the suggested method of parameter estimation
for the distribution of a particular fatigue failure in a fleet of aircraft
would require an accurate knowledge of the fatigue state of a large fleet
throughout its entire life — the fatigue state of a fleet at any time being
defined not only in terms of the fatigue damage accumulated by each aircraft up
to that time but also in terms of the presence by that time of fatigue faflures
in specific aircraft which have cracked after known amounts of fatigue damage
have been accumulated. Only when all this information is available, for the
period from the time the first aircraft flew until all the aircraft in the fleet
have suffered the particular failure being considered, could any estimate of the
validity of the proposed method be made using practical data, for a knowledge of
the true population parameters of the failure distribution is a necessary part

of any such estimation.

In the past this ideal situation, when all the members of a fleet are
allowed to fail, has seldom, if ever, been achieved. Generally, if areas on
the aircraft are known to be subject to early fatigue cracking, modifications
are applied before all the aircraft have cracked in that area or, if the cracking
does not occur very early in the life of the aircraft, some members of the fleet
will not have experienced the considered failure before being retired from
service. However the advent of the present method of treatment of some fatigue
failures as 'fail-safe' has increased the possibility that at some time in the
future the ideal situation could be achieved and that a verification of the
proposed method of parameter estimation using practical data could then take

place.

7.1 Derivation of two model fleets

Meanwhile, in an effort to overcome this lack of suitable physical data,
a Monte Carlo technique has been applied to the problem, whereby a fictitious
model fleet of aircraft has been developed and investigated. In setting up this

fictitious fleet, two main assumptions were made:-

(1) A fleet of 30 aircraft was to be considered. This number was chosen
as being a reasonable size for a fleet of aircraft, sufficiently large to keep
small the sampling errors caused by the lack of an infinite population but small

enough to keep the computer time short,
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(2) The probability distribution of times to failure was taken to be
logarithmically normal, if time is measured in terms of the fatigue index
units (FIU)* accumulated. The population, of which the fleet of 30 aircraft
was a sample, was assumed to have a mean pn of 100 FIU (i,e. a log10 me an
of 2) and a standard deviation o (1°g10) of 0,17 FIU, The first stage in
the derivation of the model fleet, the creation of the 'all failed' situation,
was achieved by generating a string of 30 pseudo random numbers between O and
1000 (see Table 1, columm 1). Each of these numbers, divided by 1000, was then
interpreted as a cumulative probability and the corresponding normal deviate,
that gave the required probability, was calculated, Fig.3., These 30 deviates
were then analysed in terms of a log-normal distribution of mean 100 FIU and
standard deviation 0.17 FIU and so a set of 30 failure times was derived for a
fleet obeying the original two assumptions, Table 1. Analysis of this sample
of 30 failures using equations (1l1) and (12) gave estimates of 107.2 FIU and
0.182 FIU for the mean and standard deviation respectively of the parent

population,

The further derivation of the annual fatigue state of the fleet of air-
craft required the definition of an average rate of accumulation of fatigue
index units throughout the fleet and the assumption of some form of distribution
of the individual rates of fatigue index unit accumulation for the separate air-
craft within the fleet, This distribution was taken to be normal in form, with
a standard deviation of 5 FIU per year and with a mean, that is the fleet
average rate of consumption, of 15 FIU per year. Applying the same procedure
as for the 'all failed' situation strings of 30 random numbers were generated,
each number being interpreted as a cumulative probability which was converted
into a normal deviate and then reduced to the individual rate of consumption of
fatigue index for one particular aircraft for one year. Each string of 30
numbers thus represented the consumption of fatigue index units by each of the
30 members of the fleet during one year and the successive addition of the
corresponding members of these strings produced a year by year tally of the
fatigue damage accumulated by the 30 individual aircraft in the fleet. Comr

parison of this progress table with the list of times to occurrence of the crack

* The number of fatigue index units accumulated by an aircraft is a measure, in
terms of an arbitrary linear scale, of the proportion of the fatigue life of
of the aircraft that has been used up. TFor each aircraft it is calculated by
substitution of the readings, recorded at each acceleration level on a
Fatigue Load Meter, into a formula derived as in Ref.6.
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in the individual members of the fleet derived earlier showed which aircraft
had experienced that crack during the previous year and so the fatigue state of

the aircraft at the end of each year was known.

Two points that arose in this derivation of the fatigue state of the model

fleet must be noted, viz:-

(1) During the construction of the tally of the consumption of fatigue
index units, the interpretation of the random number sometimes led to a negative
normal deviate of magnitude greater than 3 standard deviations, which if
strictly applied would have led to a negative fatigue consumption during that
year for that particular aircraft (p = 15 FIU; o = 5 FIU), When this situation
occurred, the fatigue damage for that aircraft for that year was arbitrarily put

equal to O FIU,

(2) Once an aircraft had experienced the failure considered, the accumula-
tion of fatigue index units by that aircraft was artificially frozen at the

exact value at which the failure occurred,

The fatigue state of the fleet derived using the above method and assump-
tions is presented in Table 2, which is a year-by-year statement of the situa-

tion, and Fig.4, which provides a diagrammatic representation of the same data.

A survey of Fig.4 shows that, after the first four years of service, the
majority of the uncracked members of the fleet, had accumulated a greater
number of fatigue index units than any of the cracked aircraft. This situation,
brought about by the assumption of too small a standard deviation of the distri-
bution of rates of fatigue index consumption,was felt to be rather unrealistic,
as in practice it is usually those aircraft that have flown most that crack
first, and so a second fictitious model fleet was derived. The same failure
times for the individual aircraft as in the first fleet were used but the
standard deviation of the distribution of rates of consumption of fatigue index
units within the fleet was changed from 5 FIU to 10 FIU per year, keeping the
average rate of consumption at 15 ¥FIU per year. The fatigue state of this
fleet was evolved in the same manner as that of the first fleet, but using the
altered assumptions, and the result is presented in Table 3 and Fig.5, which
clearly shows that the occurrence of the failures in this fleet is not so

ordered as in the first fleet and generally appears more realistic.
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7.2  Results of the Maximum Likelihood analysis of the model fleets

It was decided to analyse both the model fleets to see how the Maximum
Likelihood estimates would be affected by the unrealistic¢c situations provided
by the first fleet. The results produced by the programme for these two fleets
are presented in Tables 4 and 5. The accuracy of the estimates of the mean and
standard deviation given by the programme is easily assessed by comparing the
estimates, columns 4 and 6 of Tables 4 and 5, with the assumed population
parameters of 2,0 and 0.17. It can be readily seen that even in the most
unfavourable circumstances the greatest error in the mean estimate is no more
than 107, but that of the standard deviation is as high as 76%Z, It is interest-
ing to note that the largest discrepancies in the estimate of the mean occur

when the estimate of the standard deviation is also considerably in error.

7.3 Results of the analysis of the model fleets using Gupta's technique

The only state of the first fleet to which Gupta's method (see section 2)
can be applied immediately is the 'after seven years' state in which nine
failures have occured (Fig.4e) and all the uncracked members of the fleet have
accumulated more damage than the failed aircraft. By comsidering all these 21
unfailed aireraft to have censored totals of fatigue index units equal to that
of the greatest failure, thereby loosing a certain amount of information, a
state suitable for the application of Gupta's technique is obtained. With
rather more drastic changes, i.e. the treatment of some failures as non-failures,
five of the other fleet fatipue states can also be altered to be amenable to
Gupta's treatment, The resulting states are given in Table 6, whilst the
analysis of these states is presented in Table 7. The remaining three fatigue
states not shown in Table 6 cannot be converted to a suitable form because the

aircraft with the lowest consumption of fatigue index units has not failed,

The failures and non-failures in the second model fleet (Fig.5) were so
intermingled that a large amount of information would have been lost in the
conversion of this fleet to a form suitable for analysis by Gupta's technique.

So the second fleet was not analysed by this method.

7.4 Results of two graphical analyses of the model fleets

Comparisons of the Weibull/Johnson pleotting technique (see section 2)
with the standard plotting procedure, for the fatigue states of the first model
fleet, are presented in Figs.6 and 7 which show that in the cases illustrated

Johnson's method gives at least as good, and usually better, estimates of the
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parameters than the standard graphical technique which will always give a
pessimistic estimate. The plots obtained for the other fatigue states of the
fleet not included in Figs.6 and 7 are omitted, as the median ranks for the
vast majority of the failures derived by the two separate methods of analysis
are identical, the only difference between the two occurring for failures which
have accumulated more damage than some non—failures. Thus the plots for the
remaining fatigue states produced by the two techniques are almost identical
and are just progressively more complete versions of the plot for the total

fleet (Fig.7).

The second model fleet which could not be sensibly analysed by Gupta's
technique (section 7.3) was suitable for analysis by the Weibull/Johnson and
the standard plotting procedures in all those cases in which more than one
failure has occurred. The plots for four of those fleet fatigue states are
presented in Figs.8 and 9. As for the first fleet the plots for the remainder
of the fleet states have been omitted for the sagke of brevity as they are just
progressively more complete versions of the plot for the "all failed' state

(Fig.7) and would thus provide much the same estimates as that plot.

7.5  Comparison and discussion of the results given by the four methods of

analzsis

If the fourth and fifth cases of Table 4 are omitted temporarily, the

largest error in the Maximum Likelihood estimate of the mean for the first

fleet is about 3}%, the errors when there were only 1, 2 and 3 failures
respectively being 2.7%Z, 1.0%Z and 1.2%Z. A glance at Figs.4d and 4e shows that,
in the two situations that produce the largest errors, i.e., the fourth and

fifth cases, the failures that have occurred are the failures from the low tail
of the distribution of failures and that the great majority of the non-failures
have accumulated more fatigue damage than any of the failed aircraft. These are
clearly unlikely situations which, if they did arise in practice, are clearly
suitable for analysis by Gupta's technique, which (Table 7) gives estimates much
closer to the population values. Table 7 shows that, although a certain amount
of information is lost in the alteration of a fatigue state to a suitable form,
Gupta's technique of analysis gives better estimates than the Maximum Likelihood
method for the type of distribution of failures and non-failures provided by the
first model fleet, and that the standard errors of the estimates provided by
Gupta's method are similar to those given by the Maximum Likelihood technique in
most cases but smaller in the two cases when the number of failures is

relatively small,
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The estimates of the mean and standard deviation given by the Maximum
Likelihood method for the second fleet are in excellent agreement with the
parent population, the largest error being 37 on the mean and 207 on the
standard deviation, omitting temporarily the fleet states when only one
failure had occurred, Consideration of these latter two cases, with only one
failure, shows that, when the failure is in one of the airxcraft that has
accumulated the most damage, the estimates of both the mean and standard
deviation are low but when the failure occurs in one of the aircraft in the
middle of the range of fatigue damaged aircraft then both estimates are high.
This latter state compares with the 'after three years' state of the first
fleet at which time only one aircraft had failed (that aircraft which was
twelfth in a decreasing list of percentage life expired) but for which the
parameters were reasonable, showing the dependence of the estimates in this
situation on the relative magnitudes of the failures and non-failures, As the
second model fleet was not analysed by Gupta's method (section 7.3) no compari-
son of the Maximum Likelihood method of analysis with Gupta's method is

possible for this fleet.

Figs.6, 7, 8 and 9 show that the Weibull/Johnson plotting technique gives
estimates of the parameters which are at least as good as, and usually better
than, the estimates given by the standard graphical technique. Comparison of
the estimates of the mean and standard deviation from Fig.6 with those from
the Maximum Likelihood technique in Table 4 shows that the latter produces by
far the better estimates for the fleet states in which only a few members have
failed. However the graphical procedure gives good and occasionally better
estimates of the parameters for those fatigue states in which an appreciable
number of failures have occurred and in which there are no non-failures inter-
mingled with the failures to distort the plot of the lower end of the distri-
bution. Unfortunately the Weibull/Johnson method does not provide any
procedure for obtaining the standard errors of the graphical estimates and so

the confidence that can be placed in these estimates is unknown,

Besides showing the improvement gained by adopting the Weibull-Johnson
plotting technique rather than the standard plotting technique, the results
from Figs.8 and 9 indicate that the Maximum Likelihood method of analysis gives
better estimates than the graphical procedures for the case in which only three
items have failed., When there is only one failure, the graphical procedures

clearly cannot cope at all and do mot yield any results,
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8 CONCLUSIONS

Various fictitious states of a fleet of aircraft involving both failed
and non—-failed members have been analysed, where possible, by each of four
methods to give estimates of the mean and standard deviation of the parent
population, The true parameters of the parent population, assumed to be normal,
from which the fictitious fleets were derived by a Monte Carlo technique were
given values representative of aircraft fleet data. The four methods of

analysis used were
{a) Maximum Likelihood method,

(b) Gupta's techniques,

(c) Weibull/Johnson plotting procedure3’4,

(d) A standard plotting procedure (Appendix).

Comparisons of the estimates of the population mean and standard deviation
given by the two graphical methods of analysis indicate that the Weibull/
Johnson graphical method always gives estimates which are as good as, and often

better than, the estimates given by the standard plotting procedures.

For the rather limited set of conditions provided by the examples in this
Report it appears that in general the estimates given by the Maximum Likelihood
technique are in better agreement with the true values than are the estimates
given by Gupta's method, especially when only a few members of the fleet have
failed. However, in those cases in which the application of Gupta's technique
requires only a small approximation the best results are usually given by this
method. The Weibull/Johnson graphical procedure is clearly a great improvement
over the standard graphical procedure and in some cases gives excellent results,
but when the number of failures in the fleet is small the agreement of the
estimates given by this graphical procedure with the true parameters is not as

good as that given by the other two methods of analysis.

It appears then that a suitable choice, between Gupta's method of analysis
for a censored samples, the Weibull/Johnson plotting procedure3’4 and the
Maximum Likelihood technique proposed in this Report, should enable reasonable
estimates of the mean and standard deviation of the parent normal distribution
to be made from samples containing both failed and unfailed members for all
situations but that of only one failure. In this latter case the Maximum
Likelihood technique will provide estimates (the other methods will not) but

these estimates will be sensitive to the relative magnitudes of the percentage
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life expired of the one failure and the non-failures in the sample. It seems
likely, therefore, that valuable information can be provided by a correlation
of service failures with the test failure using the most suitable of the

methods compared in this Report.
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AEEendix

The simple standard graphical procedure for the analysis of a sample of

n failed items consists of five separate steps, namely

(1) Collection of the n items in order of ascending magnitude of the

property considered.

(2) Numbering the n items in ascending order from 1 to n (the general

item being the jth)., These numbers are the mean order numbers,

(3) Corresponding to each mean order number there is a mean and a median

]
n+1
position for the jth item and this is the most commonly accepted procedure.

rank. Gumbel7 proposes the use of (a mean rank) as the plotting

However Johnson8 uses the median rank given by

. '—1
J-(1—1ogez)-(zloge2—-1)(3 1)

n-

n

(4) Having assigned either a median or a mean rank to each failure, the

values are plotted on some form of probability paper.

(5) A straight line is fitted to the points thus produced, either by eye
or by some form of least squares method7 and this straight line then provides

the 'best' estimates of the population parameters.,

When non—-failures are present, the value of the increment between successive
failures, the (j - 1)th and the jth failures in the ordered list, (where there

are r mnon-failures between these two failures) is often changed from the

1 . 1 . ' 1 +r
47 > glven by the Gumbel form for the 'all failed' case, to TR

This is the 'usual' method adopted in Figs.6 to 2, where the non-failures are
not plotted. Johnson however proposed that the increment between the mean order

numbers for the jth and (j - 1)th failure should be

{n + 1) - (previous mean order number)
1 + (number of items above the present set of non-
failures in the ascending order of items)

He then assigned median ranks to each of the mean order numbers derived for the

failures in the sample., Otherwise the steps in the analysis are as for the

1

'usual' procedure, Clearly as in the 'usual' procedure the actual values of
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the non-failures are not used, their only effect being in the spacing of the

failures in the order of ascending magnitudes.



Table 1

DERIVATION OF THE FAILURE TIMES (IN FIU) OF THE MODEL FLEET

£3

Randon | (0¥ R0 [where. w2 2.0 | raitiees | Ordered Lise of
{see Fig,3} and o = 0,17|{antilog. column 3}
636 +0.350 2.0595 114,7 44,6
77 -1.430 1.7569 57.1 47.9
634 10,345 2.0578 114.2 56.2
987 +2.230 2.3791 239.4 57,1
901 +1.29¢ 2.2193 165.7 63.3
368 ~0.340 1.9422 87.5 74.8
829 +0.950 2.1615 145.1 76.3
470 -0.080 1.9864 96.9 87.5
620 +0.310 2.0527 112.9 88.9
528 +0.070 2.0119 102.8 96.9
989 +2.295 2.3893 245.1 101.5
770 10,740 2,1258 133.6 102.4
30 ~1.88¢ 1.6804 47.9 102,8
543 +0.110 2.0187 104.4 104.4
121 ~1.17c 1.8011 63.3 107.7
384 ~0.300 1.9490 88.9 112.0
883 +1.190 2.2023 159.3 112.9
20 ~2.060 1.6498 44,6 114,2
677 +0.460 2.0782 119.7 114,7
791 +0.81c 2.1377 137.3 119.7
614 +0.290 2,0493 112.0 122.6
244 -0.690 1.8827 76.3 133.6
71 ~1.470 1.7501 56.2 137.3
517 40,040 2.0068 101.5 145.1
576 10,190 2.0323 107.7 159.3
978 +2,010 2.3417 219.6 165.7
231 -0.740 1.8742 74.8 172.3
524 +0.060 2.0102 102, 4 219.6
918 +1.395 2,2363 172.3 2394 _
701 +0.520 2.0884 122.6 245,1
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Table 3

PROGRESS OF THE FATIGUE STATE OQF THE SECOND MODEL FLEET

Time in service | 2 years| 3 years | 3} years| 4 years| 5 years| 6 years| 8 years| 9 years .bHHmMMMMmm.
Total number of 1 1 3 5 8 12 18 21 30
failures
Total mamber of | 59 29 27 25 22 18 12 9 0
47.9 47.9 47.9 47.9 44,6 44,6 b6 44.6 4,6
12.3 21,7 56.2 56.2 47.9 47.9 47.9 47.9 47.9
13.9 29,6 57.1 57.1 56.2 56.2 56.2 56,2 56,2
15.9 29.9 24,1 87,5 57.1 57.1 57.1 57.1 57.1
17.4 31.5 30.8 | 107.7 76.3 63.3 63.3 63.3 63.3
20.8 32.4 31.2 28.2 87.5 76.3 74.8 74.8 74.8
21.1 33.1 36.2 31,7 | 101.5 87.5 76.3 76.3 76.3
22.5 38.5 42,8 33,2 | 107.7 | 101.5 87.5 87.5 87.5
23.4 39.5 43.1 36,5 43.2 | 102.4 88.9 88.9 88.9
23.9 40.4 43,9 42.8 46,7 | 102.8 96.9 96.9 96.9
24.6 40,6 44,3 43.4 49.8 107.7 101.5 101.5 101.5 Values above the stepped
25.1 | 40.8 4.8 | 45.3 | 52,5 | 112.0 | 102.4 | 102.4 102, 4 mwwmmwwmW“wﬂM=MMWWMMmMMa-
Codividual 25.3 40.8 48.1 46.5 53.9 53.1 | 102.8 | 102.8 102.8 failures.
aircraft damage | 25.7 40.9 48.9 48.7 55.4 54,9 | 107.7 | 104.4 104, 4 for the sake of brevity
mnncﬂwwmwwosm 27.1 42.1 49,8 | 50.6 56.5 56.9 | 112.0 | 107.7 107.7 the fatigue states of the
28,0 42,9 51.0 50.9 60.4 70.2 | 112.9 | 112.0 112,0 Mwwwwmwuwwwm WMMM Lateresting
28.5 43.3 52.3 53.3 63.7 72,5 | 114.2 | 112.9 112.9
29.3 46.2 53,1 54.5 65.5 76,9 | 119.7 | 114.2 114,2
29,7 46.3 53.4 55.3 67.4 77.0 81.8 | 114.7 114.7
32.6 46,9 55,9 55.8 71.3 77.5 97.9 | 119.7 119.7
35.0 47.5 60.0 58,0 1.4 77.6 99.1 | 137.3 122.6
35.4 48,4 62.4 61.0 73.3 79.5 | 105.4 98,5 133.6
35.5 50,9 68,1 66.4 73.4 80.7 | 109.7 | 112.4 137.3
35.5 52.3 68.7 69.5 77.3 83.5 | 110.1 | 115.1 145.1
36.0 59,3 70.8 71,9 82,0 84.4 | 111.7 | 127.3 159.3
37.6 64.9 83.9 74,7 93,0 86.3 | 116.4 | 128.5 165.7
38.0 67.6 85.4 77.5 93.7 98,5 | 119.9 | 129.1 172.3
45.1 75.6 86.9 90.7 | 101.4 99.3 | 121.2 | 130.7 219.6
47.0 81.5 89.4 91.3 | 102.4 | 111.8 | 126.5 | 136.3 239.4
66.1 97.6 104.0 92.1 | 104.1 | 115.7 | 133.8 | 139.2 245.1
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Table 5

RESULTS OF THE 'MAXIMUM LIRELTIHOOD' PARAMETER ESTIMATION FOR THE SECOND MODEL FLEHT

Standard ] Standard Estimated anwamw&
. . . error of Estimated | error of Estimated mean mean plus
Time in Number of Number Estimated estimated standard estimated Estimated ffici minus one | Estimated one
service £ailures of non- mean mean deviation | standard variance coe Mnumqj standaxrd mean standard
(years) a failures ?cmﬁi {log. .1 ﬁompow deviation | ©° OH . L errar {F1U} error
810 flogyy} correlation  rpry} {F1U}
2 1 29 1.813 0.099 0.104 0.065 |2.57 x 1072 | 0.751 51.7 65.0 81.7
3 1 29 2.174 0. 306 0.248 0.166 12.48 x 10°F | 0.924 73.4 149.1 301.6
3} 3 27 2.060 0.126 0.208 | o0.085 |4.78 x 1072 | 0.842 85.7 114.7 153.1
4 5 25 1.990 0.067 0.156 0.048 11.18 x 1072 | 0.706 83.9 97.7 113.9
5 8 22 2.016 0.061 0.182 0.047 |1.03 x 1072 | 0.671 90.1 103.8 119.4
6 12 18 1.999 0.042 0.165 | 0.03 |3.56 x 107> | 0.478 90.6 99,7 109.1
8 18 12 2.026 0.038 0.182 | 0.033 |2.18 x 1072 | 0.325 97.4 106.2 115.9
9 21 9 2.022 0.034 0.174 0.028 |1.01 x 1073 | 0.204 97.2~ | 105.1 113.7
1 s t -
All failed 30 0 2.030 0.033 0.182 0.023 F2.35 x 102 |-0.0059 99.9 107.2 115.7

state
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COMPARLISON BETWEEN THE RESULTS OF TWO ANALYSES

Table 7

OF THE FIRST MODEL FLEET;

ONE BY GUPTA'S TECHNIQUE, THE OTHER BY THE 'TMAXIMUM LIKELTHCOD' METROD

Number of RESULTS FOR ANALYSTS BY GUPTA'S TECHNIQUE RESULTS FOR *MAXIMUM LIKELTHOOD® ANALYSIS
Number of 0o e -
) . failures of | failures of St andard et ted mnwwmmﬂw Standard Cetinated mnmwmmﬂm
Hwam.wﬂ Estimated { error of stimated | error o . Estimated | error of ma M error o al Esti d
service i inal Leinal e an estinated standard estimated | Estimated mean estimated mnm¢mmm estimate stimate
origtna \\\\ orle A i j deviation |standard | covariance {1og. .} ean deviation |standard | covarlance
- -~ “B1o ﬁﬂmws } ﬁwomHow deviation 10 ﬁ%om } ﬁHomHOW deviation
changed \\\MMMummm 10 SomuoUP 10 ﬁpomwow
Pt e e
6 24 -3 -2
6 years 1.932 0.070 0.135 0,052 3.12 x 10 2.195 0.143 0.304 0.110 7.10 x 10
5 y 25
9 1 AT Y h
o~ - -2
7 years w\\\ 2,016 0,068 0.212 0.058 2,77 » 10 3 2,157 0.092 0,291 0.081 2,80 % 10
9 -7 21
- |
16 14 -4 -3
8 years 2,042 0.046 0.196 0,042 9,24 % 10 2,068 0,048 0,221 0.044 4.58 x 10
14 16
22 8 4 -4
9 years \\\\ 2.032 0.039 0.186 0.035 4.99 x 10 2.035 0.037 0,191 0.030 9.95 x 10
17 13
25 5 -4 -4
10 years 2.0258 0.034 0.178 0.027 1,13 x 10 2.030 0.034 0,182 0.026 5,11 = 10
24 6
1ALl failea' | © 0 0 : -5
2.031 0.034 0,186 0.024 0.00 x 10 2.030 0.033 0,182 0.023 2.35 x 10
gtate 30 0

29
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DETACHABLE ABSTRACT CARD

ARC CP No.ll44
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539431 :
Stagg, A M 620046

PARAMETER ESTIMATION FOR THE LOG-NORMAL PARENT
POPULATION OF FATIGUE FAILURES FROM A SAMPLE
CONTAINING BOTH FAILED AND NON-FAILED MEMBERS

A Maximum Likelhood techmque 1 apphed to provide estumates of the mean and standard
deviation of the parent (iog-normal) population of a sample of fatigue test results, for the
case when the sample consists of some specumens that have not broken as well as specimens
that have faited The estimates produced by this method of analysis are compared with
those given by the suitable application of a techmque developed by Gupta and with thase
resulting from a graphical procedure suggested by Weibull and Johnson The samples used
for these comparisons were fictitious, being obtaned from an assumed parent population by
a Monte Carlo techrique, and, alithough iimeted i numtber and scope, they 1poicate that the
Maxmmum Likelihood techmique gives veasonable approximations to the population
parameters

Use of the most suitable of the mentioned methods of analysis to correlate early service
failures with a test failure should enable a check to be made on the vabdity of the fatigue
monitoring process being applied to the service awcraft.
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