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SUMMARY 

This is a Current Paper combining five separate papers under the 
following headingsl- 

(1) Sound Generation by Turbulence contained 
in a Small Vessel 

(2) Trausmission of Low Ftiquency Jet Pipe 
Sound through aNozzle Flow 

(3) Radiation Properties of the Semi-Infinite 
Vortex Sheet 

(4) Diffraction Xaaiation 

(5) Scattering of Qutdrupole Sources near the 
End of a Rigid Semi-Infinite Circular Pipe 

Both the long wave and short wave problems are discussed. There are 
several aspects of the problem that remain unsolved and further theoretical 
work ahodd be encouragea. 

--_-----_----------______ll____________l 

* Replaoes A.R.C.32 925 
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Introduction 

The noise of the early jet engines increased in proportion to the 
fourth power of velocity. In 1952 hhvardi and Dyer reported measurements 
on turbo-jet engine noise. The velocity index varied from 4 to 8 as the 
thrust was increased. In that year Lighthill's pioneering theory showed 
how turbulence in free space radiated sound in proportion to the eighth 
power of velocity; from that time on the low velocity behaviour seems to 
have been forgotten. It was regarded as an indication a? rough burning, 
or scme ammalcus turbine noise, and was treated m0re as an imperfection 
of the machine rather than a fundamental effect. Inlaboratorystudies 
also, many forms of rig noise had to be eliminated in calibration of the 
experiments. Gauees and honeycombs we used to eliminate turbulence, and 
noesles wi& extremely high contraction ratios were used to obtain smooth 
nozzle exit flow. The dependence of the noise on the eighth power of 
velocity was used as a check on the usability of the equipment. As time 
went on the noise of real engines scaled more and more like the eighth 
power of velocity as the specific thrust was increased and the performance 
was improved by eliminating internal losses which no doubt induced turbulenae 
in the nomle exit flow. In the Bakerian lecture Lighthill (1961) was able 
to point to the relevance of his theory to practical engines. There was 
only one aspect that was in any way unsatisfactory. The convective effeots, 
so important in distributing preferentially the radiation in the direction 
of Jet motion, also bring about an increased efficiency, so that the sound 
scales with a higher velmity in&x than 8. At 90° to the jet axis, when? 
the convective effects are absent, 8n eighth power law is predicted. 
Experiments in fact show that a velocity index nearer 6 is measured at 90" 
and the overall power scales very closely on the eighth power of velocity. 
Lighthill drew attention to measurements of turbulence level which shaved 
that the relative turbulence intensity tended to be a decreasing function 
of Machnumber. He gave a very plausible argument that this decrease 
accounted for a reduction of the sound level which exactly compensated for 
the increased radiation efficiency brought about by the convective effects. 
The eighth power law still described the experiments but for a slightly 
different reason. This coincidence is a little unsatisfactory however 
since recent experiments carried out by Lush& show that the frequencies, 
that are set by the turbulence level, increased linearly with velocity, 
and his exceptionally carefully prepared jet flow does show the increase in 
radiative power above the Us line. The sound intensity at 90' to the 
jet axis scales precisely with the eighth power of velocity in oomplete 
accord with LLghthill's theory. Modem engines run at lower jet speeds to 
achieve jet noise suppression. The achieved suppression is not as great aS 
en eighth power law would imply. We are therefore led to the oonclusi~n 
that the Lighthill model Or free turbulence only parfly describes the sound 
of real turbo-jet engines though it deals completely with a carefully prepared 
model problem. This PaFlure of the model can be turned tc a distinot advan- 
tage. 

The U' law is a rigorous derivation from free quadrupole theory 
asymptotic for low Mach number. That the law fails at low Mach number is 
positive proof that the sources of low speed noise lie outside the Lighthill 
free turbulence model. The new noise sources that are now becoming iqor- 
tant must be sought either within or at the nozzle surface. Curie (1955) 
showed that mhen boundaries are present monopoles arise at free sudaoes and 
dipoles on rigid surfaces. An unsteady mass flow in the nozzle exit would 
radiate monopole sound and an unsteady jet thrust would radiate dipole sound, 

both/ 
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both more efficient than the basic quadrup le 
B 

m.echfism. This was the 
mOd& taken by WfOwOS WFuiams and Gordan who &so showed e.xperimentaUy 

that the nm+U5 noise is an increasing function of internal jet pipe turbu- 
lence level. This first viewpoint is however too naive. 

Unsteady maas flow from the engine, whioh tends to be large on a 
wavelength scale, is Only permitted as a result of internal fluid dilata- 
tion, an effect which must vanish as the compressibility, or the Mach number, 
tend5 to eero. The monopOle strength is consequently factored by a Mach 
mder and the velocity index increased. A proper treatment of this problem 
mm* rest on the yet unexplored internal acoustics of a jet engine, 

'~y;;o~~w~jgyk A first step in this problem was taken by Davies 
in considering the problem of sound generation by 

turbulencepontained within a long pipe. They showed a fundamental increase 
in the sound producing ability of confined turbulence pxuvidtng that the 
adoustic wavelength was much lsrger than the pipe's &meter. However, this 
is precisely the condition required for inefficient radiation from the termina- 
tion of the pipe so that this increased sound production would not be noticed 
in the jet exterior. Waves incident upon the no5Ll.e exit would, in the main, 
be reflected back upstream. However, if there is an upstream obstruction 
which reflects upstream travelling wave5 back in the direction of the nosale, 
then in the end the waves would get out but only at the discrete frequency 
characteristic of the organ pipe. This inability of sound generated effi- 
ciently with5n a jet pipe to escape into the environment was pointed out by 
Gordon .sndMaidanikSandHellersndWidnall~ 

That sowe new source must become do minant at low speeds is no sur- 
prise. Lighthill pointed out the extreme inefficiency of free quadrupoles 
as sources of sound. He argued that resonators could increase the acoustic 
output and that turbulence could interact with a mean shear layer using it 
as a sounding board to increase the sound power output. s0ua surfaces 
could of course act as sound3ng boards. These suggestions have now to be 
taken more seriously since the 'new' so-es are evidently controlling the 
sound radiation of modern turbo-jets with their relatively 10s exhaust speeds. 

!I& refraction of sound as it travels from its turbulent origin 
through a mean shear fl0w is neglected in the Lighthill model. Lush4 has 
shown that this refraction is a controlling factor at near grazing incidence 
to the jet axis. At low angles the effect arrests the increase of fre- 
quency ma intensi with speed. This refraction has been treated numeri- 
cally by Schubert 1% in a scheme which integrates the governing equations 
for a &ven jet profile. Schubert suppresses the instabilities that inevit- 
ably exist with an dnflectional velocity profile - a step Of yet Undeterminad 
relevance to the practical problem. Howell treats 5nalyt&KUy the geo- 
metrlcal,Q simpler problem of sound sources olose to a plain vortex sheet. 
He shows how the interaction between the SOma and the flow is a dominant 
feature of the problem and how the instabilities control the process ia the 
so-c53lea zone of sflenoe. The main features of interest in all these r-e- 
fractive interaction situations occur at angles with3.n 90° of the jet axis. 
There is a minimum of effect at 90°. These interaotion effects ars also 
decreasing as the Maoh number is reduoed. 

The main characteristic of the low speed problem is that non-U' 
behaviour becomes increasingly important at low Maoh numbers and the effect 
is most apparent at 900 to the jet sxis. Whether this is on account of a 
preferential directivity in the 90° direction OF simply because the Us 

sources/ 
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SOUFCes are weaker in this direction is not yet known. A simple minded 
SWVey Of SOLKid at One frequency in no way indicates the source properties 
since Doppler effects depend on radiation angle, and must be accounted for 
to select the field of any individual source. This point was used by Lush' 
to great effect and his technique which exploited a thorough understanding 
of the basic physical processes with a critical experinwm~ survey could 
well be used nw to throw light on the low speed problem. This report aims 
t0 idedtiy some of the important physicsl processes that might be examined 
in such an experimental programme. 

The interaction of sound witi the shear layer per se is evidently 
not a &nsisdng starting point to the search for the high efficiency low speed 
scurces that are relevant to the practical problem. However, we shall con- 
clude that tb.e interaction of the shear layer with the ncesle surface is 
likely tc be a powerful effect. 

The most comprehensive experimental survey of lcw Mach number non- 
quadrupole sound that is so far available' is due to Gordon and ~aidan~c8 
and Hellcr and WidnallT who study the additional noise made by a jet emerg- 
ing from a pipe containing specific turbulence generators or spoilers. They 
actually measure the fluctuating forces on the spoilers and give a convincing 
interpretation of the dominant processes that operate in their experiment. 
Unfcrhmately the particular situation studied by them is proving quite differ- 
ent in character to ths emerging problem of low speed jet engine noise, in that 
the velocity dependence and dzrectionality are different. But then their 
experrlmentsl setup was quite different also. Their jet pipe was not fitted 
with a noztie, so that the jet pipe velocity was uncharacteristically high. 
The nozzle itself may have a fundamental. influence On noise. In fad it is 
quite unreasonable to expect their expetimtnt to model an engine at all.. 
Unreasonable also is ths expectation that sny rig survey of the low speed 
noise problem is in some way universal. The remarkable fact is that there 
does appear to be some evidence of a universal structure. Any universalitg 
in the low speed problem seems highly improbable because the low speed failurs 
of Lighthill's free quadrupole model, and its precise asymptotic description, 
is positive proof that the low speed sources lie either within or at the 
noksle exit. If the sources are at the exit plane then the turbulence there 
may be essentially driven from the unstable turbulent downstream shear layers. 
In that event some universal form is feasible. However if the sources are 
within the jet pipe where conditions vary enormcus~ from one engine instd- 
L&ion to the next, and certainly from engine to model rigs, a universal loR 
speed non-Us structure is quite out of the question. Nor can it seriously 
be suggested in the light of low speed jet experiments where there is in fact 
a proldfic body of information available from the heating and ventilaticn 
field. Jet exhaust noise is there the limiting faotor preventing the use 
of more economic smaller conduits conveying air at high speed. 

At this time then, we seem to be concerned with the details of rig 
noise which the early experimentalists took such pains to eldminate. It 
obviously depends on the rig and its internal acoustics. It is becoming 
practically significant now because of reductions in the free turbulence 
noise that accompany a lowering in jet speeds and the developwent of more 
efficient jet suppressors. Actually, the problem is not really restricted 
to low speeds but to all jets where the Lighthill-type sources can be 
suppressed. 
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The PreVhUS COmrimt that resonators can increase the acoustic 
radiation from turbulence has not been worked out in any quantitative way. 
This is done in Chapter 1 of this report and is thought to be relevant 
since the interior of an engine contains many resonant cavities. Specifi- 
cally, the combustion chamber constitutes a Helmholte resonator whose rescn- 
antes are known to be troublesome in accounting for vibration that affects 
its structural integrity. It will be seen that the interior motion is 
also capable of generating sound very effectively and that turbulence aria/or 
turbulent combustion is a possible source of low speed high amplitude noise. 
The jet pipe too is a resonator of the organ pipe variety, and high ampli- 
tude low frequency organ tones, which may well be termed 'howl', are likely 
t0 OCCUR unless the modes are damped in some deliberate manner. These 
sounds would all scale on a velocity index lower than 8 provided only that 
the unsteady flows have a Strouhal frequency at, or above, the fundamental 
os0illator resonance frequency. These resonators generate sound in the 
manner of acoustic monopoles and scale on the third or fourth power of 
velocity depending on whether the radiation is at or above the resonance 
frequency. Also, surfaces can scatter hydrodynamic motion into sound. 
Small surfaces do this in the well documented way described by Curie (1955) 
while large surfaces do it in a basically more efficient manner that is less 
well understood and may depend on details of geometry. It is this problem 
that is treated most extensively in this report, the object being to describe 
the physical characteristics of sound generation in the neighbourhood of the 
nozzle exit when it is irradiated by turbulent sources in tie presence of 
an evolving shear layer. 

Chapter 2 deals with the low frequency behaviour of the jet pipe 
and nozde configuration at low flow Mach numbers when the wavelength of the 
sound is large on the nozzle scale. The argument is made much more formal 
in a rigorous treatment that neglects the influence of mean flow and the 
presence of the noeele in Chapter 5. There the diffraction of aerodynamic 
sources by a semi-infinite pipe is treated exactly. The relevance of this 
model problem to the practical situation rests entirely on Lighthill's exact 
acoustic analogy. The conclusions reached in these Chapters are that the 
turbulence in the vicinity of the noeele exit will generate long wavelength 
sound that scales in proportion to the sixth power of velocity. Aemdynfmi.0 
sources deep in the pipe will scale on velocity in precisely the sates manner 
as they would in free space. At higher frequencies, when the wavelength is 
short on the scale of the nozzle diameter, sound escapes from the nozzle un- 
impeded so that again the containment of sources within ths jet pipe cannot 
alter their velocity dependence. Also in this limit, the basic canonical 
problem neglects surface curvature arxl considers the sound generated by 
unsteady flow in the vicinity of a sharp edge to a semi-infinitebounding 
surface. This eras done by Ffowcs Williams and Hall12 who showed how sound 
was gemrated in a basically more efficient way by edge scattering, tb? 
acoustic intensity scaling on the fifth power of flow velocity. Crightcm 
and Leppington 43 showed how this argument could be generalised to different 
geometries with no essential modification of the conclusions. T&se argu- 
ments are taken much further in Chapter 3 of this report by including the 
interaction of the shear layer and the bounding surfaces and al.60 inoluding 
for the first time a non-trivial exact solution of the flow equations that 
incorporates various forms of 8 Kutta COnstraint. Sound is indeed generated 
very efficiently by the interaction, the efficiency increasing by a large 
amount as the Kutta condition is applied. In this category also, we consider 
edge-scattered sound from those parts of the turbulence that are silent in 
the absence of the edge. This is the case for slowly evolving eddies. 

m=d 
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When these eddies are convected with the flow and emerge from the shadow 
of the boundary their steady field adjusts tc the free space value. This 
adJustmen+. is unsteady and produces a pmpaeating sound that we term 
'diffraotion radiation'. That problem is treated in Chapter 4. Again 
the intensity is shown to scale on the fifth power of velocity. The se 
edge-scattering mechanisms sll generate sound that radiates preferentially 
away from the jet axis and at a frequency higher, by a factor of about 4, 
than the basic jet noise. It also scales with a velocity index equal to 
or less than 5. In this way it seems to describe aany of the experimental 
features of the current practical low speed jet noise problem at sound wave- 
lengths that are shorter than the noesle scale. 

The concluding Chapter describes what experimental checks might 
be made onSthe relevance ~4' the theoretical model to the practical problem. 
It gives also some indication of problems that remain outstanding. These 
are both theoretical snd cxpetimental. 

References/ 
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Chapter I 

Sound Generation by Turbulence contained in a 
Small Vessel 

John E. Ffcwcs Williams, 
Department of Mathematics, 

Imperial. College, London 

Some features 
exhaust speeds, lead to 
the ccmbustlcn chambers - __ 

of the Jet engine noise problem at relatively low 
the view that the unsteady turbulent flow within 
may well be an important source of external noise. 

These flows are characterX&UX4ly very hot, the local speed of sound is 
high, and many sounds of practical interest fall in the frequency range 
where the acoustic wavelength in the hot flow is larger than the linear 
bmenslcn of the combustion chamber. The combustion chamber is then a 

'small vessel' s.n the sense used here. Sound will not be a significant 
factor in the internal fluid motion of such a small vessel. We consider 
that the vessel, of internal volume V, communicates with the exterior 
homogeneous environment through a small fraction of its bounding surface, 
and for definiteness, we model the apertures as a single tubular 'neck' 
of length L and cross-sectlcnal srea A. The vessel constitutes a 
'Helmholte' resonator whose acoustical properties are easily described. 
Away from the resonance frequency sound is generated as a by-product of 
the mainflcw and is of sufficiently small magnitude that it does not feature 
in the dynamical balance that constrains the internal motion. The sound 
can be determined from the motion at the 'neck' which acts on the envlrcnment 
like a mcncpcle scurce of strength equal tc the rate at which the mass flow 
leaving V is changing in time. At the resonance frequency, however, 
sound is the main loss term that lirmts the amplitude and it then features 
prominently in the balance by which the flow is determined. 

We wish to determine the sound level that is generated exterior 
to the vessel by turbulence snd turbulent combustion which we suppose to be 
contained in the vessel. We wdJ.l consider first the non-resonant case and 
then examine separately the question of rescnance frequency sound generation. 
The model problem is illustrated in Fig. I. 

Non-Resonant Behaviour 

The pressure p(t) at the entry tc the neck can be decomposed 
lntc two components, one arising from the dilatation caused by one-dimensional 
motion in the neck, p,(t) say, and the other the pressure that would be at 

that position were the velocity at the neck externally restricted to eerc 
p,(t). 

P = P, + P, *a* (1) 
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p* is thus the pressure induced in a rigid walled unventilated 
vessel and msy itself be attributed to two effects. Firstly, turbulence 
in the vessel will induce an unsteady pressure pt whose magnitude will 
male cm the unsteady Reynolds stresses and whose frequency CO, will be 
determined by the Strouhal number based on the characteristic velocity and 
turbulence length scale in the vessel, IJ and C respeotively. 

F is the nieean demitg wlthin the vessel. 

Secondly, unsteady heat addition will cause the pressure in the 
COrlstant VOlUme vessel to vary, and we wEL1 label this Component of pr as 

p¶' 

pr = Pt+ Pq 

pq = (y-1) ps 

where q is the average aver the volume V of the unsteady component of 
heat addition per unit mass. This will typically be a small fraction (x, 
say, of the steady heat addition per unit msss which in a jet engine is 
equal to themechanical energyperunitmsss intka exhaust flow, Us. 3 

Pq = a(y-I) p u; f 0’. (5) 

Theunsteadypressure pt, for a given turbdknce level in the 
chamber, will therefore scale on a mean velocity squared, the velocity 
being either the locsl chamber flow velocity or the mean jet velocity depend- 
mg on whether the local inertial term or that arising from unsteady burning 
is aominsnt. 

Unsteady flow out of the volume will introduce the additionnl 
pressure p,. When the velocity 5.n the neck is v the density in the vessel 

FvA 
willbersduoingatarate -, and the pressure at a rate cs times 
this. v 

ap v= 
at 

The fluid in the neck has an inertia which the difference in 
pressure between the vessel interior and the environment, p - pa, must 
overoome. 

(P-P,)/ 
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av 
(P - Pa) = h+ - = pr + p " - p a = P; - Pv a-0 (7) 

at 

The unsteadiness in ambient pressure pa is absorbed into a re- 
defined p' r since it is due predominantly to local hydroaynsmic effects 
that are independent of any motion in the resonator neck. This is because 
at large wavelengths (compared to the dimension of the orifice) source 
motion is ineffective in generating changes in external pressure, and the 
small changes that are introduced are fully accounted for in a s;light re- 
definition of neck length - which is in any event imperfectly modelled. 
The significance of absorb- the environmental changes into p'r is that 
the step emphasises an essential point that hydrodynsmic pressures interior 
or exterior to the resonator are scattered into sound in a precisely simi- 
lar fashion with identical efficiencies. 

Equations (6) ad (7) can be combined to form an Momogeneous 
oscillator equation that we write here in terms of the simple source 

av 
strength F - A. 

at 

ag 

3 

av 
+ OS 

A a$' 
- FA - = -A 
ata ' at L atg 

where, 

@O is the Helmholts resoname frequency. 

At frequencies very much below resonance, tie first term on the 
left-hand side is negligible so that the monopole strength is then 

A dsp' v aOp* 
- 2 or - 3 . Then the sound pressure p(x,t) radiated 
w;L ata co ata 

to distance 15 1 from the vessel is: 

v 
p(ll,t) = 5 p;(" - F ) 

~xo~J~I ata 
a’* (9) 

The frequency of the aerodynamic PRSSWe p+, is set by 
the Strouhsl number so that; 
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and since p, increases with the square of velocity, the radiated sound 
will increase in intensity (p') in proportion to the eighth power of 
velocity. Rvidently the containment of aerodynamic sources within a mall 
vessel cannot materially affect the velocity dependance of their radiated 
sound so long as their frequency content is below the natural resonance fre- 
quency of the vessel. 

The second term on the left-hand side of equation (8) isnegligible 
at frequencies much above wo. Then the monopole strength is simply 
A 
-P, , and the sound field radiated outside V is: 
L 

P&t) = A P;(t -Z) 
4XLl5l 

The intensity of this high frequency sound scales on the fourth 
power of velocity. The sound pressure level is in fact independent of the 
acoustic velocity, so that at low Mach number the containment of high fre- 
quency aerodynamio sources within the vessel vastly improves their radiation 
efficiency. 

Resonant Behaviour 

According to the foregoing linear theory the response and radia- 
tion are unbounded at the resonanoe frequency. An upper bound 
can be placed on the radiation bv equatmg the available energy in the flow 
at this frequency to the sound energy. The energy available in the un- 
steady flow till scale on the mean kihetio energy, so that the maximum 
possible radiation power at the resonance condition is proportional to: 

so that the radiated sound pressure has amplitude scaling on: 

y,rnopole strength thus has a eaximum amplitude proportional to 

D 

Equation (8)/ 
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Equation (8) shorn that the monopole amplitude at frequency (D 

A w 
which apprcdmates -o* 

L 2Am r 
at frequency o. + Am. The bandwidth 

of the resonance can be estimated by determining the value of o for whioh 
the source9 3 db down on its resonance value. 

l ** (15) 

This bandwidth can be rather large at low Mach number so that the 
resonanoe peak may be quite broad and no discreet frequency sound could be 
produced. This resonant response broad band noise would scale with the 
oube of characteristic speed, according ta (13). 

Evidently aerodynamic sources radtate sound mom efficiently when 
they are confined in a vessel whose natural Helmholts resonance frequency 
is Smd.l.er than the Strouhsl frequency. The main response is likely to be 
at resmance where the sound scales on characteristic flow velocity to the 
third power. The resonance bandwidth could however be very broad at low 
Mach number. At higher frequencies the radiated sound scales on the fourth 
power of velocity. 

Soumeri with frequency below the resonance frequenoy radiate in- 
effectively with an efficienoy depending on velocity in preCisel.v the ssme 
way as in unbounded space. Low frequency soundtherefore scales on the 
eighth power of velool~. 
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pressure p(t) at neck atr;v 

ck' of length L and 
cross-sectional. area A 

Fig. Illustration of the model problem at' sound generation 
by unsteady flm contained in a Helmbolt% resonator 



Chapter 2 

Transaission of Low Frequency Jet Pipe Sound 
\ through a Nozsle Flow 

by 

John 3. Ffowcs Williams, 
Department of Mathematics, 

.lmperial College, London 

The model problem is illustrated in Fig. 1. The basic flow is 
a subsonic Jet of velocity V, formed by expanding a hot jet pipe flow of 
mean velocity Vi and static pressure pi in a jet pipe of cross-sectional 
area Ai through a nozzle down to the ambient pressure PO. The jet 
flows in the direction +x. Superzmposed on this basic flow is a low 
frequency sound wave of pressure p+ incident from x < 0. The meaning 
of low frequency in this context is that the nozele scale is much smaller 
than the wavelength in both the Jet stream and the environment. The tine 

. dependence is taken as e -i0 t throughout. The problem is to determine 
the unsteady conditions at the r.0zsl.e exit and the sound field radiated 
to the static homogeneous environment exterior to the Jet. 

The incident pressuzx wave p* will be reflected (with reflec- 
tion coefficient R) at the nozzle as an upstream wave of pressure p-x Rpz 
The perturbation pressure at the entry to the nozzle, station (I), will 
therefore be the superposition of these waves. 

p:(t) = (p'+ p-) eSiot = (1 + R) p* eviUt. *** (I) 

The unsteady velocity u', measured in the +x direction, is therefore: 

e-i0 t 

4(t) = (P"P-) - = (I - R) P* e-iut --a (2) 
pi 01 pi ci 

Thedependenoeof pi on ui can be found by considering the pressure 
gradient required to accelerate the fluid on the jet axis throu& the 
nozzle. 

1 dP Du a 

I 

dp 
B-=-w=- - 

P -3x Dt ax p 

We assume adiabatic motion with y equal to the ratio of specific heats. 
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Y a P au a 
- - - = - ---&u" 

t ) 
a-0 (4) 

Y -lax p at ax 

In the nossle region, provided the scale L is smaller than the acoustic 
wavelength, the dependence of u on axial position x is the same as it 

*is in purely steady flow at velocity V. Therefore: 

v(x) 
u(x,t) = k(t) - 

Vi 

Equation (4) can then be integrated on the jet axis over the 'nokle flow' 
region between stations I and 2. 

I -0. (6) 

The pressure at station 2 is by definition the oonstsnt po, and 
us is related to us according to equation (5). Epustion (6) is there- 
fore an equation relating the pressurs snd velocity at the nossle exYtry so 
that we can new determine tk reflection coefficient for plane waves from 
equations (1) and (2). The 'nossle adjustment' length L is defined for 
oonvenienca as I 

.a 2 v(x) 
L= ax l a* (7) 

vi+v* I 
(V* + v*) 

L *** (8) 
2VI i 

The unsteady parts of equation (6) are then: 

Y P1 (v* + v.1 --= L 
y-1 pi 2Vl 

l -m (9)  
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VS 
ub = --I= 

Vi 
]] 

Continui? requires that piAiV, = psAsV,, so that, 

2p+ Ai e-im t 
ub = - - 

pn ai Aa 

c 

The pressure radiated by the unsteady flow can be expressed in terms of the 
velocity perhwbation ud which induces both a monopole and dipole radiation. 

AS 
Pb,t) - - 

VS 
u1)+2- oose *-- (14) 

I~I+an 4dfl I 2 
p. 

cO 

;(p.ub) 
3 

t- I* I /co 

where 8 = 0 is the Jet (x) axis. 

1 
Pktt) .x. - 
ICI *- 4Xlfl 

P/ 
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r v, 
1+2- cosej e -iw( t - ?~l/Co) 
C co J 

p(5.t) - - 
ioA$ p* 

'XI-r- 

With no flow and no noesle this result reproduces the leading terms in 

, (W4 
- of Levine and Schwinger's exact result. The first effect of mean 
(c 1 

flow is evidently to increase the field in the direotion of flow and reduce 
that in the upstream direction, the increase being by a factor 

c 

%a 
1+2- co9 e on pressure. The other terms lnf'luenced by velocity are 

C 
0 J 

negligible at ths low frequencies we are considering when there is no nozzle. 

The effect of a nozele is not very marked unless the contraction 
ratio is high, much higher than is normal in Jet engine configurations. 
wL/C* is by hypothesis held small so that (I',+ Vs)/2V, must reach a value 

WL (vi+ vs) 
of about 10 before the ratio - becomes important in 

Ci 2vi 

equation (16). This implies an area contraction ratio of about 20, which 
is quite outside the range used in real engines. However, it is not so 
untypical of model scale situations where laboratory nozsle exit flows are 
ma&s smooth by rapid expansaon of a plenum flow. The effect of the con- 
traction is then very marked in that the transmitted sound scales in direct 
proportion to the incident field in the jet pipe and not to its rate of 
change. This is made clear by writing ths asymptotic form of(i6) when 
&l/v, is very large, but VP not much in excess of oi. 

VS a 
p&t) .- a l 2 -nose 
Ql+ OI c C 

0 J 
p+ - e 

-iw( t - 'q'/oo);, >>WL *Vi - >> - 
1x1 Cl VS 

where a is' a constant of order unity and a is the nozzle exit radius. 

Influence/ 
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Influence of the Noesle Transmission Properties on the Velocity Dependence 
of Aerodynamic Sound 

Suppose as a first instance that the incident pressure field, p*, 
is the large scale near field of aerodynamic quadrupoles, i.e. p* is the 
fluctuating pressure level in a turbulent. flow, proportional to the un- 
steady Reynolds stress and scaling with pi V,D, the characteristic 
total head at the entry to the nosele. for area contraction ratios less 
than about 20 and supposing the Mach numbers are not large, then the radi- 
ated sound is given by equation (16) as: 

-i ox& 
pk,t) * - - 

a vn 
Mi P e- i+2 

t 
-00se e 

) 

-iw(t - '2 I /co) 

lyl+ - 2% v, 1x1 0 
0 . . . (18) 

The mean square sound pressure generated by turbulent'flon at the 
noezle entry is then of magnitude: 

D WL a 
Qipv: ; I.>> - >> - 

,x1+ m Cl 

The Strouhsl number based on noesle entry conditions 

will be a slcwly varying function of velocity, so that this radiated sound 
will increase in proportion to the sixth power of jet velocity. 

If on the other hand the nozsle is one of extremely high contrac- 
tion ratio, equation (17) is relevant and noeele entry turbulence would then 
induce a radiated sound of mean square pressure: 

AS 
P WL 

-p(x) = - 
VS 

pv: 1+2-ccse 
2% 

J 1 >, - >, - --- (21) 
IXl-,or IEI D 

Q* 
t c 

0 ) Cl VII 

Suppose now that the pressure incident on the nossle from upstream 
is an aerodynamically generated sound wave. Since WL << C~ , all 
frequencies are below the pipe 'out-off' frequency and the sound is then in 
the form of a one-dimmsional travelling wave. Davies and Ffowcs Williams 
(1968) have shown has the sound generated within a pipe scales on the flow 
parametersin this si+uation. 

p+ & Q&M: l a* (22) 

where n = 1, 0, or -1 for compact aerodynamic quadrupoles, dipoles or 
monopoles, respectively. When this sound is incident on a noesle of modest 

contraction/ 
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contraction ratlo, equation (16) shows hoa the pressure is made more sensi- 
tive to velocity. 

Again the Strouhal number is a slowly varying function of flow 
conditions so that the aerodynamically generated mean square sound pressure 
radiated through a nozzle flow typical of operational jet engines is: 

2n+2 4 
P 

Tvx) = px Mi 
vs 

- 1+2-case . . . 

lLl*- IfID t C 
0 ) 

This expression is similar to that describing the radtation of 
these aerodynamic sources in unbounded free space. The only major effect 

6%) 

of their containment within the jet pipe flow terminated by a nozzle is 
that the directional properties are determined by the jet exit conditions 
rather than the source orientation. (Though only those multipoles with all 
axes parallel to the jet sxis can radiate at all). The sound field scales 
on jet pipe conditions upstream of the nozzle- It also scales on the sound 
speed upstream of the nozzle, and is in this may different from ac?rcdynapio 
sound in free space which scales on the sound speed of the envircnmerlt. 
The difference is a reflection of the fact that in this problem theaerc- 
dynamic sources first generate a sound field within the jet pipe and their 
ability to do this depends on the acoustic speed within the pipe and not on 
external conditions. The parameter range described by this result is 
probably typical of all jet engine conditions so that we can conclude that 
aerodynaznk sources contained within the jet but positioned many wavelengths 
upstream of the nozzle will generate sound depending on jet velocity in 
precisely the same way as if the sources were in direct communication with 
the nozzle exterior. 

On the other hand if the nozzle contraction ratio is very large 
then equation (17) is relevant and the sound of contained aerodynamic 
scurces described by equation (22) is heard outside the jet flew with a 
mean square press- of magnitude: 

AS VP . 2n P(x) = ,P,Vhi - 1+2-oose 
1x1 -b - If IS t C 

0 ) 

Tbs velocity dependence is then $., V,' and V', for quadrupoles, 
dipoles and monopoles respectively. 
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Station @immediately prior to 
position bt which pipe flow begins 
to adJust to the nozzle conditions. 

Jpt pipe 

/ 
Notz Ie \ p R;~dia~d 

p+- 
Incident sound wIIve -- - - 

:i 

-------- 

Reflected sound vmve 
-x,u Jet flow 

p-u Rp+- 
-- _------m-e 

Station @ is the position at 
which local nozzle effects have 
disappeared and the pressure ia 
relieved to the constant static 

pressure p. . 

Nozzle adjustment length- L 

1 Pig. Diagram Flluatratlng the model pmblea 





Radiation Properties of the Seu-Infinite Vortex Sheet 

D. G. Crighton, 
Department of Mathematics, 
Imperial College, London 

ABSTRACT 

An exact calculation is given of the acoustic radiation fmm a 
time dependent flow coupled to an inhomogeneous solid surface. specifically, 
the flow consists of a vortex sheet leaving a semi-infinite plate and undsz- 
going a two-dimensional spatial Kelvin-Iielmholte instability. 31 the absence 
of the plate, such an instability mode 0f the vortex sheet generates no sound. 
In the presence of a rigid plate, it is found that the intensity-directivity 
law is 

1-u' sin98/2 

with e measured from the downstream direction. If the plate is compliant 
and fluid loading effects high, the radiation is weaker, with 

. These results agree completely wzth those predicted from general theories of 
the scattering af the near-field of point quadrupoles by large wedge-shaped 
surfaces (Ffowcs Williams and Hall 1970; Crighton and Leppington 1970. 1971). 
Imposition ~6' the "rectified" Kutta condition of Orssag and Crow (1970) does 

not modify the sound field. Applxation of the "full" Kutta condition, 
that the sheet leaves the plate at eero gradient, results in an enormous 
increase in the radiation, with 

I- u= ooseo= e/2 * 
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1. Introduction 

An area of aerodynamic noise theory in which significant advances 
have reoently been made is that of the interaction of unsteady flows with 
solid surfaces. The possibility that the presence of solid surfaces could 
greatly enhance the radiation from a contiguous turbulent flow was first 
demonstrated by Curie (1955). Subsequently, this possibility became a 
matter of some controversy (Meeoham (1963), Powell (1963), Ffowcs Williams 
(1963)), which the papers of Ffowcs Williams (1965), Ffowcs Williams and 
Hall (1970), Davies (1970) and Crighton and Leppington (1970, 1971) have 
attempted to resolve. These papers, and others referenced in them, while 
providing a basic understanding af most effects likely to occur in practice, 
involve a considerable, and perhaps unjustified, extrapolation from' 
Lighthill's (1952) orighal theory of aerodynamic sound in the absence of 
surfaces. The view is taken that the flow is aooustically equivalent to a 
volume distribution of quadrupoles, and that details of the flow serve mere- 
ly to determine the strength and frequency content of that.distribution. 
Thus the problem of flow noise in the presence of surfaces is reduced to 
one of classical diffraction theory - essentially that of finding the solu- 
tion to the linearised wave equation with a point quadrupole inhomogeneity, 
subject to the boundary conditions demanded by the surface under discussion. 
The hydrodynamic aspect of the problem is completely contained in the 
strength and frequency parameters of the quadrupole inhomogeneity. Such a 
de-coupling of hydrodynamics and acoustios has its difficulties even in the 
ease of free turbulence, and clearly requires adequate justification, since 
it is the crux of the surface soattering theories cited above. 

In the case of free turbulence, the appropriate justification 
has been given by Crow (1970), who also gives a penetrating discussion of 
the very severe limitations on the quadrupole model. An extension of bis 
methods and results to the case of a general flow in the presence of any 
surface likely to be of practical significance appears to set a formidable 
problem. Accordingly, expediency seems to require the necessary justi- 
fication for scattering theories to come from a comparison of their predic- 
tions with exact solutions for particular flows. For example, the low Mach 
number radiation from a line vortex spinning about a circular cylinder, 
whose axis is parallel with that of the vortex, is capable of calculation 
(He&l, 1970), with results whioh agree with those of Curie (1955) and 
Crighton and Leppington (I 971). The cylinder scatters a dipole field, if 
its radius is less than the relevant acoustic wavelength, with intensity 
increasing as the fifth power of a typical flow speed U. In contrast, 
a spinning vortex pair in free apace radiates a quadrupole field with 
intensity varying as UT (Obermeier, 1967). Examples of greater prao- 
tics2 significance are not easily found, and the flow discussed in the 
sequel seems to provide the first case of a flow which is in some sense 
extended in spaoe, and coupled to a non-trivial surface of practical interest. 
(The flows discussed by Amiet and Sears (1970) are of a rather different 
kin& involving motions essentially,driven by the prescribed motion of a 
surface J what we require are flows coupled to surfaces which are passive, 
except for their x&e as scattering centres). 

The flow whose acoustic properties form the subject of this 
paper was first examined by Orssag and Crow (1970), in the context of hydra- 
dynamic stability theory. Plane parallel flow on one side of a semi- 
infinite plate generates a vortex sheet downstream of the trailing edge, 
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which may develop a time-harmonic spatially growing instability. Orssag 
and Crow determine the correction caused by the presence of the plate to 
the Kelvin-Helmholtz instability eigenfunctions of the doubly infinite 
vortex sheet. Their conclusions are essentially that the correction is 
negligible at distances greater than a hydrodynamic wavelength from the 
edge. Such an effect is of no great significance for stability theory, 
but the flow is of the greatest interest in the context of aerodynamic 
noise theory. Ne shall see that the flow is an extremely efficient 
radiator of sound - entirely because of the small correction required by 
the presence of the plate, for at subsonic flow speeds a Helmholte instabil- 
ity on a doubly infinite vortex sheet radiates no sound field at all. One 
very interesting aspect of the work of Orseag and Crow involves the applioa- 
tion of two possible Kutta conditions, both of which have Important con- 
sequences in the acoustic problem. The appropriate compressible generalisa- 
tions of the functions used by Orszag and Crow to enforce Kutta conditions 
are found in Section 4. We start, however, by considering the Orszag-Crow 
problem for a compressible fluid at low Mach numbers. The first section 
consists merely of a recapitulation of the derivation of the correction 
field due to the presence of a rigid plate, this being needed primarily 
because it is not at all obvious that a knowledge of surface pressure fields 
according to incompressible flow theory is adequate for an evaluation of the 
distant sound field when the surface concerned is large compared with an 
acoustic wavelength. Subsequent sections then discuss the effects of 
substantial compliance of the plate, the imposition of Kutta conditions, 
and the generalisation of Sommed'eld's classical half-plane diffraction 
problem to incorporate the effect of the vortex sheet. The paper ends 
with a discusdon of the relevance of the results to current problems in 
jet noise prediction. It is suggested that the interaction of shear layer 
instability with a large solid surface may be the mechanism responsible for 
the so-called "excess noise" phenomenon. 

2. Vortex Sheet Leaving a Rigid Plate 

We consider two-dimensional motion in the (XJ) plane (Fig. 1). 
A semi-infinite rigid plate lies in y = 0, x < 0. In the unperturbed 
state, the fluid in y > 0 is at rest, whilethatin y< 0 streams uni- 
fordy with velocity (U,O). The fluid density p and the sound speed 
a 

0 
are the same in both regions, and we assume thzt Y = U/a0 < I. 

We seek the eigenmodes of tb coupled fluid-plate system, subjeat 
to linearised theory and to the assumption that a steady state exists in 
which all fluctuating quantities have the time dependence exp(-if&), w > 0. 
This assumption requires that solutions exponent- large as I+ + o 
must be admitted. Orszag and Crow (1970) remark that, in an elliptic 
problem uf the present kind, this constitutes a real logical difficulty, in 
that the actualbehaviour a8 x+ +- must be dominated by non-linear and 
viscous effects, and that such deviation from t&e linear solution might 
have a large effect throughout the whole flow. The alternative involves 
a study of the initial value problem for a temporal. inetability. This, 
however, merely transfers the difficulty to another stage, as can be seen 
from the wodc of Howe (1970) on the doubly-infinite vortex sheet. There, 
the increase of growth rate with frequency leads to a divergent integral 
for the response to impulsive exoitationi Howe arbitrarily tnmcatea the 
integrand beyond finite limits, but the aolution is then hi& sensitive 
to the form of out-off adopted. And in any case, the impulsively 

generated/ 
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generated flow bears very little relation to flows of practical interest, 
which are almost invariably at least statistically steady in time, so that 
the spatial. instability problem is in fact less open to objeotlon than the 
initial value problem. 

The perturbation potentials satisfy the equations 

(V* + k;) #(*) = 0 , 
l ** (2.1) 

l ** (2.2) 

a * 

[ t 
VP- Y ---UC 

ax O ,I 
tp) = 0 ) 

in which k. = m/a0 is the acoustic wavenumber. In accordance with comon 

practice, it wUJ. be convenient to take k, as complex, k. = ki + iks with 

k, , k. > 0. An Outgoing solution for #(I) as Ixi+ o. is then exponen- 

tially damped, di) - -d-k. 1 XI >, while the behaviour of an outgoing 
wave #(s) is different depending upon the sign of x. As x++o¶, 
p - exp(-ks x/(1+@), whereas when x + - -, $(*) -- exp(-ks 1 xl /(i-M)). 

Klnematio requirements on the vortex shed y = v(x)exp(-lwt) are 
expressed by 

aq a&) 
- =-) 
at 0 

aq arl a#(*) 
-+u- s- 
at ax as 

for y = 0, I > 0, and tim dymamic condition, that the vortex sheet 
osnn0t withstand a pressure jump *or088 it, requires that 

a+a) a,+*) ag(i) 
-+u- I- 

at ax at 
*-* (2.3) 

on y = 0, x > 0. The conditions on the rigid plate are simply that 

a$(*) a@(*) 
-z-=0, y= 0, x< 0. -*a (2A) 

ay as 

We follow Orssag and Crow (1970) in isolating a contribution to 
the field consisting of a Helnholtc instability, growing as x+ + OD 
as If on a doubly-infinite vortex sheet. ASS-g 8 space dependence 

exP/ 
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ed-iax 1, the Helmholta instability is defined by 

p = A -d-iax - Y,Y) 

(b(') = B exp(-iax + way) 

rl = d exp(-lax) , 

-*a (2.5) 

where y a = (as- kz)*'*, Reya > 0 and wa = [as - (kc +aY)s ]"', 

Re wa > 0 , in order that, the fields be finite for any fixed x as 

IYI -boa- Application of the boundary conditions (2.2) and (2.3) for all . 
x gives 

- 

i@D, d = -waB, 

ia,d = y,A, **a (2.6) 

DaB = A, 

with Da = 1 + aUb = I + Ma/k, , and shows that a is a root of ths 
equation 

y,D; +na = 0. l *a (2.7) 

For the present we are concerned only with Y<< I, in *ich case (2.3) 
has two roots, 

a = -k# f 1) + O(M's > , l *- (2.8) 

kH = m/U denoting the bp3rodynadc wavenumber at frequency to. We 

denote the roots (2.8) by a =p, Y, these having ositive and negative 
imaginary parts, respectively. Thus the mode exp -ivx)- exp(sx - k8x) s 
is evanescent as x+ +-, while the mode exd-iv) - exp(%x + %x1 

represents a Kelvin-Helmholtz instability growing exponentially in the down- 
stream direction. 

!~he functions in equation (2.5) dc not satisfy the boundcuy con- 
ditions (2.4) on the late. 
and r; to $41)) pf, tl, 

We therefore add correction functions $. * 
and determine them using the Wiener-Hopf 

technique. This method serves only to determine a certain class of solu- 
tions, as we shall see Later. Introduce the full and half range Fourier 
transforms 
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(where we define q(x) = 0 for x < 0), and correspondingly for the trans- 
forms @(a,~) of db,~) and Y(s,Y) of S(X,Y). Then the differential 
equations (2.1) have the solutions 

Q(w) = Q(s,o) =P(-Y~Y) , 

Y(s,y) = Y(s,o> exp(+wsy) , 

and these imply that 

Q: tbo) + Q: b,o) = -y, 4+(w) + Q-b,o) 
II 3 

, 

l ** (2.9) 

Y: (s,o) + YI (s,o) = + Is -Y+(s,o) + Y-(s,o) 
L 1 , 

the prime indicat5ng differentiation with respect to y. Transfornnrticm 
04 the b0Mdaq Oonditians (2.2) and (2.3) gives the relations among plus 
functions 

-io) z+(s) = Q;b,o) , 

40 DS Z+(s) = U&o) + U Co , a** (2.11) 

-3~ Ds Y+(s,o) = -Iw @+b,o) + D $. 

where Z;, = G(x = 0), $. =+(x = y = 0), while the conditions (2.4) on 

the plate give 
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id 
z-(s) = - , 

s ‘P 

@i(s,o) =- = , 
s ‘P 

l *- (2.12) 

iw B 
Y~(s,o) = - . 

s 'P 

Elimination of KLl plus functions except 2 (8) from (2.10), (2.11) and 

t 
2.12) then leads to the following stand.ard*form of Wiener-Hopf equation 
the direct analogue, for compressible flow, ef equation (349) of Orssag 

and Crow (1970)), 

-.lm Z+(s) = K(s) 
L- 

in+ 
Ds Y-(s,o) - @-(s,o) + o 

1 
.i,, --a (2.13) 

OD s 'P 

in whioh the kernel K(s) is given by 

“a ys ws ys i K(s) = --J 0.0 (2.14) 

(Y, D; + ws) Mb) 

M(s) P (s' - k;)"'s (I +E, ' + [a'- (k, + syI)a]"*. 

llhhe usual considerations (Woble 1958, p.53) indicate that for 
Y< 1 the domain of regularity in which dl functions iu (2.13) are analytic 
is the strip 

8 I - k.<Ims<+Ir., 
l+W 

and therefore that the correction functims to be obtained from (2.13) 
vanish aa 1x1+ .S at least as Pest as an outgoing diffnroted wave field 
of the kind discuseed following equation (2.1). 

The kernel K(s) can be factorised in the form 

K(s) = K+(s) K_(s) 

where tbs Pa&ore sre analytic and non-sero in Im s > - ks /(i+M) and 
Ias<+ka respectively, sad where K+(s) are each O(a%'s) as 

I St+- in appropriate upperandlonErhalf-planes. consequently 
we cell aarry out the usual rearrangements to get 



L K-(a) 
in* 

Ds 'p-(8,0) -O-(8,0) + o 
CD 1 

80 that each aide must be the representation in the appropriate half-plane 
of the same entire function E(S). But a9 x + 0+ , C.(x) is finite, 
if the vortex sheet is to remain attached to the plate, while the potentials 
94 can be required to be finite near the trailing edge. Therefom Z+(B), 
@ (s,o) and Y (a,~) are each O(a-') at infinity in their respective 
&mains of anamicity, and E(a) then vanishes at infinity throughout the 
complex a-plane at least as fast as ,-it0 . By Liouville's theorem, E(8) 
must vanish identically, and we thus obtain the solutions 

iv A 
lwZ+(a) E - - 

K (8) 
1 - + ) 

8 -cI t K+b) ) 

iy,, A K (8) 
P(B,O) = -t,, 

Y,b -v) K+(P) 

Y(S,O) = - 
iyIIA Ds K+(s) 

wsb -Ill K+(P) e 

-a- (2.15) 

Note that no attempt has been made yet to enforce any type of fii3.s 
condition at the trailing edge. 

I$ = o( (,I-) 
Thus from (2.15) it can be shown that 

1; = 0(x"* ), and $ = 0( 1x1 i'q near I = 0, 80 that 
the perturbation velocities in < 0 and the gradient of the vortex sheet 
both become infinite like X-I 3P at the edge. 

The fluotuation quantities in real space are found by Fourier 
inversion. We are interested here in the radiated field in the stagnant 
fluid y>O, for which 

where 

Evaluation/ 
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Evaluation of such integrals is a standard procedure of diffraction theory Evaluation of such integrals is a standard procedure of diffraction theory 
(e.g. Noble 1958, p.31), and we merely state that the pole of P(s,o) at (e.g. Noble 1958, p.31), and we merely state that the pole of P(s,o) at 
s =p s =p can be shown to play no part in a straigbtforeard steepest descent can be shown to play no part in a straigbtfoIward steepest descent 
calculation which leads to calculation which leads to 

Y,, A K+(-k0 co8 0) 

ko(p + k, 00s tJ) K+(p) ' 
a-0 (2.16) 

uniformly in 0 (where x = r COB B, y = rsin e,O < 8 < n) provided 
k,r >>I and M<< I. 

A general decomposition of K(s) for arbitrary Y is made 
exceedingly difficult. by the presence of four branch points. Here, fortun- 
ately, we are concerned only with the case M <<I, 
X(s) may be uniformly approximated by 

for whioh the kernel 

K(s) z Y, [(I +; j+ lj’ # 

with a relative error O(M), 
immediate; 

8. uniformly in The faotorisation is then 
we have 

(a + ko)*'s 

(s-u) ' 

k (s - ko)*'s 

b 'P) ' 

l *- (2.17) 

where the wavenumbers p,v are defined following (2.8) and the factors are 
analytic and non-zero in the appropriate upper and lower half-planes. 

We now insert the expressi0ns c& (2.17) into (2.16) to find 

l *. (2.18) 

for M<<l. To compare this result with others aP aerodynardo noise theory, 
we define a hydrodynsmio length sosle I by 4 = U/m = ki', and regard 

the basic inoompressible flea as defined by the length and velocity scales 
C, U alone, so that A-UC. The radiated density fluctuation then 
follows directly from (2.18) as 

0.0 (2.19) 

-a/ 
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and the intensity-directivity law is 

1s u' sin*e/2 . a** (2.20) 

Now the sound field resulting from the interaction of a general 
three-dimensional flow field with a semi-infinite rigid plate has been 
examined by Ffowcs Williams and Hall (1970), in the context of Lighthill's 
(1952) equivalent quadrupole model, with the conclusion that 1~ Us sins e/2. 
The analogous result for a two-dimensional flow field, although not given 
by Ffowca Williams and Hall, is precisely (2.20). This can be seen from 
the svstematic method proposed by Crighton and Leppington (1970,~1971) for 
attacking two and three-dimensional scattering problems, involving the use 
of the ReEiprocal Theorem and the solution of a two-dimensional diffraction 
problem. The scattering efficiency of a quadrupole/plate system is 
basically the same whether line or point quadrupoles are oonsidered. How- 
ever, the free-field intensity radiated by a two-dimensional quadrupole 
varies as U' instead of the fdiar Us in three dimensions (Ffowcs 
Williams, 1969), ad therefore the Us of Ffowos Williams and Hall is m- 
duoed in our problem to U', all other factors remaining essentially un- 
changed. 

The work of this section thus bears out exactly the predictions 
of the general theory of quadrupole near-field soatterina by a rigid half- 
plane. The velocity index and directivity appearing in (2.20) are both 
highly significant for certain difficulties in the application of aerodynamic 
noise theory to the prediction of the noise levels of current jet engines, 
and a discussion of the importance of the law (2.20) follows in Section 6. 

3. Vortex Sheet Leaving a Compliant Plate 

We now relax the condition that the plate be rigid, and o&sider 
the case of a "locally reacting" compliant plate endowed with mass m per 
unit area and negligible bending stiffness. For x < 0, n(x will de- 
note the date deflexion. Then the kinematic conditions (2.2 ape to be 
enforced for all values af x. For y=O and x>O 
condition (2,z that the vortex sheet cannot withstand 
whilefor y=O, x(0 the pressure jump across the 
the rate of change of surface momentum, so that 

a% a+” 
PO - (x,0) - p. 

t 
” + u L) (b(S) (x,0) = Is-. l ** (3.1) 

at at ax atP 

. I 
we still have the 

apressure jump, 
plate must balance 

Writing the potentials #(*) $(') and the deflexion q as the 
sum ~8 Helmholts terms (equation (2.5)1 in the abaenoe of any surface plus 
corrections 9, *,=Z respectively, it is a straightforward matter to derive 
the Wiener-Hopf equation 

iP id 
z+(s) = 0 L(s) F-(s) - - , 

mu s 'P 
0.. (3.2) 
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iuJ’c . 
in which F-(e) = De Y-(8,0) - @-(a,~) + - , 

al 

l -- (3.3) 

In the limit of infinite surfaoe mace, the equation (2.13) is, of course, 
immediately recovered. 

Proceeding as in the previous section, a formal solution to (3.2) 
glvea the exnression 

for 
tex 

z(a) P 
idiL(s) - I j 

(5 -P )L-b) L+(P) 
*** (3.6) 

the fulhnnge transform of the correction to the deflexion of the vor- 
eheet/plata system, and the far-field radiation in the stagnant fluid 

is given by 

The owe af lowfluidloding, mko/po ,>I, memly involves 
perturbationa awey from the results of Seotion 2, and ie of no further 
interest. In the hi& fluid lotding limit, mko /p, << 1, it is evident 
that mk 

L(a) = I+0 0 
i ) PO 

uniformlYh a, provided also that II <<I. Beoauae cf the presence of 
the factor L(-k 008 6) - I in (3.5) it ia therefore auffioient to take 
L+(G) = L-(-k COB e)=l, and then me have 

#(r  e)  . (  -&-j”etiom’x’4A( z )  sin 8. l =- (3.6) 

. Introducing the length 4 - U/w 
replacing (2.20) ia 

as befoxw, the intineity-dimetivity law 

U'ain*e 
1% 

E= ’ 
l a* (3.7) 

where the fluidloading parameter e la defined by 

2Po& 
E a-. 

m 



- 12 - 

Now the quadrupole scattering problem for a compliant plate has 
been examined by Crighton and Leppington (1970), with the conclusion that 
1~ Ua~-~sins~ R-s for a three-dimensional point quadrupole distant B 
from the plate edge. 
to us 

For a two-dimensional quadrupole, Us is reduced 
as noted earlier. Thus (3.7) reproduces the predictions of point 

quadrupole scattering theory exactly, except in the dependence upon E. 
The failure in this respect is not surprising, since a volume integration 
of the factor R:s over all quadrupoles lying within a certain region of 
the edge is required for the total intensity of an extended flow. Though 
difficult to define precisely, in view of the complexity of certain fume- 
tions arising in the scattering problem, the integration limits are certain- 
ly dependent upon E, and it is this fact which causes the s-dependence 
of (3.7) to differ from that of an isolated quadrupole. 

By comparing (3.7) with (2.20), we conclude that the effect of 
substantial surface compliance is to reduce the radiated intensity by one 
power of Mach number, and to cause a shift of the directional maximum of 
the intensity from the upstream direction f3 = n to the broadside direo- 
tion f3 = n/2. A still more drastic change in the radiation properties 
of the flow results from the application of a Kutta condition at the 
trailing edge, and the manner in which this is accomplished is described 
in the next section. 

4. Imposition of Kutta Conditions 

In their discussion of the incompressible vortex sheet flow 
leaving a rigid plate, Orssag and Crow (1970) distinguish between two 
possible Kutta conditions which might appropriately be enforced, depend- 
ing upon circumstances in the unperturbed flow, and show how these may be 
incorporated into the analysis. The condition which they consider most 
apposite to the present problem involving only one mean (eero-order) 
velocity field is called a ereotified" Kutta condition, and requires the 
vortex sheet at no time to have positive gradient as it leaves the trail- 
ing edge of the plate. For suppose that the sheet could leave the plate 
with positive gradient. Then the basic flow in region 2 would be 
required to negotiate a turn round an argle greater than n. In a real 
fluid, any such attempt would result in the shedding of vorticity of such 
a sign as to reduce the vortex sheet gradient at the trailing edge. This 
is the first step in establishing a fxrst order mean circulation change 
across the plate, and it is repeated with cumulative effect in the corres- 
ponding parts of sll subsequent cycles of the system. In the other parts 
of the cycle - i.e. when the sheet bends downwards into the mainstream, 
there is no zero-order flow above the sheet able to convect any detached 
vorticity away from the edge. Thus a continually increasing distribution 
of vortioity of one sign is formed downstream of the trailing edge, until 
a steady state is reached in which the sheet never leaves the plate upwards 
into the stagnant fluid, and no more excess vorticity is shed. 

The rectified Kutta condition is imposed by adding to the oscil- 
latory displacement q((x)eht determined in Section 2 a time-indeoendent 
parabolic displacement U(x,t) = - a(2x)"s. CorrespzGg potentials 
satisfying Va$(')= 0 and (V *-Mpds/axs)~(s)= 0, together with all 
the boundary conditions (2.2, 2.3 and 2.4) on the 

'5 
late and on the vortex 

sheet, - $(i)= 0 and g(e)= Ua ~[x'+(l-Ms)y' "s- x 11'*, the 
latter being simply the slender-body version Of potential flow past a para- 
bolic cylinder. Suitable choice of a, in fact 

a/ 
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I ,  .  

ensures that the sheet always leaves the plate downwards into the main flow. 

This step does not remove the apparently singular nature of the 
derivatives of $(e) at the plate e 
show from (2.15) that q - xl's, 

In fact, 
p:i- xun 

as noted before, one can 
on y=o, x> 0, but that 

the velocity components in the stagnant fluid remain finite. More gener- 
ally one can show (Orseag and Crow, (1970) that these values of 7, #(') 
correspond exactly to the slender-body approximation to steady flow past a 
certain parabola, the time dependence of the problem vanishing at distances 
less than about i from the edge. 
regard the singulS.ties of $(a) 

But that information allows us to dis- 
as an irrelevancy which has been intro- 

duced by the slender-body linearisation. The full. potential. for the flow 
past a parabola has no singularity at the vertex, but linearisation trans- 
fers a singularity from the focus to the vertex. 

Further details are given by Orseag and Crow. The point of im- 
portsnoe here is that the rectFfied Kutta condition can be met by the super- 
position of a time-independent flow field onto the results of Section 2, 
and involves no change whatsoever to those results on the radiation from 
the flow. 

The other possible Kutta condition, the "full" condition, requires 
the sheet to leave the plate with eero gradient at all times. Th19 condi- 
tion clearly has more relevance to problems in which there is a zero-order 
mean flow on both sides of the plate (indeed, Orszag and Crow (1970) regard 
the application of the full condition to the present problem as indefensible), 
but even so, cannot be expected to apply unless frequencies are low enough 
to permit the necessary vorticity to be shed and to react back on the flow 
within each cycle. Nonetheless, application of the full condition has such 
dramatic consequences for the sound field that a brief outline of the analysis 
is worthwhile even it' it is felt that the full condition will not often be 
met in practice. 

In the case of incompressible flow, Orssag and Crow (1970) show 
how the full Kutta condition may be imposed by separating terms 
f Q [(x0+ yP)i'P- x11'* exp(-iwt) from the potentials $li), $(*), 
(in addition to the Helmholte modes of the doubly infinite vortex sheet) 
and requiring the correction potentials $,V to account for the failure of 
these terms to satisfy conditions across the vortex sheet as well as for the 
misbehaviour of the Helmholte modes on the plate. The constant Q can be 
found In terms of the amplitude A of the Helmholte mode in such a way as 
to ensure that n(x) = 0(x3'*) as x-r O+, in accordance with the full 
Kutta omdition. 

Consider first the potential in the stagnant fluid. The generali- 
sation of the Orseag and Crow potential [(xs+ys)~'s-~]~'~ to a compressible 
fluid must satisfy (cl'+ kt) $(')= 0, represent an 0utgo;oing wave field 

everywhere at infinity, and reduce to [(x' + ys)"*-~]"s as k, r+ 0. 
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The appropriate potential is to be found fmm Lamb's (1907) work on 
scattering by a parabolic cylinder. 

Defining OD 
G(v) = exp(2it') dt, 

v 

the function 

$(i) = exp(tiox) G (kor)"s ~5x1~ 
c 2 I 

satisfies the Helmholts eauation. has a variable part -(k r)%'s sin e/2 
on 0 = 0 andlike' as kor + 0, behaves like exp(ikox) 

exp(eor) 

2i(kor)%in e/2 
, (k,r + OD, 0 = 0) -=* (4.2) 

and thus satisfies all the required conditions. 

For the potential in region 2 we have to satisfy [v* - (V a/ax - 
ti )a ] $0) = 0 with a similar kind of function. A simple transforma- 
t&, amounting to a Doppler shift af the wavenumber and a Prandtl-Glauerb 
stretohing of the y-coordinate, shows that if 

e 
p = exp(ikox) G (kor)"s sin 1 

1 2 J 
= exp(ik,lr) Vby:k,,) 

then the corresponding function for region 2 is 

Thus we define new correction fUotlms #,*,z by 

-4x- Yp' 
gcr) = A e 

,$(*) E Be 
-*+vIg 

-&) +$, 

the time factor exp(-iwt) being understood throughout. conditions on 

3r= 0, I< 0 remain unalteredby the introduotion oftha new functions, so 
that, for a rlgid plate, the equatims (2.12) remain valid. Applioaticm 

of/ 
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Of the conditions (2.2) and (2.3) on the vortex sheet leads, after Fourier 
transformation, to 

-iwZ+(s) = 4: (s,o> - 
‘J(2kc)i’nGo 

t 
(s + ko)"' 

40, Ds z+(s) = Y: (s,c) + 
Q@=o)i'p Go 

k iIS 
- Ud, 

s+ 0 
l+td 

Ds Y+ (8~) - 
iUS 
0 - Q+ (8,O) 

w 

l -* (4.4) 

z--r-+ 
(8 + ko) 

k 
(1 + M) (s + 0 ) ' 

i+Y 
OD 

I 

xi *Ia 
in whloh Go = exp(2its) dt P 4 - 

t ) 
. The relatians (2.10) remain 

2 
0 

valid, and the Wiener-Iiopf equation replacing (2.13) is found to be 

iy A 
-iw Z+(s) = K(s) F-(s) + - + W(s) 

* -Ir 

in whi0h K(s) is defined in (2.14), F-(s) in (3.3) and the new 
fuuotion N(s) is given by 

N(s) = 
Ds K(s) Q(=o)*'g Go Q(=o)+'a Go 

k 
IS 

ilo 
s+ 0 (s + ko)"' 

l+M 

iK(s) OGo i K(s)QGo 

+ ( 
+ . 0.. (4.6) 

s + k,> 

A solution can be obtained in the low Mach number limit using the 
factorisation (2.17). By examining the form of Z+(s) as a+ 0~3 

Ims > 0, one can deduce the form of C(x) a9 X + 0+ . The terms 
o(s-') and o(P) in the asymptotic development of Z+(s) give oon- 

tributions to c (x) which are O(1) and O(x) respectively, and these 

make/ 
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make no contribution to the total deflexion q(x), being cancelled 
exactly by term in the expansion of de-t= (cf. 4.3). z*(fI) ala0 

contaha a term o(s-3'9)) corresponding to n(x) = 0(x”‘); and the 
full Xutta condition requires that the coeffioient of this term vanish. 
Thus one determines Q aa 26(2~/~k~)“~ , and then v(x) = 0(x5”) 
80 that the vortex sheet leaves the plate with zero gradient. The value 
of Q quoted above is less than that given by Orsmg and Crow (1970) by 
a faotor 2-i’p (allowing for slight differences of notation), but the 
precise value is not particularly important. 

With Q determined as above, the far-field form of $(r,8) 
can be found as 

r'n ikor+ix/4 
e 

ita 
cosec e/2 , 

to which, according to (4*3), should be added 

0 exp(ikor) 

21 (kor)L’* 
ooaec e/2, 

to obtain the total scattered potential in y ~0 
near the vortex sheet 0 = 0), 

(except, of course, 

- - ( z j'seym3d/8 (!J oorcece/2 

The radiated densi* fluotuation is 

4 itn 

P’“P0 ; 
t ) 

M coaec e/2 , 0.’ (4.8) 

and the int.emsi+aireotivlty law is 

I- us co8ea8 e/2 . ‘** (4.9) 

Thus imposition 
of the radiated intensity 

of the full Kutta condition rerrults in an increase ‘I 
by a factor M-” , and a very substantial change 

in the direotivity pattern. The velocity exponent In (4.9) is the lowest 
yet found in aerodynamic noise theory; even a two-dimensional monopole 
gives Only I-- Us (Ffowcs Will.iam~, 1969). TIE reason for the very 
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high acoustic efficiency of the flow with full Kutta condition is to be 
found simply in the form of the new term involving Q in (4.3) and the 
correction function $8 which it induces. These new terms are essen- 
tially acoustic in nature, and their amplitude near the plate edge is at 
least comparable with that of the essentially hydrodynamic small-scale 
motion discussed in Section 2. Consequently, it is hardly surprising that 
a motion coherent on the wavelength scale 4 M-l should be more efficient 
than the hydrodynamic motion on the much smaller scale 4. 

We do not claim that a radiation efficiency as high as that 
predicted by (4.9) is ever likely to be observed in practice. The princi- 
pal reason for giving the results of applying the full Kutta condition is 
that criticism has often been made of the scattering theories of Ffowcs 
Williams and Hall (1970) and Crighton and Leppington (1970, 1971), m which 
the velocity components are allowed to become infinite (though integrable) 
at the plate edge. These singularities apparently form an integral. part 
of the theory (but see Crighton aml Leppington, 1971) and it has been held 
against the theories that a removal of edge singularities by the imposition 
of a Kutta condition would very much reduce the scattered radiation. 
The example worked out in detail here shows that precisely the opposite is 
w. Application of a Kutta condition does not merely require a highly 
localised change in the flow, but the introduction, for an incompressible 
fluid, of a first-other change in the mean flow, or for a compressible 
flow, of a first-order motion varying on the wavelength scale. It is only 
to be expected that a large increase in the radiation should result from 
the introduction of such a highly organised flow. 

5. The Diffraction Problem 

We next give a brief discussion of the diffraction problem for 
the vortex sheet-rigid plate system. Suppose the incident field to take 
the form 

q+i) = exp [-iko(x 00s e. + y sin eo) ] ) 

representing a monochromatic plane wave generated by a distant source in 
the stagnant fluid. In order to apply the Wiener-Hopf method, it is oon- 
venient to split off explioitly from the potentials $(I) and $(s) the 
waves which are reflected from, and transmitted through, the vortex sheet. 
(III fact this is necessary, since for complex k, = k,+ ik, these waves 

would become exponentially large as x + +- for fixed y, andthedomains 
of analyticity for the half-range Fourier transforms would not overlap to 
provide the neoessaxy strip of analytioity for ths full-range transforms.) 
Because of the assumed linearity of the problem, we may neglect instabilities 
of the vortex sheet, and later superpose the fields discussed in Sections 2 
and 4 on the diffracted field to be examined here. Thus we now define 
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&) = e 
-iko(x co5 ec+ ysln e,, -iko(x 

+ Re 
co5 ec - y sin eo) 

+9 * 

$(') = 
-*ox 

Te 
co5 eo+we y 

+ $s *-- (5.1) 

-iko~ 
?j I he 

~05 e. 
+ t;, 

where the subscript 0 in place of 5 on the functions D5a wss Y, is 
to imply their evaluation at s = -k, cos Oo. 'J&e functions with coeffi- 
cients R,T,h represent the reflected and transmitted waves and the vortex 
sheet deflexion under the incident. field as if the vortex sheet were 
doubly infinite. Application of the boundary conditions (2.2) and (2.3) 
for all x gives the solutions 

R= 
(1 + M COB eo)* 5in e. - !(I + Y 005 eo)B - 00~~ eo]lI= 

(i + M cos eo)= sin e. + I(1 + M ~05 eo)* - ~05~ eoj*'g ' 

T = 
2 sin e. (i + bf cos eo) 

(I + M c~5 eo)* 5~1 e. + I(1 + bf co9 eo)* - co=* e. It’5 

h = 
2 she0 [(I + M co5 eo)* - 00s~ e. Iif* 

a 
0 

(I + M ~05 eo)* sin e. + I(1 + M 009 eo)s - COS~B~~*~* 

which are real end finite for all 8, provided M < I. 

For x - e. < e < x, the field # must be such as to change 

the coefficient R to unity, representing the wave reflected from the rigid 
plate, while in the shadow region below the plate, the field # must anni- 
hilate the transmitted wave. Apart from these requirements, we assert that 
$,f must represent outgoing diffracted fields at infinity (unstable modes 
being excluded here), and this a55ures the existence at' a strip 

ks 
--< 

i+Y 
Im 8 ( + ks 00s e. 

for the Wiener-Hopf problem. 

In place of (2.13) we now find the Wiener-Hopf functional 
equation 
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-hZ+(s) = K(B) F-(s) - 
iweT 

Deb - 
# 

k. COB eo) 
**- (5.3) 

with solutionE 

iw z+(s) = 
iag T 

l- 
K+(s) 

Deb - k. cos Do) K+(ko COB 'Jo) 
# 

*(s,o) = - 
iwe T K+(s) 

v,De (s - k. CO8 Oo) K+(k, Co8 eo) 
, 

**a (5-4) 
D 

Yb) = 
ire T 

a K+(s) 
. 

W&S - k, 008 0,) De K+(ko 008 eo) 

Fourier inversion ard deformation of the path of integration onto 
the path of steepest desoent splits the fields naturally into geometrical 
optios fields of the obvious kinds plus cylindrioal diffracted waves emana- 
ting from the plate edge. For M<<i~ th distant fields are essentially 
the same aB in Sommerfeld'a olaasioal diffraction problem (Noble, 1958, 

s/k, = O(1) aa M-w 0, the kernel K(8) 
p-57). 

This follows since, provided 
tends to the Sommerfeld kernel 2y,, and the far-fields are determined 
solely by the matched acoustic wavenumber (i.e. by a = -k co8 0 
for example). 

for #, 
The limiting value of K(B) is not approached uniformly 

however, and the field behaviour near the plate edge is fuudament- 
%y%ff erent fmm that in the Sommerfeld Case. In fact, if Y is mall 
but non-eero, it can be shorn from (5.4) that 

n(x) = o(x"9) , 

near x = 0. The velocity components in thz etagnant fluid thus remain 
finite-at tim edge, in contrast with the case 
infinite like 121 -i'p. 

bl = 0 in wbioh they become 
fi the absence of aqy Kutta condition, however, 

the velocity components below the sheet still have (integrable) singulari- 
ties. 

The Vull." Kutta condition of Section 4 can be imposed if we aupe~ 
pose the i3olution of Section 2, consisting of a Iielmholta instabUty on a 
doubly-infinite vortex sheet plus the correction due to the plate. Usins 
the notation of Section 2, it can be shown that if we ohoose 

A = 
we T K+ (PI 

DeY,, K+(ko CO* e,) 
l ** (5.6) 
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then 

ensuring that the vortex sheet leaves the plate lath sero gradient, and 
that all velocity components remain finite near the plate edge. This super- 
position does not, of oourse, represent the only solution of the problem, 
for there exist eigensolutions, whloh may or may not satisfy the full Kutta 
condition, of the kinds discussed in Sections 2 and 4. However, the un- 
stable mode with A determined in (5.6) may perhaps be legitimately regard- 
ed as causslly induced by the incident field, although it has no appreoiable 
effect on the distant sound field. For the only genuine acoustic part of 
the unstable mode is that part induced by the presence of the plate and 
given in (2.18). Using (5.6) it can be seen that the amplitude of this 
scattered field is smaller than that of Sommerfeld's diffracted field by a 
factor of order M. We conclude that the effect of the vortex sheet at 
small. Mach numbers is to smooth the behaviour near the plate edge at the 
expense of exciting a non-radiating Helnholts instability, with negligible 
change in tha far-field radiation. 

6. Discussion and Conclusions 

This paper has examined the low Mach number radiation from a flow 
coupled to an inhomogeneous solid surface. Very few systems of this kind 
appear to be amenable to calculation, even within the confines of Linear 
inviscid hydrodynamics, and the example followed through here seems to be 
the first involving a surface which is non-compact relative to the acoustio 
wavelength. 

Before mentioning the possible relevance of the detailed results 
of this paper, particularly those of Section 2, we must acknowledge a number 
of points on which the model flow studied must be criticised. In the first 
place, as noted in Section 2, the notion of a spatially growing instablUQ 
has its difficulties in an elliptic problem. Linearisation is not valid 
everywhere in space, and departures from linear behaviour downstream of 
the trsiling edge might, for elliptio governing equations, have a signifi- 
cant effect everywhere, even in the region where linearisation is apparent- 
ly valid. Nonetheless, as Orssag and Crow (1970) remark, there is oon- 
siderable experimental oonfirmstion of theories based on the idea of spatial 
instability, so that the linear theory predictions may be adequate in the 
regions where one might casually expect them to be. To that extent, the 
predictions of Orssag and Crow regarding the influence of the plate on the 
shape of the eigetictions of the vortex sheet - that such influence van- 
ishes essentially for kD Ix_1 5 1 - must then be correct. Here, however, 

we are not merely concerned with ths flow pattern for 1x1 < k; but - - 
for the much larger region 151 < ki', for scattering theory leads us 

to expect that appreciable conversion of eddy energy into propagating 
sound will occur from the interaction of the plate edge with fluid elements 
up to an acoustic wavelength from the edge. Within this distance, however, 
the vortex sheet amplitude has grown by a factor exp(M-'), and the 

linearised/ 
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linearised solution can have no possible relevance. This arfJutent , 
however, overstates the case against the model. In Section 2, the field 
is split into that of a doubly-infinite vortex sheet plus a correction due 
to the plate, the latter vanishing for kU 1x1 > I. Presumably the h - 
effect of the plate is properly accounted for by such a split. The field 
generated by flow at distances greater than k i' from the edge is the 
same as that generated if no plate were present and must, if non-linear 
termscould be ihcluded, give an intensity varying as Us (Lighthill, 1952). 

The important results of Section 2, for a rigid plate, are the 
low velocity exponent I- Us for three dimensions, and the pronounced 
forward dlreotivity I- sinsC/2. Aocording to Section 3, these results 
are not greatly changed by oompliance of the plate. In the case of a limp 
plate, the velocity index is increased to 6 and the directivity msximum 
shifted from the extreme forward direction 0 = w to the broadside direc- 
tion 0 = n/2. These results are not dependent upon details of the flow 
(Crighton 'and Leppington 1970, 1971), and also not particularly sensitive 
to geometry, so that they represent features which should be possessed by 
the sound field resulting from the interaction of a cylindrical shear layer 
with a jet engine tailpipe. 

To demonstrate the importance of the surface scattered noise, 
suppose that the flow downstream of the elate edge becovas turbulent at dis- 
ta&es greater than 
the turbulent region 
area 8. Then from 

p'(y) = 

kjI' = C 9 with r.m-.s. velocity level u, andthat 
consists of a large plane sheet of thickness C and 
Lighthill's (1952) solution 

one oan show that the intensity radiated from the turbulent flow is 

Here we have assumed the fluctuating part of uiuj to be of order Uu, 

and noted that tl-xs frequency associated wi;ch ths quadrupole field is u/.4, 
rather than U/C the frequency of the shear layer instability (this is a 
point repeatedly enphasied by Lighthill, 19%). To be consistent, we must 
then also take the A of (2.18) to be of order UC, so that the veloci- 
ties induced by the instability become of order u at distanoes O(C) 
downstream from the edge. With the appropriate modification of (2.20) for 
three dimensions, the ratio of quadrupole intensity to surface scattered 
intensity is 

MS (u/u)' sc-n . .a- (6.2) 

Evenwith Y=&, (u/U)= $ , extreme values, it is quite clear that the 
area S must span at least 100 correlation areas 4s in order for the quad- 
rupole contribution to approach that created by surface scattering. 

Thus/ 
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Thus the interaction of shear layer instabili~ with a large 
surface has the following characteristics; 
centrated on the frequency U/C, 

(I) a frequency spectrum con- 
a value higher than that of free turbu- 

ICTIC~ by s factor U/u; (2) s VelOOity e-Went for the inteIL¶ity between 
5 acid 6; (3) WI extremely pronounced forward di=ctivityj (4) a total 

radiated power at least comparable with that of turbulence-generated noise 
unless the turbulent volume is very large. 

Attributes of precisely this kind go a long way towsrd explaining 
certain discrepancies which exist between the measured noise field of current 
turbofan and turbojet engines and predictions based on Lighthill's theory of 
convected qudrupoles with surface effects ignored. The situation - the 
so-called "excess noise" problem - is not well documented in the open liters- 
ture, but appears to involve the following behaviour. For angles less than 
x/2 from the exhaust flow direction, the correlation of experimental data 
using the results of Lighthdl's theory is quite adequate over a wide variety 
of engine types and operating conditions. In the forward directions, how- 
ever, substantial deviations occur, for which as yet we have no satisfactory 
correlation and prediction techniques. The frequency speotzum for forward 
emission has two peaks, with comparable contributions to the total intensity 
from the spectral regions around each of the peaks. The contribution to 
the 3.ntensi.Q associated with the lower of the two frequencies continues to 
scale according to Lighthill's theory. That associated with the higher 
frequency does not, involving in particular a velocity exponent somewhere 
between 4 and 6. 

We make the tentative suggestion that the above behaviour can be 
-lained on the basis of the predictions of this paper. 
cies are to be identified with u/6, 

The two frequen- 

conveoted reference frame, and U/6, 
the frequency of eddy motion in a 
the frequency associated with the 

most rapidly growing mode of shear layer instability. Sound at frequencies 
around u/6 is generated by eddies in the fully turbulent mixing region 
downstream of the jet exit plane. That at frequencies around U/C is 
generated by the interaction, with the engine tailpipe, of growing modes 
on the annular shear layer immediately aft of the exit plane, and has a 
very definite forward directivity. In the forward directions, the two 
fields are uf comparable magnitude, even for values of Y approaching unity, 
in view of the strong dependence of (6.2) upon the ratio (I&J). 

Of course, this may not be the only mechanism responsible, and a 
more detailed assessment of tbs claim made here must rest upon results of 
more refined experiment and theory. Obviously, a first step would be to 
determine more precisely the values of the two peek frequencies observed in 
practice, and to determine whether or not the %xcess noise* direotivity 
agrees at all with the sins e/2 pattern predicted here. Under certain 
circumstances, the geometry of the annular shearlwr mi&t also be expec- 
ted to play 8 part capable of experimental detection. Since the problem 
of the annular shear layer has its own analytioal interest, as well .ss more 
direct conzspondence with practice than the model used here, we defer con- 
sideration of it to a subsequent paper. 

The author gratefully acluxxledges the support provided by a con- 
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Pin. 1 vortex sheet1eaviag * plate anamaergoing a spatial 
instability. Intbeunperturbea state the fluidin 
region I (above the plate) is stagnant, while that 
inregion (belowthe plate)stresmswitb uniform 
veloci* (U,O). 



Chapter 't 

Diffraction Radiation 

Y. Levine, 
Department of' Mathematics, 

Stanford Univers2ty, California; 
Visiting Professor, Department of Mathematics, 

Imperial cclb3be, h-don 

In their conuideratlc2Brelative to aerodynamic noise Crightcn and 
Leppington discuss the output of fixed acoustical souroes with time-periodic 
strength which are located near tlm edge of a semi-infinite plane; and find 
the scattered wave amplitude to exceed that of the primary 8ourc.e in the far 
field, the amplification being greater for quadrupoles than dipoles. If 
localised sources with an invariable strength are in uniform rectilinear 
motion at subsonic speed past the edge, there is no primary radiation and 
only indirect or diffraction radiation whose time-varying sources are con- 
tinuously distributed over the plane. Such radiation is emitted when the 
source is near to the impact (or minimum) distance from the edge, and the 
total amount of energy radiated depends on the soume strength and polari- 
sation, the Mach number and impact distance; it is the variation with im- 
pact distance d and Mach number M that claims principal interest and 
reflects the specific nature of the radiation phenomenon. 

The inhomogeneous linear wave equation for density fluctuation5, 

aa aa aFi aaT.. 
- - cs VP 2 

at* 
p(r,t) = - - - + 

at ax, dxiax. 
J 

contains a trio of source terms, pertaining to t introduction of mask3 at 
the rate Q(r,t), the application of a force $ (r,t) with componenta Fi 
and the action of stresses with components T.., all per unit volume. 

=J 
It is noteworthy thatPirst order partial derivatives of the scalar and 
vector functions Q,F enter, whereas double differentiation of the tensor 
3 cccurs. The total energy radiated, e, is conveniently found from the 
power expended in maintaining the appropriate prims~ aouroe in its state of 
motion, and has the respective forms 

c@ 
c CZ- 

source 1 
p,(O) Qb,t) b- dt 

PO 

Edipole = 1 
v #Jr&. S(Q) dr at 

~quadrupole = - 
1 

v &(r,t). 9, G(r,t) dr at 
where/ 
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where the density and velocity potential of the secondary sources on the 
plane arelinkedby 

aq”t) 
P,(~,t> = - ;* at 

afl P, is the'uniform equilibrium density. When the source moves in a 
plane which is transverse to the straight edge, it appears that 

on c source = 0 ho 

pod 

e 
?‘, (Wf) 

dipole = 
PO cad 

and c quadrupole = 
SSt"jT;j )  

, 
p. c= cl= 

with a singulsr behaviour for each of the functions ~Q,~.,, in the 
limit M+ I; specifically, in the case of a simple source of fixed 
st=ngth Q,, 

1 MP 
Yob) = - 

32x (I-M*)~" ' 

independently of the angle of the trajectory, end for a dipole with moms& 
F in the plane of the trajectory, 

%(M,Ff) = 
Sina 1 

+2- 
,I 

where 0 denotes the angle between its axis and the direction of motion. 

To illustrate the indicated style of caloulation, consider a 
quadrupole source moving, in the plane xs = 0, with velocity V along 
the ~-direction snd passing at a distance d from tb edge of a half- 
plane occupying the region x*> 0, --c xs x -, xs = 0. 
Writing 

TiJ = Qij 6bi + 4 6(x* ) 6(x5 - vt) 

the primary source function, expressed in multiple Fourier integral fashion, 
takes tbz form 



end complies with the requirement of causality if o has an infinite%nsl 
positive imaginary pert. If- the screen is limp end cannot support any 
pressure or density fluctuat~ons,the secondary source dietributlon there- 
upon may be expressed in the product form f(Xr,Xa, t) Sbs), Xi> 0 
end the concomitant density function elsewhere is 
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with the transform 

that is analytic in the lower half of the & - plane. 

An explicit characterizstion of the latter function obtains from 
the transform relation 

that ia consequent to the requirement 

po(r9t) + p,b,t) = 0, xi > 0, -ca<xp<ea, x3 = 0 

and involves a second ur&nown function &L, z.P , 0 ) whichhssan 
analytic character in the upper half of the gi- plane and is related to 
the density on the domain xi c 0, -- < xp c -, &bt 0. m recasting 
the transform relation in terms of components which are regular in the res- 
peotive halves of the l;,-plane, it follows that 

f/ 



Employing the rep 

the rate of energy radiation may be~written as 

aa4 = Qii s+ 201s 
aa4 a*4 2 + Qas s + 2Qss 

aa48 
+ 2Qm 

an4o 
ad axraxp ad ~ axlaxa amax, 

aP+ 
+ Oar s 

ad I 

. 6(x* + a) 6(x,) 6(x3- vt) bi dxa dxa 

-- i/ 
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. .i(gaV-w)t f(&,~p,w) a& d&i a& dw 

and thus 
i 

c=- 
i2d3 pov 

w w wa 

. 
I 

-m w .za+Y% F-- 

. .-= a f(-$!zTz,L,,w) a&# dw 

when the gi - integral is evaluated by closure of the contour in the lower 
half of the plane. Substituting the explicit form of f(cl,&,w) and 
having regard for the sign of the imaginary part of w, one finds 
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and after making the change of variable za = - T , 
c 

’ 

-2; /TiiqT7) 

c = 
ipug dj ;,-M.(,-r’)l’,. J1-rl 2(2x)8 p,v3ca o 

+ 4 [ l-M8 (l-r')1 [ala + 419 Mr I' 1 dr 
J 

1 d2 cosaJr cl* 
= [Q~, + QaOMPsina$- Gir(l-MaCo~S)lP 

+(2x)apoc’~3 [I-M%Js~ $13 

In the case of a longitudinal quadmpole, nth Qs3 alone different from 
zero, 

0% 1 l- 
c= - - 

;td= 

61x poca a3 (I-M~)~'~ 





Chapter 5_ 

Scattering of Quadrupole Sources near the End 
of a Rigid Semi-Infinite Circular Pipe 

F. G. Leppington 
Department of Mathematics, 
Imperial College, London 

I. Introduction 

'Jb Matkill (1952) theory of aeroayhemic noise shows that a 
region of turbulence in an unbounded medium is acoustically equivalent to 
a volume distribution of quadrupole sources whose strength is essentially 
prOporti0na1 t0 the Reynolds stress tensor pu u . 

iJ 
On account of the 

relative inefficiency of such multipoles, 8s producers of sound waves at 
great distance from the source region, there is a tendency for the sound 
field to be greatly ma&fled if any scattering surfaces are present. 

Such effects have been discussed by Curie (1955), Ffowcs Willjams 
and K4ll (1970), Crighton and Leppington (1971), and lead to modifidtions 
of the intensity law IaUs , obtained by Ligbthill for tb far field in- 
tensity I against typical turbulence velocity U, for an unbounded flow. 
Curie (1955) shows that the influence of a (small) rigid obstacle is equiva- 
lent to a distribution of dipoles, whence Ia Us. The sound intensity is 
found to be increased even more effectively for quadrupole souroes that an? 
situated within about a wavelength of the sharp edge UC a large obstacle, 
togive IaUs: Ffowcs Williams and Hall (1970) deal with the thin semi- 
infinite half-plane, with generalisations provided by Crighton and 
Leppington (1971). 

The object of the present work is to exadne the distant sound 
field induced by a region of turbulence near a jet exit. Porths sake of 
simplicity, the model problem chosen to represent this situation is t&t of 
a perfectly rigid semi-infinite circular pip3 of radius a and negligible 
thiclmess. The problem is posed as one of diffraction theory with an in- 
cident qudrupole distribution assumed to be of known strength, with harmonic 
time dependence eviwt taken throughout. 

Ip the wavelength X = 2ac/a, = 2x/k is small compared with the 
radius a of the pipe, then the arguments familiar in ray theory indicate 
t&t +,& sound field is asymptotically equal to that of the semi-infinite 
plate, for which the results are &ady known. Aooordingly, attention is 
directed to the limit ka << I, in wbioh the waves are much longer than the 
radius, 

Id 
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In formulating ths problem, it is found convenient ta u8e a 
reciprocity theorem ta recast tix? problem intO the simpler one of determin- 
ing the field, near ths pipe exit, induced by an appmprlate plane wave 
excitation. Since the problem is not axially symmetric for general in&i- 
ence, the potential function is written in the form of a Fourier series of 
modes whose dependence on the azimuthal angle $ is trigonometrical. The 
bounderg value problem for each mode can be solved by Fourier transforma- 
tion along tha direction of the pipe, using the Wienpz-Hopf technique in 
the mmmer of Leirine and Sohwinger (1948). 
lined in Section 2. 

This procedure is briefly out- 

The formal eolution Is interpreted in Seation 3 for the ease of 
80ur0ea dthin a wavelength of the end of the pipe. It is found that the 
lead$ng term ia of order &a), 

kkdbodies 

compared with the incident field of order 
This is veery similar to the results of Curie (3955) for small 

; it is quite different fmm that of a semi-infinite plate 
and that of a waveguiae formed by two parsll.el semi-infinite plates. 
Furthermore, only the eeroth (axially symmetric) and the first mode conki- 
bute to this asymptotic estimate, the higher modes being of a higher order 
in the small parameter ka. The detailed dependence of the field on 
soume position f close to the pipe is complicated, though not of particu- 
larimportance,and canbe giveninintegral form. The dependence on the 
angular position (8,,SO) of the observer at so, far from the source 
region, is simple and is given explicitly. 

A few relevant proper-tie8 of the functions that occur in the 
Wiener-Hopf analysis are described In Section 4. 

2. Formulat.ion and Exact Solution 

A distdbution of quadrupole sources of prescribed strength 
Q&.l .-iut per unit volume is situated in tb vicMty af the open end of 
a rigidsemi-infinite circular pipe. Cylindrical polar co-ordinates 
(p,$, E) are chosen so that the pipe occupies tk region p = a, e 6 0; 
spherical polars (r,O,#) based on the saw origin at the centre of the 
exit plans are also used in the analysis that follows (Fig. I) 

/j (he,t),(p, t,z) 

In order to calculate tha sound field at an observation point 

"Ei 
we may confine our attention In t@e first instance to the problem of 

o culating the potential G(_xJ fo)e-lot induced at a by a ain@ mono- 
pole souroe of unit strength at & The corresponcting ptential 
&),)e-i~t due to a quadrupole distribution af density Q e-tit follows 

immediately/ 
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immediately from the Green's funotion G, ad is given by 

evaluated over the whole source region. 

Point --x0 
l'hs 'far field' limit of the potential G, when the observation 

is at great distance from the source region, is conveniently 
calculated by appealing to the reciprocal theorem, which states tht 
Gk;q) =G&p). Thus the source and observation points may be inter- 
changed, and in 

due to a sour013 
form of a plane 
given by 

the limit Ix,I+- rpe have to find the potential at 5 
at so great a distance that the incident field t&es the 
*ave. Specifioslly, if the incident souse potential is 

then as I50 I+ CO we have 

Gi - Aexp(4.k;. f), l *- (2.3) 

where f! =2,/l 51, and A = erp(Ul_xo 1 if/z0 1 *** (2.4) 

is regarded as a fixed parameter. 

In the spherical co-ordinates (r,e,t) of Fig. I, the incident 
potential Gi of (2.3) has the plane wave form 

Gi = A exp I-ik(oos 0 00s B. + sin 0 sin O. COS(++,)) j , 

l *a (2.5) 

and we have to find the total potential G that satisfies 

(Vs+l?)G = 0 -** (2.6) 

with aG 
-=o when p = a, ss 0. -0. (2.7) 
aP 

we have to solve (2.6, 2.7) together with a radiation condition, that 
(G - G ) i behaves as an outgoing wave at large distance, sd an edge oondi- 

tionthat G and 6(VGl remainfinit e for small values of the distance 

6/ 
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6 from the edge (Fig. 2). 

It is convenient to express the dependence on the azimuthal angle 
* as a Fourier cosine series; thus 

* G(p,t,e) = -G 
- Gb) (“)(p,s) + ” 1 (p,z> 00s n(rl - 9,) , 

2% x 
I 

‘*- (2.8) 

since the symmetry of the pmblem obviously implies that G is an even 
function of ($ - $,). 

*The semi-infinite extent of the geometry ensures that the problem 
can be solved by means of Fourier transformation with respect to e and 
with use of the Wiener-Hopf technique, snd the formal solution obtained in 
this manner by Levine and Schwinger (19&8), Noble (1958), is described 
briefly in the following. 

A small positive imaginary part k. is assigned to the wave 
number k = ki + ikp , and we finally let ks + 0. The complex Fourier 

transform G(")(p,a) of the mode G(n)(p,e) and the half range transforms 

are defined by the formulae 

G(“)(p ,a) = 
f 

-G(“)(p,a) elnz de = G;")(p,a) + Gl")(p,a) , -'a (2.9) 

-0D 

where 
G(") = oG'n)(prs) eicrc ds, G!") = -G(“)(p,.) .*’ de. 

/ I' 
0 -0D l -a (2.10) 

The form of the incident field, the boundary condition (2.7) and the radia- 
tion condition impose constraints on the possible values aP the complex 

(4 variable a to ensure convergence of the integrals G+ and Gtn). 

Specifically, it is found that G+ (n) is defined and analytic for- 

ima > -kp, while G(_") is analytic for im a < kn COB Bo. Tk sub- 

aoripts + and - are used here and henceforth to denote functions that 
are analytic in the respective regions im a > -kp and im a < ks cos 'Jo. 

It follows that tk full range transform ,b) = ,tn) + Gp) is analytic 
with.intk strip 

+ 

-k,, < ima < ka oos B. , l a* (2.11) 

so that the inversion formu3.a for G (")(p,z) is given by 

G(n)/ 
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G(“)(p,x) = G(“+p,a) e+’ da, l -a  (2.12) 
2x I -a+ib 

where b lies between -kp and +ks cc8 Bc. 

!Che transform G (")(~,a) 
and (2.9) to satisfy the equation 

is found from equations (2.6), (2.8) 

a8 ,b) Cl G(n) 

Pa 
v 

+ p- - (yapg+ np)  Gin) P 0 , l - -  (2.13) 
aP 

where y = (a' - ks)"s is such that y e -ik when a = 0, with branch 
cuts from tk to infinity that do not cross the strip (2.11). The modi- 
fied Besse1fun0ticns KJyp) and I&(yp) form sn indepedent pair of 
solutions of (2.13), so that G(")(p,a) is the l.Wear ccmbin8tlcn af these 
fumticns that satisfies the radiation requiremmts, the boundary condition 
(2.7) and ensures the regularity of G (")(P,E) ontheaxia p =0 andfor 
p=a, b.0. By the etandard T&tier-Hopf prooedure, thie leads to the 
sc1uticn 

G(n)(p,a) = ya D-(a) 
&(YP) if p < 8 

l ** (2.14) 
x(va) K,(YP) if p > a 

a+0 

where Dl")(cr) m pfn)(p,o)] 

a-c 

= / k(")(p,.)l; eiar h. l *- (2.15) 

-0D 

is the transform of the potential discontinuity. 

The function Dp) (a) ia to be determined from the Wiener-Hopf 
equation 

(")(a) 
act") 

y*a ~h)~(va)D- 
n+'2xksin0cJ$cdn'3c) 

z $- (a,a) + (-1)" ' # 
a - k 008 e 

0 

valid within the strip (2.11), where J, is a Bessel function. 
l ** (2.16) 

Defining the kernel 

K(“)(a) = -2q(ya) q(ya) , ‘** (2.17) 

the solution of (2.16) rests on the decomposition of K, which is analytic 
within the strip (2.11), as a pmduct of 'plus' ad 'minus' fiXlotions 
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,(n) + end K(n) that are to be analytic and have no seros in the respeo- 
tlve ragions im a , -ks ana iina<ks, 

Le. K(n)(a) = ~:)(a) K(n)(a). 

In terma of these functions, aOs0ribOa in Section 4, the 8-a 
wiienelcH0pf pr00.~dure haas t0 the 80iuti0n 

D'"'(i) = 
4% (-i)"+' sin OoJA(ka sinBo) I 

a(1 + oos eo) Kp)(k 008 e,) (a - k 00s e,)(a - k)@‘(a) 

-a* (2.19) 

This folmita for III”)(a), together with (2.14) end (2.12), oom- 

pletes ths formal solution far the funotion G(")(p,s>. 

3. Solution for Souroes near t& E&e 

The fonaal solution of Section 2 osn be estimated in simpler forms 
in the asymptotic limits of high wave number (ka >> 1) and low wave number 
(km <<I). For high wave numbers the usual ray theory argument8 predict 
that the potential at points in tfrs vioinity of the edge will behave as if 
the scatterer were a flat semi-infinite plate, forwhioh the results are 
already know. Thus our attention is ah30tea to the case of waves of 
length large oomparsd with radius, whenoe km C< 1. 

It is instructive firstly to examine the form ai' the potential G 
at points very close to the lip of the pipe. For the incompressible nature 
Of the flow in this vicinity implies a solution of the form 

G - AC(eo, * - $,j k,a) Silp sin &ti+ D($ - to) m-9 (3.1) 

for k6 C< ka << I, where 6,ti are polar co-ordinates based on ths edge 
in a plsna Jr = constant (Fig. 2) 

Thus ths nth Fourier oomponent ,b) of G has the form 

,b) - C(")(eoj k,a) 6"s sin &‘d + D(")(eo;~) l a* (3.2) 

where/ 
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where the scale finotion C (n) has the dimension (length)-L's to be 
formed from the pair cd' parameters k and a. The value of the 
constant D(n) = G(n) (0,O) is of little interest; it can be calculated 
from the solution (2.12, 2.14), with p = c = 0, and is found to be of 
or&r ka for the modes n = 0 and n = I, negligibly small for tha other 
modes. 

The forto of the result (3.1) is common to all rigid bodies with a 
sharp edge; in particular, the single semi-infinite plate has no length 
scale a associated with its geometry so that the potential must assume the 
form (k6)"ssin $uf, as is already established by Ffowoa WUliams and 
Hall (1970), Crighton and Leppington (1971). 

To deternine the form of the scale function C (")(eo~ k,a) in the 

present case, we not8 that the discontinuity of potential, given 80cordbg 
to formula (3.2) as 

Gb) (a + 0,s) - G b)( a-0,5) - 2C q-spy s < 0, l ** (3.3) 

has the Fourier transform D- (")(a) that is given by an Abelian theorem 
(see Noble (1958)) as 

D?)(a) 
-(D 

z '2 C(“)(-s)‘~’ eins ds as J a 1-b a. 
I 

-0D 

D?)(a) im a > 0, --- (3.4) 

with D(") (a) given exactly by formula (2.19). 

NOW it ia shown in Section 4 that 

It(“)(a) - (iaa)-i’s &3~a~*p, ima>o, 

so that the function D?)(a) of (2.19) is given asymptotically by 

4% (-Qn*‘sin 8, 
,tn) .w -  -  

J;(ka sin 0,) (icr) +,# 
CA~'~(I+ 00s eo) Kp)(k COB 0,) ' 
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and a comparison with formula (3.4) implies that 

c(n) = - 
4%*'"(-i)*+isin e. J$ka sin eo) 

ai'9 ( 1 + COB e,) Kp'( * k cos Oo) 
l *- (3.5) 

This formula can be simplified in the long wave limit ka << I, by using 
the asymptotic estimates (4.16, 4.17) for K+n (k COB go) audby replacing 
the Bessel funation J' n by its anall argument approximation. Thus we get 

&o) ..,. - 21~i’mk&* ( I - ~08 eo) * 

and c(n) - 
4~~‘~(4/2)“(ka sin eJn 

n:la n - 1) : a”’ 
, 

( 
n2.1, as ka-rO. l *- (3.7) 

We note that the eeroth and first modes are of order ka, the 
higher modes n a 2 being negl ible for small ka. 
only, we see from (3.2) and 

Retaining these terms 
that G is given by 

w% I _. 
e 

G(x; zo) ... -. ix- +In~YP~%lIDs~ $@$ 

I4 

c(~-~~~ eO)+z sin eocOs(g*O) , 

3 

l ** (3.8) 

for kjroj >, I, k6 << ka << 1, together with a term of th3 same order, 
independent of (6,~) arising from the term D b, of (3.2). 

ti far field estimate (3.8) is valid only for sources that are 
very close to th3 end, with 6 << radius a, and it is important to deal 
with the extended region that is close to tbs end on a wavelength scale, but 
with 6/a either large or small. 

To caloulate the nature of the field within a wavelength of the 
end, we need a uniform estimate for the fuuotion (a - 
K(")(a) appearing in (2.19), 

k COB go) (a - k) 
with I a I large compared with k, but with 

aa arbitrary. It is clear that (a - k cos eo)(a - k) * as for la 1 S> k, 

and the estimate 

log K?)(a) w "" 
- M-2 q&x) qJx))dX 

f 
e log;?)(a) --a (3.9) 

= 0 
x0+ (iaa)' 

is calculated in a!?ction 4. The detailed form uf (3.9 
B 

is not crucial, but 
it is important to note that the uniform estimate K- is independent of 
the wave number k. It follows immediately that the k-dependence of the 
&,enti.al Gtn) arises only through the multiplicative factor 
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J'(ka COB t3 )/K(n)k cos f3 n 0 + of (2.19), and is therefore preserved un- 

altered from the region 6 << a described by formula (3.8) to the extended 
region 6 << l/k contained within a wavelength from the end. Thus (3.8) 
can be generalised to give an estimate of the form 

eiklXO I 

G(ll;x+,) - ka 

l==l 
c 

Fo(p/w)(l-cos ~o)+~s(p/~,~b~ eocod$+,) 
3 

-‘* (3.10) 

for klxoI>> I, $jzl<< 1. The finotions F. and F, ccs($ - #,) are 
harmonio functions, independent of wavelength; their precise form is not 
of particular importance, but they can readily be expressed exactly in terms‘ 

of a Fourier integral that involves the function K- ^(")(a> of (3.9). 

The corresponding result for a distribution of quadrupoles of in- 
cident field 

is given by direct superposition as 

g&c.,) - ka e 

*lx0 I 

[ PO0 - cos eO) + P* sin e. , 
lx01 

I 
, 

l ** (3.12) 

amp0 aa 
where P = c Qij 

ax ,* P, = 
I Oij @,=~a(~ -  +ob) > aX l 

axi ax .I 
axi ax 

3 

It is seen therePoE that the ratio of the far field potential # 
aga.inatthat of the inoidentpotentisl $i is givenby 

= 0(&a)-‘) 0 *-- (3.13) 

Farmula (3.13) should be contrasted with- the comesponding result 
for souroes within a distance rpI from the edge or a semi-infinite plate, 
for which 

I I #h, = o((kr,)-i’P) 
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Evidently a sharp ended. pipe is not so efficient as the half-plane for 
enhancing the sound field of quadrupole sources. Indeed, the results for 
the pipe are very closely analogous to those for scattering by a small 
finite body. 

4. Properties of the Wiener-Hopf Factorisation Functions 

The kernel K(a) of the Wiener-Hopf equation is defined as 

K(")(a) = - 2 K,$ya) I;(ya) , l ** (4.1) 

whem XC,, I, are modified Bessel functions and y = (as - ks)"'s. It 

oan be shown (Levine and Schwinger (194.8), Jones (1955), Noble (I 958)) that 

K(")(a) i s analytic and has no eeros within the strip 

-kp < ima< ks, k. =imk, l -* (4.2) 

and it is required to factorise K in the form 

K(n)(a) s ~?)(a) K'")(a) , . -0. (4.3) 

where KF' and K(n) are analytic and have no zeros in the respective 

regions ima, -kp, ima< kp. 

Following the usual. prooedure of expressing log K(a) = log K+ 
+ log K- by the Cauchy forda, it is found that 

with the integrals interpreted as principal values, lim 
I 

dt. 
N+a¶ 

-Niib 

(i) Asymptotic evaluation of K?)(a) for large t al 

Following the method due to Levine and Schwaer (1948), we take 
b to be sero, with ks+ 0, whence 
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log K(")(=) = _ " ik log ~~~~~((k*-t*)"'sa)J~((kg-ts)~~sa)] dt 

xi 0 ta - a= 

a 
_- 

a log~-2K~((ts-kP)"Da)~((t"-ks)"Pa) 

xi ta - aa 
at I 

'-* (4.5) 
where H, is the Hankel function of the first kind 

a 
-- - log i-2K;(x) I;(x)(kaa'+~)i'ajx dx 

ad I 0 (kaa?+XP)='* 

1 OD log(iaa x) 
- - 

I 
ax 

x 
ka/iaa xa + 1 

l ** (4.6) 

P O(a") + O(a-') - $ log( iaa) asi a 1 + -. 

Thus K?)(a) _ (Ina)-"' as la I+ w , imae0. l ** (4.7) 

The estate (4.7) holds as Ial + oD, with la/>> k and 
Ial >> l/a. More generally, a calculation af the potential field within 
a wavelength from the end of the pipe requirbs a uniform asymptotic estimate 
for Ia/ >> k, ka<< 1, but with jaaj arbitrary. 

The first integral of (4.5) is found again to be negligibly small, 
while the redning integral is given by 

a - log 1 GA(x) X(x> 1x ax 

I 

aa - log I- z;(x) 1;(x) ]x& 
-- z-- 

axi o (kaaa+xa)r/a 
t 

x8 
kg+- -aa 

1 
xi I (kaaa+f)i4a(xa-aa8) 

aa 

for Ial>> k. Divide the range of integration at the point X = ES 
where E issma$lnumbersuchthet ka<<E<<a(al* 
than 6 it is much less than alal s 80 that the factor 

If x psless 
x*-a a 

can be replaoedby -apasS and the fbotion -2K$x) I;(x) can be 

replaced/ 
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form n/x’ . For x > E, 
(k's'+ x*)~" by X. 

on the other hand, 
It is found in this 

*** (4.8) 

for 1 a I>> k, ka <S 1, with im (1 < 0. 

It is important to note that this estimate for Ic, (")(a) is in- 
dependent of-the wave number k. For laal >> 1, it is easy to verify 
that the sinplar result (4.7) is recovered from (4.8). 

(ii) Asymptotic evaluation of ths function Kp)(k 00s Oo) 

We require an estimate for the function IC+ (n)(k 00s eo) when ka 
is small. If the integral (4.4) is evaluated almg the real axis with k 
reel, then the limit IZ + k 00s 0 

0' 
with im a > 0, requires the path af 

integration to be indented the pole t = k 00s Bo. This indentation 
contributes xi times the residue at k 00s Bo, so that (4.4) lead+ to 
the result 

log IL!") (k COB Bo) = &log %iH;(ka Sin eo) J$ka Sill eo) 
1 

ke Oos e. 
+ 

I(n) 
, 

xi 

*** (4.9) 

where I(n) = O" 
f 

log 1'2Kk(X) 1$x> ] x dx 

o (kga*sinD~o+xa)(kPas+f)i'P 

ka 
+ 

f 

log txiH;(x) J;(x)] x dx 

0 tk s8pd.2eo -x~)(kgaa-f)i'P ' 

ka 
aad 1 aeot n es a Cauohy principal value integral. 

I 
0 

For small values of ka, we have 

%iH;(ka Sineo) J;(ka Sin 8,) _ 1 c n/(-a sin eo)* 

*** (4.10) 

if n=O 

if nal 
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To deal with the integral I@ note that the functions 
appearing in the logarithms have the small argument asymptotics 

-2K$x) 1;(x) = 1 + o(x* log x), xiH;(x) J;(x) = 1 + 0(x' log x); 

-2$x) P(x) = ; 1 + 0(X' log X) , ni H;(x) J;(x) 

n 
m -- 

XS t 
1 + o(xalogx) 

J 
*** (4.13) 

for n 2 1. Letting k.3-r 0 in formula &lo), ~63 kave f-01- n = 0, 

-2K$x) IA(x) z as 
J 

E -b 0. --a (4.14) 
0 

Bar n&l, we may not simply replace ka by eero in the inte- 
grands, on account of convergence difficulties at the 0rigi.n~ this cuffi- 
culty is readily overcome by inserting and subtracting suitably compensating 
logarithmic functions, dictated by (4.13). !chus for n3 I, 

,b> = 
/ 

log t-2K;(x)I$X)Xs]X& 
+ 

ka log ixiPn(x)JA(x)(-xs)]x dx 

o (kgs*a~g~o+~)(k*as-xa)~'n f o (kPagsiu?~o-x*)(kPa*-xs)"P 

m log (xs) x ax ka 

f 
log(-ix)' x dx 

o (k*assina$+xg)(ksag-f)*'s - o (kae*si~(ro-xa)(ksa*-~)"s' 

Now as ka -b 0, the first two terns tend to constants; the 
remaining integrals can be evaluated exactly to give 

ka 
sea e. log(tm he,) + O(1) as ka + 0 

pinay then, (4.9) and (4.11) show that 

Kp)(k COS eO) w 1 as ka+O, 0.. (4.16) 



- IL&- 

nil:, 

as &l-b 0, n2 1. 
1 + cos e. 

*'a (4.17) 

5. Conclusion 

The distant sound field induced by a quadrupole source distribu- 
tion, within about a wavelength from the pipe exit, has the form 

p/q = o(W-‘) , for ka<< 1. **a (5.1) 

TO interpret this within the aerodynamic noise context, we make the crude 
identification k LJ U/&o for the mve number, in terms of a typical 
turbulence velocity U and length scale 4 associated with the turbulence, 
with o the wave speed. Thus the ratio of potentials is I vV# i I= O( +a) , 
where M = U/c is a turbulence Mach number that is typically very small.. 
Since the sound intensity is proportional to the square of the potential, 
the 'Us law' of Lighthil.1 is modified to give dependence Ia us that 
is generally applicable to mnsll fMte bodies. 

ALthough this represents a large increase in sound, compared with 
that due to the incident field alone, it is less than that scattered by the 
sharp edge of either a single semi-infinite plate or a parallel pair of such 
plates. For these geometries it has been found that 1 $/#iI = 0((h)-s's) 
whence I aUs. It is perhaps surprising that the scattering property 
of the sharp ended pipe resembles that of a finite body rather than that of 
the parallel half-planes. 
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Chapter 6 

Conclusions 

The jet noise that we are now considering is tioreasba important 
at the lower jet velocities and is most significant at high angles to the 
jet 8xis. 
less than 6. 

It ~c~h3 with a velocity index distinctly less than 8 ad probably 
This noise seems to exist at frequencies that are character 

istically higher than those usual for jet noise. The evidence on which these 
C0nClU8io~~ are based is largely heresay in the context of modern engine8 but 
i8 fully consistent with the early measuremsnts on the first generation of 
comercial.Jet engines (Mawardi and Dyer 1952). We are now inclined to re- 
gard the noise radiated normal to the jet exis in the one direction unaffected 
by Doppler frequency shifts and where non-IQhthillian behaviour is common 
experience (Lighthill 1961), as a different noise in the category of the low 
speed problem. We think it is not a Reynolds and/or Rach number effect that 
modifies the free turbulence sound. This lcw speed behaviour at the high 
angles is continued to supersonic jet speeds, so that the phenomenon is not 
exclusively a low speed problem. The noise velocity index is, we think, 
likely to prove a good diagnostic tool, since we do not believe that there 
are likely. to be significant subtle Mach number, Reynolds number and geometric 
ohanges that will so cloud the picture that it defies a proper modelling. 
The dependence of noise on the very low powers of velocity (from 2-6) that 
are reported indicate to us, completely unambiguously, that the noise sources 
must arise from a mechanism that is fundamentally more efficient in generating 
sound than Lighthill's free quadrupole mechanism. This new and important 
mechanism 1s probably still described oy Lighthill's quadrupole acoustic 
analogy, but boundary constraints must be imposed to attain high radiation 
efficiency. These constraints must be either et or within the no2sl.e exit. 
We have exam5ned whet increase in the radiation can result from an interaction 
of aerodynamic 8ources with boundary constraints of the type met in a jet 
engine exhaust system. The problem falls naturally into two categories 
according to whether the radiated wavelength is large or smsll on the noszle 
scale. Consider first the long wave problem. 

I. The long wave problem 

Acoustic frequencies are identical to source frequencies. Aero- 
aJmami0 souroes have frequencies set on a Btrouhal scale g/C, y alla e 
being the characteristic velocity end length scale of the source flow. The 
eooustio wavelength, h, radiated by this flow is X =4(U)-' where M 
end 8 are the Mach and Strouhal numbers reapsotively. The long wavelength 
condition is then precisely defined by the inequaty 
a D 
- >> I or - MS << 1, D being the jet diameter. rnthislimifthe 
D & 
oontainment of the sources deep within the pipe will increase their ability 
to generate sound. However that sound cannot prOpgate in One attempt 
through the nozzle. It is mostly reflected upstreamr If it is redeflec- 
ted downstream then in many attempts, as it were, l&a sound will eventually 
escape but only at tb period determined by the time required for SOUII~ to 
travel from the noelale upstream to a reflector and back again to the noaele, 
i.e. the aoundwi.lJ. exist at hermonioa of the organ pipe frequency. AMY 

from/ 
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from these pipe resonances the Oontainment of aerodynamic sources deep 
inside the pipe cannot increase their ability to radiate sound to the pipe 
exterior. There is only one qualification to this. The nozzle contrac- 
tion ares ratio is assumed to be snraller than about 20. At very high 
nozsle contraction ratios the velocity index of aerodynamic sound generated 
deep inside the jet pipe will be reduced by 2. Turbulence and unsteady 
blade forces will. therefore radiate sound in proportion to Us and U' res- 
pectively. In this limit that has, as far as we can see, no immediate 
practical interest' aerodynamic sources in the vicinity of the nozzle exit 
plane radiates sound more effectively. Also, even for small nozzle contrac- 
tion ratios, quadrupole sound generated at the nozzle exit plane will scale 
on the sixth power of velocity and dipole sound on the fourth power. 

2. The d&t wave problem MS D/C >> 1 

This limit is the one of immediate practical concern because jet 
diameters are now SO large that the annoying sounds have relatively short 
wavelengths. We conclude in this limit again that the containment of aero- 
dynamic sources in the jet pipe cannot fudsnksntslly increase their radiating 
ability. Sound will propagate through the nozzle with great ease, the only 
real influence being on the directionality of the sound. The search for 
high efficiency sources must therefore concentrate on mechanisms of high 
efficiency in their own right and not rely on some subtle interaction between 
boundary effects that are more than a wavelength from the source. We iden- 
tify two mechanisms of high acoustic efficiency and which are likely source 
meohanisms for the low speed high frequency problem. 

2a. Helmholtz resonator sound 

Within an engine there are resonant chambers or cavities that oon- 
stitute resonators of the Helmholtz type0 When these cavities are driven 
by a turbulence field, or by turbulent combustion at frequencies above the 
resonance, then the scattered sound increases in proportion to the fourth 
power of velocity. There will also be resonance frequency sound increasing 
in proportion to the cube of velocity but the resonant band-width is 1Urely 
to be very large ad the resonant sound non-discrete. The frequency of this 
sound will be determined by the frequencies of turbulence in the environment 
of the resonator opening. This mechanism oould easily be examined experi- 
mentdly. A combustion chamber could be tested in isolation to discover 
first its acoustic characteristics and secondly its sound scattering ability. 
The turbulence could be generated by a cold turbulent air jet exhausting into 
the interior of the ohamber. Wiithin an engine the pressure fluctuation 
within the oombustion chamber would correlate with the radiated sound if this 
mechanism is dominsnt. 

2b. J3&e scattered sound 

High frequency sound generated within a wavelength of the nozzle 
periphery is a possible source mechanism of great importance. The scattered 
field intensity increases with a velocity index equal to or less than 5. 
!I!he radiated frequencies are higher than those in conventional jet noise by 
a factor U/U', U being the mean jet velocity and u' the root mean squat 
turbulence level ,in the vicinity Of tbs edge. The edge scattered field 
radiates preferentially away from the Jet sxis. The edge can convert into 
sound, by a diffraction process, the local hyhaynamia motion of a slow* 

evolving/ 
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evolving eddy such as, for exawple, LI torroidal vortex that is convected 
with the stream. The energy scattered from a single eddy during lm speed 

pu'c6 
convective motion past an edge increases in proportion to - 

c= a= 
P 

be% the fluid density, U the mean stream velocity, c the characteristic 
eddy sm..be at~d d the nearest distance to which the eddy approaches the 
edge. In .a continuous turbulent flow eddies will arrive at a frequency 
u 
- to be scattered with the above efficiency so that the rate at which energy 
c c= 
is scattered, or tbs acoustic power level, is proportional to pP - . 

c'd= 
This re-emphasises the conclusion reached by Ffowcs Williams and Hall (1970) 
in a formal solution of Lighthill's equation. We have examined also the 
&le played by the shear layer evolving from a noesle lip, and whether a 
Kutta constraint should be imposed on the motion, and what effects such a 
constraint would have on the sound field. This is the problem treated in 
great detail in Chapter 3. Our main conclusions are that radiatxon of shear 
layer instabilities can be affected by the scattering edge and that the effect 
is more pronounced when some Kutta constraint is active. We conclude that 
the edge region, and the instabilities of the early shear layer, are likely 
to be of substantial importance to the lower speed jet noise problem at high 
frequencies. Experimentally this aspect could be checked in several. ways. 
The edge geometry could be changed. The bounding surfaces could be lagged to 
make them appear compliant. The shear layer mean velocity profile.could be 
controlled by edge suction, or blowing, or vortex generators or swirl produo- 
em, to modify the instability modes that are evidently scattered with high 
effioienoy. 

FinaEy, there are several aspects of the problem that remain un- 
resolved and where further theoretical work should be encouraged. These 
concern the influenoe of shear layer curvature and the basic interaction of' 
the oyliodrioal shear layer with its nozzle. The question of how to limit 
the exponential growth of instabilities is also only plausibly dealt with at 
present and the whole issue of deterwAning details of the internal engine 
acoustics in the presence of mean flow is wide open. Whnt we have done here 
is to point out that these internal characteristics can be the controlling 
feat-s of the low speed noise problem. gxperimentally the field is al30 
in its bfknoy. the experiments so far reported abound with the confusion 
that is inevitable while the likely physical processes remain unidentified. 
We would hope that these pmoesaes have become clearer as a result of this 
preliminary theoretical survey and that this report will enable the experi- 
menter to m&s more rapid progress in the clear isolation and elimination of 
those exoess noise sources that seem to be dominating the jet noise of tbs 
newer engines. 
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