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SUMMARY

This is a Current Paper combining five separate papers under the
following headingsi-

(1) Sound Generation by Turbulence contained
in a Small Vessgel

(2) Transmission of Low Fréquency Jet Pipe
Sound through a Nozzle Flow

(3) Radiation Properties of the Semi-Infinite
Vortex Sheet

(1) Diffraction Radiation

(5) Scattering of Quedrupole Sources near the
End of a Rigid Semi-Infinite Gircular Pipe

Both the long wave and short wave problems are discussed. There are
several aspects of the problem that remain unsolved and further theoretical
work should be encouraged.

* Replaces A.R.C.3Z 925



Introduction

The noise of the early Jjet engines increased in proportion to the
fourth power of velocity. In 1952 Mawardi and Dyer reported measurements
on turbo-jet engine noise. The velocity index varied from 4 to 8 ag the
thrust was increased. In that year Lighthill's pioneering theory showed
how turbulence in free space radiated sound in proportion to the eighth
power of velocity; from that time on the low velocity behaviour seems to
have been forgotten. It was regarded as an indication of rough burning,
or some anomalous turbine noise, and was treated more as an imperfection
of the machine rather than a fundamental effect. In laboratory studies
also, many forms of rig noise had to be eliminated in calibration of the
experiments. Gauses and honeycombs we used to eliminate turbulence, and
nozzles with extremely high contraction ratios were used to obtain smooth
nozzle exit flow. The dependence of the noise on the eighth power of
velocity was used as a check on the usability of the equipment. As time
went on the noise of real engines scaled more and more like the eighth
power of velocity as the specific thrust was increased and the performance
was improved by eliminating internal losses which no doubt induced turbulence
in the nozzle exit flow. In the Bakerian lecture Lighthill (1961) was able
to point to the relevance of his theory to practical engines. There was
only one aspect that was in any way unsatisfactory. The convective effects,
go important in distributing preferentially the radiation in the direction
of jet motion, also bring about an increased efficiency, so that the sound
scales with a higher velocity index than 8. At 90° to the jet axis, where
the convective effects are gbsent, an eighth power law is predicted.
Experiments in fact show that a velocity index nearer 6 is measured at 90°
and the overall power scales very closely on the eighth power of velocity.
Lighthill drew attention to measurements of turbulence level which showed
that the relative turbulence intensity tended to Le a decreasing function
of Mach number. He gave a very plausible argument that this decrease
accounted for a reduction of the sound level which exactly compensated for
the increased radiation efficiency brought about by the convective effects.
The eighth power law still described the experiments but for a slightly
different reason. This coincidence is a little unsatisfactory however
since recent experiments carried out by Lush4 show that the frequencies,
that are set by the turbulence level, increased linearly with velocity,

and his exceptionally carefully prepared jet flow does show the increase in
radiative power sbove the U® line. The sound intensity at 90° to the

Jjet axis sceles precisely with the eighth power of velocity in complete
accord with Lighthill's theory. Modern engines run at lower jet speeds to
achieve jet noise suppression. The achieved suppression is not as great as
an eighth power law would imply. We are therefore led to the conclusion
that the Lighthill model of free turbulence only pertly describes the sound
of real turbo-jet engines though it deals completely with a carefully prepared
model problem. This failure of the model can be turned to a distinct advan-

tage.

The U® law is a rigorous derivation from free quadrupole theory
asymptotic for low Mach number., That the law fails at low Mach number is
positive proof that the sources of low speed noise lie outside the Lighthill
free turbulence model. The new noise sources that are now becoming impor-
tant must be sought either within or at the nozzle surface. Curle (1955)
showed that when boundaries are present monopoles arise at free surfaces and
dipoles on riglid surfaces. An unsteady mass flow in the nozzle exit would

radiate monopole sound and an unsteady Jjet thrust would radiate dipole sound,

both/



-3~

both more efficient than the basic quadrup6ole mechanism, This was the
model taken by Ffowes Williams and Gordom ° who also showed experimentally
that the non-U® noise is an increasing function of internal jet pipe turbu-
lence level., This first viewpoint is however too naive.

Unsteady mass flow from the engine, which tends to be large on a
wavelength scale, is only permitted as a result of internal fluid dilata~
tion, an effect which must vanish as the compressibility, or the Mach number,
tends to zero. The monopole strength is consequently factored by a Mach
number and the velocity index increased. A proper treatment of this problem
must rest on the yet unexplored internal acoustics of a jet engine,

(Ffowcs Williams 197?2. A first step in this problem was taken by Davies
and Ffowes Willlams ™ in consldering the problem of sound generation by
turbulence contained within a long pipe. They showed a fundamental increase
in the sound producing ability of confined turbulence providing that the
adoustic wavelength was much larger than the pipe's diameter. However, this
is precisely the condition required for inefficient radiation from the termina-
tion of the pipe so that this increased sound production would not be noticed
in the jet exterior. Waves incident upon the nozzle exit would, in the main,
be reflected back upstream. However, if there is an upstream obstruction
which reflects upstream travelling waves back in the direction of the nozzle,
then in the end the waves would get out but only at the discrete frequency
characteristic of the organ pipe. This inability of sound generated effi-
clently within a Jet pipe to escape into the environment was pointed out by
Gordon and Maidanik® and Heller amd WidnallY.

That some new source must become dominant at low speeds is nc sur-
prise. Lighthill pointed out the extreme inefficiency of free quadrupoles
as sources of sound. He argued that resonators could increase the acoustie
output and that turbulence could interact with a mean shear layer using it
as a sounding board to increase the sound power output. Solid surfaces
could of course act as sounding boards. These suggestions have now to be
taken more seriously since the 'new' sources are evidently controlling the
sound radiation of modern turbo-jets with their relatively low exhaust speeds.

The refraction of sound as it travels from its turbulent origin
through a mean shear flow is neglected in the Lighthill model. Lush¥ has
shown that this refraction is a controlling factor at near grazing incidence
to the jet axis. At low angles the effect arrests the increase of fre-
quency and intensity with speed. This refraction has been treated numeri-
cally by Sohubert 1V in a scheme which integrates the governing equations
for a given jet profile. Schubert suppreases the instabilities that inevit-
ably exist with an inflectional veloclity profile - a step of yet undetermined
relevance to the practical problem. Howe 11 treats analytically the geo-
metrically simpler problem of sound sources close to a plain vortex sheet.

He shows how the interaction between the sound and the flow is a dominant
feature of the problem and how the instabilities control the process in the
so-called gone of silence. The main features of interest in all these re-
fractive interaction situations occur at angles within 90° of the jet axis.
There is a minimum of effect at 90°, These interaction effects are also
decreasing as the Mach number is reduced.

The main characteristic of the low speed problem is that non-U®
behaviour becomes increasingly important at low Mach numbers and the effect
is most apparend at 90° to the jJet axis. Whether this is on account of a
preferential directivity in the 90° direction or simply because the U®
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sources are weaker in this direction is not yet known. A simple minded
survey of sound at one frequency in no way indicates the source properties
since Doppler effects depend on radistion angle, and must be accounted for

to select the field of any individual source. This point was used byLu:s:h‘lF
to great effect and his technique which exploited a thorough understanding

of the basic physical processes with a critical experimental survey could
well be used now to throw light on the low speed problem. This report aims
to identify some of the important physical processes that might be examined
in such an experimental programme.

. The interaction of sound with the shear layer per se is evidently
not a promising starting point to the search for the high efficiency low speed
sources that are relevant to the practical problem. However, we shall con-
clude that the interaction of the shear layer with the nozzle surface is
likely to be a powerful effect.

The most comprehensive experimental survey of low Mach number non~
quadrupole sound that is so far available is due to Gordon and Maidanik 8
and Heller and Widnall ? who study the additional noise made by a jet emerg~
ing from a pipe containing specific turbulence generators or spoilers. They
actually measure the fluctuating forces on the spoilers and give a convincing
interpretation of the dominant processes that operate in their experiment.
Unfortunately the particular situation studied by them is proving gquite differ-
ent in character to the emerging problem of low speed jet engine noise, in that
the velocity dependence and directionality are different. But then their
experimental setup was quite different also. Their jet pipe was not fitted
with a nozzle, so that the jet pipe velocity was uncharacteristically high.
The nozgle itself may have a fundamental influence on noise. In fact it is
quite unreasonable to expect their experiment to model an engine at all.
Unreasonable also is the expectation that any rig survey of the low speed
noise problem is in some way universal. The remarkable fact is that there
does appear to be some evidence of a universal structure. Any universality
in the low speed problem seems highly improbeble because the low speed faillure
of Lighthill's free quadrupole model, and its precise asymptotic description,
is positive proof that the low speed sources lie either within or at the
nozsle exit. If the sources are at the exit plane then the turbulence there
may be essentially driven from the unstable turbulent downstream shear layers.
In that event some universal form is feasible. However if the sowrces are
within the jet pipe where conditions vary enormously from one engine instal~
lation to the next, and certainly from engine to model rigs, a universal low
speed non-U® structure is quite out of the gquestion. Nor can it seriously
be suggested in the light of low speed jet experiments where there is in fact
a prolific body of information available from the heating and ventilation
field. Jet exhaust noise is there the limiting factor preventing the use
of more economic smaller conduits conveying air at high speed.

At this time then, we seem to be concerned with the details of rig
noise which the early experimentalists took such pains to eliminate. It
obviously depends on the rig and its internal acoustica,. It is becoming
practically significant now because of reductions in the free turbulence
noise that accompany & lowering in jet speeds and the development of more
efficient jet suppressors. Actually, the problem is not really restricted
to low speeds but to all Jets where the Lighthill-type sources can be
suppressed.

The/
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The previous comment that resonators can increase the acoustic
radiation from turbulence has not been worked out in any quantitative waY .
This is done in Chapter 1 of this report and is thought to be relevant
since the interior of an engine contains many resonant cavities. Specifi-
cally, the combustion chamber constitutes a Helmholts resonator whose reson-
ances are known to be troublesome in accounting for vibration that affects
its structural integrity. It will be seen that the interior motion is
also capable of generating sound very effectively and that turbulence and/or
turbulent combustion is a possible source of low speed high amplitude noise.
The jet pipe too is a resonator of the organ pipe variety, and high ampli-
tude low frequency organ tones, which may well be termed 'howl', are likely
to occur unless the modes are damped in some deliberate manner. These
sounds would all scele on a velocity index lower than 8 provided only that
the unsteady flows have a Strouhal frequency at, or above, the fundamental
oscillator resonance frequency. These resonators generate sound in the
manner of acoustic monopoles and scale on the third or fourth power of
velocity depending on whether the radiation is at or above the resonance
frequency. Also, surfaces can scatter hydrodynamic motion into sound.
Small surfaces do this in the well documented way described by Curle (1955)
while large surfaces do it in a basically more efficient manner that is less
well understood and may depend on details of geometry. It is this problem
that is treated most extensively in this report, the object being to describe
the physical characteristics of sound generation in the neighbourhood of the
nozzle exit when it is irradiated by turbulent sources in the presence of
an evolving shear layer.

Chapter 2 deals with the low frequency behaviour of the jet pipe
and nozzle configuration at low flow Mach numbers when the wavelength of the
sound is large on the nozzle scale. The argument is made much more formal
in a rigorous treatment that neglects the influence of mesn flow and the
presence of the nozzle in Chapter 5. There the diffraction of aerodynamic
gources by a semi-infinite pipe is treated exactly. The relevance of this
wodel problem to the practical situation rests entirely on Lighthill's exact
acoustic analogy. The conclusions reached in these Chapters are that the
turbulence in the vicinity of the nozzle exit will generate long wavelength
sound that scales in proportion to the sixth power of velocity. Aerodynamic
sources deep in the pipe will scale on velocity in precisely the same manner
as they would in free space. At higher frequencies, when the wavelength is
short on the scale of the nozzle diameter, sound escapes from the nozzle un-
impeded so that again the containment of sources within the jet pipe cannot
alter their velocity dependence. Also in this limit, the basic canonical
problem neglects surface curvature and considers the sound generated by
unsteady flow in the vicinity of & sharp edge to a semi~-infiinite bounding
surface. This was done by Ffowcs Williams and Hall 12 who showed how sound
was generated in g basically more efficient way by edge scattering, the
acoustic intensity scaling on the fifth power of flow velocity., Crighton
and Leppington 13 showed how this argument could be generalised to different
geometries with no essential modification of the conclusions., These argu-
ments are taken much further in Chapter 3 of this report by including the
interaction of the shear layer and the bounding surfaces and also including
for the first time a non-trivial exact solution of the flow equationa that
incorporates various forms of a Kutta constraint. Sound is indeed generated
very efficiently by the interaction, the efficiency increasing by a large
amount as the Kutta condition is applied. In this category also, we conslder
edge-scattered sound from those parts of the turbulence that are silent in
the absence of the edge. This is the case for slowly evolving eddies.

When/
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When these eddies are convected with the flow and emerge from the shadow

of the boundary their steady field adjusts to the free space value. This
adjustment is unsteady and produces a propagating sound that we term
'diffraction radiation'. That problem is treated in Chapter 4. Again
the intensity is shown to scale on the fifth power of velocity. These
edge-scattering mechanisms all generate sound that radiates preferentially
away from the jet axis and at a frequency higher, by a faotor of about &,
than the basic jet noise. It also scales with 8 velocity index equal to
or less than 5. In this way it seems to describe wany of the experimental
features of the current practical low speed jet noise problem at sound wave-
lengthe that ere shorter than the nozzle scale.

The concluding Chapter describes what experimental checks might
be made on‘the relevance of the theoretical model to the practical problem.
It gives also some indication of problems that remain outstanding. The se
are both theoretical and experimental.
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Chapter 1

Sound Generation by Turbulence contained in a
Small Vessel

by

John E. Ffowcs Williams,
Department of Mathematics,
Imperial College, London

Some features of the jet engine noise problem at relatively low
exhaust speeds, lead to the view that the unsteady turbulent flow within
the combustion chambers may well be an important source of external noise.
These flows are characterastically very hot, the local speed of sound is
high, and many sounds of practical interest fall in the frequency range
where the acoustic wavelength in the hot flow is larger than the linear
dimension of the combustion chamber. The combustion chamber is then a
'*small vessel' in the sense used here. Sound will not be a significant
factor in the intermal fluid motion of such a small vessel. We consider
that the vessel, of internal volume V, communicates with the exterior
homogeneous environment through a small fraction of its bounding surface,
and for definiteness, we model the apertures as a single tubular 'neck'
of length L and cross~sectional area A. The vessel constitutes a
'Helmholtz' resonator whose acoustical properties are easily described.
Away from the resonance frequency sound is generated as a by-product of
the mainflow and is of sufficiently small magnitude that it does not feature
in the dynamical balance that constrains the internal motion. The sound
can be determined from the motion at the 'neck' which acts on the environment
like a monopole source of strength equal to the rate at which the mass {low
leaving V is changing in time. At the resonance frequency, however,
sound is the main loss term that 1limits the amplitude and it then features
pronminently in the balance by which the flow is determined.

We wish to determine the sound level that is generated exterior
to the vessel by turbulence snd turbulent combustion which we suppose to be
contained in the vessel. We will consider first the non-resonant case and
then examine separately the question of resonance frequency sound generation.
The model problem is illustrated in Fig. 1.

Non-Resonant Behaviour

The pressure p(t) at the entry to the neck can be decomposed
into two components, one arising from the dilatation caused by one-dimensional
motion in the neck, pv(t) say, and the other the pressure that would be at

that position were the velocity at the neck externally restricted to zero
p.(t).

P = P, +P, e (1)

r/



P, is thus the pressure induced in a rigid walled unventilated

vessel and may itself be attributed to two effects. Firstly, turbulence
in the vessel will induce an unsteady pressure Py whose magnitude will

scale on the unsteady Reynolds stresses and whose frequency @, will be
determined by the Strouhal number based on the characteristic velocity and
turbulence length scale in the vessel, U and ¢ respectively.

w ~ U/¢

p 1s the mean density within the vessel.

Secondly, unsteady heat addition will cause the pressure in the
constant volume vessel to vary, and we will label this component of p. 8B

Pq-

pr Pt + pq sne (3)

P (y=1) pa eev (&)

q

where q 18 the average over the volume V of the unsteady component of
heat addition per unit mass. This will {ypically be a small fraction a,
say, of the steady heat addition per unit mass which in a Jet engine is
equal to the mechanical energy per unit mass in the exhaust flow, Ug .

Py = a{y-1) pUj ~ee (5)

The unsteady pressure Py for a given turbulence level in the

chamber, will therefore scale on a mean velocity squared, the velocity

being either the local chamber flow velocity or the mean Jet velocity depend-
ing on whether the local inertial term or that arising from umsteady burning
is dominant.

Unsteady flow out of the volume will introduce the additional
pressure p_. When the velocity in the neck is v the density in the vesasel
pvA
will be reducing at a rate —— , and the pressure at a rate c¢® times
this. v

ap poA
v _ (P )v . eer (6)
at v

The fluid in the neck has an inertia which the difference in
pressure between the vessel interior and the environment, p - p, must
overcome.

{p-1,)/



av
(P'Pa) = w;: = pr+pv-pa = p;.-pv se (?)

The unsteadiness in ambient pressure P, 1is absorbed into a re-
def'ined p; since it is due predominantly to local hydrodynamic effects

that are independent of any motion in the resonator neck. This is because
at large wavelengths (compared to the dimension of the orifice) source
motion is ineffective in generating changes in external pressure, and the
small changes that are introduced are fully accounted for in a slight re-
definition of neck length - which is in any event imperfectly modelled.

The signifiacance of absorbing the environmental changes into p;. is that

the step emphasises an essential point that hydrodynamic pressures interior
or exterior to the resonator are scattered into sound in a precisely simi-
lar fashion with identical efficiencies.

Fquations (6) and (7) can be combined to form an inhomogeneous
oscillator equation that we write here in terms of the simple source
ov
strength p — A.
3t

{a" ’J' av_fa'p;

— W
at? ot L oat®

[+

cee (8)

A
c ———
° VL

where,

£
]

©, is the Helmholtz resonamce frequency.

At frequencies very much below resonance, the first term on the
lef't-hand side is negligible so that the monopole strength is then

A aﬂ Pl v aﬁp 1
—_— I or — —=* ., Then the sound pressure p(x,t) radiated
wiL 3 t® c? a3t

to distance |x| from the vessel is:

) = e (e - 'i-' ) e (9)

Lxc® x| at® o

The freguency of the aerodynamic pressure p, is set by
the Strouhal number so that;

3%/
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I
d P,

at® NQ;)

and since P, increases with the square of velocity, the radiated sound

will increase in intensity (p®) in proportion to the eighth power of
velocity. Evidently the containment of aerodynamic sources within a small
vessel cannot materially affect the velocity dependance of their radiated
sound 80 long as thedr frequency content is below the natural resonance fre-
quency of the vessel.

«ee (10)

t
PI‘

The second term on the left-hand side of equation (8) is megligible
at frequencies much above W, Then the monopole strength is simply

A
~ P and the sound field radilated outside V is:
L

A 1 x|
p(x,t) = p;(t -— ) -ee (1)
Lrlixi c,

The intensity of this high frequency sound scales on the fourth
power of velocity. The sound pressure level is in fact independent of the
acoustic velocity, so that at low Mach number the containment of high fre-
quency aerodynamic sources within the vessel vastly improves their radiation
efficiency.

Resonant Behaviour

According to the foregoing linear theory the response and radia-
tion are unbounded at the resonance frequency. An upper bound
can be placed on the radiation bv equating the available energy in the flow
at this frequency to the sound energy. The energy available in the un-
steady flow will scale on the mean kinetic energy, so that the maximun
possible radiation power at the rescnance condition is proportional to:

U, s (12)

80 that the radiated sound pressure has amplitude scaling on:

pU” (%)m fa se (13)

x|

The monopole strength thus has a maximum amplitude proportional to
i/a

50‘(3-3- A) o

Equation (8)/
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Equation (8) shows that the monopole amplitude at frequency o

ia:
A
— [}
Lm%r
-—;-——...— ven (1}‘_)
(wf - of)
A w,
which approximates — —— P, at frequency w, + Aw s The bandwidth
L 2Mw

of the resonance can be estimated by determining the value of @ for which
the source*is 3 db down on 1ts resonance value.

A o c 1/9
- =2 p = %EU“(-—%) »es (15)
L 25w U
Lo ¢ LY t4»
— = (,2 _.) vos (16)
o, U A

This bandwidth can be rather large at low Mach number so that the
resonance peak may be gquite broad and no discreet frequency sound could be
produced. This resonant response broad band nolse would scale with the
cube of characteristic speed, according to (13).

Evidently aerodynamic sources radiate sound more efficiently when
they are confined in a vessel whose natural Helmholte resonance frequency
is smaller than the Strouhal frequenoy. The main response is likely to be
at resonance where the sound scales on characteristic flow velocity to the
third power. The resonance bandwidth could however be very broad at low
Mach number. At higher frequencies the radiated sound scalea on the fourth
power of velocity.

Sources with frequency below the resonance frequency radiate in-
effectively with an efficiency depending on velocity in precisely the sanme
way a8 in unbounded space. Low frequency sound therefore scales on the
eighth power of velocity.



pressure p(t) at neck entry

‘neck' of length L and
cross-sectional area A

radiated sound

one-dimensional motion at velocity v

internal volume VY

Fig. 1 Illustration of the mode]l problem of sound generation
by unateady flow contained in a Helmholtz resonator



Chapter 2

Transmission of Low Frequency Jet Pipe Sound
. through a Nozzle Flow

by

John K. Ffowcs Williams,
Department of Mathematics,
dmperial College, London

The model problem is illustrated in Fig. 1. The basic flow is
& subsonic jJet of velocity V, formed by expanding a hot jet pipe flow of
mean velocity V3 and static pressure ps in a jet pipe of cross-sectional
arca A; through a nozzle down to the ambient pressure ) The Jet

flows in the direction +x. Superimposed on this basic flow is a low

frequency sound wave of pressure p+ incident from x ¢ O. The meaning
of low frequency in this context is that the nozzle scale is much smaller
than the wavelength in both the jet stream and the environment. The time

dependence is taken as e.-imt throughout. The problem is to determine
the unsteady conditions at the rozzle exit and the sound field radiated
to the static homogeneous environment exterior to the jet.

The incident pressure wave p* will be reflected (with reflec-
tion coefficient R) at the nozrle as an upstream wave of pressure p~ = Rp*
The perturbation pressure at the entry to the nozgle, station (1), will
therefore be the superposition of these waves.

pi(t) = (p*+p) e 9% o (14R) p*e IO, cee (1)

The unsteady velocity u', measured in the +x direction, is therefore:

e-imt p‘g
u(t) = (p*-p-) - (1-r)— 0t Ll (2)
pr Ca P1 C1

The dependence of p! on u} can be found by considering the pressure
gradient required to accelerate the fluid on the jet axis through the
nozsle.

1 ap Du ) dp

_- e = e - = —— —_— ...(5)

p 9x Dt ox p
We assume adiabatic motion with y equal to the ratio of specific heats.

v/
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In the nozxle region, provided the scale L is smaller than the acoustic
wavelength, the dependence of u on axial position x 4is the same as it
+is in purely stegdy flow at velocity V. Therefore:

v(x
u(x,t) = uy(t) X ee (5)
Vi

Equation (4) can then be integrated on the Jet axis over the 'noszsgle flow'
region between stations 1 and 2.

du, * vV
— (—-— . - ;?f (5 s dut-du

The pressure at station 2 is by definition the constant P,» 6&nd
ug 1is related to u, according to equation (5). Equation (6) is °there~
fore an equation relating the pressure and velocity at the nozzle entry so
that we can now determine the reflection coefficient for plane waves from
equations (1) and (2). The 'nozsls adjustment' length L is defined for
convenlience as:

e (6)

- / 2 v(x) ox ver (7)
Vie Vg

(V, + Vq)

[(es-5r o

The unsteady parts of equation (6) are then:

24 (Vo + Vy)  aul V'
AN A AL s -3-1)u; ees (9)
y =1 pa 2V, 3t v

7’:—;(1-»11)— [vi( '-1)-1“ m;:)]ﬁ-k):oi

ves (10)



y - Ve iol (Vy+ V)
1 --—-—-—-(ni - 1] -
Cy ZV,_
= - e (11)
iwL (V,_ + V.)
-1 | -
] Cq 2V
Wherﬁ u’.:vi /c:o
A 2p* ¥, e 1wt
uL = - u}_ = —
Vy pa €1 V4 [ y -1 . iwL (Vy + V)
M?
01 ZV,_ ]]
ses (12)
Continuity requires that pihdVy = poAgVg, 50 that,
2p’ ‘.1 e—iwt
uL = i
pa ©1 Ag y =1 imL (Vy+ vg)
(1= () ]}
Cq 2V,_
e (13)

The presgure radiated by the unsteady flow can be expressed in terms of the
velocity perturbation ug] which induces both a monopole and dipole radiation.

As d Vo 9
p(x)t) ~ [ — (P. us)+2— cos g — (P. uh)} ' [ (14)
IXE+ o haixl L 3t C, at
t-1x1 /e,

whers @ = O is the jet (x) axis.

e—iu)(t'l x1 /co)

(x,t) ! Va (-iw) 2p*A,

plx,t) ~ (1+2-—-cose)

gx|,+.. L xix) ° Vi iWL e+ )

- [“E __1 ] }

cos (15)

»/
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iwiy p* o

[1 Y ] e—im(t—'}_'/co)

p(x,t) ~ -

JX§> oo 2xcalx | y -1 va 1wk (Vg + Va) 45
[11- [M{(-—- —1)— :lj
Y vi Ci 2V

cee {16)

With no flow and no nogzle this result reproduces the leading terms in

, (wa)
(¢ )

flow 38 evidently to increase the field in the direction of flow and reduce
that in the upstream direction, the increase being by a factor

Va
(14- 2 —— cos 6) on pressure. The other terms influenced by velocity are

c

of Levine and Schwinger's exact result. The first effect of mean

o
negligible at the low frequencies we are considering when there is no nozzle.

The effect of a nozzle is not very marked unless the contraction
ratio is high, much higher than is normal in jet engine configurations.
wh/c, is by hypothesis held small so that (Vy+ V )/ 2V, must reach a value

wh  (Vi+ Vy)
of about 10 before the ratic — —————— Dbecomes important in
Cy 2V,

equation (16}, This implies an area contraction ratio of about 20, which
is quite outside the range used in real enganes. However, it is not so
untypical of model scale situations where laboratory nozsle exit flows are
made amooth by rapid expansion of a plenum flow. The effect of the con-
traction is then very marked in that the transmitted sound scales in direct
proportion to the incident field in the jet pipe and not to its rate of
change. This is made clear by writing the asymptotic form of (16) when
Ve/Vs is very large, but V, not much in excess of o0y4.

Va 8  ig(t-ixl/c ol 2V,
p(x,t) ~ ‘1("2"‘"‘3039 p* — e ( - 0); 15 = 5> —
X1 o c, x| Cy Vo

cee (17)

where a 1is a constant of order unity and & 45 the nozzle exit radius,.

Influence/
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Influence of the Nogzle Transmission Properties on the Velocity Dependence
of Aerodynamic Sound

Suppose as a first instance that the incident pressure field, p*,
is the large scale near field of serodynamic quadrupoles, i.e. p* is the
fluctuating pressure level in a turbulent flow, proportional to the un-
steady Reynolds stress and scaling with pa V§, the characteristic
total head at the entry to the nozzle. For area contraction ratios less
than about 20 and supposing the Mach numbers are not large, then the radi-
ated sound is given by equation (16) as:

-1 wm ¢ vﬁ ~1 t -
p(x,t) ~ — — M, p Vi — (l+2-—-coae)e w X1 /e0)
X+ o 2z VW Ixi ¢, ... (18)

The mean square sound pressure generated by turbulent’ flow at the
nozzle entry is then of magnitude:

Ay V, s wk 2V,

PUx) ~ ST CI+2-—cose pf Ve ;5 155 — > —

1X)+ o ‘Mtlgl’ Go Cy Ve
eee (19)

The Strouhal number based on nozzle entry conditions

s = eee (20)

will be a slowly varying function of velocity, so that this radiated sound
will increase in proportion to the sixth power of jet welocity.

If on the other hand the nozele is one of extremely high contrac-
tion ratio, equation (17) is relevant and nozzle entry turbulence would then
induce a radiated sound of mean square pressure:

—— A! Va 8 wL 2V4_
X))+ e IXi e, o, v,

Suppose now that the pressure incident on the nozzle from upstrean
is an serodynamically generated sound wave. Since wl << ¢4 , all
frequencies are below the pipe 'cut-off' frequency and the sound is then in
the form of & one-dimensional travelling wave. Davies and Ffowes Williams
(1968) have shown how the sound generated within a pipe scales on the flow
parametersin this situation.

p" = pﬂffl&? vas (22)

where n =1, 0, or -1 for compact aerodynamic guadrupoles, dipoles or
monopoles, respectively. When this sound is incident on a nozele of modest

contraction/



contraction ratio, equation (16) shows how the pressure is made more sensi-
tive to velocity.

n
iS V,. A’_ 1V2M1 vﬂ —i t - lx C
p(x,t) ~ - P (1+2—-cos®) e w( Xt /eo) ves (23)
IXt > VYA, 2recy 11X co

Again the Strouhal number is a slowly varying function of flow
conditions so that the aerodynamically generated mean square sound pressure
radiated through a nozgzle flow typical of operational jet engines ia:

8 4 22 Ay Va .
?(X) = paVy My — 1+2——cose) eee (24)
11Xl o 1x1® o

This expression is similar to that describing the radiation of
these aerodynamic sources in unbounded free space. The only major effect
of their conteinment within the get pipe flow terminated by a nozzle is
that the directional properties are determined by the jet exit conditions
rather than the source orientation. (Though only those multipoles with all
axes parallel to the jet axis can radiate at all). The sound field scales
on jet pipe conditions upstream of the nozzle. It alsc scales on the sound
speed upstream of the nozzle, and is in this way different from aerodynamioc
sound in free space which scales on the sound speed of the environment.

The difference is a reflection of the fact that in this problem the-aero-
dynamic sources first generate a sound field within the jet pipe and their
ability to do this depends on the acoustic speed within the pipe and not on
external conditions. 'The parameter range described by this result is
probably typicel of all jet engine conditions so that we can conclude that
aerodynamic sources contained within the jet but positioned many wavelengths
upstream of the nozzle will generate sound depending on jet velocity in
precisely the same way as if the sources were in direct communication with
the noggle exterior.

On the other hand if the nozszle contraction ratic is very large
then equation (17) is relevant and the sound of contained serodynamic
sources described by equation (22) is heard outside the jet flow with a
mean square pressure of magnitude:

Ag Va .
121 1x1? o

The velocity dependence is then V:, V: and V:, for quadrupoles,
dipoles and monopoles respectively.

Fig. 1/



Station (1) immediately prior to
position 4t which pipe flow begins
to adjust to the nozzle conditions.

Nozzie Radiated
‘< \ sound

—»=x,u jet flow

Jet pipe

.'.
p —o

incident sound wave

Reflected sound wave

pm= Flpi:-h—— ///’

P e — — L S — ——— —

Station @ is the position at
which local noxzie effects have

disappeared and the pressure is
relieved to the constant static
pressure p, .

Nozzle adjustment length= L

Fig. 14 Diagram illustrating the model problem
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Chapter

Radiation Properties of the Sema-Infinite Vortex Sheet

by

Do G Crighton,
Department of Mathematics,
Imperial College, London

ABSTRACT

An exact calculation is given of the acoustic radiation from a
time dependent flow coupled to an inhomogeneous s0lid surface. Specifically,
the flow consists of a vortex sheet leaving a semi-infinite plate and under-
going a two-dimensional spatial Kelvin-Helmholtg instability. In the absence
of the plate, such an instability mode of the vortex sheet generates no sound.
In the presence of a rigid plate, it is found that the intensity-directivity
law is

I~ U* sin®8/2

with € measured from the downstream direection. If the plate is compliant
and fluid loading effects high, the radistion is wealer, with

I~ US sin® 6,

These results agree completely with those predicted from general theories of
the scattering of the near-field of point quadrupoles by large wedge-shaped
surfaces (FPowecs Williams and Hall 1970; Crighton and Leppington 1970, 1971).
Imposition of the “rectified™ Kutta condition of Orszag and Crow (1970) does
not modify the sound field. Applacation of the "full“ Kutta condition,

thet the sheet leaves the plate at zerc gradient, results in an enormous
increase in the radiation, with

I~ U? cosec?® 8/2,



1. Introduction

An ares of aerodynamic noise theory in which significant advances
have recently been made is that of the interaction of unsteady flows with
solid surfaces. The possibility that the presence of so0lid surfaces could
greatly enhance the radiation from a contiguous turbulent flow was first
demonstrated by Gurle (1955). Subsequently, this possibility became a
matter of some controversy (Meecham (1963), Powell (1963), Ffowcs Williams
(1963)), which the papers of Ffowecs Williams (1965), Ffowcs Williams and
Hall (1970), Davies (1970) and Crighton and Leppington (1970, 1971) have
attempted to resolve. These papers, and others referenced in them, while
providing a basic understanding of most effects likely to occur in practice,
involve a considerable, and perhaps unjustified, extrapolation from'
Lighthill's {1952) original theory of aerodynamic sound in the absence of
surfaces, The view is taken that the flow is acoustically equivalent to a
volume distribution of gquadrupoles, and that details of the flow serve mere-
ly to determine the strength and frequency content of that distribution.
Thus the problem of flow noise in the presence of surfaces is reduced to
one of classical diffraction theory - essentially that of finding the solu-
tion to the linearised wave equation with a point quadrupole inhomogeneity,
subject to the boundary conditions demanded by the surface umder discussion.
The hydrodynamic aspect of the problem is completely contained in the
strength and fregquency parameters of the quadrupole inhomogeneity. Such a
de-coupling of hydrodynamics and acoustics has its difficulties even in the
case of free turbulence, and clearly requires adequate justification, since
it is the crux of the surface scattering theories cited above.

In the case of free turbulence, the apprepriate justification
has been given by Crow (1970), who also gives a penetrating discussion of
the very severe limitations on the guadrupole model. An extension of his
methods and results to the case of a general flow in the presence of any
surface likely to be of practical significance appears to set a formidable
problem. Accordingly, expediency seems to require the necessary justi-
fication for scattering theories to come from a comparison of their predic-
tions with exact solutions for particular flows. For example, the low Mach
number radiation from & line vortex spinning ebout a circular cylinder,
whose axis is parallel with that of the vortex, is capable of calculation
(Heokl, 1970), with results which agree with those of Curle (1955) and
Crighton and Leppington (1971). The cylinder scatters a dipole field, if
its radius is less than the relevant acoustic wavelength, with intensity
increasing as the fif'th power of a typical flow speed U. In contrast,

a spinning vortex pair in free space radiates a quadrupole field with
intensity varying as U7 (Obermeier, 1967). Examples of greater prac-
tical significance are not easily found, and the flow discussed in the

sequel seems to provide the first case of a flow which is in some sense
extended in space, and coupled to a non~trivial surface of practical interest.
(The flows discussed by Amiet and Sears (1970) are of a rather different
kind, involving motions essentially-driven by the prescribed motion of a
surface; what we require are flows coupled to surfaces which are passive,
except for their rdle as scattering centres).

The flow whose acoustic properties form the subject of this
paper was first examined by Orszag and Crow (1970), in the context of hydro-
dynamic stability theory. Flane parallel flow on one side of a semi-
infinite plate generates a vortex sheet downstream of the trailing edge,

which/



which may develop a time-harmonic spatially growing instability. Orszag
and Crow determine the correction caused by the presence of the plate to

the Kelvin-Helmholtz instability eigenfunctions of the doubly infinite
vortex sheet. Their conclusions are essentially that the correction 1s
negligible at distances greater than a hydrodynamic wavelength from the
edge. Such an effect is of no great significance for stability theory,

but the flow is of the greatest interest in the context of aerodynamic

noise theory. We shall see that the flow is an extremely efficient
radiator of sound - entirely because of the small correction required by

the presence of the plate, for at subsonic flow speeds a Helmholtz instabil-
ity on a doubly infinite vortex sheet radiastes no sound field at all. One
very interesting aspect of the work of Orszag and Crow involves the applica-
tion of two possible Kutta conditions, both of which have important con-
sequences in the acoustic problem. The appropriate compressible generalisa-
tions of the functions used by Orszag and Crow to enforce Kutta conditions
are found in Section 4. We start, however, by considering the Orszag-Crow
problem for a compressible fluid at low Mach numbers. The first section
consists merely of a recapitulation of the derivation of the correction
field due to the presence of a rigid plate, this being needed primarily
because it is not at all obvious that a knowledge of surface pressure fields
according to incompressible flow theory is adequate for an evaluation of the
distant sound field when the surface concerned is large compared with an
acoustic wavelength. Subsequent sections then discuss the effects of
substantial compliance of the plate, the imposition of Kutta conditions,

and the generalisation of Sommerfeld's classical half-plane diffraction
problem to incorporate the effect of the vortex sheet. The paper ends
with a discussion of the relevance of the results to current problems in

jet noise prediction. It is suggested that the interaction of shear layer
instability with a large solid surface may be the mechanism responsible for
the so-called "excess noise® phenomenon.

2. Vortex Sheet Leaving a Rigid Plate

We consider two-dimensional motion in the {x,y) plane (Fig. 1).
A semi~-infinite rigid plate lies in y =0, x < O. In the unperturbed
state, the fluid in y > O is at rest, while that in y < O streams uni-
formly with velocity (U,0). The fluid density p_  and the sound speed
a, are the same in both regions, and we assume that M = U/ho <1.

We seek the eigenmodes of the coupled fluid-plate system, subject
to linearised theory and to the assumption that a siteady state exists in
which all fluctuating gquantities have the time dependence exp(-iwt), w > O.
This assumption requires that solutions exponentially large a8 X + +
mist be admitted. Orszag and Crow (1970) remark that, in en elliptic
problem of the presemt kind, this constitutes a real logical difficulty, in
that the actual behaviour a8 X + + » must be dominated by non-linear and
viscous effects, and that such devietion from the linear solution might
have a large effect throughout the whole flow. The alternative involves
a study of the initial value problem for a temporal instability. This,
however, merely transfers the difficulty to another stage, as can be aeen
from the work of Howe (1970) on the doubly-infinite vortex sheet. Thers,
the increase of growth rate with frequency leads to & divergent integral
for the response to impulsive excitation; Howe arbitrarily truncates the
integrand beyond finite limits, but the solution is then highly sensitive
to the form of cut-off adopted. And in any case, the impulsively

generated/
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genersted flow bears very little relation to flows of practical interest,
which are almost invariably at least statistically steady in time, so that
the spatial instability problem is in fact less open to objection than the
initial value problem.

The perturbation potentials satisfy the equations

(v"+k:)¢(1) = 0,

[ (xgzmmm) Jo0 = o

in which ko = m/a.o is the acoustic wavenumber. In accordance with common
practice, it will be convenient to take ko as complex, ko =k + ik, with

eoe (2.1)

ky y kg » 0. An outgoing solution for gs“) a8 |xl+ » iz then exponen-

tially ?.a.mped, ¢(*) ~ exp(-ky | x| ), while the behaviour of an outgoing
wave ¢ %) 1s different depending upon the sign of X. A8 X+ + w,

$(*) ~ exp(-kq x/(144)), whereas when I - w, ¢{¥) ~ exp(-kq|x| /(1-K)).

Kinematic requirements on the vortex sheet y = n{x)exp(-iwt) ere
axpressed by

3 agt)
_— = s
ot Ay
see (2.2)
an an a¢(9)
— % U= =
ot ax oy

for y=0, x> 0, and the dynamic condition, that the vortex sheet
cannot withstand a pressure jump across it, requires that

a¢(9) a¢(') a’;(i)
+ U =
ot X at

ess (2.3)

on y=0, x> 0. The conditions on the rigid plate are simply that

a¢(1) a¢(l)
= = 0, y = 0, x< 0, eoe (2.4)
oy oy

We follow Orszag and Crow (1970) in isolating a contribution to
the field consisting of & Helmholtz inatability, growing as x -+ +

as 1f on a doubly-infinite vortex sheet. Assuming a space dependence

exp/



exp(-iax), the Helnmhdlts instability is defined by

¢*) = A exp(-iax ~ yay)
¢®) = B exp(-iax + way) ees (2.5)
n = d exp(-iax) ,

where ya:.-.(a’—k;)"’n, Reya> O and “a T {a® - (koq-au)ﬂliln’

RHe "> 0, in order that the fields be finite for any fixed x as

}¥| + ». Application of the boundary conditions (2.2) and (2.3) for all
x glves T

iwDa d = -‘WaB s
iwd = y A, eee (2.6)
DKB = ‘. 3

with D =1 + aUfp = 1 + Ma/ko , and shows that a 1s a root of the
equation

Yy n‘; +w = 0. see (2.7)

For the present we are concerned only with M << 1, in which case {2.3)
has two roots,

@ = -kH(1 + 1) + o(u'kﬂ) , vee (2.8)

ky = w/ U denoting the hydrodynamic wavenumber at frequency w. We

denote the rcots (2.8) by a =p,v, these having positive and negative
imaginary parts, respectively. Thus the mode exp{-ivx) ~ exp(:Lka - ka)

is evanescent a8 X+ + w, while the mode exp(-ipx) ~ exp(ikﬁx + ka)

represents a Kelvin~Helmholtz instability growling expmnentially in the down-
stream direction.

The functions in equation (2.5) do not satisfy the boundary con-
ditions (2.4) on the plate. We therefore add correction fumctions ¢, ¥
and z to ¢{*), ¢{*) x, and determine them using the Wiener-Hopf
technique. This method serves only to determine a certain class of solu-
tions, as we shall see later. Introduce the full and half range Fourier
transforms
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+e
z (s) = ] % (x) ' ax
Z+(s) = fﬂ 4{(x) 5% gx ’
z_(s) = [0 2(x) ¥ ax ,

(where we define n(x) = 0 for x < 0), and correspondingly for the trans-
forms ¢(s,y) of ¢(x,y) and ¥(s,y) of y¥(x,y). Then the differential
equations (2.1) have the solutions

2(s,5) = #(s,0) exp(-y.7) , . (2.9)
¥(s,5) = ¥(s,0) exp(ew.y) ,
and these imply that
o) (510) + 22 (0,0) = -y, [0, (ss0) v 8 (520 |
B ees (2.10)

LN (s,0) « ¥' (8,0) = W

:!+(a,o) + Y_(s,o):l ,

the prime indicating differentiation with respect te y. Transformation
of the boundary conditions (2.2) and (2.3) gives the relations among plus
functions

-iw 2 (s) &!(s,0) ,

-1 D 2 (s) = ¥i(s,0) + U , oo (2.11)

-im D W+(s,o) -iw 0+(s,o) + Uy

where & = Z(x = 0), ¥, = ¥y(x = y = 0), while the conditions (2.4) on
the plate give



id
z_(s) = ’
8 — 1}

iy A
¢'(s,0) = - —

8 -p

> see (2.12)

iw B
!:(s’o) - —-.L

s -u

Elimination of a1l plus functions except 2 (a) from (2.10), (2.11) and
22.12) then leads to the following standard*form of Wiener-Hopf equation
the direct analogue, for compressible flow, of equation {3.19) of Orssag
and Crow (1970)),

i
=it Z_._(s) = K(a)| D_ ¥_(s,0) - 8_(s,0) + iU%] + u . ’ eos (2.13)
L) B =y

in which the kernel K(s) is given by

K(s) = %s ¥s - ¥s Vg , A see (2.14)

{vq D; + ws) M(s)

M(s) = (s* - k?)i/8 (1 +-:3) g [n'- (k, + sl!)'] ve
[o)

The usual considerations (Noble 1958, P-53) indicate that for
M< 1 the domain of regularity in which all functions in (2.13) are analytic
is the strip

kp
ﬂ 1 - - Imﬂ(*k’,
1+H

and therefore that the correction functimns to be obtained from (2.13)
vanish a3 Ix 1+ «» &t least as fast as an outgoing diffracted wave field
of the kind discussed following equation (2.1).

The kernel K(s) can be factorised in the form
K(s) = K+(s) K _(s)
where the factors sre analytic and non-gero in Im 8 > - kg /(1+M) and
In 8 < + kg respectively, end where K,(s) are each O(£/%) as

[ 8|+ e 1in appropriate upper and lower half-planes. Consequently
we oan carry out the usual rearrangements to get

-3/



iw2+(s) i iyuA 1 1

B -0 \x@  nm)

iUy
- K'_(a) D, ¥ (8,0) =& (8,0) + o:)

w®
i A
Yu

K, (1) (s - u)

]

80 that each slde muast be the representation in the appropriate half-plane
of the same entire function E(s). But as x-+ O+, Z(x) is finite,

if the vortex sheet is to remain attached to the plate, while the potentials
¢,¥ can be required to be finite near the trailing edge. Therefore Z+(s),

¢ (s,0) and ¥ _(s,0) are each 0(s~!) at infinity in their respective
domeina of analytiocity, and E(a) then vanishes at infinity throughout the
complex s-plane at least as fast as s~%4?, By Liouville's theorem, E(a)
myst vanish identiocally, and we thus obtalin the solutions

iy A K, (s)
g) = - b
1wz (s) - ( 56
2(s,0) iyE A K+(a)
vgls ~u) K (u) eer (2.15)
Y(B:O) = - iyu'A DB K+(B) o

wils-u) K(u)

Note that no attempt has been made yet to enforce any type of Kutta
condition at the trailing edge. Thus from (2.15) it can be shown that
% =0(x*®), ¢ =0(1xi3®) and § =0( Ixi*/%) near x =0, =0 that
the perturbation velocities in ? < 0 and the gradient of the vortex sheet
both become infinite like =x~2/? at the edge.

The fluctuation quantities in real space are found by Fourier
inversion. We are interested here in the radiated field in the stagnant
fluid y »0, for which

1 otle
$(xsy) = — f 8(s,0) o~ 1M as
‘E
- iE
ko

where - —
1+M

< & < + kgo

Bvaluation/



Bvaluation of such integrals is a standard procedure of diffraction theory
(e.g+ Noble 1958, p.31), and we merely state that the pole of &(s,0) at
8 =p can be shown to play no part in a straightforward steepest descent
calculation which leads to
LI rin/h yqu. K+(~k° cos 8)
e 0

K
,0) ~ [ =2
¢(r,0) ( Zxr) ko(p + k_ cos ) K, (1)

,  eee (2.16)

uniformly in © (where X =rcos®, y =rsin6,0¢ 8 < x) provided
kor >>1 and M<< 1.

4 general decomposition of K(s) for arbitrary M is made
exceedingly difficult by the presence of four branch points. Here, fortun-
ately, we are concerned only with the case M <<1, for which the kernel
K(s) may be uniformly approximated by

K(s) ~ y, [(1 +-Ei )a+ 1]4 ,
o)

with a relative error O(M), uniformly in s. The factorisation is then
immedinte; we have

) k, (54 ko)“'
K+(B ) ( ?) (8 =v) ’ e (2.47)
. (s~ ko):.n
K_(s) = (':;) -—E:TTES- »

where the wavenumbers p, v are defined following (2.8) and the factors are
analytic and non-gzero in the appropriate upper and lower half-planes.

We now insert the expressions of (2.17) into (2.16) to find

oi/9 1/8

#(z.0) ~ ( = kHr)

e"“c""’“i/e Asin6/2, vre (2.18)

for ¥ <<1s. To compare this result with others of aerod{ntamio noise theory,
we define a hydrodynamic length scale & by ¢ = U/w = ks and regard
the basic incompressible flow as defined by the length and velooity scales
¢, U alone, 8o that A~ U&. The radiated denaity fluctuation then

follows directly from (2.18) as
/e

Pt~ Py (%)t M® sin6/2 , eee {2419)

and/
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and the intensity-directivity law is

I~ U sin®8/2 ., eee (2.20)

Now the sound field resulting from the interaction of a general
three-dimensional flow fileld with a semi-infiinite rigid plate has been
examined by Ffomcs Williams and Hall (1970), in the context of Lighthill's
(1952) equivalent quadrupole model, with the conclusion that I« U® gin® 6/2.
The analogous result for a two-dimensional flow field, although not given
by Ffowcs Williems and Hall, is precisely (2.20). This can be seen from
the svatematic method proposed by Crighton and Leppington (19?0,_1971) for
attacking two and three-dimensional scattering problems, involving the use
of the Reciprocal Theorem and the solution of a two~dimensional diffraction
problem., The scattering efficiency of a quadrupole/plate system is
basically the same whether line or point quadrupoles are considered. How-
ever, the free-field intensity radiated by a two-dimensional quadrupole
varies as U7 instead of the familiar U® in three dimensions (Ffowcs
Williams, 1969), and therefore the U® of Ffowes Williams and Hell is re-
duced in our problem to U%, all other factors remaining essentially un-
changed.

The work of this section thus bears ocut exactly the predictions
of the general theory of quadrupole near-field scattering by a rigid half-
plane. The velocity index and directivity appearing in (2.20) are both
highly significant for certain difficulties in the application of aerodynamie
noise theory to the prediction of the noise levels of current jet engines,
and a discussion of the importance of the law (2.20) follows in Section 6.

3+ Yortex Sheet Leaving a Compliant Plate

We now relax the condition that the plate be rigid, and consider
the case of a “locally reacting™ compliant plate endowed with mass m per
unit area and negligible bending stiffness. For x < O, An(xg will de-
note the plate deflexion. Then the kinematic conditions (2.2) are to be
enforced for all values of x. For y =0 and x> 0 we 8till have the
condition (2.37: that the vortex sheet cannot withstand a pressure jump,
while for y =0, x < 0 +the pressure jump across the plate must balance
the rate of change of surface momentum, so thaet

LA L vl ) 69 (x,0) o (31)
X,0) - — g [ X,0 = m = soe (3.4
Po at Po (at ax) ¢ ’ at?

Writing the potentials ¢{*?, ¢{®) and the deflexion m as the
sum of Helmholts terms (equation (2c5)5 in the absence of any surface plua
corrections ¢, ¥,& respectively, it is a straightforward matter to derive

the Wiener-Hopf equation

ip id
z,(8) = —2 L(s) F_(s) - ’ ser (3.2)
I W 8 °-|J.

in/
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LUy,
in which F_(s) = D ¥ (8,0) =& _(s,0) + ,
w

-1

wB YB 9
(wa +y, DB) . oo (3.3)

L(s) = 1+m
Po

In the limit of infinite surface mass, the equation (2.13) is, of course,
immediately recovered.

Proceeding as in the previous section, a formal solution to (3.2)
glvea the expression
id {L(s) - 1]
2(s) = e (3.4)
(8 — k(o) L ()

for the full-range transform of the correction to the deflexion of the vor-
tex sheet/plate system, and the far-field radiation in the stagnant fluid
is given by

¢(Tae) "'(

1 8 5% reix/l y AjL(~k cos @) - 1}
e © Y

se (5.5)
2x kor) (b + k cos e)L‘_(p)L_(-k cos 0)
The case of low fluid loading, mko/Po >> 1, merely involves

prerturbations away from the results of Seotion 2, and is of no further
interest. In the high fluid loading limit, ka/po << 1, 4t is evident

that

L(s) = 1+0(-T-:f)

uniformly in s, provided also that M <<1. Because of the presence of

the factor L(-k cos 8) - 1 in (3.5) it is therefore sufficient to take
L‘(p) = L_(~k cos 8) =1, and then we have

i/ mk
é(r 6) ~( eikomix/br‘( ;;_9) sin 6. ver (3.6)
[+]

2% kor)

. Introducing the length & = U/w as before, the intensity-directivity law
replacing (2.20) is
U® ain® 6
In ———— , see (3.7)

8!

where the fluid loading parameter ¢ 1is defined by
2 Po"

Now/
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Now the quadrupole scattering problem for a compliant plate has
been examined by Crighton and Leppington (1970), with the conclusion that
I~ U®%eg 's5in®* 0 R™® for a three-dimensional point quadrupole distant R
from the plate edge. For a two-dimensional quadrupole, U® is reduced
to U® as noted earlier. Thus (3.7) reproduces the predictions of point
guadrupole scattering theory exactly, except in the dependence upon €.
The failure in this respect is not surprising, since a volume integration
of the factor R7® over all quadrupoles lying within a certain region of
the edge is required for the total intensity of an extended flow. Though
difficult to define precisely, in view of the complexity of certain func-
tlons arising in the scattering problem, the integration limits are certain-
ly dependent upon €, and it is this fact which causes the e-dependence
of (3.7) to differ from that of an isolated quadrupole.

By comparing (3.7) with (2.20), we conclude that the effect of
substantiel surface compliance is to reduce the radiated intensity by one
power of Mach number, and to cause a shift of the directional maximum of
the intensity from the upstream direction @ == to the broadside direc-
tion & ==n/2. A still more drastic change in the radiation properties
of the flow results from the application of a Kutta condition at the
trailing edge, and the manner in which this is accomplished is described
in the next section.

it. Jmposition of Kutta Conditions

In their discussion of the incompressible vortex sheet flow
leaving a rigid plate, Orszag and Crow (1970) distinguish between two
possible Kutta conditions which might appropriately be enforced, depend=-
ing upon circumstances in the unperturbed flow, and show how these may be
incorporated into the analysis. The condition which they consider moat
apposite to the present problem involving only one mean (zero-order)
velocity field is called a "rectifiied" Kutta condition, and requires the
vortex sheet at no time to have positive gradient as it leaves the trail-
ing edge of the plate. Tor suppose that the sheet could leave the plate
with positive gradient. Then the basic flow in region 2 would be
required to negotiate a turn round an arglie greater than =. In a real
fluid, any such attempt would result in the shedding of vorticity of such
a sign as to reduce the vortex sheet gradient at the trailing edge. Thia
is the farst step in establishing a farst order mean circulation change
across the plate, and it is repeated with cumulative effect in the corres-
ponding parts of all subsequent cycles of the system. In the other parts
of the cycle - i.e. when the sheet bends downwards into the mainstream,
there is no zero-order flow above the sheet able to convect any detached
vorticity away from the edge. Thus a continually increasing distribution
of vorticity of one sign is formed downstream of the trailing edge, until
a8 steady state is reached in which the sheet never leaves the plate upwards
into the stagnant fluid, and no more excess vorticity is shed.

The rectified Xutta condition is imposed by adding to the oscil-
latory displacement n(x)el®t determined in Section 2 a time-independent
parabolic displacement n(x,t) =~ a (2x)*/®. Corresponding potentials

satisfying V3¢(*)=0 anda (VvP-u"o%ax®)¢(®)= 0, together with all

the boundary conditions (2.2, 2.3 and 2.4) on the plate and on the vortex
sheet, are ¢(*)=0 and ¢*) = Ua {[x"+ (1-H‘)y'r])""-— x }4/%, the
latter being simply the slender-body version of potential flow past & para-

bolic cylinder. Suitable choice of a, in fact
a/
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a = —

U

24 {2(14-1)1:}1}1“a ,

yi9

ensures that the sheet always leaves the plate downwards into the main flow.

This step does not remove the apparently singular nature of the
derivatives of ¢(®) at the plate edge. 1In fact, as noted before, one can
show from (2.15) that n ~ x*/%, (%)< x*/% on y =0, x> O, but that
the velocity components in the stagnant fluid remain finite. More gener-
ally one can show (Orszag and Crow, (1970) that these values of =, ¢'®?
correspond exactly to the slender-body approximation to steady flow past a
certain parabola, the time dependence of the problem vanishing at distances
less than about k! from the edge. But that information allows us to dis-
regard the singula¥ities of ¢(9) as an irrelevancy which has been intro-
duced by the slender-body linearisation. The full potential for the flow
past a parabola has no singularity at the vertex, but linearisation trans-
fers a singularity from the focus to the vertex.

Further details are given by Orszag and Crow. The point of im-
portance here is that the rectified Kutta condition can be met by the super-
position of a time-independent flow field onto the results of Section 2,
and involves no change whatsoever to those results on the radiation from
the flow,.

The other possible Kutta condition, the "full" condition, requires
the sheet to leave the plate with gero gradient at all times. Thas condi-
tion clearly has more relevance to problems in which there is a zero-order
mean flow on both sides of the plate {indeed, Orszag and Crow (1970) reeard
the application of the full condition to the present problem as indefensible),
but even so0, cannot be expected to apply unless frequencies are low enocugh
to permit the necessary vorticity to be shed and to react back on the flow
within each cycle. Nonetheless, application of the full condition has such
dramatic consequences for the sound field that & brief outline of the analysis
is worthwhile even if it is felt that the full condition will not of'ten be
met in practice.

In the case of incompressible flow, Orszag and Crow (1970) show
how the full Kutta condition may be imposed by separating terms
+Q [(x®+y®)*/%- x]*/® exp(-iwt) from the potentials ¢(1), ¢(%),
(in addition to the Helmholtz modes of the doubly infinite vortex sheet)
and requiring the correction potentials ¢,y to account for the failure of
these terms to satisf'y conditions across the vortex sheet as well as for the
misbehaviour of the Helmholtz modes on the plate. The constant Q can be
found in terms of the amplitude A of the Helumholtz mode in such a way as
to ensure that n(x) = O(x*/®) as x-» O+, in accordance with the full
Kutta condition.

Consider first the potential in the stagnant fluid. The generali-
sation of the Orszag and Crow potential [(x%+ y9)*/?-x]*/® 40 a compressible
fluid must satisfy (v®+ k:) #{%)= 0, represent an outgoing wave field

everywhere at infinity, and reduce to [(x®+ y®)*/%-x]*/*® as k r- O

The/
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The appropriate potential is to be found from Lamb's (1907) work on
scattering by a parabolic cylinder.

Defining

G(v) = [ exp(2it?) dt,
v

the function
e
% = exp(ik x) s[(kor)m sin — } cee (4at)
2

satisfies the Helmholtz equation, has a variable part -(kor)"’ % gin 6/2
as kr -+ O, behaves like exp(ikox) on & = 0 and like

exp(ikor)
i 21(k_r)*/sin 0/2 Uegr = =2 © = 0) (b2

and thus satisfies all the required conditions.

For the potential in region 2 we have to satisfy [V® - (M 3/0x -
1k )®] ¢(*) =0 with a similar kind of function. A simple transforma-
tign, amounting to a Doppler shift of the wavenumber and a Prandtl-Glauert
stretching of the y-ccordinate, shows that if

e

g(2) - exp(ikox) Gl(kor)ua Bin-;j = exp(ilcox) V(x,y;ko)

then the corresponding function for region 2 is

¢(u) - exp( ikoxu)va’y !1_119 ; ko )o

1+ 1 - M8

Thus we define new correction functions ¢,¥,% by

_j_px-'yy ik x
¢t) = Ae " v qe ° v(x,y; ko) +¢
ikox
i k
1 - M°

e (ll-o})

the time factor exp(-iwt) being understood throughout. Conditions on
y=0, x< O remain unaltered by the introduotion of ths new functions, so
that, for & rigid plate, the equations (2.42) remain valid. Application

of/
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of the conditions (2.2) and (2.3) on the vortex sheet leads, af'ter Fourier
transformtion, to

Q(Zk 1I9G_
—iwz+(s) = ' (s,0) - ___L__E
+ (s + ko)""
EBELES
- - L ]
iw D Z+(B) = v! (s,0) + ki - Ud,
5 +
( 1+ M)
sse (L._'h_)
Uy
D, ¥, (s,0) - 2 -8 (s,0)
w
1Q6, iQG,
= +* ’
k
(s + k) (1+M)ks+ 2 )
1+ M
L i i/a

in which G = [ exp(2it?) dt = %( —) . The relations (2.10) remain
2

valid, and the Wiener-Hopf equation replacing (2.13) is found to be

ez, (s) = KG)P() s~ 4 N(s) - (15)
8 -p

in which K(s) is defined in (2.14), F (s) in (3.3) and the new
function N(s) is given by -

N(a) = DB K(s) Q(Zko)”a Go _ K(s) Q(Zko) e Go
K w ks /9 ( y ) (s + k )¥/*®
8 (s + ; ) 3 o
+ M
i1 K(s) QG, 1 X(s)Q6,
(s » ko) ) (1 + M) 8 + ko ) ) o (456)
( 1+ M

A solution can be obtained in the low Mach number limit using the
factorisation {2.17). By examining the form of Z+(s) as 8 <+ w,

Ims > O, one can deduce the form of % (x) es x - O+. The terms
0(s=t) and 0(s~®) in the asymptotic development of Z+(s) give con-

tributions to % (x) which are 0(1) and O(x) respectively, and these
make/



- 16 -

moke no contribution to the total deflexion m(x), being cancelled
exactly by terms in the expansion of de "X (cf. L4o3). Z*(s) also

contains a term O(s~3/®), corresponding to m(x) = 0(x*/?), and the
full Kutta condition requires that the coefficient of this term vanish.
Thus one determines Q as 24 (2u/=x ko) /3 | and then 7n(x) = 0(x%/%)

so that the vortex sheet leaves the plate with gero gradient. The value
of Q quoted above 1s less than that given by Orszag and Crow (1970) by
a factor 2~ %/? (allowing for slight differences of notation), but the
precise value is not particularly important.

With Q determined as above, the far-field form of ¢(r,8)
can be found as

1 i/ ik I"l'i'Kﬂi- i i/%
¢(r,6)~-( ) e ©° A(-—-) cosec 8/2 ,
'ukor k

o

to which, according to (4.3), should be added

Q exp(ik_r)
- ———2_" so0se06/2,
21(1,:910“'I

to obtain the total scattered potential in y >0 (except, of course,
near the vortex sheet © = 0),

2 /9 m 1/ ik r
¢ ~ = Al — e © cosecB/2
total xk Kk
o )

23’9 i/ ikoﬂj'ﬁi/a A
o - ( ) e (-—) cosec 6/2
xk.r M

H
s (4.7)
The radiated density fluoctuation is
r 1/8
p' ~ Po ( - ) M cosec 8/2 , see {1.8)
r
and the intensity-directivity law is
I ~ U®?cosec®6/2. ese (4.9)

Thus imposition of the full Kutta condition results in an increase
of the radiated intensity by & factor M™%, and a very substantial change
in the directivity pattern. The velocity exponent in (4.9) is the lowest
yet found in aerodynamic noise theory; even a two-dimensional monopole

gives only I~ U® (Ffowcs Williams, 1969). The reason for the very

high/
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high acoustic efficiency of the flow with full Kutts conditaon is to be
found simply in the form of the new term involving Q in (4.3) and the
correction function ¢ which it induces. These new terms are essen-
tially acoustic in nature, and their amplitude near the plate edge is at
least comparable with that of the essentially hydrodynamic small-scale
motion discussed in Section 2. Consequently, it is hardly surprising that
a motion coherent on the wavelength scale £ M~* should be more efficient
than the hydrodynamic motion on the much smaller scale ¢&.

We do not claim that a radiation efficiency as high as that
predicted by (409) is ever likely to be observed in practice. The princi-
pal reason for giving the results of applying the full Kutta condition is
that criticism has often been made of the scattering theories of Ffowcs
Williams and Hall (1970) and Crighton and Leppington (1970, 1971), in which
the velocity components are allowed to become infinite (though integrable)
at the plate edge. These singularities apparently form an integral part
of the theory (but see Crighton and Leppington, 1971) and it has been held
against the theories that a removal of edge singularities by the imposition
of & Kutta condition would very much reduce the scattered radiation.

The example worked out in detail here shows that precisely the opposite is
true. Application of a Kutta condition does not merely require a highly
localised chenge in the flow, but the introduction, for an incompressible
fluid, of a first-order change in the mean flow, or for a compressible
flow, of a first-order motion varying on the wavelength scale. It is only
to be expected that a large increase in the radiation should result from
the introduction of such a highly organised flow.

5. The Diffraction Problen

We next give a brief discussion of the diffraction problem for
the vortex sheet - rigid plate system. Suppose the incident field to take
the form

) = exp [-iko(x cos 8+ y sin Bo)] .

representing a monochromatic plane wave generated by a distant source in
the stagnant fluid. In order to apply the Wiener-Hopf method, it is con-
venient to split off explicitly from the potentials ¢{*? and ¢{®7 the
waves which are reflected from, and transmitted through, the vortex sheet.
(In fact this is necessary, since for complex k =k, + ik, these waves

would become exponentially large as X + + o« for fixed y, and the domains
of analyticity for the half-range Fourier transforms would not overlap to
provide the necessary strip of analyticity for the full-range transforns.)
Because of the amssumed linearity of the problem, we may neglect instabilities
of the vortex sheet, and later superpose the fields discussed in Sections 2
and 4 on the diffracted field to be examined here. Thus we now define

#l2/
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~ik (x cos ® + ys1n 6 -ik (x co8 8 - ysin 8
¢(1) - e o( o ¥ o)+ Re o( o y o)+¢

-1k x cos 0 +Wyy
6
2 = Te °© ° + ¥, ee (5.1)

~ik0x cos Bo
m = he + &,

where the subscript © in place of s on the functions Ds’ W Yg is
to imply their evaluation at s = _ko cos eo. The functions with coeffi-

cients R,T,h represent the reflected and transmitted waves and the vortex
sheet deflexion under the incident field as if the vortex sheet were
doubly infinite. Application of the boundary conditions (2.2) and (2.3)
for all x gives the solutions

(1 + Mcos 0,)" sin® - {{(1 + M cos e )* - cos® Bolif'

R =
(1+Udcose )®sine_ + [(1+Xcos 6 )" - cos®e }*/*®

. Zsineo(1+Mcoseo) ’
2 2 _ 2 /9
(1 + M cos 8, )" sime_+ f(1 + M cos eo) cos® 8 _ ]

2 _ angl 1/8
2 sin @ {(1 + M cos Bo) cos" 8 }

% 8 _ " iln
a, (1 +HMcose ) sine_+ (1 + Mcose ) - cos eol

XL (5.2)
which are real and finite for all & o provided M < 1.

For = - 60 < 8 <, the field ¢ must be such as o change

the coefficient R +to unity, representing the wave reflected from the rigid
plate, while in the shadow region below the plate, the field ¥ nmust anni-
hilate the transmitted wave. Apart from these requirements, we assert that
¢,¥ must represent outgoing diffracted fields at infinity (unstable modes
being excluded here), and this assures the existence of a strip

kg

< Ims +k,coseo
1+ M
for the Wiener-Hopf problem.

In place of (2.13) we now find the Wiener-Hopf functional
equation

-iw/



- 19 -

iweT
1wz (s) = K(s) F_(s) - s orr (5.3)
Dy(e - k cos® )
with solutions
iwre T K (s)
iw z+(B) = (1 - h.<
Do(s - k cos eo) K_._(ko cos eo)
iw, T K (s)
#(s,0) =- : * ,
¥, Dg (s - k  cos eo) K‘_(ko cos Bo)
e (5k)
iw, T D K (s)
\F(s,o) = 8 - + .

w (s -k cose8 ) Dy K,(k, cos @)

Fourier inversion and deformation of the path of integration onto
the path of steecpest descent splits the fields naturally into geometrical
optics fields of the obvious kinds plus cylindrical diffracted waves emana-
ting from the plate edge. For M << 1:' the distent fields are gsaentially
the same as in Sommerfeld's classical diffraction problem (Noble, 1958, p.57).
This follows since, provided s/ko =0(1) as M+ 0, the kernel K(s)

tends to the Sommerfeld kernel 2y, » and the far-fields are determined

solely by the matched acoustic wavenumber (i.e« by & = -k cos 8 for ¢,
for example). The limiting value of K(s) 18 not approached uniformly
in s, however, and the field behaviour near the plate edge is fundament-
ally different from that in the Sommerfeld case. In fact, if ¥ 1s small
but non-gero, it can be shown from (5.4) that

n(x) = o{x*/?),
¢(x) = o(ixI3'*), *++ (545)
¥(x) = o(ixi/#),

near Xx = 0. The velacity components in the atagnaent fluid thus remain
finite at the edge, in contrast with the case M = 0 in which they becoms
infinite like |x|~'/%. 1In the absence of any Kutta condition, however,
the velocity components below the sheet still have (integrable) singulari-
ties.

The "full® Kutta condition of Section 4 can be imposed if we super-
pose the solution of Section 2, consisting of a Helmholtz instability on a
doubly-infinite vortex sheet plus the correction due to the plate. Using
the notation of Section 2, it can be shown that if we choose

( w T K, {(p)
A = ¢ + ere (5‘.6)
Deyp. K, (k, cos e,)

then/
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then
n(x) = o(x**) ,
¢(x) = o( |x|®*), ree (547)
¥(x) = o(1x)%*), .

ensuring that the vortex sheet leaves the plate with zero gradient, and
that all velocity components remain finite near the plate edge. This super-
position doea not, of course, represent the only solution of the problem,
for there exist eigensolutions, which may or may not satisfy the full EKutta
condition, of the kinds discussed in Sections 2 and 4. However, the un-
stable mode with A determined in (5.6) may perhaps be legitimately regard-
ed as causally induced by the incident field, although it has no appreciable
effect on the distent sound field. For the only genuine acoustic part of
the unstable mode is that part induced by the presence of the plate and
given in (2.18). Using (5.6) it can be seen that the amplitude of this
scattered field is smaller than that of Sommerfeld's diffracted field by a
factor of order M. We conclude that the effect of the vortex sheet at
small Mach numbers is to smooth the behaviour near the plate edge at the
expense of exciting a non-radiating Helmholtsz instability, with negligible
change in the far-field radiation.

6. Discussion and Conclusions

This paper has examined the low Mach number radiation from a flow
coupled to an inhomogeneous solid surface. Very few systems of this kind
appear to be amenable to calculation, even within the confines of linear
inviacid hydrodynamics, and the example followed through here seems to be
the first involving a surface which is non-compact relative to the acoustie
wavelength.

Before mentioning the possible relevance of the detailed results
of this paper, particularly those of Section 2, we must acknowledge a number
of points on which the model flow studied must be criticised. In the first
place, as noted in Section 2, the notion of s spatially growing instability
has its difficulties in an elliptic problem. Linearisation is not valid
everywhere in space, and departures from linear behaviour downstream of
the trailing edge might, for elliptio governing equations, have a signifi-
cant effect everywhere, even in the region where linearisation ia apparent-
ly valid. Nonetheless, as Orszag and Crow (1970) remark, there is con-
siderable experimental confirmation of theories based on the idea of spatial
instability, so that the linear theory predictions may be adequate in the
regions where one might casually expect them to be. To that extent, the
predictions of Orseag and Crow regarding the influence of the plate on the
shape of the eigenfunctions of the vortex sheet - that such influence van-
ishes essentially for kH lxl > 1 - mpust then be correct. Here, however,
we are not merely concerned with the flow pattern for x| < k;; but
for the mich larger region IX| < ]{B‘ , for scattering theory leads us

to expect that appreciable conversion of eddy energy into propagating
sound will occur from the interaction of the plate edge with fluid elements
up to an acoustic wavelength from the edge. Within this distance, however,

the vortex sheet amplitude has grown by a factor exp(M~*), and the
linearised/
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linearised solution can have no possible relevance. This argument,
however, overstates the case against the model. 1In Section 2, the field
is split into that of a doubly-infinite vortex sheet plus a correction due
to the plate, the latter vanishing for kﬁ IEJ z‘1. Presumably the

effect of the plate is properly accounted for by such a split. The field

generated by flow at distances greater than k;; from the edge is the

same as that generated if no plate were present and must, if non-linear
terms could be ihcluded, give an intensity varying as U® (Lighthill, 1952).

The important results of Section 2, for a rigid plate, are the
low velocity exponent I~ U® for three dimensions, and the pronounced
forward directivity I~ sin®0/2. According to Section 3, these results
are not greatly changed by compliance of the plate. In the case of a limp
plate, the velocity index is increased to 6 and the directivity maximum
shif'ted from the extreme forward direction & =x +to the broadside direc-
tion 8 = x/2. These results are not dependent upon details of the flow
(Crighton 'and Leppington 1970, 1971), and also not particularly sensitive
to geometry, so that they represent features which should be posaessed by
the sound field resulting from the interaction of a cylindrical shear layer
with a jet engine tailpipe.

To demonatrate the importance of the surface scattered noise,
suppose that the flow downstream of the plate edge becomes turbulent at dis-
tances greater than k;; = &, with r.n.s. velocity level u, and that

the turbulent region consists of a large plane sheet of thickness & and
area 8. Then from Lighthili's (1952) solution

1|

L Po aa
P (f_,t) = [ui ud({’t' ;;—)dy

I a;lz_gt at?

one can show that the intensity radiated from the turbulent flow is
2y (6.1)
~ USS 'xl-' Ms(-) . ses 601
IQ Po ~ U

Here we have assumed the fluctuating part a‘fuiuj to be of order Uu,

and noted that the frequency associated with the quadrupole field is w/e,
rather than U/¢ the frequency of the shear layer instability (this is a
point repeatedly emphasied by Lighthill, 1954). To be consistent, we must
then also take the A of (2.18) to be of order u¢, so that the veloci-
ties induced by the instability become of order u at distances o(¢)
downstream from the edge. With the appropriate modification of (2.20) for
three dimensions, the ratio of quadrupole intensity to surface scattered

intensity is

M3 (uwli)4se?, vee (6.2)

Even with M =%, (WU) = % , extreme values, it is quite clear that the
area S must span at least 100 correlation areas ¢ in order for the quad-
rupocle contribution to approach that created by surface scattering.

Thus/
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Thus the interaction of shear layer instability with a large
surface has the following characteristics; (1) a frequency spectrum con-
centrated on the frequency U/¢, a value higher than that of free turbu-
lence by a factor U/u; (2) a velocity exponent for the intensity between
5 and 6; (3) an extremely pronounced forward directivity; (4) a total
radiated power at least comparsble with that of turbulence-generated noise
unless the turbulent volume is very large.

Attributes of precisely this kind go a long way toward explaining
certain discrepancies which exist between the measured noise field of current
turbofan and turbojet engines and predictions based on Lighthill's theory of
convected quadrupoles with surface effects ignored. The situation -~ the
so-called ™excess noise® problem - is not well documented in the open litera-
ture, but eppears to involve the following behaviour. For angles less than
#/2 from the exhaust flow direction, the correlation of experimental data
using the results of Lighth:11's theory is quite adequate over a wide variety
of engine types and operating conditions. In the forward directions, how-
ever, substantial deviations occur, for which as yet we have no satisfactory
correlation and prediction techniques. The frequency spectrum for forward
emission has two peaks, with comparable contributions to the total intemsity
from the spectral regions around each of the peaks. The contribution to
the intensity associated with the lower of the two frequencies continues to
scale according to Lighthill's theory. That associated with the higher
frequency does not, involving in particular a velocity exponent somewhere
between 4 and 6.

We make the tentative suggestion that the above behaviour can be
explained on the basis of the predictions of this paper. The two frequen-
cies are to be identified with u/¢, the frequency of eddy motion in a
convected reference frame, and U/¢, the frequency associated with the
most rapidly growing mode of shear layer instability. Sound at frequencies
around u/¢ is generated by eddies in the fully turbulent mixing region
downstream of the jet exit plane. That at frequencies around U/¢ is
generated by the interaction, with the engine tailpipe, of growing modes
on the annular shear layer immediately af't of the exit plane, and has a
very definite forward directivity. In the forward directions, the two
fields are of comparable magnitude, even for values of M approaching unity,
in view of the strong dependence of (6.2) upon the ratio (uw/U).

0f course, this may not be the only mechanism responsible, and a
more detailed assessment of the claim made here must rest upon results of
more refined experiment and theory. Obviously, a first step would be to
determine more precisely the values of the two peak frequencies observed in
practice, and to determine whether or not the "excess noise" directivity
agrees at all with the sin® 8/2 pattern predicted here. Under certain
circumstances, the geometry of the annular shear lgyer might alsc be expec-
ted to play a part capable of experimental detection. Since the problem
of the annular shear layer has 1ts own analytical interest, as well as more
direct correspondence with practice than the model used here, we defer con-
sideration of it to a subsequent paper.

The author gratefully ackmowledges the support provided by a con-
tract from the Minlatry of Technology, adminiastered by the National Gas
Turbine Establishment, Pyestock, Hampshire.
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Vortex sheet leaving a plate and undergoing a spatial
inatability. In the unperturbed state the fluid in
region 1 (asbove the plate) is stagnant, while that
in region 2 (below the plate) streams with uniform
velocity (U,0).
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Ditfraction Radiation
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Imperial Gollege, London

In their consideratiors relative to aerodynamic noise Crighton and
Leppington discuss the output of fixed acoustical sources with time-periodic
strength which are located near the edge of a semi-infinite plane; and find
the scattered wave amplitude to exceed that of the primary source in the far
field, the amplification being greater for quadrupoles than dipoles. If
localised sources with an invariable strength are in uniform rectilinear
motion at subsonic speed past the edge, there is no primary radiation and
only indirect or diffraction radiastion whose time-varying sources are con-
tinuously distributed over the plane. Such radiation is emitted when the
source is near to the impact (or minimum) distance from the edge, and the
total amount of energy radiated depends on the source strength and polari-
zation, the Mach number and impact distance; it is the variation with im-
pact distance d and Mach number M +that claims principal interest and
reflecta the specific nature of the radiation phenomenon.

The inhomogeneous linear wave eguation for density fluctuations,

3% aQ oF %7, .
—— c' vn) p(r,t) = — —i + —-—--:-L—J—-
-]
ot at  ax, Ax, ax'j

contains s trio of source terms, pertaining to t;;introduction of mass at
the rate Q(r,t), the application of a force (r,t) with components Fi
and the action of stresses with components Tij’ all per unit volume,

It is noteworthy that_first order partial derivatives of the scalar end
vector functions Q,F enter, whereas double differentiation of the tensor
T occurs. The total energy radiated, e, is conveniently found from the
power expended in maintaining the appropriate primary source in its state of
motion, and has the respective forms

m
1

]
Cc
source — [ Ps(r:t) Q(r,t) ar at
Po
-
€aipole = [V‘Ps(r:t)- F(r,t) dr dt

€ quadrupole = -[ v ¢ {r,t). Vo T(r,t) dr dt
where/



where the density and velocity potential of the secondary sources on the
plane are linked by
Po Bt;')s(r,'t)

(ryt) = -—
Ps c?® ot

and Pa is the 'unif'orm equilibrium density. When the source moves in a
plane which is transverae to the straight edge, it appears that

]
Q
€ source . ?}'AO(M)

€ dipole

and

€ quadrupole = ’

with a singular behaviour for each of the functions ?o,i.g in the
limit M- 1; specifically, in the case of a simple source of fixed

strength Qo ’
1 K2

¥ () =

32 (1_M3)Sll ’

independently of the angle of the trajectory, and for a dipole with moment
F in the plane of the trajectory,

7o cos? 8 sin®e
Fo(F?) = —

1
32x (1-1&&")”’+ z u® (11_—153 -1)]

where © denotes the angle between its axis and the direction of motion.

To illustrate the indicated style of calculation, consider a
quadrupole source moving, in the plane xg = 0, with velocity V along
the x3 - direction and passing at a distance 4 from the edge of a half-
plane occupying the regilon x3> 0, ~w< X3 < », X3 = 0,

Wiriting

T 6(31 + d) 6(13) 5(!3 - V‘t)

13 = Y,

the primary source function, expressed in multiple Fourier integral fashion,
takes the form
Po/



125 (xq-x])+i8e (xg -x} ) 4145 (x5-x} )-1w(t~t’ )

;e
Po(rst) = ]
(2x)4c ® w ¥
e cirziegy - -
: 5 (c)
a‘Ti
—Ld axy axh axy at' ay, dze dZs dw
axi ax'
1 [ -]
o e e 2
= (27)° o7 f [Qu 29+ 2Qug %1 %o + Qos 43 }
(x4 +) =
1z +d)+i i —_ -1t
] 1(x1 +§nxn+w(v )
dZ: dZe dw
w,*? w 9
2i+28 + (-') -(—)
v c
1 b w w w =
- mj {2Q13§1;+2Q93Ca ;*-Qaa(;) }
iZs (x4+d)+12;gxg+iw(-—— - t)
e v
dZ1 dZs do

asaa(2)-(5)

and complies with the requirement of causality if w has an infinitesimal
positive imaginary part. If the screen is limp and cannot support any
pressure or density fluctuations, the secondary source distribution there-
upon may be expressed in the product form f(xy,xg, t) &8(xs), Xx1> O
and the concomitant density function elsewhere 1s

L]

Ps/
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124Xy +1Zgxg +1%s x3 -iwt

1 a
() = - e — f(50%as0)
ey z?+z%+z%-(-—)
[+
aZy dZ%s dZs dw
o 1Z4x%x, +iz:xg+il (u)/c)’-—{,i -z'g 'I;' -iwt
in e
=7 4.8 f
(2r)%0® o, Jw/e) -2 - ¢8
£(%4s Za,w) 454 dZg do
with the transform
T -1gaXxy T iZaxg < it
f(;a,?;a:w) =j e dx, j € dxg [ € f(x1:xﬂrt) do
[+]

that is analytic in the lower half of the ¥4 - plane.

An explicit characterizetion of the latter function obtains from
the transform relation

(%1, Zasw) 2 w
- - {Qu Z% +2Qu0 Z1 %9 + QaZt +2Qu3 Lo —
w 3 v . Vv
1J(-)-;z-m
o] o wa eiz,_d

+ Qoadyg =~ + Q3s —
v ve 2% + 2% + ¥%

c &(Zar Zasw0) s D =(%):(§)'

that is consequent to the requirement

Polrst) +p (rst) = 0, x15> 0, -w<Xa<w, X3 =0

and involves a second unknown function g(%s, Za , @) which has an
analytic character in the upper half of the %4 - plane and is related to
the density on the domain x4 < 0, =~e < Xg< e, X= 0. By recasting
the transform relation in terms of components which are regular in the res-

pective halves of the Z,-plane, it follows that y
f



f((ﬂ-:;ﬂ ’m) .
w

(z24y3) .8 A 2 3 2 —_
=Que (La+yo ) +24Q.08g L2 +yo+ Uepla+21Q4s VJ¥B+% +2Q23 Lg — + Q33 -
] v v

v/ z8+y2 (;1 ~1fz3 + y‘o)

-9 P+ve w ®
< — -3 o+ 1 [gieyd — -.%i-&
c c?

Employing the representatipn

izt Xy 'l'iz. Xg *i ?‘;; xa-iwt
i ® e

() = = j = (%1, %ss 0) A% A%
fo w{?;’i-rzhz%-(-) }
ad o
aZy dw
the rate of energy radiation may be written as
ﬁ = - [V¢B. V. .'f dX1 dx‘ dxs
= - j { ( + + ) + k + +
d9X4 \ 90Xy 0Xg oxa dXg 0Xy dxg 0X3
29, aTys 9Tgs aT3s
+ ( + + ) ] dx,; dxga dxgy
X3 -5 & dxg dx3
3%¢ a%¢ a%¢ 2% ¢ 3% ¢
= f{Qu %+ 2Qag 2 4+ Qase 2 . 2Qs3 %+ Qe 2
oaxy 9x1dXg axd . 0X19X3 3XgdX 3
%
¢ ¢8 }
+ Qa3
dx¥

« 6(xs ¢+ @) 8(xg) 6(x3=Vt) dxy dxg dxs

=~ i/



i jﬂﬂ QuaZi+ 2Qua % Za+ Qoo L3+ 2Q13 L0 Z3+2Q 380 L3+ %3l ~iZ.d
e - )
L
(2x)'e, w [?:.2 +53+28 -K —) }
e

E3V-0)t oy viw) A% dZs aZs dw

end thus
i
(2x)*p v
) w w®
- G114 Z3+2Q10 24 %0 +Qan % +2Q43 %1 —+2Qna La — +Qaz—
v v Ve
j' i%d
= w[ch-z%«ry%}
o £(Zss Ga,w) 421 dZs dw
in
(Zx)’pov

w o®

w
~Qu1(Z%+y8) -2iQus Za J4 1} +y% +Qus 8 -21Qus ~JE5+y8 +2Qas Zg— + Qs —
> v v y®

- d
. e catyo f(--"J 2+y3 a?énw) dZe dw

when the £ 4 - integral is evaluated by closure of the contour in the lower
half of the plane. Substituting the explicit form of f(Z.,%s,w) and
having regard for the sign of the imaginary part of w, one finds



-2fz3 + v3 a —— -
Taw e . f w? -
Re —j dZg t [ o—-Z3+2 | Z3 +y§J
{7 greynee N et
- ® w? -9
. [L-Qu(ég*- y3 )+ Qaa 8%+ 2Qas Zs — + Qa3 —J
v v

- w
+4(43+Y3)LQ19 Za + Qi3 ;]

w

and after meking the change of variable Zg ==-17 ,

1

o

d
. =2 fv" J1-u3(1-13)
e

1~ 72

1

s 4 n
2(21;)ﬂpovscg /o w wi/ [1_Mg(1_7.9)]3/n

. [[Qas + Qag M¥ 7% - Qg0 (1-M(1 -77 ) ) +2M7Q,,)°

+ 4 [1-M® (1-T83] [Qis + Qua M7 ]? ? dr
J

r/2 cos?y ay

=

4{2x)? pcta’ l

[[Qaa + Qoo M¥ sin® y - Q45 (1-MPcodfy)]"®
[1-M%cos? §]®

+ 4LM® QR sin®y 4+ 4 [1~Mcos®Y]

o [Q%s+ Q%o M7 sin® ¢ ] }

In the case of a tongitudinal quadrupole, with Q33 alone different fron

zero,

9% 1
6lLm p c® a® (1-M®)5/*

1~ :n®
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Chapter 5

Scattering of Quadrupole Sources near the End
of a Rigid Semi-Infinite Circular Pipe

by
F. G. Leppington

Department of Mathematics,
Imperial College, London

1. Introduction

The Lighthill (1952) theory of aerodynamic noise shows that a
region of turbulence in an unbounded medium is acoustically equivalent to
a volume distribution of gquadrupole sources whose strength is essentially
proportional to the Reynolds stress tensor p‘ziud. On account of the

relative inefficiency of such multipoles, as producers of sound waves at
great distance from the source region, there is a tendency for the sound
field to be greatly magnified if any scattering surfaces are present.

Such effects have been discussed by Curle (1955), Ffowcs Williams
and Hall (1970), Crighton and Leppington (1971), and lead to modifications
of the intensity law IaU®, obtained by Lighthill for the far field in-
tensity I against typical turbulence velocity U, for an umnbounded flow.
Curle (1955) shows that the influence of a {small) rigid obstacle is equiva-
lent to a distribution of dipoles, whence Ia U®, The scund intensity is
found to be increased even more effectively for quadrupole sources that are
situated within about a wavelength of the sharp edge of a large obstacle,
to give IaU®: Ffowes Williams and Hall (1970) deal with the thin semi-
infinite half-plane, with generalisations provided by Crighton and
Leppington (1971).

The object of the present work is to examine the distant sound
field induced by a region of turbulence near a jet exit. For the sake of
simplicity, the model problem chosen to represent this situation is that of
a perfectly rigid semi-infinite circular pipe of radius a and negligible
thickmess. The problem is posed as one of diffraction theory with an in-
cident quadrupole distribution assumed to be of known strength, with harmonic
time dependence e~iwt +taken throughout.

If the wavelength A\ = 2xc¢/w = 2x/k is small compared with the
radius a of the pipe, then the arguments familiar in ray theory indicate
that the sound field is asymptotically equal to that of the semi-infinite
plate, for which the results are already known. Accordingly, attention is
directed to the 1imit ka << 1, in which the waves are much longer than the

radius,

n/



In formulating the problem, it is found comvenient to use a
reciprocity theorem to recast the problem into the simpler one of determin-
ing the field, near the pipe exit, induced by an appropriate plane wave
excitation. Since the problem 1s not axially symmetric for general incid-
ence, the potential function is written in the form of a Fourier series of
modes whose dependence on the agimuthal angle ¢ 1is trigonometrical. The
boundary value problem for each mode can be solved by Fourier transforma-~
tion along the direction of the pipe, using the Wiener-Hopf technique in
the mammer of Levine and Schwinger (1948). This procedure is briefly out-
lined in Section 2.

The formal solution is interpreted in Section 3 for the case of
sources within a wavelength of the end of the pipe. It is found that the
leading term is of order (ka), compared with the incident field of order
(ka)®. This is very similar to the results of Curle {1955) for small
finlite bodies; 1t is quite different from that of a semi~infinite plate
and that of a wavegulde formed by two parallel semi-infinite plates.
Furthermore, only the geroth (axially symmetric) and the first mode contri-
bute to this asymptotic estimate, the higher modes being of a higher order
in the small parameter ka. The detailed dependence of the field on
source position x c¢lose to the pipe is complicated, though not of particu-
lar importance, and can be given in integral form. The dependence on the
angular position (Bo, 110) of the observer at x , far from the source

reglon, is simple and is given explicitly.

A few relevant properties of the functions that occur in the
Wiener~Hopf analysis are described in Section 4.

2., Formulation and BExact Solution

A distribution of quadrupole sources of prescribed strength
Q, d(g) e~iwt per unit volume is situated in the vicinity of the open end of

a rigid semi-infinite circular pipe. Cylindrical polar co-ordinates
(p»¥,8) are chosen so that the pipe ocoupies the region p =a, z¢ 0;
spherical polars (r,0,¥) based on the same origin at the centre of the
exit plane are also used in the analysis that follows (Fig. 1)

(r0,%),(p,¥,2)

P ¥ Fig. 1.
The geometry of

8 the pipe, and the
- - - co-ordingte
0 z systems (rl 0,¥ ) »
( P ¥, z) .

In order to calculate the sound field at an observation point
x_, we may confine our attention in the first instance to the problem of
oalculating the potential G(x; _'{.o) e~ 1t jnayced at x, by a single mono-

pole source of unit strength at Xx. The corresponding potential
$(x,)e~19t aue to a quadrupole distribution of density Q, 5 e~iwt follows

imediately/
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immediately from the Green's function G, and is given by

b)) = [q, ix,) i, wer (21)

jax ox

a%¢
i

evalugted over the whole source region.

The 'far field' limit of the potential G, when the observation
point x, is at great distance from the source region, is conveniently

calculated by appealing to the reciprocal theorem, which states that
6(x; _150) = .G—(EO; _:5) » Thus the source and observation points may be inter-

changed, and in the limit |x0| +®  we have to £ind the potential at x

due to a source at so great a distance that the incident field takes the
form of a plane wave. Specifically, if the incident source potential is
given by

. - exp(ik|x - x |) e (2.2)

then as ‘_150 I-r o we have

G, ~ 4 exp(-ik n. x) , aes (2.3)

where n = Eo/l 50‘, and A = exp(:l.kl:_:ol)/!_gol ees (244)

is regarded as a fixed parameter.

In the spherical co-ordinates (r,0,¥) of Fig. 1, the incident
potential G; of (2.3) has the plane wave form

G, = 4 exp f-ikr(cos 8 cos 6  + sin ® 8in ® cos(#—#o))] ’

oo (2.5)

and we have to find the total potential G that satisfies

W )e o e (2.6
oG

with -_— = 0 when p = &, ¢ 0. e (2-7)
ap

ndition, that
We have to solve (2.6, 2.7) together with a radiation co , )
(¢ - Gi) behaves as an outgoing wave at large distance, and an edge condi

tion that G and 5|VG| remain finite for small values of the distance

&/



& from the edge (Fig. 2).

It is convenient to express the dependence on the agimuthal angle
¥ as a Fourier cosine series; thus

G(Pl*!z) = - G(o)(p z) + —~ Z ( )(P z) cos n{y - W ) rer (2.8)

2% x
E S

since the symmetry of the problem obviously implies that G is an even
function of (y - ¥ )

JThe semi-infinite extent of the geometry ensures that the problem
can be solved by means of Fourier transformation with respect to z and
with use of the Wiener-Hopf technique, and the formal solution obtained in
this manner by Levine and Schwinger (191;.8), Noble (1958), is described
briefly in the following.

A smal] positive imaginary part kg 1is assigned to the wave
number k = kg + ikg , and we finally let kg -+ O. The complex Fourier

transform G(n)(p,a) of the mode G(n)(p,z) and the half range transforms

G_Sn) are defined by the formulae

G(n)(p,a) = [G(n)(p,s) 22 g5 - Gﬁn)(p,a) + G-En)(p,a) y < (2.9)

where ot ) -
G_(_n) = [G(n)(p,z) e % ag, Gf_n) = [G(n)(p,z) e*% 4,

(2.10)

The form of the incident field, the boundary condition (2.7) and the radia-
tion condition impose constraints on the possible values of the complex
variable a« +to ensure convergence ¢of the integrals GED) and GEB) ’
Specifically, it is found that G( n) is defined and analytic for

ima > ~kg, while ( ) is analytic for ima < kg cos 8 0" The sub-

scripts + and - are used here and henceforth to denote functions that
are analytic in the respective regions ima > -kg and ima < kg cos 0 .

It follows that the full range transform G(n) = G(n) + G(n) is analytic
within the strip

-k < ima < ko cos & _ , see (2.11)

so that the inversion formula for G(n)(p,z) is given by

G(n)/
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9 w+ib
G(n)(p,n) = — G(n)(p,a) A da, eee (2.12)

2
X e +ib

where b lies between -kg and +kg cos 60.

The transform G(n)(p,a) is found from equations (2.6), (2.8)
and (2.9) to satisfy the equation

. 2 (™) ac(™)
+

: c (P Pent) 6™ a0, e (243)

dp dp

where y = {(a® - k?)*/® 43 such that y = =ik when a« = Q, with branch
cuts from 2k to infinity that do not cross the strip (2.11). The modi-
fied Bessel functions K (yp) and Ih(yp) form an independent pair of

solutions of (2.13), so that G‘"/(p,a) is the linear combination of thesse
functions that satisfies the radiation requirements, the boundary condition

(2.7) and ensures the regularity of (}(n)(p,z.) on the axis p = 0 and for
p=a 5>0, By the standard Wiener-Hopf procedure, this leads to the
solution

K'(va) L(vp) if p<a
I;](ya) Kn(yp) if p> a

G-(n)(p,a) = ya D_(a) eee (2:94)

a+0 0 840
@ 2 e o T e T ok as e o,
here D' /(a) [G_ (p )-:L-o ‘[ LG- {p z) Ja_o L P (2.15)

is the transform of the potential discontinuity.

The function DEn)(a) is to be determined from the Wiener-Hopf
equation

Ry T 1(ya) (n)( aGf_n) )+ (=1)° lnﬂzxkaineoJ;l(lm 31n8,) ’
y2%a In(ya)ifh()’a DXV (a) = 2p (a,a) + (- @ -k 0088
eer (2.46)

valid within the strip (2.14), where In is a Bessel function.

Defining the kermel

K™ (2) = -2K)(ya) I(ye) , ces (2017)

the solution of (2.16) rests on the decomposition of K, which is analytic
within the strip (2.14), as & product of 'plus' and 'minus' functions

KS_") /



K‘(.n) and Ksn) thaet are to be analytic and have no zero s 1in the respeo-
tive regions ima > kg and ima < kg,

l.e. k@) = £ ) £ ). eee (2.18)

In terms of these functions, described in Seotion 4, the standard
Wiener-Hopf procedure leads to the solution

gyt '
4x (-1)" 'sin o, Jn(ka sin eo) 1

(n) (g
p-e) a(1 + cos 60) Kﬁn)(k cos 00) (@ = k cos 00)('1 - k) K.(.n )(a)

eer (2019)

This formula for Dsn)(a), together with (2.14) and (2.12), com-
pletes the formal solution for the function G'"/(p,s).

3+  Solution for Sources near the Edge

The formal solution of Seotion 2 can be estimated in simpler forms
in the asymptotic limits of high wave number (ka >> 1) and low wave number
(ka <<1)s For high wave numbers the usual ray theary arguments predict
that the potential at points in the vicinity of the edge will behave as if
the scatterer were a flat semi-infinite plate, for which the results are
already kmown., Thus our attention is directed to the case of waves of
length large compared with radius, whence ka << 1.

It 18 inatructive firstly to examine the form of the potential G
at points very close to the lip of the pipe. For the incompressible nature
of the flow in this vicinity implies a solution of the form

G ~ AC(e, ¥ - ¥, ka) 8*/% sin A+ Dy - ¥,) v (3.1)

for k& << ka << 1, where §,%W are polar co-ordinates based on the edge
in a plane ¥ = constant (Fig. 2)

=

'

- —_—_— Fig. 2 Showing the
z co-ordinates (8;8) in
the plane § = constant.

Thus the nth Fourier component G(n) of G has the form

G(n) ~ C(n)(ﬁo; k,a) 6*/7 gin 1% + D(n)(eo;ka) ves (3.2)

where/
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where the scale funotion G(n) has the dimension (length)~ */? +o be
formed from the pair of parameters k and a. The value of the

constant D(n) = G(n)(0,0) is of little interest; it can be calculated
from the solution (2.12, 2.14), with p = 2z = 0, and is found to be of
order ka for the modes n =0 and n = 1, negligibly small for the other
modes,

The form of the result (3.1) is common to all rigid bodies with a
sharp edge; in particular, the single semi-infinite plate has no length
scale a associated with 1ts geometry so that the potential must assume the

form (k6)/®sin Lo, as is already established by Ffowcs Williams and
Hall (1970), Crighton and Leppington (1971).

To determine the form of the scale function C(n)(eo; k,a) in the

present case, we note that the discontinuity of potential, given according
to formda (3.2) as

G(n)(a + 0,8) - G(n)(a - 0,8) ~ Zc(n)(-s)”‘, 8< 0, o= (3.3)

has the Fourier transform D_(_n) (x) that is given by an Abelian theorem
(see Noble (1958)) as

o a+0
2@ = | [e‘“’cp.s)] % g
a—=0

~ jzc(“)(-z)"' e®% 3 as !al-».o.

ie.e. DEn)(a) ~ c(n)x*“(ia)"“‘ a8 | a|+w,dma> 0, <os (3.4)

with DSn)(a) given exactly by formula (2.19).

Now 1t is shown in Section 4 that
K_(_n)(‘l) ~ (iaa)-2/*® a.BI o l—» w, ima > O,

s0 that the function D_(_n)(a) of (2.19) is given asymptotically by

4x (-1)™gin 0, J;l(ka ain Oo)

— (1a) -2,
at/? (14 cos 6,) Efn)(k cos 8 )

nfn) ~ -

as |a|->-o.

and/
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and a comparison with formila (3.4) implies that

/9 (s n+1
) bx /2 (1) sin 8 J!(ka sin e,) - v (5.5)
a'’® (1 + cos Bo) KEnT(k cos 00)

This formula can be simplified in the long waye limit ka << 1, by using
the asymptotic estimates (4.16, 4.17) for K, (k cos eo) and by replacing

the Bessel function Jx'a by its smll argument approximation. Thus we get

¢lo) o - 21x*/%kat/® (1 - cos 8 ) - er (3.6)

4Lxt/2(-3/2)"(ka sin 8 )”
and c(“) ~ vy " ”‘: » nz 1, as ka-+ 0 . ser (3.7)
n n - 'a

We note that the geroth and first modes are of order ka, the
higher modes n > 2 being negligible for small ka. Retaining these terms
only, we see from {3.2) and (2.8) that €& is given by

eik|x0|
;
&(x; 50) Y ka'/®§*/% gin } of ———r L(‘l-eos 6°)+2 sin Bocos(t-qo)} ,
% |
=0

see (3.8)

for k’g.nl >> 1, k& << ka << 1, together with a term of the same order,
independent of (5,w) arising from the term D(n) of (3.2).

The far field estimate (3.8) is valid only for sources that are
very close to the end, with & << radius a, and it is important to deal

with the extended region that is close to the end on a wavelength scale, but
with &/a either large or small.

To calculate the nature of the field within a wavelength of the
end, we need a uniform estimate for the function (@ - k cos Bo) (x - k)

KEn)(a) appearing in (2.19), with |a | large compared with k, but with
aa arbitrary. It is clear that (a - k cos 00)(a -k)~a® for jal> k,

and the estimate

© -2 k' (x) I'(x))ax
log KEn)(a) i e nxh((i Ihj') = log %.(.n)(“) e (3.9)
x ) X" ¢ aa

is calculated in Section 4. The detailed form of {3.9) is not crucial, but
it is important to note that the uniform estimate K ~ is independent of
the wave number k. It follows immediately that the k-dependence of the

potentlal G(n) arises only through the multiplicative factor l.

n
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'4
{J;l(ka cos eo)/Kf-n)k cos 6% of (2.19), and is therefore preserved un-

altered from the region & << & described by formula (3.8) to the extended
region & << 1/k contained within a wavelength from the end. Thus (3.8)
can be generalised to give an estimate of the form

k| x, |
Hx;x) ~ ka F——[Fo(p/a,z)ﬁ—cos 8 )+ (p/a,2)sin 6 cos(¥y+¥,) ]

eee (5,10)

for k[_:_r_ol» 1, ki_:_:_l« 1. The functions F, and F, cos(f—fo) are

harmonic functions, independent of wavelength; their precise form is not
of particular importance, but they can readily be expressed exactly in terms v

A
of a Fourier integral that involves the function Kg_n) () of (3.9).

The corresponding result for a distributlion of quadrupoles of in-
cldent field

a® eiklg-xol
$;&,) =f qi.ia dx er (3411)

x, ax, Ig:_ - xol

is given by direct superposition as
eiklxol
¢(x_°) ~ ka T—l- {P0(1 - coseo) + P, smeo] ’
X
o

ces (3,12)

"%, (R .cosy -4))
where P = [ Q,, ——dx, P=fq — —— (P,coa(y -¥)) dx.
° f i axi axj : 1J axi ax._l . 0

It is seen therefore that the ratio of the far field potential ¢
against that of the incident potential ¢, is given by

|#/8 | = o((=)7). see (3013)

Formula (3.13) should be contrasted with the corresponding result
for sources within a distance ri from the edge of a semi-infinite plate,

for which
|88y | = o(Cery)=4%) s (3414)

Evidently/
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Evidently a sharp ended pipe is not so efficient as the half-plane for
enhancing the sound field of quadrupole sources. Indeed, the results for
the plpe are very closely analogous to those for scattering by a small
finite body.

4o Properties of the Wiener-Hopf Factorisation Functions

The kernel K{(a) of the Wiener-Hopf equation is defined as

k() (@) = -2K!(ya) I'(ya) , see (bof)

where K, I are modified Bessel functions and y = (a* - k)8, 1t
can be shown (Levine and Schwinger (1948), Jones {1955), Noble (1958)) that

K(n)(a) is analytic and has no geros within the strip
-kg < ima < ky , kg =imk, soe (4a2)

and 1%t is required to factorise K in the form
) = @6 ™, cor (4e3)

where Ks.n) and KEn) are analytic and have no geros in the respective

regions ima » -kg , ima < ky.

Following the usual procedure of expressing log K(z) = log K,
+ log K_ by the Cauchy formila, it is found that

21 PP 1gg ooy ((87-2) 2 a) (2~ )/ %a) |

log K,E“)(a) = —— at,
= 2ni t-a
-eo.; 1b
Fima < b< ky eoe (Lok)
+N+ib
with the integrals interpreted as principal values, 1lim j at.
N+ w
NF¥ib

(1) Asymptotic evaluation of K.(_n) (e} for large | al

Following the method due to Levine and Schwinger (1948), we take
b to be gero, with kg -+ O, whence

log/
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a  ¥iogni H (k- %)% ) 31 (k7 ~ £7) /%5 ) ]

1o K@) = - = | at
i J t® - o?
o 1y log!-mﬁ((t'-ka)"“a)lﬁ((t‘-k")1“ a)
ni [ t* - a® e
e (he5)

where Hn is the Hankel function of the first kind

o« o log {xi H!(x) J;l(x)!xdx

ani '{a (f--z.g-e) (k®a®-x?)t/®

o« 7 log {-2K!{x) I!(x)(k%?+x*)*/?}x ax
axi ([ x?

(k”-u--—n - a’) (k28 4 22) +/ 2

a
1 T log(ixa x)
- - f . sew ([“6)
Tltca/iaa.x +
= 0(@?*) + 0(a*) - £ log(daa) as| a]—+ w.
Thus K_(_n)(a)~ (iza) "% as e |+eo, dma<O. oo (47)

The estimate (4.7) holds as lal +» w, with |a]>> k and
|&] >> 1/a. More generally, a calculation of the potential field within
a wavelength from the end of the pipe requires a uniform agymptotic estimate
for |af >> k, ka<< 1, but with |aa| arbitrary.

The first integral of {4.5) is found again to be negligibly small,
while the remaining integral is given by

xa 7 log | -2K! (x) I'(x) }x ax ag o 1og!-2Kl'](x) Ir'l(x) }xdx

My ma -

) xi (k%4 22 )29 (x%- o%c® )

2
x
axi A (k'a°+x')"" (k“":a - g

for |a|>> k. Divide the range of integration at the point x =¢,
where & 1s & small number such that ks << € << ajaj. If x issless
then & it is much less than & |@| , so that the factor x"-~a®a

can be replaced by -afa®, and the fumctiom -2K} (x) Il'l(x) can be

replaced/
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replaced by its asymptotic form n/x?. For x > &, on the other hand,
we may replace the radioal (k®e® 4+ x%)*/% py x., It is found in this
way that

Jog KEn)(a) _ ina j 1og(-21(;1(x) In(x)) . o (1.8)
x x* + (daa)®

for |a|>>k, ka << 1, with ima < O.

It is important to note that this estimate for K_En)(a) is in-

dependent of*the wave number k. For [aa] >> 1, it is easy to verify
that the simpler result (4.7) is recovered from {(4.8).

(11) Asymptotic evaluation of the function K_f_n) (x cos eo)

We require an estimate for the function K_En)(k cos 60) when ka

is small. If the integral (4.4) is evaluated alung the real axis with Xk
real, then the limit a + k cos Bo, with im a > O, requlres the path of

integration to be indented below the pole t = k cos 00. This indentation
contributes xi times the residue at k cos 6 _, so that (4ok) leads to
the result

(n) . ka cos 00 (n)
log K/ (kcos 8 ) = % log {xi H! (ka sin 0 ) Jr'l(ka sin ao)j + ” v,
EX' R} (h'°9)

log {2 K;l(x) Ir'l(x) }x ax

858 sin'eo-l- x* ) (k%a®4+x® ) /2

where I(n) = f &
o

ka 't (x ' (x
. log !“iﬂn( ) Jn( )} x ax , ens (J....10)

o (k'a'sin‘ﬂo— ’,)(k’a’-x’ )1!9

ka
and f denotes & Cauchy principal value integral.
(-}

For small values of ka, we have

ﬂiH'(kaa:lnB)J'(ka;;_me)-.{“ if n=0
n (o] n o .
n/(-ika sin 8 )* if n> 1

ser (4o11)

To/
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To deal with the integral I(n), note that the functions
appearing in the logarithms have the small argument asymptotics

-2K} (x) i3} (x)

1+ 0(x® 1og x), =i H(')(x) J")(x) = 1+ 0(x® log x);
see (1‘_.12)

-2 K;l(x) Ir'l(x)

1

:—’ (1 + O(x® log x)) s ®i H;(I) JI;(X)

- - -:_n (1 + O(x"logx)) coe (4e13)

tor n> 1, |Letting ka-+ O in formula (4.10), we have for n = O,

I(°) ~ 1 log {-2 K:)(x) I;(x)-} E‘ as & -+ O, seo (Lotly)

% X

For n» 1, we may not simply replace ka by zero in the inte-
grands, on account of convergence difficulties at the origin; this diffi-
culty is readily overcome by inserting and subtracting suitably compensating
logarithmic functions, dictated by (4.13). Thus for n > 1,

)

+*
(k%a%in®8 +2)(k%2-x?) /2 | (ka?sido -x?)(iPa®-22) 4/

—
=

f’ log §~2K! ()T (x)x*]x ax K8 1og {1 B (x)3! (x)(x*) }x ax

log (x*) x dx log (~ix)? x ax

) ks
) j; (k‘a“sin’eo+x‘)(k’a—x')"” ) f (k"a'sir?eo-x’)(k‘a‘—::')”'.

Now as Xxa -+ O, the first two terms tend to constants; the
remaining integrals can be evaluated exactly to give

(n) ix 4
I = — B8ec 0 log(tan 20 ) + 0(1) as ka =+ O ses (4e15) .
ka

Finally then, (4.9) and (4.11) show that

K.io) (k cos eo) ~ 1 a8 ka-+ 0, sov (4416)
n
and log KE") (k cos 0 ) ~ ¥ log + log(tanie ), n3> 1,

(-ika sin ® )*®

ioeo/
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nif2

(n) !
i.e. K+ (k cos eo) ~ == = a3 ka-+ 0, nz 1.
ka 1 + cos 00

vee (4a17)

e Conclusion

The distant sound field induced by a quadrupole source distribu-
tion, within about a wavelength from the pipe exit, has the form

|¢/¢j;| = 0( (ka)'i) s for ka << 1. ene (5_‘1)

To interpret this within the aerodynamic noise context, we make the crude
identification k = U/&c for the wave number, in terms of a typical
turbulence velocity U and length scale £ associated with the turbulence,
with ¢ the wave speed. Thus the ratio of potentials is |¢/¢ il = 0(¢/Ma) ,

where M = U/c is a turbulence Mach number that is typically very small.
3ince the sound intensity is proportional to the square of the potential,
the 'U® law' of Lighthill is modified to give dependence I a U® that
is generally applicable to0 small finite bodies.

Although this represents a large increase in sound, compared with
that due to the incident field alone, it is less than that scattered by the
sharp edge of either a single semi-infinite plate or a parallel pair of such
plates. For these geometries it has been found that |¢/¢i| = 0((xa)~¥9%)

whence I aUS, It is perheps surprising that the scattering property
of the sharp ended pipe resembles that of a finite body rather than that of
the parallel half-planes.
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Chapter 6

Conclusions

The jet noise that we are now considering is inoreasingly important
at the lower jet velocities and is most significant at high éngles to the
Jet axis. It scales with a velocity index distinctly less than 8 and probably
less than 6. This noise seems to exist at frequencies that are character-
istically higher than those usual for jet noise., The evidence on which these
conclusions are based is largely heresay in the context of modern engines but
is fully consistent with the early measurements on the first generation of
commercial ,Jet engines (Mawardi and Dyer 1952). We are now inclined to re-
gard the noise radiated normal to the jet axis in the one direction unaffected
by Doppler frequency shifts and where non-Lighthillian behaviour is common
experience (Lighthill 1961), as a different noise in the category of the low
speed problem. We think it is not a Reynolds and/or Mach number effect that
modifies the free turbulence sound. This low speed behaviour at the high
angles is continued to supersonic Jjet speeds, so that the phenomenon is not
exclusively a low speed problem. The noise velocity index is, we think,
likely to prove a good diagnostic tool, since we do not believe that there
are likely. to be significant subtle Mach number, Reynolds number and geometric
changes that will so cloud the picture that it defies a proper modelling,.
The dependence of noise on the very low powers of velocity (from 2-6) that
are reported indicate to us, completely unambiguously, that the noise sources
must arise from a mechanism that is fundamentally more efficient in generating
sound than Lighthill's free quadrupole mechanism. This new and important
mechanism 25 probably still described py Lighthill's quadrupole acoustic
analogy, but boundary constraints must be imposed to attain high radiation
efficiency. These constraints must be either at or within the nozzle exit.
We have examined what increase in the radiation can result from an interaction
of aerodynamic sources with boundary constraints of the type met in a jet
engine exhaust system. The problem falls naturally into two categories
according to whether the radiated wavelength is large or small on the nozzie
scale. Consider first the long wave problem.

1. The long wave problem

Acoustic frequencies are identical to source frequencies. Aero-
dynamic sources have frequencies set on a Strouhal scale U/Z, U and &
being the characteristic velocity and length scale of the source flow. The
acoustic wavelength, A, radiated by this flow is A =&(MS)~* where M
and 8 are the Mach and Strouhal numbers respectively. The long wavelength
condition is then precisely defined by the inequality

A D
-> 1 or — MS << 1, D being the jet dlameter. In this limlt the

D ¢

containment of the sources deep within the pipe will increase thelir ability
to generate sound. However that sound cammot propagate in one attenpt
through the nozzle. It is mostly reflected upstream, If it is redeflec-
ted downstream then in many attempts, as it were, the sound will eventually
escape but only at the period determined by the time required for sound to
travel from the nozgle upstream to a reflector and back again to the nozgle,
iseo the sound will exist at harmonics of the organ pipe frequency. Away

from/



from these pipe resonances the containment of aerodynamic sources deep

inside the pipe cannot increase their ability to rsdiate sound to the pipe
exterior. There is only one qualification to this. The nozzle contrac-
tion area ratio is assumed to be smaller than about 20. At very high
nozsle contraction ratios the velocity index of aerodynamic sound generated
deep inside the jel pipe will be reduced by 2. Turbulence and unsieady
blade forces will therefore radiate sound in proportion to U® and U4 res-
pectively. In this limit that has, as far as we can see, no immediate
practical interest serodynamic sources in the vicinity of the nozzle exit
plane radistes sound more effectively. Also, even for small noszle contrac—
tion ratios, guadrupole sound generated at the nozzle exit plane will scale
on the sixth power of velocity and dipole sound on the fourth power.

2. The short wave problem MS D/ ¢ >> 1

This limit is the one of immediate practical concern because jet
diameters are now so0 large that the annoying sounds have relatively short
wavelengths. We conclude in this limit again that the containment of gero-
dynamic sources in the jet pipe cannot fundamentally increase their radiating
ability, Sound will propagate through the nozzle with great esse, the only
real influence being on the directionality of the sound. The search for
high efficiency sources must therefore concentrate on mechanisms of high
efficiency in their own right and not rely on some subtle interaction between
boundary effects that are more than a wavelength from the scurce. We iden-
tify two mechanisms of high acoustic efficiency and which are likely source
mechanisms for the low speed high frequency problem.

2a. Helmholtz resonator sound

Within an engine there are resonant chambers or cavities that con-
stitute resonators of the Helmholtz type. When these cavitlies are driven
by a turbulence field, or by turbulent combustion at frequencies above the
regonance, then the scattered sound increases in proportion to the fourth
power of velocity. There will also be resonance frequency sound incressing
in proportion to the cube of velocity but the resonant band-width is likely
to be very large and the resonant sound non-discrete. The frequency of this
sound will be determined by the frequencies of turbulence in the environment
of the resonator opening. This mechanism could easily be examined experi-
mentally. A combustion chamber could be tested in isolation fto discover
firat its acoustic characteristics and secondly its sound scattering ability.
The turbulence could be generated by a cold turbulent air jet exhausting into
the interior of the chamber. Within an engine the pressure fluctuation
within the combustion chamber would correlate with the radiated sound if this
mechanism is dominant.

2b. REdge scattered sound

High frequency scund generated within a wavelength of the nozzle
periphery is a possible source mechanism of great importance. The scattered
field intensity increases with a velocity index equal to or less than 5.

The radianted frequencies are higher than those in conventional jet noise by

a factor U/u', U being the mean jet velocity and u' the root mean square
turbulence level in the vicinity of the edge. The edge scattered field
radiates preferentially away from the Jet axis. The edge can convert into

sound, by a diffraction process, the local hydrodynamic motion of a slowly
evolving/
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evolving eddy such as, for example, a torroidal vortex that is convected
with the stream. The energy scattered from a single eddy during low speed
4,6
pUTL

convective motion past an edge increases in proportion to P

C= d.;’
being the fluid density, U the mean stream velocity, & the characteristic
eddy scale and d the nearest distance to which the eddy approaches the
edge. In a continuous turbulent flow eddies will arrive at a frequency

)}

— to be scattered with the above efficiency so that the rate at which energy
& 65

is scattered, or the acoustic power level, is proportional to pU§ .

c9d3

This re-emphasises the conclusion reached by Ffowcs Williams and Hall (1970)
in a formal solution of Lighthill's equation. We have examined also the
role played by the shear layer evelving from a nozzle lip, and whether a
Rutta constraint should be imposed on the motion, and what effects such a
constraint would have on the sound field. This is the problem treated in
great detail in Chapter 3. Our main conclusions are that radietion of shear
layer instabilities can be affected by the scattering edge and that the effect
is more pronocunced when some Kutta constraint is active. We conclude that
the edge region, and the instabilities of the early shear layer, are likely
to be of substantisl importance to the lower speed jet noise problem at high
frequencies. Experimentelly this aspect could be checked in several ways.
The edge geometry could be changed. The bounding surfaces could be lagged to
make them appear compliant. The shear layer mean velocity profile. could be
controlled by edge suction, or blowing, or vortex generators or swirl produc-
ers, to modify the instability modes that are evidently scattered with high
efficiency.

Finglly, there are several aspects of the problem that remain un-
resolved end where further theoretical work should be encouraged. These
concern the influence of shear layer curvature and the basic interaction of
the cylindrical shear layer with its nozzle. The question of how to limit
the exponential growth of instabilities is alsco only plausibly dealt with at
present and the whole issue of determining detalls of the internal engine
acoustics in the presence of mean flow is wide open. What we have done here
is to point out that these internal characteristics can be the controlling
features of the low speed noise problem. Bxperimentally the field is also
in its infanoy. The experiments so far reported abound with the confusion
that 15 inevitable while the likely physical processes remin unidentified.
We would hope that these processes have become clearer as a result of this
preliminary theoretical survey and that this report will epable the experi-
nmenter to make more rapid progress in the clear isolation and elimination of
those excess nolse sources that seem to be dominating the jet noise of the

newer engines.

L3
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