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SUMMARY

The existence and uniqueness of the solutions obtained from
the streamline curvature method of calculating flow through turbomachines
are examined for several operating points of Rolls-Royce compressor.

It 1s shown that under certain conditions the truncation errors in the
numerical soclution can become large and hence give rise to the violation
of the uniqueness conditions. The computer programme may then give wrong
answers to the physical problem. The condaitions for existence and
uniqueness may be violated when the meridional velocities are small
(e.g., near stall) or when there are regions of choked flow. Flow for an
operating point in the stall region is computed by suitasble modifications
to minimize the truncation errors and hence to obtain a unique solution.
This is compared with the results of the actuator disc theory and experiment
reported in Ref. 8. Also the effect of variation of losses on the
calculation 1s examined together with the eff'ect of a correction term due
to a dissipative body force, which should be included in the momentum
eguation, when losses are introduced.

* Replaces A.R.C,32 727
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Notation

velocity of sound
absolute velocity

specific heat at constant pressure

equation (11)
equation (12)
radial component of the dissipative body force

equation (11)

enthalpy

equation (11)

incidence

relative stagnation enthalpy
blockage coefficient

meridional direction
specified mass flow rate

Mach number

number of estimates for the streamline pattern
pressure

entropy functian

radius

radius of curvature of meridional projection
of a streanmline

gas constant
entropy
tenperature

T, kT,
blade speed at the mean radius ( _______)
2

velocity relative to the rotor
blade angle
Wb
flow angle tan? ( --')
c
m
90° - 8

ratio of specific heats

ratio of the body force term to the other terms
on the right hand side of equation (1)
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Sr streamline shift
g relaxation factor
p density
c
¢ tant —=
Qx
w rotational speed of the rotor
7 total pressure loss coefficient
Subscripts
h hub
i upstream reference station
m meridional direction
R relative
t tip
b4 axial direction
€ carcunferential direction
0 stagnation condition - also value at radius Ty
1 inlet of the blade row
2 outlet of the blade row
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Introduction

During recent years the numerical methods of streamline curvature1
and matrix throughflowz, both using digital computers, have been widely used
for the calculation of throughflow in turbomachinery. The two methods are
based on the same mathematical models but daf'fer in their numerical techniques.
The general procedure, common to both methods, is to start with an initial
approximation of the strearline positions and then by using equations of
motion, energy and continuity calculate more accurate positions. It is found
that this process overcorrects the initial errors and that the change in such
parameters as streamline positaon or radius of curvature must be damped by a
factor less than 1 to obtain convergence.

In general the above procedures are idealized and cannot always be
realized in practice. Choking and negative velocities (flow reversalsg may
occur in the process of completing the calculation. If these conditions occur
for an intermediate streamline pattern and are not present in the final solution,
then the basic techniques may be modified to deal with thenm. However, if

the fanal solution involves choked or reversed flows (reversed flows occur mainly
when a compressor is operated in the surge region), then the techniques can not be
used without substantial modifications. In this case the only way the system

of equations can be satisfied is to allow for negative meridional velocities

to occur, a condition not allowed for in either of the methods at present.

Mathematically when choking or zero meridional veloccities occur, the
conditions for the existence and uniqueness of the solution of the governing
system of differential-integral equations is violated. Moreover, since these
equations are solved numerically, it is the behaviour of the finite difference
equations (replacing the original differential-integral equations in the computer
programme) which is of interest. Numerical errors may give rise to viclation
of the existence and uniqueness conditions and if solutions exist the programme
may give wrong answers for the physical problem. For the throughflow calcu-
lations this condition may occur at small values of the meridional velocity
i1.e. near stall when large losses are present.

One object of the present investigation was to study the flow in this
region in order to determine the limits of applicability of the throughflow
methods. It was therefore essential to investigate the conditions for the
existence and uniqueness of the finite difference equations used in the programme.
Since flow in this region is highly irreversible, 1t was necessary to include
high losses in the caloulation. It has been shown by Horlock? that when losses
are included in the computation a dissipative body force should bpe included in
the momentum equation. This gives rase to a 'body force tern' in the differ-
ent1al equation for the meridional throughflow velocity. This term is usually
neglected if the losses are small. Another object of the present work was to
study the effect of inclusion of this term on the accuracy of the streamline
curvature calculation when losses are high.

Analysis

The flow field is calculated by using the laws of conservation of
mass and energy and Newton's second law of motion.

Momentum/



Momentum equation

0
For axasymmetric flow - = 0 ) s the momentum equations
a0
and the equation of state may be used to give the radial variation of the
meridional x.reloci‘t:y‘l as

ac?® _ sin ¢ A0 cos ¢ cosec? B 1 aQ
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where Q i3 a function of the entropy y~1
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and § = (90 - 5) with g the flow angle downstream of the blade row,
measured along a streamline
W
B = tan'i ( "e_ )
Cm

Behind & stationary blade row the angle S represents the absolute
flow angle with the angular velocity w = O. For a rotating blade row
(w finite) A is the flow angle relative to the blade.

The quantity I is defined as

I = ho—er

)
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in a duet region,

sin ¢ acm
C dm
m
r sin'% 3¢ sing W, 3
(1+u9°+ ) + tan ¢ — (—u‘—(rtanﬁhzwnen simb)
r cos ¢ r ar c r ° am =
- - 0
UER S
se= (2b)

in a bladed region, where the tangential component of the blade force is finite.
Rote that by a duct region it is meant that rC0 is constant along a streamline

and by a bladed region it is meant that Ne = Cm tan # where £ 1is a specified
blade angle, giving tangential component of the blade force.

Equation (1) is derived by introducing changes in entropy into the
equations of motion for inviscid adiabatic flow. As pointed out by Horlock;
the manipulation of the loss problem in this manner 1s inconsistent with the
assumption of Iinviscid adiabatic flow unless dissipative body forces are intro-
duced in the momentum equations. Horlock obtains an expression for the radial
component of the dissipative body force as

C.Tp oQ _
F_ = = —fe— — 5in®F sin ¢
r
Q om

Introducing this component of the dissipative force into the radial component
of the equation of motion, Horlock arrives at a modif'ied equation for Cm,

2F
with the correction term —— added to the right hand side of equation (1).

P

Cne object of the present investigation was to find the effect of this correction
term on the accuracy of the calculation when the losses are large.

Continuity equation

The mass flow rate must be equal to the specified value ﬁt.

Theref'ore
t
m, = j 2rr p Cm cos ¢ dr vee (3)

™

This integral equation gives the constant of integration of
equation (1).
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Additional equations

These equations relate the density p, the tangential velocity

C and the Mach numbers M and Ma to C .
m m

e)

The enthalpy rise across a blade row can be found from the steady
flow energy equation and from the equation relating change of angular momentum
to the moment of tangential forces (including viscous forces) about the axis
of rotation. This leads to

&h (ro Ca),,' (r w ce)1 cee (L)
where

Ca

C, cot B -+- (5)

Note that this equation does not depend on the dissipative body force and
for incompressible flow remains the same with or without this force.
Assuming g perfect gas,

AT = —2 eue (6)

Thus starting with known conditions at a given axial station (station 1)
and for specafied values of Cm at the next axial station (station 2),

values of T = at station 2 can be obtained from equations (&), (5) and (6)
(applied along each streamline between station (1) and (2)).

From the definition of stagnation temperature

Cn

T o= T, - —
2C

P

L) o

and the Mach numbers Mm and %3 can be evaluat=ad. In order to obtain

so that

the density at station (2), first the value of the entropy function Qg
1s obtained from the specafied losses. It is assumed that the following
total pressure loss coefficient 1s available:

where O1R and O2R denote respectively the inlet and outlet stagnation
condations relative to the blade row. Ideally the loss data should account
for losses due to skin friction on blade surfaces, tip clearance, secondary
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flow and shocks. If the radaal shift of the streamlines is small, then
® can be estimated from two-dimensional cascede data.

If the effect of the radial movement of streamlines is i1gnored,
then TO'lR = TOZR and the change of entropy along a streamline is given by

Sg — 81

1

P

T P
C_ log (_Og _Rlog(_o_z_li)
P e 7 e

01 O1R

I

Posp = P
P

01R
The change in the entropy function () can be found from the
def'inition
Qa
85 - 54 = ~C_ log (—)
P Qs

Hence y=1
Qs Poyp = P
—_— [1_5 (M)] <ee (8)
Qs Forr

and in terms of absolute and relative total temperatures and absclute Mach
number at inlet to the blade row, we have

—_ ¥-=1
Qa 1 Y
— = j1-B J1- e <= (9)
Qi T y -1
(5, ) (=)
Toq 2 -

and the density can be found from

. Qe ¥ Ty
L [(_) Sl ~++ (10)

[N Q2 T,

Numerical solution

The flow through a turbomachine of' given geomeiry can be analysed
by using equations (1) and (3) and the auxiliary equations (2) and (4) to (10).
Equation (1) must be solved by the method of successive approximations since
it is necessary to assume a set of streamlines that satisfy both equations
(1) and (3). These two equations form a system of non-linear simultaneous
dafferential-integral equations and can not be solved explicitly. The
numerical solution outlined by Novak?! is used here. Some details of the
present solution will now be given since the actual numerical technique used

for/



for integration of equation (1) has to be decided and the method used for
calculating slope and curvature of the meridional streamlines can differ.
Also the condations for the exastence and uniqueness of the numerical solu-
tion have to be investigated.

Equation (1) (ancluding Horlock's correction term) is of the form

acm i G(r,Cm) -
;r— = EL _c— - H(r,C) cm_j = £(r,C)) ees (11)
m
where . -
_ sin ¢ oC cos ¢ cosec” B 1 9Q
H(I‘,Cm) = 2 sm’ﬁ l:— —_— + - __)
C om r. 2 Q or
d cot?® g cot g8
+ 5 =—cot?Z « + 2w :I
or r C
i}
and
-1 Ig w?r? 1 2Q CT agQ -
G(r,C ) = 2sw?p| - — + - — & — sin ¢
qQ or 2 Q ar Q@ om

Bquataon {11) 1s solved with an initial condation

A

Cm(ro) = Cm
o

The conditions for the existence and unigueness of solutions of equation (11)
are well known*. Braefly if f 1s continuous in some region of (z,C )

plane, containing the point (ro,cm ) then equation (11) has at least

0
of
one solution. If moreover the partial derivataive —— exasts and is
aC
m

continuous in that region then the equation has precisely one sclution.

The behaviour of f depends on the manner in which the numerical
solution 1s set up. The present solutaon was based on the “off design
alternative®™ i.e., the equation 1s solved with the following anput data.

(i) Enthalpy distribution at inlet to the blade row.

(113 Losses for each streamline (specified ®).

(ill) Fluad leaving angles relative to the blade row for
each streamline.

Losses and leaving angles are derived from cascade data and the enthalpy dis-
trabutaon 1s specified at the first axial station and subsequently found from
equation (4).
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The complete method of solution is summarized below.

(1) Some initial guess is made of the streamline pattern in the
meridional plane such that a certain percentage of total mass flow will paas
through each stream tube. This enables the slope and curvature to be com-
puted at each meridional station,

Initially the flow is assumed to be one-dimensional and the annulus
height is divided into a suitable number of annuli of equal areas (to pass
equal mass flows).

The most critical part of the streamline-curvature calculation is
the estimation of the curvature of the streamlines. A study was made of the
curve-fitting methods used for this purpose. In Ref. 5 a reliable technique
was proposed and compared with other methods. In brief the proposed technique
is based on the spline curve-fitting method and is referred to as the “double
spline fit*. Instead of fitting one spline to the data points and differ-
entiating it once for slope and once more for curvature, a second spline is
fitted to the slopes obtained from the first spline and this is differentiated
for curvatures. This "double spline fit" was found to give satisfactory
results when the ratio of the wave length to the point spacing of the primary
harmonics constituting the curve were greater than 5. However when the calcu-
lation statioms are between blades this ratio is smaller than 5 and even the
"double spline fit"™ may not be suffaciently accurate. Wilkinson® shows that
finite difference techniques using polynomials to find the curvature give
better results for the curvature than the spline fits, provided the ratio of
wave length to point spacing is large (> 10) but these methods are alsc in-
accurate for the present computations.

(2) Some initial guess is made of the value of the meridional velocity
Cm at radius r, s for the axial station at which the calculation is being
o
done,

(3) From this assumption of C_ +the local speed of sound is computed

(equations (5) and (7)). »
sin ¢ acm
(4) The term —— , needed to find G(r,cm) is found from
G dm
n
either equation (2a) or (2b).
cos ¢ cosec® @ 1 aQ F _ cot® £
(5) The terms , -—-—-), 3 —cot?g, »
T 2 Q Jr ar r
m
2w cot E
—————  needed to find H(r,Cm) are obtained from the specified gas
c
n

leaving angles £, slope and curvature of streamlines, and the estimated Cm.

(6)/
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aq & IQ 09
(6) The quantities — , —— , — are obtained from results of
am ar ar

the previous iteration. (Initially these are set equal to zero). All the
derivatives in the present programme are obtained by fitting splines to the
functions and differentiating the splines.

(7) Steps (1) to (6) enable the quantities G(r,C_ ) and H(r,C )
to be evaluated. s a

(8) Tne differential equataon (11) is integrated by the Runga-Kutta
nethod and the value of Cm at the next radial station is found. This

procedure would fail i1f the conditions for the existence and uniqueness are
violated for any radial stev. For a duct region (stations between blade
rows) af . A0 and M #1 then the functions f and

of
—— are both continuous provided the specified angles E and loss dis-
aC

n

trabution Q d¢ not give rise to singularities. In a bladed region the
conditions become C_ £ O and M__. £ 1. These results are obtained by
. m rel
noting that
(i) af Cm =0 then f(r,Cm) is not continuous because G(r,Cm)
1s divided by Cm. Also the errors in the numerical integration procedure
become large if Cm 1s small.

(2i) af Cm 1s finite then only the behaviour of H(r,Cm)
(equation (11)) needs to be investigated since G(r,Cm) 1s normally

continuous. The only term an G(r,Cm) which can most likely become singu-

sin¢ oC
lar 1s —=  and the singularity ozcurs when the local meridional
C am
m

Mach numbers become unity.

Therefore provided numerical errors are szall, for finite meridional
velocaties (Cm)’ and Mach numbers #1, a unigue solution exists for Cm

at each radial location. However for transonic flows the condations for
existence and uniqueness are violated and the numerical solution outlined here

nay fail.

(9) If a unique meridional velocity profile (C_~ versus r ) exasts

then the density profile can be obtained by using equations (%) %o (10).

(10) The nass flow rate across the amwulus is found from equation (3)
taking into account the effect of annulus wall boundary layers in the form of
a blockage factor whaich may vary through ‘he machine. If the computed mass
flow rate does not agree with the specified mass flow rate within a suitable

accuracy/



accuracy range then C_ is adjusted and the steps (1) to (10) are

o}

Tepeated. If the process by means of which Cm 15 adJusted is convergent
o

then g value of Cm can be found to give a mass flow rate which agrees

0
with the specified value within any accuracy range.

The required value of Cm should satisfy the following

(o]
equation
PG ) = m-m(c ) = O cee (12)
o] o
where ht is the true mass flow rate and
- ,r‘t
m(Cmo) = j 2nr Cm p cos ¢ dr
“h

b g F(Cm ) is well behaved, 1.e., 1t changes monotonically as shown in
o

Fig. 1, then the method of False Position4 can be used to find the next

approximation to C_ .

m
o}

o/
F((:mol
/;“ F(b)
/7
/7
0 Q. c% b c
m
F{a) ©
required root
A
FIG.I

In this method, the next approximation to the root of equation (12) is
given by
af(b) - bf(a)

£(b) -~ f(a)

where ¢ is the point where the chord AB intersects the axis. The
procedure can be repeated using values at B end C to obtain ¢' and so on.

Now/
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Now provided the conditions for the exaistence and uniqueness of

aC

solution for Cm are satisfied the value of -—— at any rgdial position
or

is unique and the family of meridional velocity profiles (Cm-v r) obtained

(at a given axial station) for different values of C, cannot intersect.

0
Considering this fact Marsh7 has shown that the mass flow rate, obtained from
the basic differential-integral equations (1) and (3) increases monotonically
with Cm « This will also be true for the finite difference equations used

o
for the numerical solution provided numeracasl errors are small so that the
behaviour of the two systems is the same. The numerical errors will be small

if C everywhere along the radius remains sufficiently large, for the Runga-
Kutta procedure tc remain accurate. A difficulty arises when for a value of
Cm , the meridional velocity at a radius becomes nearly zero. The programme

(e}
is arranged to discontinue the calculation of the meridional velocity profile
with this Cm and calculate a new profile with Co increased by a small

o o

increment. This procedure overcomes the difficulty provided the final resulis
do not include reverse flows.

(11) When the overall continuity is satisfied a new streamline pattern is
derived as follows:

The local mass flow function 2%rK p C cos ¢ is plotted against

r and the area under the curve is divided into radial increments such that
each stream tube will contain the percentage of mass flow chosen in 1.
To do this a spline is fitted to the points of 2nrK p G cos ¢ versus r

(Fig. 2a)

mass_flow function oner Cp cos ¢ dr
2nrKpCp, cos ¢

radius ry A radius \ Ft
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The spline is then integrated and the values of the integral are
plotted versus radius as shown in Fig. (2b). The ordinate of the curve at
ry is then divided into the number of stream tubes specafied in the first
approximation. The new positions of the streamlines are then obtained by
a suitable method of inverse interpolation.

Experience has shown that the computation process outlined above
overcorrects the initial errors and the change in the streamline positions

81IQ
and the parameters which depend on the streamline positions (such as —— ,
ar
a9qQ
— etc.), must be damped by a factor less than 1-0 to obtain convergence.
om

Recommended damping factors are based almost entirely on experience and may
range from O*5 to 0-025. TUsually for any new case the damping factor is
found by trial and error so that a number of calculations with different
values must be done. Even when convergence has been obtained there is the
possibility that a slightly different damping factor would have given the 6
answer in fewer interactions. TFor a simple two-dimensional flow Wilkinson
derives explicit expressions for the optimum damping factor as a function of
grid aspect ratio, Mach number and the differentiastion methed used for finding
slope and curvature of the meridional streamlines. A similar analysis to
give the damping factor for the present problem (flow in axial compressors)
would be very complex and is therefore not attempted. In the present com-
puter programme the relaxation is applied to

(i) Streamline shaft

or = I‘n_1 - I‘n
r = I‘n_1 -|.L1 ér
where 6r = streamline shift
roq= previous streanmline position
r_ = new streamline position (unweighted)

r = new streamline position (weighted)

p. = relaxation factor

a1  9Q 9Q
(11) quentities —— , — an@ — whach depend on the streamline
ar ar om

location. For example:

0 1IQ 0IQ 0IQ

- (1 -pa)(-a—;%_1+ ua -a_r/l

Again suffixes (n-1) and n denote any two consecutive approximations.
In the present programme pi = 02 and pg = 015,

Results
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Results and Discussion

The objects of the investigation were:-

(a) effect of anclusion of losses on the streamline curvature
calculation

(b) 1limits of applicability of the through—flow calculations
(Matrix through-flow - streamline curvature) for axial
COmpressors

(¢) effect of Horlock's correction term on the accuracy of
streamline curvature calculations

Test data for a Rolls Royce axial flow compressor was available
and this machine was chosen for the present investigation. Axial velocities
had been measured for this machine and compared with the actuator disc theory
(Ref. 8): a comparison between the latter and the streamline curvature was
therefore also possible.

Data was provided for several possible compressor builds but the
arrangement chosen for the present calculations consisted of three rows of
blades; a set of stationary inlet guide vanes, a rotating row and a
stationary row. The hub-tip ratio is constant {0+4) through the compressor
and the ratio of blade height to blade axaal spacing is 2-4. The tip diameter
is 14 in. and the tip speed is of the order of 370 ft/sec or 283 ft/sec
depending on the gear ratio of the drive gear box.

In the through-flow calculations it is usual to relate the losses
and angles to <he last (n-1) iteration using a plot of loss and angle against

i, the blade row incidence, entering the curves at in_1 = ﬁn—1 - o, wWhere

B is the entry gas angle and « the blade angle. A relaxation factor may
be applied to the losses as above.

However in the present calculation the main emphasis was on the
stability of the flow calculation und on the effect of the dissipative force.
It was therefore decided to accept the angle and loss dastributions (except
loss distributicrs II) determined from Horlock's actuator disc calculations ,
and not te change these during the successive iterations described here.
Essentially therefore we have investigated the flow through three rows of
blading which provide prescribed unchanging distributions of loss and outlet

angle.

Fig. (3) 21lustrates the position of the calculating planes, the
gas leaving angles and the loss distributions used in the calculations.
The program was run for three flow coefficients (Cx /AU = 0-67, 0:585, 0 417)

end the results will be discussed in tummn.

(1)/



(1) i _ 067 (Figs. by 5)

This flow coefficient is well within the operat range of the
compressor (away from the stall region). Figs. (4) and (5) compare axial
velocity profiles downstream of’ rotor and stator, from experiment, actuator
disc theory and streamline curvature calculation with end without losses.
The agreement between various calculations and experiment is reasonsble

Cx
(note the large scale for — ).
Cx,
i

The losses are small for this flow coefficient and little difference
is made in the velocity profiles calculated from the streamline-curvature
method with and without losses. Two loss distributions have been tried:
the distribution with higher losses near the tip of the rotor (Fig. 3)
produces a dip in the axial velocity profile (Fig. 4), as might be expected.
Since the velocity distribution must satisfy the continuity equation, the
axial velocity is increased near the hub {the flow can be considered incom-
pressible, meximum Mach No. < 0,15). The axial velocity profile downstream
of the stator is dependent on the axial velocity profile downstream of the
rotor and the stator loss distribution. The comparatively higher losses
near the root of the stator (Fig. 3) push the flow towards the tip of the
stator: thus the dip in the axial velocity profile downstream of the rotor
is not apparent downstream of the stator.

For the streamline curvature calculation no difficulties were
experienced with convergence, negligible shift being noted in the streamline
patterns in less than 20 ecycles ?iach cycle using a new streamline pattern),
with or without losses. Also the effect of Horlock's correction term was
negligible (see Appendix 1).

Cx,
(i1) —= = 0585 (Figs. 6, 7)
U

o

Again comparatively higher losses near the tip of the rotor (Fig. 3)
decrease the axial velocity there: axial velocity near the hub is then
increased to satisfy the continuity equation. The rotor losses are small
and therefore cause little modification in the axial velocity profile down-
stream of the rotor. The effect of comparatively high losses near the tip
of the stator (Fig. 3) can be seen on Fig. 7 where the axial velocities near
the tip are appreciably reduced and mass flow near the hub is increased.

Again no diffaculties were experienced with the convergence of the streamline
curvature calculation and the effect of Horlock's correction term was negligible.

(iii)/
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(iii) —= = 0-413  (Pigs. 9-17)

This operating point was within the stall region of the compressor
characteristics. It was chosen to study the accuracy of the streamline
curvature calculation when the meridional through-flow velocities may become

small for a given streamline pattern. The truncation error in the
Runga Kutta procedure, used to integrate equation (11), is a function of f,
of of
— and — . The actual expression is too complicated to be of much
ar aC
o

practical use, but for small Cm, these values may become large and hence

the error may become large. Referring to Fag. 8, it can be seen that the
numerical solution cannot be used for calculating Cm below the value €
where the numerical errors become unacceptable. g

approximate
profile

C
m true
0 ’_\th_/ E 0ICY D/ ~ profile EIF
K A D r'l«’g/ r L
r (a) Fi % (b)
h FIG.8

To overcome thas diffaiculty the programme can be modified in either
of two ways. If for the given streamline patiern the velocity profile to
give the correct mass flow rate 1s above lane  AB, then the programme can
be arranged to discontinue the computation if Cm falls below AB and

increase Cm until this condation is satisfied. However, if this
]

procedure gives too large a value for mass flow rate then the velocity

profile must cross AB. In thas case values of Cm below AB are

replaced by a small positive value so that the resulting meradional velocaty
profile, to satisfy the mass flow, would appear as in Fag. (8b). This is
of course inaccurate in regions CD and EF where the true velocities may
be even negative but the numerical method can not be used to predict the

true velocities an this regaion.

Three/
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Three calculations were performed for this flow coefficient,
one without losses and two with different rotor loss distributions, to
study the effect of variation of losses (when the losses are high).

Loss distribution 1 (Figs. 9-11)

The programme was first run without incorporating the above
modifications to minimize truncation errors for small through~flow velocities.
This computation was stopped for the 7th streamline patitern because multiple
values of Cm were foundé to give the specified mass flow rate, downstream

o
of the stator, where some through-flow velocities were small {Figs. 11 and 14a).
Theref'ore, due to growth of numerical errors, the uniqueness conditions for
the solution had been violated. Figs. 11a and 11b illustrate that the com-
puted mass flow rate is not monotonically increasing with Cm and numerical

o

errors have considerably modified the behaviour predicted from consideration
of the basic differential-integral equations (1) and (3).

The programme was modif'ied by stopping the computation of Cm by

c
the Runga-Kutta procedure, when Cm was small - < 0+ 05 ) and
Cxi
Cm
replacing the remaining values of C, by a small value —_ = 0O ) .
Cx.
1

It can be seen from Figs, 11a and 11b that the behaviour is considerably
improved but there are still small oscillations in the graphs. These are
attributed to errors in the numerical integration of egquations (1) and (3).
Apart from the slight inaccuracies due to the oscillations, the uniqueness
condition is now satisfied and the final results (20th streamline pattern)
are conpared with the results of the actuator disc theory and experinent
reported in Ref. 8. In general the agreement between theory and experiment
Seems reasonable. Since this operating point is in the stall region of the
compressor the losses are not accurately known, and gquantitatave agreement
between theory and experiment is not expected. This is true even when the
effect of annulus wall boundary layers are taken into account.

Finglly the effect of Horlock's correction term on the accuracy
of the calculation was found to be negligible (the dafference between results
with and without this term was negligible)}. Conditions for which this term
may be neglected are examined in Appendix 1.

Loss distribution II (Figs. 12-14)

Again the programme was first run without the necessary modafica-
tion to reduce truncation errors in the Runga-Kutta procedure. Multarple
values of C were found downstream of stator, for the 6th streamline

0
pattera, giving the specified mass flow rate (Fig. 14a). The uniqueness con-
dition was therefore violated due to the growth of the truncation errors.
The modified programme {described above)} is seen (Figs. 1Lz, 14b) to gave
unique values for Cm , and the final results obtained from this programme
o

are/
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are given in PFigs. 12-14. Loss distribution II gives higher losses near

the tip of the rotor as compared with loss distribution I, but gives the

same loss distribution downstream of the stator. Comparison of Figs. 10

and 13 shows that the axial velocity near the tip of the rotor is reduced

for loss distribution II as compared with the values for loss distribution I.
The same trend is obtained downstream of the stator (compare Figs. 11 and 14).

Finally Figs. 14a and 14c demonstrate that Horlock's correction
term does not appreciably affect the accuracy of this computation,

No losses (Figs. 15-17)

Results of the tests for uniqueness are given in Figs. 17a to 17d.
Again the modified programme gives a unique solution. However the oscilla-
tions in the graphs of m versus C, are not completely eliminated when

o

the programme is modified. These oscillgtions indicate the existence of
appreciable numerical errors in the region where they are large. The curves
are well behaved in the region near the specified mass flow rate so that for
the present operating point a unique solution can be obtained with reasonable
accuracy. The final results (20th streamline pattern) can be compared with
the results for flow with losses to study the effect of losses on the calcu-
lation. Axial velocity profiles downstream of the guide vanes (Fags. 9, 12,
15) are very similar. For both cases the guide vanes were assumed to intro-
duce zero losses and the changes are due to the change in the slope and
curvature of streamlines. The axial velocity profile downstream of the rotor
for flow without losses (Fig. 16) is more uniform as compared with flow with
losses (Figs. 10, 13) but the differences are not large. However flow Jown-
stream of the stator is changed considerably due to losses. The axial
velocity downstream of the stator with no losses (Fig. 17) is small near the
hub; the velocity for flow with losses (Figs. 11 and 14) is small near the
tip. Losses can therefare modifly the velocity profiles to a large extent and
hence have large effects on the convergence and uniqueness of the solution.

Conclusions
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Conclusions

The conditions for uniqueness of the solutions obtained from the
streamline-curvature method of calculating flow through turbomachines may
be viclated when the meridional through-flow velocity becomes small
(e.g- near stall), or when there are regions of choked flow. For a Rolls
Royce compressor, flow in the stall region is computed by suitable modifica-
tions of the method to minimize the truncation errors and hence to obtain a
unique solution. There is agreement between this solution and the results
of the actuator disc theory and experiment reported in Ref. 8.

The effect of the losses on the computation is significant when
losses are large, but for the axisl machine investigated here the effect of
the correction term, arising from the inclusion of a dissipative force in the
momentum equation, is negligible.
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APPEND IX 1

Effect of the dissipative body force on the agcuracy

of the sireamline curv

ature calculation

The dissipative body force gives rise to the term

2F_ 2C T 3Q )
— = - —P— — in®*j sin g
P Q Jdm

on the right hand side of equation (1).
with the other terms on the right hand

If this tem is negligible compared
side

., 4 9OQI o 1 23Q
(i.e. 2 sin® § ( 1 . ( - —) ) ) then the body force will
Q or 2 Q or

not effect the accuracy of the calculation.

The ratio of the terms is

C T a9
- 22— — sing
Q om
6§ =
31Q o, aQ
+ —
ar 2 ( ar )
9Q

For the present calculations the term

rotor and downstream of the stator;

the magnitude of &

— is only finite downstream of the

dn
can be readily

estimated at either station by noting that for the Rolls Royce compressor

CPT = b >> w®r?
and
Q = 1
Therefore, downstream of the stator
oQ
— sin ¢
5 = Jm
SR
ar h_. or

The/
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The derivatives can be obtained from Figs. A1, A2 and A3 and
values of &, calculated from these derivatives, are given in Table 1.

Tsble 1
r 8Q |1 ah  aQ aQ
—_— ¢ —_ —_— =L | —e — 5
T, ar h0 or 0X om
05 -2 0 *039 0 0
0.6 ~2+9 0 +035 0 0
07 ~3e2 0 <039 0 0
0+8 ~3.2 | -.0216 o -.0164 --0425
L 03 ~2+5 | =043 0 -+ 076 - 077

It can be seen that & 1is negligible. However if' there are
regions where the denominator can become small and if ¢ can become
large (e.g. in centrifugal machines) then the effect of the dissipative
body force can become appreciable.
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