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SUIllMARY 

The existence and uniqueness of the solutions obtained from 
the stre&nlme curvature method of calculating flow through turbomachines' 
are examined for several operazmg points of Rolls-Royce compressor. 
It 1s shown that under certain conditions the truncation errors m the 
numerical solution can become large and hence give rise to the violation 
of the uniqueness conditions. The computer programme may then give wrong 
answers to the physical problem. The condztzons for existence and 
unxqueness may be vlolated when the merl-llonal velocities are small 
(e.g., near stall) or when there are regions of choked flow. Flow for an 
operating point m the stall region is computed by suitable modlficatlons 
to minimize the truncation errors and hence to obtain a unique solutxon. 
This is oompared with the results of the actuator disc theory and experxment 
reported i2 Ref. 8. Also the effect of variation of losses on the 
calculation IS examined together 171th the effect of a correction term due 
to a dissipative body force, which should be included in the momentum 
equation, when losses are introduced. 

* Replaces A.a.C.32 727 
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velocity of sound 
absolute velocity 
specific heat at constant pressure 

equation (11) 

equation (12) 

radial component cf the dissipative body force 

equation (11) 

enthalpy 
equation (II) 
incidence 

relative stagnation enthslpy 
blockage coefficient 

meridional direction 

specified mass flew rate 

Machnumber 
number of estimates for the streamline pattern 

pI-eSSW.3 
entropy function 
radius 
radius of curvature a? meridicnd projection 

of a streamline 
gas constant 

entropy 
temperature 
blade speed at the mean radius 

velocity relative to the rotor 

blade angle 

flow angle ted 3 
t ) cm 

9o" -B 

ratio of specific heats 
ratio of the bcdy force term to the other terms 

on the right hand side of equation (1) 
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6 r streamline shift 

P relaxation factor 

P density 

0 rotational speed of the rotor 
Ei total pressure loss coefficient 

Subscripts 

h hub 

i upstream reference station 
m meridional direction 
R relative 
t tip 
x axul direction 

0 clrcuderential direction 
0 stagnation condition - also value at radius 

1 inlet of the blade row 
2 outlet of the blade row 

52 
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Introduction 

During recent years the numerical methods of streamline curvature' 
ad matrix throughflOV?, both using digitsl computers, have been widely used 
for the calculation of throughflow in turbomachinery. The two methods are 
based on the same mathematical models but ddfer in their numerical techniques. 
The general procedure, common to both methods, is to start with an initial 
approximation of the streamline positions and then by using equations of 
motion, energy and continuity calculate more accurate positions. It is found 
that this process overcorrects the initial errors and that the change in such 
p-eters as streamline position or radius of curvature must be damped by a 
factor less than 1 to obtain convergence. 

In general the above procedures are ideaLsed and cannot alwa s be 
realised in practice. Choking and negative velocities (flow reversals 7 may 
occur in the process a? completing the cslculat~on. If these conditions occur 
for an intermetite streamline pattern and are not present in the flnel solution, 
then the basic techniques may be modified to deal mth them. However, if 
the foal solution involves choked or reversed flows (reversed flows occur mainly 
when a compressor is operated in the surge region), then the techmques can not be 
used without substantial modifications. In ths case the only way the system 
of equations can be satisfied is to allow for negative nerdional velocities 
to occur, a condition not allowed for m either of the methods at present. 

Mathematically when choking or zero mentional velocities occur, the 
conditions for the existence and unzqueness of the solution of the governing 
system of differential-integral equations is violated. Moreover, since these 
equations are solved numerically, it is the behaviour of the finite ddference 
equations (replacing the original differential-integral equations in the computer 
programme) which is of interest. Numerical errors may give rise to violation 
of the existence an& uniqueness conditions and if solutions exist the programme 
msy give wrong answers for the physxal problem. For the throughflow cdcu- 
lations this conditzon may occur at small values of the merldlonal velocity 
1.e. near stall when large losses ape present. 

One object of the present investigation was to study the flow in this 
region in order to determine the 1imd.s of applxabdi.ty of the throughflow 
methods. It was therefore essential to investigate the conditions for the 
existence and uniqueness of the finite difference equations used in the programme. 
Since flow in this region is highly rrreversible, It was necessary to include 
high losses in the calculation. It has been shown by Horlock3 that when losses 
are included in the computation a disslpatlve body force should be included III 
the momentum equation. This gives rise to a 'body force term' in the differ- 
entlal equation for the meridxonal throughflow velocity. This term is usually 
neglected if the losses are small. Another obJect of the present work was to 
study the effect of inclusion of this term on the accuracy of the streamline 
curvature calculation when losses are hxgh. 

Analysis 

The flow field is calculated by using the laws of conservation of 
mass and energy and Newton's second law of motion. 
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Momentum equation 
a 

For amsymmetric flow - = 0 , the momentum equations 
ae 

and the equation of state may be used to give the radial variation of the 
merdxond velocity' as 

acp 
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where Q is a function of the entropy 

- s/c 
Qze 

and 3 = (90 -j?) with ,Q the flow angle downstream of the blade row, 
measured along a streamline 

Behind a stationary blade row the angle p represents the absolute 
flow angle with the angular velocity w = 0. For a rotating blade row 
(O finite) p is the flow angle relative to the blade. 

The quantity I is defined as 

and r Sirp$b a+ 

sin$ ac 
l+Meg + + tJn$ - 

P ar 
-2 = - 

rm cos $h 
s-s (2a) 

cm am 1 -MB m 
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in a duct region, 

in a bladed region, where the tangential component of the blade force is finite. 
Note that by a duct region it is meant that rCe is constant along a streamline 
and by a bladed regicn it is meant that NO = Cm tanfi where @ is a specified 
blade angle, giving tangential component of the blade force. 

Equation (I) is derived by introducing changes in entropy into the 
equations of motion for inviscid adiabatic flow. As pointed cut by Horloc d 
the manipulation of the loss problem in this manner 1s inconsistent with the 
assumption of inviscid adiabatic flow unless dissipative body forces are intro- 
duced in the momentum equations. Horlock obtains an expression for the radial 
component of the dissipative body force as 

c Tp aa 
Fr = -p -ssirp~sin$ 

0 am 

Introducing this component of the dissipative force into the radial component 
of the equation of motion, Horlock arrives at a modified equatxon for Cm, 

2F 
with the correction term 2 added to the right hand side of equation (1). 

P 

One object of the present investigation was to find the effect of this correction 
term on the accuracy of the calculation when the losses are large. 

Continuity equation 

Therefore 
The mass flew rate must be equal to the specified value mt. 

r. t . “t = 2xr p cm cos $ ar 

rh 

This integral equation gives the constant of integration of 
equation (I). 

Additional/ 
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Additional equatxns 

% ' 
These equations relate the density p, the tangential velocity 

and the Mach numbers M and m 4l to cm. 

The enthalpy rise across a blade row can be found from the steady 
flow energy equation and from the equation relating change of angular momentum 
to the moment of tangential forces (including viscous forces) about the axis 
of rotation. This leads to 

Ah0 = (r w c,lp- (r w Ce) I --- (4) 

where 

% = cm cot a --* (5) 

Note that this equation does not depend on the dxsipatlve body force and 
for incompressible flow remains the same with or without this force. 
Assuming a perfect gas, 

Thus starting with bow-n conditions at a given axial statlon (station 1) 
and for specified values of Cm at the next axial station (statlon 2), 

values of To at statlon 2 can be obtained from equations (4), (5) and (6) 
(applied along each streamline between station (I) and (2)). 

From the definltlon of stagnation temperature 

T = To - - 
2c 

P 
so that 

1 
y-1 

I- - 
t 

ce* + c,' 4 
a = a 0 

a,’ ,I 
s-s (7) 

2 

and the Mach numbers Mm and s can be evaluated. In order to obtain 

the density at station (2), first the value of the entropy function Qp 
1s obtained from the specified losses. It is assumed that the following 
total pressure loss coeffxient IS available: 

ij = 'OIR - '02R 

'01X - '1 

where OIR and 02R denote respectively the inlet and outlet stagnation 
conditions relatxve to the blade row. Ideally the loss data should account 
for losses due to skin frxtlon on blade surfaces, tip clearance, secOndSy 

flow/ 
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flow and shocks. If the radrral shift of the streamlines is small, then 
G can be estimated from two-dimensional cascade data. 

If the effect of the radial movement of streamlines is Ignored, 
then TO,,, = TOZB and the change of entropy along a streamline is given by 

'OIR - '1 = 

'OIR 

The change in the entropy funotlon (Q) can be found from the 
definition 

QP 
Sp - Si = -Cp log - t ) Qi 

Hence 

QP 'OIR - '1 -= 
Ql 'OIR )I 

and in terms of absolute and relative total temperatures and absolute Mach 
number at inlet to the blade row, we have 

as 
-= I -0 
Qi 

[ ( 

y-1 - 
I Y 

'i~,i 

'-- (9) 
Y -1 

l+- MiP 
2 

and the density can be found from 

Numerical solution 

The flow through a turbomachine of given geometry can be analysed 
by using equations (I) and (3) and the auxiliary equations (2) and (4) to (10). 
Equation (1) must be solved by the method of successive approrA.mations since 
it is necessary to assume a set of streamlines that satisfy both equations 
(1) and (3). These two equations form a system of non-linear simultaneous 
bfferentlal-mtegral equations and can not be solved explxitly. The 
numerical solution outlined by Novak' is used here. Some details of the 
present solution will now be given sx~ce the actual numerical technique used 

for/ 
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for integration of equation (1) has to be decided and the method used for 
streamlines can differ. calculating slope and curvature of the meridional 

Also the conditions for the existence and unzqueness oi' the numerical solu- 
tion have to be investigated. 

Equation (1) (mcluding Horlock's correctzon term) is of the form 

8C 
m= 4 

- GbJ,) 

ar L cm 
*a’ (11) 

where 

H(r,C,) = 2 sinDp 
sin$ ac cos $ 

--A!+-+ 
cm am I- m 

and 
a 

+& 
cot’ 3 cot 3 

- cot’3 + + 20 - 
ar r 5u 1 

7 
G(r,C,) = 2 sic* ,t? 

w*ra 1 aQ CTaQ 
---+ 2 -sin$ 

2 Q ar Q am J 

Equation (11) IS solved with an lnltlal condition 
/ 

Cmbo) = cm 
0 

The conditionskfor the existence and uniqueness of solutions of equation (II) 
are well known . Briefly if f 1s continuous m some regxon of (r,C,) 
plane, containing the point (ro,Cm ) then equation (11) has at least 

0 af 
one solution. If moreover the partial derlvatlve - exxts and is 

ac m 
continuous III that region then the equation has precisely one solution. 

The behaviour of f depends on the manner in whch the numerwal 
so1ut1on 1s set up. The ?xsent solution was based on the "off design 
alternative" i.e., the equation 1s solved with the following input data. 

(i JZnthslpy distribution at inlet to the blade row. 
(= Losses for each streardllne (specified ii)). 

(ill) Flud leaving angles relative to the blade row for 
each streamline. 

Losses and leaving angles are derived from cascade data and the enthalpy dis- 
tributlon 1s specified at the first axial station and subsequently found from 
equation (4). 

The/ 



- 10 - 

The complete method of solution is s unnarieed below. 

(I) Some initial guess is made of the streamline pattern in the 
meridional pMe such that a certain percentage of total mass flow will pass 
through each stream tube. This enables the slope and curvature to be com- 
puted at each meridional station. 

Initially the flow is assumed to be one-dimensional and the annulus 
height is divided into a suitable number of annuli of equal areas (to pass 
equal mass flows). 

The most critical part of the streamline-curvature calculation is 
the estimation of the curvature of the streamlines. A study was made of the 
curve-fitting methods used for this purpose. In Ref. 5 a reliable technique 
was proposed and compared with other methods. In brief the proposed technique 
is based on the spline curve-fitting method and is referred to as the "double 
spline fit*. Instead of fitting one spline to the data points and Wfer- 
entiating it once for slope and once more for curvature, a second spline is 
fitted to the slopes obtained from the first spline and this is differsntiated 
for curvatures. This "double spline fit" was found to give satisfactory 
results when the ratio of the wave length to the point spacing a? the primary 
harmonics constituting the curve were greater than 5. However when the calou- 
lation stations are between blades this ratio is smaller than 5 and even the 
"double spline fit" may not be suffxciently accurate. willrinson6 shows that 
finite difference techniques using p01yn0mi.d.s to find the ourvature give 
better results for the curvature than the 
wave length to point spacing is large (> 

s line fits, provided the ratio of 
10 P but these methods are also in- 

accurate for the present computations. 

(2) Some Initial guess is made of the value of the meridional velocity 
C m at radius r. , for the axial station at which the calculation is being 

0 
done. 

(3) From this assumptxon of Cm the local speed of sound is computed 
(equations (5) and (7)). 

(4) The term 2 3 , needed to find 
cn am 

G(r,C,) is found from 

either equation (28) or (2b). 

008 $4 cosec' j 
(5) m.5 h-m - , 

52 

2 

2 al cot /Y 
needed to find H(r,Cm) are obtained from the specified gas 

c m 
leaving an&es 6, slope and curvature of streamlines, and the estimated Cm. 
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aa aIQ w 
(6) the quantzties - , - , - are obtained from results of 

am ar ar 
the previous iteration. (Initially these are set equal to zero). All the 
derivatives in the present programme are obtained by fitting spllnes to the 
functions and dzfferentxting the splines. 

(7) Steps (1) to (6) enable the wantlties 
to be evaluated. 

G(rA,) and HbJ,) 

(8) The differential equatxon (11) is integrated by the Runga-Kutta 
method and the value of Cm at the next radxl station is found. ThiS 

procedure would fail If the conbtiono for the existence and unxqueness are 
violated for any radial step. 
rows) l.f cm f 0 and Mmfi 

For a duct region (stations between blade 
then the functions f and 

af - are both continuous provided the specified angles 3 and loss dzs- 
ac m 

trlbution Q do not give rxe to singi;laritles. 
conditions become and M 
noting that 

cm # 0 Elf" 
In a bladed region the 

These results are obtained by 

(i) If Cm = 0 then f(r,C,) is not continuous because GbJ,) 
1s divided by Cm. Also the errors XI the numerIca integration procedure 
become large if Cm IS small. 

(Ii) lf c m 1s finite then only the behaviour of HhC,) 
(equation (11)) needs to be investigated since G(Gm) 33 normally 

continuous. The only term 111 G(r,C,) which can most likely become singu- 

sin$ ac 
1arLS - 2 and the singularity oxurs when the local meridional 

Cm am 
Mach numbers becorws unity. 

Therefore provided numerical errors are small, for finite meridional 
velocities (Cm), and Mach numbers f?, a unique solution exists for Cm 

at each radial locatIon. However for trszxonic flows the cowktions for 
existence and unlquencss are vlolated and the numerxal solution outlined here 
may fail. 

(9) If a unique meri&onal velocity profile (Cm versus r) ezsts 

then the density prOfile can be obtained by using equstlons (4) to (10). 

(10) The mass flow rate across the an~ui~us is round from equation (3) 
taking into account the effect of annulus wall bomdary layers 111 the form of 
a blockage factor wkach may vary through the nachme. If the computed mass 
flow rate does not agree wzth the specrfxd mass flow rate rmthul a suitable 

accuracy/ 
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accuracy range then C m is adJUSted and the steps (I) to (10) are 
0 

repeated. If the process by means of wLch C m 1s adJUSted is convergent 
0 

then a value of Cm can be found to give a mass flow rate which agrees 
0 

with the specified value witbin any accuracy range. 

The reqmed value of C m should satisfy the following 
0 

equation 

F(C, ) = ;nt - ;n (Cm ) = 0 
0 0 

. 
where m t is the true mass flow rate and 

A(cm ) = 
i 

Y‘t 
27tr cm p cos $ dr 

0 

rh 

If FCC, ) is well behaved, l.e., It changes monotonically as shown in 
0 

Fig. I, then the method of False Position' can be used to find the next 
approxinttion to C In' 

0 

F (Cm01 

// 
0 a C,'$ b 

C 
m0 

required root 

In this method, the next approxlmatlon to the root of equation (12) is 
given by 

afb) - bf'(a) 
0 = 

f'(b) - f(a) 

where o is the point where the chord AB intersects the axis. The 
procedure can be repeated usmg values at B and C to obtain c' and so on. 
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Now provided the conditions for the ex~stenoe and uniqueness of 

ac 
solution for C m are satisfied the vslue of -! at sny radial position 

ar 
is unique and the family of meridional velocity profiles (C m 5 r) obtained 

(at a given sxial station) for different values of Cm cannot intersect. 
0 

Considering this fact Marsh7 has shown that the mass flow rate, obtained from 
the basic differentd-integrsl equations (1) and (3) increases monotonically 
with cm. This w3J.l also be true for the finite difference equations used 

0 

for the numerical solution provided numerxal errors are small so that the 
behaviour of the two systems is the same. The numerxal errors will be smsll 
if c everywhere along the radius remains sufficiently large, for the Runga- 
&ttamprocedure to remain accurate. A difficulty arises when for a value of 
C 

mO’ 

the meridional velocity at a radius becomes nearly eero. The programme 

is arranged to discontinue the calculation of the mendionsl velocity profile 
with this Cm and calculate a new profile with Cm increased by a small 

0 0 

increment. This procedure overcomes the difficulty provided the final results 
do not include reverse flows. 

(11) When the overall continuity is satisfied a new streamline pattern is 
derived as follows: 

The local mass flow function zmi? p Cm cos # is plotted against 

r and the area under the curve is divided into radial increments such that 
each stream tube will contain the percentage of mass flow chosen in 1. 
To do this a spline is fitted to the points of 2nrI? p Cm cos # versus r 
(Fig. 2a) - 

mass-flow function 
2nt Kp Cm cos 4 

rh radius 

(al 

‘t 

FIG.2 

I 2nrKPC,cos +dr 

/ 

‘h radius 7 
6r 

Pt 

lb) 
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The spline is then integrated and the values of the integral are 
plotted versus radius as shown in Fig. (2b). The ordinate of the curve at 
rh is then divided into the number of stream tubes specafied c.n the first 
approximation. The new positions of the streamlines are then obtained by 
a suitable method of inverse interpolation. 

Experience has shown that the computation process outlined above 
overcorrects the initlal errors and the change in the streamline positions, 

aIQ 
and the parameters whxh depend on the streamline positions (such as - , 

ar 
w - etc.), must be damped by a factor less than 1-O to obtain convergence. 
am 
Recommended damping factors are based almost entirely on experience and may 
range from O-5 to O-025. Usually for any new case the damping factor is 
found by trial and error so that a number of calculations with different 
values must be done. Even when convergence has been obtained there is the 
possibility that a slightly different damping factor would have given the 
answer in fewer interactions. For a simple twc-dimensional flow Wilkinson6 
derives explicit expressions for the optimum damping factor as a function of 
grid aspect ratio, Mach number and the differentiation method used for fintig 
slope and curvature of the meridional streamlmes. A similar analysis to 
give the damping factor for the present problem (flow in axial compressors) 
would be very complex and is therefore not attempted. In the present com- 
puter programme the relaxation is applied to 

(i) Streamline shrft 

where 6r = streamline shift 

r n-i = previous streamline position 

r = n new streamline positlon (unweighted) 

r = new streamline posltion (weighted) 
gz = relaxation factor 

aIQ aQ aQ 
(ii) quantities -,- and - whxh depend on the streamline 

ar ar am 

location. For example: 

a IQ 
- = (1 -pa) 
ar 

Again suffuses (n-l) and n denotc any two consecutave approximations. 
tithe presentprograme P'I = 0.2 and ps = 015. 

Results/ 
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Results and Discussion 

The objects of the investigation were:- 

(4 effect of lnclusicn of losses on the streamline curvature 
calculation 

(b) limits of applicability of the through-flow calculations 
(Matru through-flow - streamline curvature) for axial 
ccillpresscrs 

(0) effect Of Borlcck's correction term on the accuracy of 
streamline curvature cslculaticns 

Test data for a Rolls Royce axial flow compressor was available 
and this machine was chosen for the present investlgaticn. Axial velocities 
had been measured for this machine and compared with the actuator disc theory 
(Ref. 8): a comparison between the latter and the streamline curvature was 
therefore also possible. 

Data was provided for several possible compressor builds but the 
sXl'aIlgement chosen for the present calculations consisted of three rcws cf 
blades; a set of stationary inlet guide vanes, a rotating row and a 
stationary rcw. The hub-tip ratlo is constant (O-4) through the compressor 
and the ratio of blade height to blade axial spacing is 2.1. The tip diameter 
is I4 in. and the txp speed is of the order of 370 ft/sec or 283 ft/sec 
depending on the gear ratm of the drive gear box. 

In the through-flow calculations it is usual to relate the losses 
and angles tcr -;he last (n-l) iteration using a plot of loss and angle against 
i, the blade row IrlcIdence, entering the curves at in-, = p,-, - a, where 
B is the entry gas angle and a the blade angle. A relaxation factor may 
be applied to the losses as above. 

However in the present calculation the main emphasis was on the 
stability of the flow calculation md on the effect of the dissipative force. 
It was therefore decided to accept the angle and loss distributions (except8 
loss distributicrs II) determined from Horlock's actuator disc calculations , 
and not to change these during the successive iterations described here. 
Essentially therefore we have investigated the flow through three rows of 
blading which prcvide prescribed unchanging distributmns of loss and cutlet 
angle. 

Fig. (3) Illustrates the position of the calculating planes, the 
gas leaving angles and the loss distributmns used in the calculations. 
The program was run for three flow coefficients (cxl& = O-67, O-585, 0.417) 

and the results willbe discussed in turn. 

(iI/ 
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CX. 

(i) 1 = 0.67 (Figs. 4, 5) 
u m 

This flow coefficient is well. within the 
compressor (away from the stdl region). 

operat 
Figs. (4) and (5 compare axial "k: 

range of the 

velocity profiles downstream of rotor and stator, from experiment, actuator 
disc theory and streamline curvature cslculation with and without losses. 
The agreement between various calculations and experiment is reasonable 

(note the large scale for $ 1. 
i 

The losses are small for this flow coefficient and little difference 
is made in the velocity profiles calculated from the streamline-curvature 
method with and without losses. Two loss distributions have been tried: 
the distribution with higher losses near the tip of the rotor (Fig. 3) 
produces a dip in the axial velocity profile (Fig. 4), as might be expected. 
Since the velocity distribution must satisfy the continuity equation, the 
sxial velocity is increased near the hub (the flow can be considered incom- 
pressible, maximum Mach No. < 0.15). The axial velocity profile downstream 
of the stator is dependent on the axial velocity profile downstream of the 
rotor and the stator loss distribution. The comparatively hi&er losses 
near the root of the stator (Fig. 3) push the flow towards the tip of the 
stator: thus the dip in the axial velocity profile downstream of the rotor 
is not apparent downstream of the stator. 

For the streamline curvature calculation no difficulties were 
experienced with convergence, ne igible shift being noted in the streamline 
patterns in less than 20 cycles t? each cycle using a new streamline pattern), 
with or without losses. Also the effect of Horlock's correction term was 
negligible (see Appendix I). 

(ii) 2 = o-585 (Figs. 6, 7) 
m 

Again comparatively higher losses near the tip of the rotor (Fig. 3) 
decrease the axial velocity there: axial velocity near the hub is then 
increased to satisfy the continuity equation. The rotor losses are small 
and therefore cause little modification in the axisl velocity profile down- 
stream of the rotor. The effect of comparatively high losses near the tip 
of the stator (Fig. 3) can be seen on Fig. 7 where the axlsl velocities near 
the tip are appreciably reduced and mass flow near the hub is increased. 
Again no diffxulties were experienced with the convergence of the streamline 
curvature calculation and the effect of' Horlcck's correction term was negligible. 

(iii)/ 
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CX. 
(iii) 1 P 04l3 (Figs. 9-17) 

U m 

This operating point was within the stall region of the compressor 
characteristics. It was chosen to study the accuracy of the streamline 
curvature calculation when the meridional through-flow velocities may become 
small for a given streamline pattern. The trunoatlon error in the 
Bunga Kutta procedure, used to integrate equation (II), is a function of f, 

ar af 
--ma-. The actual expression is too complicated to be of much 
ar acm 
practical use, but for small Cm, these values may become large and hence 
the error may become large. Referring to Fag. 8, it can be seen that the 
numerical solution cannot be used for calculating Cm below the value C 
where the numerical errors become unacceptable. % 

Cm 

/ 

‘h 

t- \ 

(al 

C 
YrnE 

0 

FIG.8 

approximate 

F - 
‘t 

TO Overcome ths difflcdty the programme can be motifled in either 
of two ways. If for the gzven streamline pattern the velocity profile to 
give the correct mass flow rate 1s above line AB, then the programme can 
be arranged to discontinue the computation if Cm falls below AB and 
mm-ease C untd this condition is satisfied. m However, if this 

0 

procedure gives too large a vslue for mass flow rate then the velocity 
profile must oross AB. In this ease values of Cm below AE? are 

replaced by a small positive value so that the resulting merlbonal velocity 
profile, to satisfy the nass flow, would appear as II~ Fig. (8b). This is 
of course inaccurate III regions CD and EF where the true velocities may 
be even negative but the nume~cal method can not be used to predict the 
true velocities z.n thx region, 

Three/ 
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Three calculations were performed for this flow coefficient, 
one without losses and two with different rotor loss distributions, to 
study the effect of variation of losses (when the losses are high). 

LOSS distribution 1 (Figs. 9-11) 

The programme was first run without incorporating the above 
modifications to mintise truncation errors for small through-flow velocities. 
This computation was stopped for the 7th streamline pattern because multiple 
vslues of cm were found to give the specified mass flow rate, downstream 

0 
of the stator, where some through-flow velocities were small (Figs. II and lla). 
Therefore, due to growth of numerical errors, the uniqueness conditions for 
the solution had been violated. Figs. Ila and Ilb illustrate that the com- 
puted mass flow rate is not monotonically increasing with Cm and numerical 

0 

errors have considerably modified the behaviour predxted from consideration 
of the basic differential-mtegral equations (1) and (3). 

The programme was modified by stopping the computation of C m by 

the Runga-Kutta procedure, when Cm was small -s?_<O*O5 and 
CX. ) 1 

replacing the remaining values of Cm by a small value 
t 

C 
~=O.Ol . 
CX. 1 1 

It can be seen from Figs. lla and lib that the behaviour is considerably 
improved but there are still small oscillations in the graphs. These are 
attrzbuted to errors in the numerical integration of equations (1) and (3). 
Apart from the s&&t inaccuracies due to the oscillations, the uniqueness 
condition is now satufied and the final results (20th streamline pattern) 
are compared with the results of the actuator disc theory and experimeot 
reported in Ref. 8. In general the agreenent between theory ,%ld experiment 
seems reasonable. Since this operatlng point is in the stdll region of the 
compressor the losses are not accurately known, and quantitative agreement 
between theory and experiment is not expected. This is true even when the 
effect of snnulus wall boundary layers are taken Into account. 

Finally the effect of Horlock's correction term on the accuracy 
of the calculation was found to be negligible (the difference between results 
with and without this term was negligible). Conditions for which this term 
nay be neglected are examined in Appendix 1. 

Loss distribution II (Figs. 12-14) 

Again the programme was first run without the necessary modzfica- 
txon to reduce tnrncatlon errors in the RuEga-Kutta procedure. Multzple 
Clues of Cm mere found downstream of stator, for the 6th streamline 

0 

patter,l, giving the specified nass flow rate (Fig. lb). The uniqueness con- 
ditxon was therefore violated due to the growth of the truncation errors. 
The modrrfled program (described above) is seen (Figs. ILa, 14b) to give 
unique values for Cm , and the final results obtained from this program= 

0 

are/ 
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are given in Figs. 12-14. Loss distribution II gives higher losses near 
the tip of the rotor as compared with loss distribution I, but gives the 
same loss distribution downstream of the stator. Comparison of Figs. 10 
and 13 shows that the axial velocity near the tip of the rotor is reduced 
for loss distribution II as compared with the values for loss distribution I. 
The same trend is obtained downstream of the stator (compare Figs. 11 snd 14). 

Finally Figs. IQ and l&c demonstrate that Horlock's correction 
term does not appreciably affect the accuracy of this computation. 

No losses (Figs. 15-17) 

Results of the tests for uniqueness are given in Figs. 17a to 17d. 
Again the modified programrae gives a unique solution. However the oscills- 
tions in the graphs of is versus Cm are not completely eliminated when 

0 

the programme is modified. These oscillations indicate the existence of 
appreciable numerical errors in the region where they are large. The curves 

are well behaved in the region near the specified mass flow rate so that for 
the present operating point a unique solution can be obtained with reasonable 
sccuracy. The final results (20th streamline pattern) can be compared with 
the results for flow with losses to study the effect of losses on the oslou- 
lation. Axial velocity profiles downstream of the guide vanes (Figs. 9, 12, 
15) are very similar. For both cases the guide vanes were assumed to intro- 
duce sero losses and the changes are due to the change in the slope and 
curvature of streamlines. The axial velocity profile downstream of tbs rotor 
for flow without losses (Fig. 16) is more uniform as compared with flow with 
losses (Figs. 10, 13) but the differences are not large. However flow iown- 
stream of the stator is changed considerably due to losses. Theaxial 
velocity downstream of the stator with no losses (Fig. 17) is small near the 
hub; the velocity for floe with losses (Figs. 11 and 14) is small near the 
tip. Losses can therefore modify the velocity profiles to a large extent and 
hence have large effects on the convergence and uniqueness of the solution. 

Conclusxns/ 
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Conolusions 

The conbtions for uniqueness of the solutions obtained from the 
streamline-curvature method of calculating flow through turbomachines may 
be violated when the meridional through-flow velocity becomes small 
(e.g. near stall), or when there are regions of choked flow. For a Rolls 
Royce compressor, flow in the stall region is computed by suitable modifica- 
tions of the method to minimise the truncation errors and hence to obtain a 
unxque solution. There is agreement between this solution and the results 
of the actuator disc theory and experiment reported in Ref. 8. 

The effect of the losses on the computation is significant when 
losses are large, but for the axial machine investigated here the effect of 
the correction term, arising from the inclusion of a dissipative force in the 
momentum equation, is negligible. 
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A.PFENllXl 

Effect of the dissipative body force on the accuracy 
of the streamline curvature calculation 

The dissipative body force gives rise to the ter!n 

2?? 
2 = - 

2C T ilQ 
- sins p sin 9 

P Q am 

on the right hand sde of equation (1). Ifthistem 
with the other terns on the right hand side 

is negligible compared 

i.e. 2 sin*j5 
, au Q2P - - + - (i Z)) ) then the body force will 
0 ar 2 

not effect the accuracy of the calculation. The ratio of the terms is 

cp w - sin$o 
Q am 

6 = 
aIQ 4rp ag 
-+- - 
ar 2 c ) ar 

aQ 
For the present calculations the term - is only finite downstream of the 

am 
rotor and downstream of the stator; the magnitude of 6 can be readily 
estimated at either station by noting that for the Rolls Royce compressor 

CPT = ho >> u?rp 

and 
Q= I 

Therefore, downstream of the stator 

aQ 
- sin $2 

6 e am 
aQ 1 ah 
-+- 0 
ar ho ar 
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The derzvatlves can be obtained from Figs. Ai, A.2 and A3 and 
values of 6, calculated from these denvatxves, are given in Table 1. 

Table I Table I 

It can be seen that 6 is negligible. However if there are 
regions where the denominator can become small and if $ can become 
large (e.g. in centrifugal machines) then the effect of the dissipative 
body force can become appreciable. 
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