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SUMMARY 

A method is presented for the calculation of the compressible turbulent 

boundary layer both at the attachment line and over the surface of an infinite, 

yawed, thermally-Insulated wing. The method uses the momentum integral and 

entrainment equations for three-dimensional compressible flow. Comparison with 

the few available experimental results is encouraging. 

A Fortran computer program, based upon the method, has been written to 

calculate the boundary layer development on an Infinite yawed wing of given 

section shape, sweep and pressure distribution at a given Reynolds number, Mach 

number, stagnation temperature and transitlon position. 

* Replaces RAF. Technical Report 72193 - ARC 34388 
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I INTRODUCTION 

One of the mOst pressing requirements of boundary-layer theory is that it 

should be able to predict the development of turbulent boundary layers on swept 

wings. For wings of large aspect ratio it seems reasonable, as a first approxi- 

mation, to neglect the effects of variations along the span and to treat the 

wing as though it were infinite. This does not reduce the number of physical 

assumptions involved in calculating the development of the boundary layer but it 

does considerably reduce the numerical complexity of the calculation procedure. 

Such a calculation method was devised for incompressible flow by the 

present author' and also, independently, by Cumpsty and Head2. This method used 

the momentum integral equations in streamline coordinates together with an 

extension to three dimensions of Head's 3 entrainment method for the calculation 

of shape factor development. 

Green4 has shown how Head's entrainment method may be extended to 

compressible flow and so here use is made of Green's ideas to extend the three- 

dimensional method to compressible adiabatic flow. A brief outline of Green's 

method is given in section 2. Section 3 then gives details of the method for 

three-dimensional compressible flow. In section 4 the method of solution for 

the infinlte yawed wing is presented and in section 5 the solution at the 

attachment line of an infinite yawed wing is given. Comparison between the 

predictions of the method and the few experimental results that are available is 

given m section 6. 

The calculation method is available as a Fortran computer program which 

has been in use at the RAE since 1968 and a listing together with details of 

the input data required may be obtained from the author. 

The Report concludes with a discussion of the shortcomings of the present 

method together with some thoughts on further extensions. 

2 OUTLINE OF GREEN'S METHOD FOR TWO-DIMENSIONAL FLOW 

GWl'S4 method is an extension to compressible flow of a method devised 

by Head3 for the calculation of two-dimensional incompressible turbulent 

boundary layers. The oblect of the later method is to solve the boundary-layer 

momentum integral equation, 

de cf e d"e -- 
;i;; = -i- - Ue dx (H + 2 -<, , 



together with an auxiliary equation known as the entrainment equation 

d(6 - 6,) 
dx (2) 

which may be derived by integrating the continuity equation across the boundary 

layer and denoting those terms which represent the entrainment of the external 

flow into the boundary layer by Cg. In the above equations x represents 

the distance along the surface in the streamwise direction and U e' Me 
respectively denote the velocity and Mach number in that direction at the edge 

of the boundary layer. The terms B, 6 - 6, and H are defined as 

and 61 H=T. 

We also write H, = 
6 - 6, 

e ' 
where p denotes the fluid density, 6 the 

edge of the boundary layer and 5 the distance perpendicular to the wall. The 

term C f 
in equation (I) is the local skin friction coefficient, i.e. the 

surface shear stress at the point divided by the product pUz/Z. The basis of 
, 

Head's incompressible method is the assumption that the entrainment coefficient, 

cE' is a unique function of H,, and that H 1 is solely a function of H. 

For compressible flow Green retains the first of these assumptions and uses 

Head's original curve of CE = F(H,) in the form 

cE E F(H,) = 0.0299(Hl - 3.0)-"*6'6g . (4) 

Green then suggests that to characterise the shape of the velocity profile 

a 'transformed' shape parameter ii, where 

(5) 



might be regarded as the equivalent in compressible flow to the parameter 

at low speeds. For compressible flow H, is thus assumed to be solely a 

function of Ii. The form of this function is taken to be 

ii = 1 + 1.12 [", - 2 -m - 3]o'g'5 . 

The assumption of a parabolic temperature distribution with zero wall heat 

transfer 

T = Tr + (T - T,)(U/Uej2 , (7) e 

where Tr denotes recovery temperHture, produces the relation 

5 (II+ 1) @+I) = T 
e 

= (1 + (Y.+M$i + I) 

5 

H 

(6) 

(8) 

where r denotes recovery factor. 

The final assumptions of Green's method concern the skin-friction coefficient 

II-I flows with pressure gradients. This is assumed to be given by 

($ + o.5)(f - 0.4) = 0.9 
P 

where C 
few 

is the skin-friction coefficient on a flat plate at the same Re 

and M . 
e "P3 

the flat plate transformed shape parameter, is assumed to be 

given by 

I -= 

i J- 
"2.E I - 6.8 2 . 

P 

cfP 
is assumed to be given by Spalding and Chi's 

5 correlation in the form 

FC = 
0.012 

c fP (log,o (FRRe) -0.64) - o.oog3 

with 

FC = 
Tr/Te - I 

(tan-' [(T,/T~ - I)*])~ 

(9) 

(10) 

(II) 

(12) 
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and 

FR - (Tr/Te)-0'702 . 

The above assumptions are sufficient to allow equations (I) and (2) to be 

solved numerically as a pair of simultaneous, ordinary first-order differential 

equations with dependent variables 0 and 6-6]. With these quantities known 

at any station the other quantities of normal aerodynamic interest such as cf 
, 

and H are easily derived from the above relations. 

3 THE METHOD FOR THREE-DIMENSIONAL COMPRESSIBLE FLOW 

For three-dimensional flow it has been found6 extremely useful to define 

boundary-layer parameters in terms of streamline coordinates. This is a system 

in which one family of coordinate curves is the projection of the external 

streamlines on to the surface of the body, whilst the other family consists of 

the orthogonal trajectories of the first family. The direction of an external 

streamline is called the streannvise direction. The cross-flow, or crosswise 

component of flow in the boundary layer, is the component at right angles to the 

streamwise direction. It has been found 14 with streamline coordinates that the 

stream&e flow has similar properties to a two-dimensional boundary layer. In 

particular empirical relations derived for two-dimensional flow, e.g. skin- 

friction formulae shape-parameter relations and velocity-profile families, 

provide good approximations for the strearavise component of a three-dimensional 

flow. 

The momentum integral and entrainment equations for a three-dimensional 

compressible flow with an irrotational external flow may be written in stream- 

line coordinates as 

aell a012 '01 au 
-+- = 

as an 
---++3,,(H+2-~2)-B~,+~ 

I ar 
+ e22 r XT + M,’ 0 

1 a"e -- (14) 12 ue an 

ae21 ae22 ‘02 -+- = -- 
( 
--+Lar I sue 

as an 
P$ 

2e21 u, as r as ) 

au I a”e - el,(H+ 1) +$--- 
e ue an ‘22 

+ ‘21 
)fQaue 2 1 auc? 

(15) 

e u, as + e22”e ue an 
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a(6 - 6,) afi2 
-- 5 - as an cE (16) 

e 

Here 8 represents distance along an external streamline, n distance parallel 
to the body surface and normal to an external streamline, ar/ras is a measure 

of the convergence or divergence of the external streamline and the various 

displacement and momentum thicknesses are defined as 

6 
e22 = - I 

PV2 - 

peu: 

. 

0 

The two shape factors H and H1 are defined by 

H = 6,/e,, (18) 

and 

5 = (6 - 61)/e,1 . (19) 

Tol’ T02’ 
U and V are the components of skin friction and velocity in the s 

and n directions respectively. C, denotes the direction normal to the surface. 

P is the density, M the Mach number~and subscript 'e' refers to conditions 

at the outer edge of the boundary layer, 5 = 6. Following Green we also define 

ii as 6 

li = 
ell 

dc (20) 

In order to derive relationships between the various crosswise and the 

strearmvise profile integrals, we now assume explicit velocity profile families 

for the streamise and crosswise flows. The streamwise velocity profile is 

assumed to be of the form suggested by Spence for two-dimensional flow 



(21) 

(22) 

For incompressible flow Mager7 has suggested the following form for the cross- 
, 

flow velocity profile 

where a = tan 8 and 8 is the angle between an external streamline and the 

direction of the limiting streamline on the body surface. For compressible 

flow we assume that the Mager profile may be generalised as 

V 2 
-= 

ue ( ) 
I-2 a+ . 

=6 e 

(23) 

O-4) 

Experimental support for the introduction of the correlating variable z/z6 in 

equation (24) consxsts solely of the observation by Hall and Dickens 
8 

that such 

a change of variable made an already poor agreement between measured and 

predicted velocity proflles no worse. 

With the assumption of the velocity profiles, (21) and (24), all the cross- 

flow thicknesses may be related to the stream&se momentum thickness 8,, by 

relations of the form 
7 

e21 
= af,($Si,, 

e 
12 = af2w3,, 

62 
= af3(H)e,, 

e22 - I 
= =2f4(H)e,, . 

(25) 

The functions f, to f4 are Identical with those derived by the present 

author' as functions of H for the incompressible flow and are listed in 

Appendix A. 
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We now combine the assumptions of Green and the present author' regarding 

the entrainment coefficient so that CR(H,) is assumed to remain unchanged from 

two-dimensional flow and to be given by equation (4) the relation between i 

and H 1 by equation (6)* and the relation between H and i by equation (8). 

The streamwise skin-friction coefficient +o,/Pu~ 3 Cf/2 is assumed to be given 

by equations (9) to (13). The cross-flow skin-friction coefficient is assumed 

to be given by 

(26) 

With the above assumptions and a given external flow (i.e. Ue and r 

known as functions of s and n) equations (14), (15) and (16) are reduced to 

a system of three simultaneous first-order partial differential equations with 

dependent variables 'al,, 6 - 6, and a and independent variables s and n. 

The following sections give details of the process of solution of these equations 

for certain special cases. 

4 SOLUTION FOR THE INFINITE YAWED WING 

For an InfInite yawed wing It was shown in Ref.1 that we may write 

a/as = (U,/Ue) (d/dx) and a/an = (- VI/U,) (d/dx) where x denotes distance 

along the surfac(! normal to the leading edge and U, and V 
I 

are the velocity 

components of the external stream in the x direction and parallel to the lead- 

ing edge respectively. It was also shown that the term ar/r'& may be wrltten 

as ar/ras = (V;/U;)dU,/dx. With these relations the equations are reduced to 

a system of three first-order simultaneous ordinary differential equations, which 

may be solved numerically as an initial-value problem. The equations are 

* It might be thought that there is an inconsistency between equation (6) and 
equation (21), but there is no physical significance in this. Equation (8) 1s 
well matched to the other elements of the two-dimensional method (equations 
(4), (9), (IO), (II)) and is therefore the better semi-empirical representation 
of the streamwise profile. Equation (21) is simply a convenient device, in 
combination with equation (24), for deriving the functions f of equation (25) 
with acceptable accuracy. 
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dell 
A- 

da 
ll dx + A12 z 

d.5 - 6, 

+ Al3 dx = $1 

dell 
A- da 

+ A22 z 

d& - 6, 

21 dx + *23 dx = '2 

dell A- da 
d6 - 6, 

31 dx + A32 ;T;; + A33 dx = '3 

\ 
1 

(27) 

where the coefficients are functions of tJ1,, a. 6 - 6 
I' x 

and the external 

flow and are given in full in Appendix B. 

These equations cannot be used at the attachment line of an infinite 

yawed wing since there A,, = A,3 = A2] = A22 = A23 = A31 = A33 = 0. However, 

by symmetry we may say that at the attachment line a = dS,,/dx = d(6 - 61)/dx = 0, 

whilst attachment line values for da/dx, S,, and 6-61, may be obtained from 

the theory given in the next sectlon. We thus start the calculation a small 

distance Ax away from the attachment line with starting values given by 

('ll)al' (da/dx)al~ and (6 - 6 ]) al the subscripts denoting attachment line 

values. 

For flows which are laminar at the attachment line and up to some transi- 

tion position XT we follow Cooke' 
. 

and evaluate 8 
II at the transition posi- 

t1on from 

(28) 

0 

ell 
IS then assumed to be continuous at transition. For simplicity and in the 

absence of any experimental evidence to the contrary, the transition value of B 

is taken to be zero whilst the transition value of H andhence 6-61 has 

to be specified for any particular case. Alternatively rather than attempt to 

compute the flow from the attachment line starting values of ell, and 6 - 61 

may be specified at any x station. 

5 COMPRESSIBLE TURBULENT ATTACHMENT LINE FLOW ON AN INFINITE YAWED WING 

This section is devoted to the solution of equations (14), (15) and (16) 

under the assumptions of section 2 XI the special case of turbulent attachment 

line flow on an infinite yawed wing. The analysis follows closely that of 
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Cumpsty and Head 
10 

for the incompressible case and so only an outline will be 

given here. 

Along the attachment line of an infinite yawed wing we may write 
, 

a a 
0, a 

d 
as=Ty= z = -;T;;s 

au 

el2 = %2 = %I = 3 = Toi? = ii+ 

With these simplifications (14), (15) and (16) reduce to 

de12 + Lar, Tol cF -- 
dx ras II p - p 

PUi 
T 

de22 
dx=O 

= 0 

(29) 

(30) 

(31) 

A further equation is required and is derived by differentiating equatlon (15) 

with respect to x and then applying the simplifying assumptions pertaining to 

the infinite yawed wing attachment line. Cumpsty and Head 
IO 

showed that It is 

convenient to introduce the dimensionless variable C* defined as 

c* = “f “I 
dUl = " I ar -- 

" 
edx 

e r a6 

(32) 

where vs denotes the kinematic viscosity at the edge of the boundary layer. 

Hence we may write 

I ar "IelI *ell -- -=- 
r as ell = v,c* c* ' (33) 

where Roll the streaswise momentum thickness Reynolds number is defined as 

"I'II'"e 
With the assumptions for velocity profiles and skin friction 



coefficient the same as those detailed in section 3.1 and recalling that 

8 = tan-1 a the resulting equations are 

( ) R6ll 
-f28,,% +7 = 

cf 
T (34) 

(35) 

(H + I)(%7 = 0 . (36) 

Equations (34), (35) and (36) appear, when due allowance is made for 

slight differences in notation, to be identical with those given by Cumpsty and 

Head. However in the present case the functions f, to f4, Cf and CE all 

have an implicit variation with Mach number as they are now functions of E 

rather than H. The technique adopted for the solution of equations (341, (35) 

and (36) was first to substitute for 0 I, dB/dx from (34) into (35) and (36) 

and then for a given Mach number and C* to solve the resulting pair of non- 

linear simultaneous equations for the unknowns Roll and i? by means of a 

generalised Newton-Raphson procedure. The results for a range of Mach number 

and C* are shown in Flg.1. 

6 COMPARISON OF THEORY FOR AN INFINITE YAWED WING WITH EXPERIMENT 

The incompressible version 192 of the method has been compared with 
15 experiments by Cumpsty and Head . They obtained quite tolerable agreement 

once due allowance was made for the departure in the experiment from true 

infinite yawed-wing conditions. There is little experimental evidence available 

for boundary-layer development on swept wings in compressible flow, and even in 

the example shown the tests were made at a Mach number of 0.55 so that the 

effects of compressibility are not very large. This example is a 55 degree swept 

wing tested in the RAE 8ft x 8ft wind tunnel. II The model was designed by Lock , 

using sonic theory, to have a rooftop upper surface pressure distribution with 

isobars following lines of constant percentage chord at a lift coefficient of 

approximately 0.2. A yawmeter rake was mounted near the trailing edge of the 

model at the position shown in Fig.2 and this yielded results for the various 

boundary-layer parameters at that station over a range of Reynolds numbers, 

Mach numbers and model incidence. 
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These measurements do not in themselves provide enough information for a 

direct comparison between experiment and theory since, as is mentioned above, 

we are dealing with an initial-value problem and in order to provide predictions 

of boundary-layer parameters at the measuring station we must know values of 

these parameters at some station upstream. Initial values were estimated by an 

indirect use of measurements of skin friction by the razor-blade technique which 

were made at various chordwise stations. At a model incidence of 2' the 

pressure distribution was of a roof-top nature as shown in Fig.3 and it was 

assumed that along the flat roof-top the boundary layer would behave as though 

it were on a flat plate. With this assumption it was possible to take the 

measured value of skin friction at 10% chord and substitute this into equations 

(10) to (13) to obtain starting values of 8,, and fi. The values of fi and 

e II were then inserted into equations (7) and (8) to yield initial values of 

6-6] and H. The initial value of a = tan 6 was taken to be zero. With 

these initial values the theory of the previous section was then used to produce 

the results shown in Fig.4. 

In view of the uncertainty regarding the rnrtial conditions and the fact 

that the wing was not the infinite yawed wing assumed by the theory it is felt 

that the agreement between experiment and theory shown in the figures is good 

but may well be fortuitous. 15 Cumpsty and Head , for example found that their 

predictions were very sensitive to the effective sweep assumed, and only small 

changes in this were needed to substantially rmprove agreement with their 

experimental results. 

Attempts to calculate the flow right from the attachment line were not so 

s"ccessf"1. Even with transition assumed at the leading edge the values of 

811 and S at the measuring station were underestimated by some 10%-25X. This 

discrepancy is thought to be caused by the attachment-line conditions for this 

model not being those of an infinite yawed wing. 

7 DISCUSSION AND CONCLUSIONS 

Although the greement between experiment and theory reported herein is 

encouraging it is clear that further experimental checks are required. It is 

hoped that some recent boundary-layer measurements upon a 30' swept wing in the 

8ft x 8ft wind tunnel at BAE Bedford will go some way towards filling this gap. 

Extension of the method to the general three-dimensional case, in which 

derivatives normal to the direction of integration are accounted for by finite 
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differences rather than analytically as was done here, has recently been 
12 

achieved by Myring . Myring has at the same time generalised the coordinate 

system used so that it need no longer be orthogonal. (See also Smith 
17 

.) 

Although intuitively one feels that in the long term the future of 

calculation methods for turbulent boundary layers must lie with the differential 

methods such as Bradshaw's 13 rather than the integral approach adopted here, at 

present the advantages of the differential methods are not so clear cut. In 

two dimensions the most recent development 
14 ‘ 

of Head's methods compares favour- 

ably in accuracy with Bradshaw's method whilst having a decided advantage in 

speed of computation. In the general three-dimensional case the generality in 

the choice of coordinate system offered by Myring's method is a considerable 

advantage in practical cases whilst the inherent speed advantage of integral 

methods may well be a major consideration in any design procedure involving an 

iteration between the boundary layer and the external flow. 

In the light of the foregoing it would appear worthwhile to attempt to 

Improve the present method and its extension due to Myring. Two obvious points 

needing attention are the inclusion of some 'upstream history' effect into the 

entrainment relation as has been done for the two-dimensional case by Head and 

Patell and an Improvement in the crossflow velocity profile fannly beyond the 

simple one used here which does not permit the crossflow to change sign within 

the boundary layer. On this later point a recent investigation by Klinksiek and 

Pierce 16 indicates that none of the existing crossflow velocity profile models is 

really satisfactory and further effort in this dlrection 1s required. 
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Appendix A 

THE FUNCTIONS fl TO f4 

The functions of ii; f,, f2, f3 and f4 used in equation (ZS), and 

derived from the streamwise and crossflow velocity proflle families of equations 

(21) and (24), are listed below. 

f, = -2/[(ii - l)(H + 2)] 

f2 = (14H + 3O)/[(li + 2)(H + 3)(H + 5)] 

f3 = -I6ii/[(li - I)(ii + 3)(li + S)] 

f4 = -24/[(; - I)@ + 2)(ii + 3)(H + 4)] 

f2 2 f] -f3 . 



16 

Appendix B 

THE EQUATIONS USED FOR THE INFINITE YAWED WING PROGRAM 

The three first-order simultaneous ordinary differential equations to be 

solved numerically in this case are 

dell + A 
A- &+A 

d6 - 6, 

ll dx 12 dx 13 dx = $1 

dell 
A- 

da 
d6 - 6, 

21 dx + A22 z + A23 dx = '2 

A 
deI I da 

d6 - ~5~ 

31 dx -+A32z+A33 dx = '3 

where All = 

A12 = 

A = 
13 

A2l = 

A22 = 

A23 = 

A3I = 

A32 = 

A33 = 

“I “1 f a + “I df2 dH -- 
T-Ue 2 Tadfi dHIHI 

“I df2 dH --a-- 
U 

e dFi dH1 

"1 
r f,a - 

e e 

ul 
iT flell 

e 

“I 
df I dfi “I 2 

ira 
df4 dii -- 

e 
TX, - " a di dH, 

“I 
rr f3e11 

e 

"1 "I df3 d: 
a+ira-- 

e e dH 
- dH, 



17 Appendix B 
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SYMBOLS 

A 

a 

c* 

coefficient matrix, equation (27) 

tan 8 . 

attachment line parameter defined by equation (32) 

2 
Cf = To,IIPUe local skin friction coefficient 

cE 

FC 

FR 

entrainment coefficient defined by equation (4) 

compressibility factor defined by equation (12) 

compressibility factor defined by equation (13) 

f,, f2. f3. f4 functions defined in Appendix A 

H, ii, H 
I 

shape factors defined by equations (18), (19) and (20) 

M local Mach number 

R Reynolds number 

r - ar/ras is the geodesic curvature of the lines s = constant 

s, n coordinates along and normal to an external streamline 
respectively 

T 

u, " 

ul' "1 

absolute temperature 

velocity components 1x1 the directions s and n respectively 

external flow velocity components in the directions x and y 
respectively 

x9 Y coordinates on wing surface normal and parallel to leading 
edge respectively 

z correlating variable defined by equation (22) 

8 angle between external and limiting streamline 

Y ratio of specific heats 

6 boundary layer thickness 

5 distance normal to wing surface 

el1' e12' e21' 

e22' &la 62 
thickness defined by equation (20) 

” kinematic viscosity of fluid 

P density of flud 

'01* T02 surface shear stress components in directlons s and n 
respectively 

Subscripts 

e denotes conditions at the edge of the boundary layer 

P denotes flat plate conditions 

r denotes recovery conditions 

0 denotes stagnation conditions 
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Fig.1 Verlation of attachment line values for momentum thickness Reynolds number and 
farm parameter with C” at various Mach numbers along the attachment line 
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Fig.2 55O swept wing model used in boundary layer survey 



0.2 

- CP 

0.1 

0 

I I I I 

,.-- 
#e---- 5 

--__ 

/ 
-4 

‘\ 

/ 

\ 
\ 

\, \ 
\ 

\ 
\ 
\ \ 

\ \ \ \ 
‘\ \ \ 

1 I I , ‘\, 

0.2 04 0.6 0.8 1 

X 
/ 

‘\\ 14 

C ‘. 
. 

Flg.3 Measured pressure distribution on 55O swept wmg model at 
M=0.55, (Y=zO, ~,=27x106 
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FIgA Comparison between measured and predictad values of boundary layer 
parameters on 55O swept wing model at M = 0.55, OL = 2’. R, = 27 x lo6 
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Fig& Comparison between measured and predicted values of boundary layer parameters 
on 55’ swept wing model at M = 0.55, (Y = 20, R, = 27 x 105 
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