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AN ASSESSMENT OF THE ACCURACY OF SUBSONIC LINEARIZED  THEORY
FOR THE DESIGN OF WARPED SLENDER WINGS

Patricia J. Davies

SUMMARY

A series of warped slender wings has previously been designed using the
linearized theory of subsonic flow, as a basis for a systematic experimental
investigation of the drag reduction obtainable by warp at low speeds. The force
measurements on these wings have now been supplemented by measurements of the
pressure distribution over one of them; and the pressure distribution on it has
also been calculated for inviscid  incompressible flow by a surface-singularity
method. This Report compares the distribution of pressure used in the design
with those measured and calculated for the design incidence, at which the flow
was attached; and assesses the validity of the linear theory. The chief
weaknesses are found to be on the thicker cross-sections near the apex, and
towards the trailing edge where boundary-layer effects become significant.

* Replaces RAE Technical Report 73159 - ARC 35314
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1 INTRODUCTION

Studies on the suitability of a slender all-wing type of aircraft for an

airbus  to carry two or three hundred passengers over short distances at subsonic

speeds have included wind tunnel tests 192 on a series of typical wing shapes 3 .

The principal aim of these tests was to investigate the increase in lift-to-drag

ratio obtainable at lift coefficients typical of take-off conditions by warping

(i.e. cambering and twisting) the wing.

In the design of the warped models, it was desired to keep the same

orderly development of the flow as is obtained on a plane slender wing, in which

the flow separates along the whole length of the leading edge above a very

small angle of incidence, and forms coiled vortex sheets above the wing,

maintaining this type of flow until some large incidence beyond the normal range

of operating conditions. The addition of warp to the wing will generally

disrupt this pattern and the flow will separate towards the upper and lower

surfaces of the wing from different parts of the leading edge at low incidences,

unless the type of warp is such that the wing has an attachment incidence. In

this case, the flow will be attached over the whole wing at the attachment

incidence, and will form coiled vortex sheets above the wing at any higher

incidence.

As a general guideline, it has been found that lift is produced most

efficiently at a lift coefficient about twice that at the attachment incidence.

Thus, since at present we only have methods for designing wings at the attach-

ment incidence, the wings were designed for attached flow at lift coefficients

up to about half that required at the crucial operating condition, i.e. take-

off, with properties at the design condition which would lead, it was hoped, to

performance benefits at this operating condition. These properties included the

avoidance of flow separation forward of the trailing edge, leading to an orderly

development of the flow; a specified lift and centre of pressure; and a low

vortex drag. Such a design can be carried out by the use of linear theory,

which also has the important advantage as a design method of permitting the

superposition of solutions and allowing the separation of lifting and thickness

effects.

Linear theory was therefore used in the design of the series of models,

which is described fully in Ref.3. The experimental force measurements on these

wings are described in Ref.1 for the transition-free tests, and Ref.2 for the

transition-fixed tests, from which the results in this paper have been taken.
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In these experiments, flow-visualisation tests showed that the flow was

attached at the design incidence and the lift coefficient obtained experiment-

ally was very close to the design value, although the measured centre of

pressure position was about 3% further forward than expected theoretically. In

order to obtain a better assessment of the strengths and weaknesses of the

linear theory, a pressure-plotting model of the first wing in the series was

constrllcted and tested 4 in the No.2 Iljft wind-tunnel at RAE, Farnborough.

The pressure distribution on the same wing has also been calculated by

Roberts and Rundle5. Their method constructs a solution of Laplace's equation,

governing three-dimensional inviscid  incompressible flow, by the use of singu-

larity distributions on the surface of the wing and in a mean plane represent-

ing the wake. The wing surface is divided into four-sided elements, which

satisfy smoothness conditions along their common sides,and a source distribution

is defined on each, again satisfying smoothness conditions along the common
sides. Planar doublet elements are used to represent the wake. The strengths

of the source and doublet distributions are determined from conditions of zero

normal velocity at the centres of the surface elements. The method represents
3an improvement over the fully-linearized theory used in the design process in

taking proper account of the finite thickness and warp of the wing. It also

differs in being a direct calculation, producing the properties of a given

shape, rather than a design calculation. Unfortunately, it does not fully

represent the flow near a sharp leading edge: the strength of the source

distribution on an element adjoinin,o a sharp edge should vary in a way depending

on the edge angle, but this has only been implemented for trailing-edge elements.

In this Report, the pressures, loads, lift and pitching moment given by

the fully linearized treatment used for the design of the wing are compared

with those given  by the more nearly exact theory for inviscid  flow and with

those measured in the wind tunnel, at the design condition for which the flow

is attached. Section 2 describes the wing, the procedure used to interpolate

between the results of Roberts and Rundle to obtain values at the points on the

wing at which the measurements were made, and the integration techniques used

to obtain the overall lift and moment. An attempt to calculate the pressure

drag from the results of Roberts and Rundle is also described. The results

are presented and discussed in section 3 and some conclusions are drawn in

section 4.
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2 DETAILS OF CALCULATIONS

2.1 Description of the wing

The wing has a mild-gothic planform, which resembles a delta near the

apex but has streamwise tips, and is shown in Fig.1. Using a Cartesian

coordinate system (x,y,z), nondimensionalised with respect to the root chord c,

with the x axis parallel to the undisturbed flow, the z axis passing through

the apex and the y axis to starboard, the equation for the starboard leading

edge is

ST
Y = s(x) = 4 (5x-x5) , (1)

where ST is the semispan  at the trailing edge. The semispan  of this wing is

ST = 0.40385 ,

giving an aspect ratio

A = 1.385 ,

planform  parameter ?

P = (wing area>/(span  x length) = 7/12 ,

and leading-edge sweep-back angle at the apex of 63'13'.

The wing has sharp, drooped leading edges, and a sharp, straight trailing

edge given by x = 1 , z = 0 . The volume distribution has a thickness to chord

ratio of 9% on the centre line and is illustrated in Fig.2, where the centre

section and several cross-sections of the wing are drawn. The upper and lower

surfaces are both continuously curved. The wing was designed by linear theory
to have a lift coefficient of 0.1, and a centre of pressure at xc.p. = 0.533 ,
at the attachment incidence of 5.32'. This centre of pressure was chosen to

coincide with an estimated position of the aerodynamic centre of the unwarped

wing.
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Full details of the design of the wing are given in Ref.3, where the wing

is referred to as wing I. The three-component balance measurements are

described in Refs.1 and 2, where the wing is referred to as wing B, and the

pressure measurements are described in Ref.4.

2.2 Original format of the data

The static pressure holes in the wind tunnel model4 are located on cross-

sections at every 10% of the centre line chord and at x = 0.06 and 0.95. On

each cross-section there are holes at values of n at intervals of 0.1 from

0 to 0.9 and at n = 0.95 , where n = y/s(x) is the local non-dimensional

spanwise  coordinate. This grid of points is called the 'standard' grid, and is

shown on the left of Fig.1. Pressure coefficients at the points of this grid

have also been calculated by linearized theory.

The computer program of Roberts and Rundle5 also employed a grid based on

constant values of x and rl 9 but the grid lines were concentrated near the

apex, the trailing edge and the leading edges, as detailed in Appendix A.

Interpolation was therefore required* in order to make effective comparisons

with the experimental values on the standard grid. The values of the pressure

coefficient calculated on the two grid lines nearest the leading edge were not

sufficiently consistent for meaningful interpolation (see section 2.3) and so

these two lines were ignored. The 17 lines of constant x and the remaining

11 lines of constant n on the half-wing are shown on the right of Fig.1.  It

is convenient to refer to this as 'Roberts grid'.

The computer output provided results at the design incidence of the wing

and at an angle of incidence one degree larger.

2.3 The interpolation scheme

The pressure coefficients on each surface and at both incidences,  given

by the method of Ref.5, were interpolated to obtain values at the gridpoints of

both Roberts' and the standard grid. This interpolation was carried out in two

stages - first the interpolation to specified values of n at constant values

of x and then the interpolation to specified values of x at constant values

of n .

* In fact, the computer output quoted values of the velocity and pressure
coefficient at slightly different sets of points on the upper and lower
surfaces, the values of x being the same on the two surfaces, but the
values of n being somewhat different, particularly where the wing is thick.
Interpolation was therefore needed even to obtain values of the local load.
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The calculated variation of the pressure coefficients with n becomes

inconsistent very near the leading edges. This is illustrated in Fig.3 for the

spanwise  section x = 0.8536 . The two points nearest the leading edge are not,

however , points where the boundary condition has been satisfied in the course of

the calculation, and it is not claimed that the pressure coefficients at these

points are accurate. These two points have therefore not been used in the

interpolation scheme. The pressure coefficients at the remaining 11 spanwise

points generally display a smooth variation with n .

For the interpolation scheme, the local variation of the pressure

coefficient with the coordinate x or n is assumed to be given by a cubic

polynomial. Wherever possible, the pressure coefficient is taken as that given

by the cubic polynomial fitted through the values of the pressure coefficient at

the four neighbouring points, two on each side of the required point, at which

it was provided in the computer output. However, where there are less than two

points on one side of the required point, the cubic polynomial taken is that

through the four nearest points. This slightly less accurate procedure is only

necessary when the required point is near the leading edge. Extrapolation is

required for some points on the lower surface, but here the variation of the

pressure coefficients is generally smooth. The greatest variation of the

pressure coefficients occurs near the leading edge on the upper surface, and

here the cubic interpolation scheme produces better results than any of the

other schemes tried.

Generally, the interpolation scheme produces results which appear to have

an accuracy consistent with the accuracy of the original results. As an example

the pressure coefficients interpolated at n = 0.7, 0.8, 0.9 and 0.95 on the

cross-section x = 0.8536 are shown with flagged symbols in Fig.3.

The pressure distributions for the cross-sections at x = 0.1, 0.3, 0.5,

0.7 and 0.9 obtained by interpolating between the computed values in this way

are shown in Fig.4 for the design incidence and for an incidence 1' larger.

They are discussed in section 3.4.

2.4 Calculation of load

The load L(x,y) at a point (X,Y> on the planform  is given by

f, (X,Y> = CP(X,Y)l lower surface - CP(X,Y)J upper surface l
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The load according to the nonlinear theory 5 has been calculated at each point

on both Roberts and the standard grids, using the interpolated pressure

coefficients. The distribution of load on the cross-sections x = 0.1, 0.3,

0.5, 0.7, 0.8 and 0.9 is illustrated by broken lines in Fig.5, and along lines

of constant n at lJ = 0 , (the centre line), 0.5 and 0.8 by broken lines in

Fig.6. We return to these results in section 3.2.

2.5 Calculation of lift, moment and cross loading

The overall lift coefficient cL ' pitching moment Cm and lengthwise

distribution of cross loading a(x) can be obtained by integrating the load

over the wing planform.

The lengthwise distribution of cross loading a(x) is given by

s x>
X(x> = +

1 R(x,y)dy
--s (xl

1
__ 2sb)- - -

s J
R(x,y)dn

0

(2)

where S is the planform  area of the wing.

The lift coefficient CL and pitching moment coefficient C about them
apex are given by

I s tx>

CL = + J J R (x,y)dydx
0 -s (4

I s w

cm=+ xJ J ~(x,y)Wx  9
0 --s (4

where the pitching moment has been referred to the centre line chord, which is

of unit length. Substituting from equation (Z), we have
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CL  = I ji(x)dx

0
(3)

1

cm = xji(x)dx  .

0
(4)

The centre of pressure position xc.p. is given by

cm
Xc.p. =q *

For each spanwise  section, the integration of the load across the span

was done firstly using the trapezoidal rule, assuming the load at the leading

edge to be zero. To obtain a more accurate result, integration was performed

using Simpson's Rule and assuming that the load near the leading edge tended to
1zero like (1 - o*) . The difference in x obtained was less than 2%, except

near the apex and trailing edge where z(x) is itself very small, so that the

absolute error was everywhere less than 0.0025.

As a check on the accuracy of the method of integration, the loads

according to the linear theory were integrated to give values of a(x) which

were compared with the values of z(x) calculated directly from the analytical

expression given in equation (IV.4) of Ref.6. It was found that the error in

the integration by Simpson's Rule was less than 2.5% except close to the apex.

Values of X(x) at the attachment condition were obtained for the load

distribution given by the nonlinear theory 5 and the load distribution obtained

from the measured pressure distribution. These values and the analytical values

of a(x) for the linear theory are illustrated in Fig.-/.

The lift and pitching moment coefficients were obtained from equations (3)

and (4) by integrating the values of ii(x)  and x;(x) with respect to x

along the length, using the trapezoidal rule and assuming that i(x) is zero

at the apex and trailing edge.
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2.6 Calculation of drag

One design requirement for the wing was that it should have low vortex

drag at the attachment condition. Accordingly during the design process a

spanwise  distribution of chord loading was chosen that was fairly close to the

elliptic distribution which is the optimum for inviscid  attached flow.

We discuss drag in terms of a lift-dependent drag Eactor K where

K _ TA PD - %)-
c:,  ’ (5)

where cD is the drag coefficient of the wing at lift coefficient cL and

cDO
the drag coefficient of the unwarped wing of the same planform and thick-

ness distribution at zero incidence. The lift distributcon  chosen for the

design corresponds to a lift-dependent drag factor K of 1.099, which is

close to the theoretical minimum of unity for planar wings in attached flow.

However, the measured drag factor at the attachment condition, based on the

balance measurements of Ref.2, was much higher, being 1.32. The value of K

given by the nonlinear theory 5 would therefore be of great interest, and an

attempt was made to calculate this from the pressure distribution over the wing.

The drag coefficient CD is given by

I
CD = s JJ Cpdydz  ,

sU-sL

where S and S
U

R denote the upper and lower surfaces of the wing; and for an

inviscid  flow model, C
DO

= 0 . Therefore

(7)

The pressure coefficient is a smoother function of x for fixed n than for

fixed y 9 so it is more accurate to integrate over the surfaces with respect

to x and n . Since y = ~-s(x) and
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a2
ax I

a2

y const. =axI

q ds a2- -
- Zdx an I

,
0 const. x const.

we have

scD-=
2 s wp (X,Y)

I q const.

upper surface-lower surface

ds a2- -
ncp(x'y)  dx an x constI .

03)

upper surface-lower surface

The principle guiding the choice of the order of integration was that the

integrand should be integrated first in the direction in which it varies most

rapidly. In the first integral above it is the behaviour of the integrand near

x= 1 for constant n that is critical, so the first integration is with

respect to x . In the second integral of (8), the critical variation is near

q=l and so the first integration is with respect to n . A computer program

was written to evaluate each of the double integrals in (8) over the two

surfaces by the trapezoidal rule. Values on Roberts' grid were used, and the

substitutions

x = 10 - CO9  $1 , rl = sin 8

were introduced, so that the integration points were concentrated where the

integrand varied most rapidly, and the integrand was available at equal

intervals of $ and 8 over most of the range. After the substitutions, the

integrand was assumed to tend to zero as the edges of the planform  were

approached, since dx/dJI = 0 for x = 0 and 1 and do/de = 0 for n = 1 .

Unfortunately the points at which reliable values of the pressure

coefficient have been obtained are not close enough to the leading edge to

define the behaviour of the integrand accurately. This difficulty is

illustrated in Figs.8 and 9. In Fig.8 the integrand from equation (7),  i.e.,
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Jb,n)
= Icp 3,  co*st]upper - lp Ely const >' lower

(9)

surface surface

is plotted against n for three values of x . The behaviour of J(x,n) near

r)=l is not well defined and it will clearly have an appreciable effect on

the value of the integral of J s especially since J changes sign in the

range of integration. A similar difficulty is encountered near x = 1 for the

quantity H(x) 9 where

H(x) = s(x)
I

J(x,n)dy  ,

0

and is shown in Fig.9. Since

H(x)dx  ,

0

(10)

(11)

these uncertainties make accurate evaluation of the drag very difficult.

The value of the lift-dependent drag-factor K at the attachment

incidence for the nonlinear theory was obtained as 0.99. However in view of

the uncertainties mentioned above this value could be 20% or more in error,

and so no meaningful comparison with linear theory or experiment is possible.

3 RESULTS

3.1 Lift coefficient, centre of pressure and cross-loading

The wing was designed by linear theory to have a lift coefficient of 0.1

and a centre of pressure at 0.533 of its length from the apex (x = 0.533) ,

at the angle of incidence for which the flow was attached.

Balance measurementsL in the 4ft x 3ft low-speed wind tunnel showed a

lift coefficient at this attachment incidence of 0.101 and a centre of pressure

at x = 0.502 . The Reynolds number of these tests was low and so transition

was fixed artificially to avoid the occurrence of flow separation from the rear

of the model. A larger model was used in the No.2 Ilift tunnel for pressure
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4measurements . Integration of the pressures measured at the attachment

incidence gives a lift coefficient of 0.103 and a centre of pressure at

x = 0.528 . The agreement in lift coefficient is very satisfactory, but the

discrepancy in centre of pressure position is still under investigation.

Further details are given in Refs.2 and 4.

The nonlinear theory of Roberts and Rundle could be expected to give more

accurate results than the linear theory, especially near the apex, where the

cross-sections are thicker. Integration of the pressures due to the nonlinear

theory over the wing gives a CL of 0.109 and an x of 0.556. The resultsc.p.
for the lift coefficient and x can be summarised in a table:c.p.

f

Roberts' Experiment- Experiment, by
Linear theory nonlinear balance integration of

theory measurement pressures

cL 0. I 0.109 0.101 0.103

Xc.p. 0.533 0.556 0.502 0.528
.

The differences in the values of cL and x obtained from the threec.p.
sources can be clarified by consideration of the lengthwise distribution of

cross-loading illustrated in Fig.7. This shows that the nonlinear theory is in

very good agreement with the experimental values from the apex back to

x = 0.75. However, it predicts much more load near the trailing edge than is

present according to the experiment, thus giving larger values for both CL

and xc.p. l

This effect is presumably largely due to the fact that the

calculation is for a potential flow and no account has been taken of viscous

effects.

The linear theory values for the cross-loading are in reasonable agree-

ment with the experimental values until x = 0.7 , although as expected, they

underestimate the experimental values near the apex. The linear theory also

appears to give reasonable agreement with the experimental values for x

greater than 0.85, but examination of the spanwise  load distributions (Fig.5b)

in this region shows that this agreement is probably fortuitous (see also

section 3.2).

Results from slender-body theory and its fully-linearized form, slender

thin-wing theory, are presented in Appendix B in order to confirm the source
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of the extra lift acting near the wing apex. This is shown to arise, within the

slender approximation, from the association of appreciable thickness and

appreciable cross-sectional camber.

3.2 The load distribution

A comparison of the loads according to the two theories and the experiment

is given in Figs.5 and 6. Figs.5a  and b show the spanwise  variation of the load

for the spanwise  sections x = 0.1, 0.3, 0.5, 0.7 and 0.9 , and Fig.6 shows the

variation of load with x for n = 0 (i.e. along the root-chord), q = 0.5

and q = 0.8 0

This comparison shows that the loads predicted by the nonlinear theory 5

agree closely with those measured in the experiment, except at cross-sections

behind x = 0.8 , where the experimental values are likely to be affected by

the presence of the boundary layer.

The loads predicted by the linear theory agree less closely with the

other two load distributions. The underestimation of the load near the apex by

the linear theory is marked, and again the loads do not agree near the trailing

edge. At other spanwise  sections, the linear theory gives less load at the

mid-semi-span than measured by experiment, but predicts the peak load to be

further outboard than either the nonlinear theory or the experiment. In the

integration of the local load to give the cross load ad , these effects

tend to cancel, thus producing a somewhat fortuitously good agreement

between the values of a(x) calculated from linear theory and measured in

the experiment.

3.3 The pressure distribution

The spanwise  pressure distributions on sections x =: 0.2, 0.5 and 0.8

are shown for both theories and the experiment in Figs.lOa  and b. Fig.lOa

confirms the close agreement between the nonlinear theory and the experiment

near the apex. Elsewhere (Fig.lOb) the detailed agreement between the pressure

distributions is poorer than that between the load distributions. On the upper

surface of the wing, the pressures given by the nonlinear theory are generally

much closer to the experimental values on the outer part cf the wing than the

pressures given by the linear theory, which agree better with the experimental

values near the root.

On the lower surface of the wing, the variation of the pressures measured

experimentaliy across the span is predicted better by the nonlinear theory than
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by the linear theory, but towards the rear of the wing the values of the
pressure coefficient given by linear theory are in closer agreement with
experiment than those given by the nonlinear theory over most of the section,
except near the leading edge. This lack of agreement near the leading edge is
to be expected since, as the leading edge is approached, the behaviour of the
linear theory pressure is dominated by the logarithmic singularity in the
pressure due to thickness.

An investigation was carried out to see whether the addition of second-
order terma in the pressure coefficient determined by linear theory would
produce results in closer agreement with the nonlinear results and the
experiment. The pressure coefficient was calculated using Bernoulli's equation
for zero Mach number, so that

C
P =

- 2u - (u2 + v2 f w2) (12)

where u, v and w are the disturbance velocities according to linear theory
in the x, y and z directions, non-dimensionalised with respect to the free-
stream velocity; whereas the usual linear theory expression for the pressure
coefficient is

C
P =

-2u . (13)

The pressure distributions so obtained at two typical cross-sections are shown
in Fig.11. These show that the inclusion of the second-order terms in
equation (12) does not give any consistent improvement. It is presumably
necessary to include also the second-order terms introduced through the
boundary conditions, as proposed by Weberl, to obtain a consistent improvement
over the wholly linear theory.

3.4 Effect of incidence

The results of the calculation of Roberts and Rundle are available for an
incidence of one degree above the attachment incidence, as well as at the
attachment incidence, and so the effects of an increase in incidence according
to the nonlinear theory can be examined. No reliable numerical method for
solving the integral equation of linear theory for the effect of incidence on a
slender wing in subsonic flow exists so far, though one is being developed by
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Hewitt and Kellaway*. In the real flow, separation from the leading edge was

found at a small incidence above the attachment condition, and is not

represented in these theoretical models. For the present, attention is confined

to the results of Roberts and Rundle.

Fig.4a  shows that, near the apex, the increment in pressure coefficient

due to an increase in incidence is almost uniform across the lower surface.

The increment in suction on the upper surface is on average of the same size,

but increases from the centre line to the leading edge. Further aft, Fig.4b,

the increment in lower-surface pressure also rises towards the leading edge.

Over the rear part of the wing, Fig.4c, the increment in pressure on the lower

surface falls close to the leading edge, actually becoming negative at x = 0.9,

presumably reflecting the existence of flow round the leading edge. At

successive rearward sections, the increment in suction on the upper surface is

concentrated more and more on the outboard part of the wing. Surprisingly there

is even a loss in upper-surface suction near the centre line at x = 0.9 due

to an increase in incidence.

The increase in the local load due to a one degree increase in incidence,

Aa.  s according to Roberts and Rundle, is given in Fig.12 for several cross-

sections. Also shown for comparison is the increase in load according to the

slender thin-wing theory of R.T. Jones', which is the same as the load on a

plane wing, i.e.

ah,rl> = 4uds l

,,j-q '
(14)

where o! is the increment in incidence (in radians).

Near the apex, the incremental load according to the nonlinear theory is

nearly constant across the span, but further aft it increases markedly outboard

from the centre line, finally falling as the leading edge is approached on the

more rearward sections. The slender thin-wing theory also predicts the outboard

rise in load on the thinner cross-sections, but near the leading edge its

predictions are dominated by the singular behaviour of (14). Because the wing

has a streamwise tip, with ds/dx  = 0 at x = 1 , the predictions of the

slender theory do not deteriorate appreciably as the trailing edge is approached.
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The lift, moment and cross loading for the theory of Roberts and Rundle

at one degree above attachment have been calculated as described in section 2.5,

and the lengthwise distribution of cross-loading is shown in Fig.13. The lift

coefficient has increased to 0.139 (cf.  section 3.1) and the position of the

centre of pressure has moved only slightly to x = 0.558. Thus the lift slope

acL ac is 1.736 compared with the experimental value2
I

of 1.574 and the slender

thin-wing theoretical value of VITA  = 2.175 . The nonlinear theory gives the

position of the aerodynamic centre at x = 0.568 compared with the experimental
2value of x = 0.543 and the slender thin-wing theory value of 0.563, obtained

from (14). Since the slender theory is substantially in error in its predic-

tion of lift-slope, its agreement with the nonlinear theory for aerodynamic

centre must be regarded as accidental. As was found for the attached flow

condition, section 3.1, the nonlinear inviscid  flow calculation predicts rather

too much lift, occurring rather too far aft, as would be expected from its

neglect of boundary-layer effects.

The real flow separates from the leading edges of the wing at angles of

incidence different from the attachment incidence, giving rise to further non-

linearities in the aerodynamic loading. This separation is not represented in

the theoretical models applied in the present comparisons, which are therefore

confined to the innnediate  neighbourhood of the attachment incidence.

4 CONCLUSIONS

At the design incidence, at which experiment I,2 confirmed that attached

flow was obtained, the linear theory design method 3 gives:

(4 Practically the same value for the lift coefficient as that measured in

the experiment2, but a significantly lower value than that given by the

nonlinear inviscid  calculation5 . This is apparently because viscous

effects in the real flow reduce the lift below the inviscid  value, which

is underestimated by the linear theory.

(b) An inadequate estimate of centre of pressure. The linear theory predicts

the centre of pressure to lie 2% of the centre-line chord further forward

than the nonlinear theory. However, losses of lift at the rear of the

wing due to viscous effects cause the experimental position to be ahead

of both theoretical predictions.

(c) A fair approximation to the lengthwise distribution of cross-loading.

The linear theory underestimates the cross-loading near the apex, where
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the sections are thick and cambered. Further aft the situation is less

clear, but near the rear the linear theory is predicting much less lift

than the nonlinear inviscid  theory, which itself substantially over-

estimates the measured loading 4 .

Cd) Local loads and pressures to fair accuracy. Inclusion of second-order

terms, calculated by linear theory, in the relation for the pressure

coefficient fails to give any consistent improvement.

The nonlinear calculation of Roberts and Rundle5  predicts the local

pressures measured experimentally at the design incidence very closely over

most of the wing, except near the trailing edge, where substantial differences

are introduced, apparently by viscous effects. Values for the overall

characteristics of the wing - lift, centre of pressure, lift-slope and aero-

dynamic centre - are therefore not given correctly. The information obtained

from the calculation was not sufficient to provide a useful estimate of the

lift-dependent drag at the design incidence.

The next step would be to see whether a calculation of the growth of a

three-dimensional boundary layer would resolve the differences between the

inviscid  theory and the experiment.
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Appendix A

DETAILS OF ROBERTS' GRID

Roberts' grid consists of 17 lines of constant x and 11 lines of
constant rl , and is shown on the right-hand side of Fig.].  The values of x
are 0.00541, 0.01498, 0.03806, 0.08427, 0.14644, 0.22222, 0.30866, 0.40246, 0.5,
0.59754, 0.69134, 0.77778, 0.85356, 0.91574, 0.96194, 0.98502 and 0.99459.
The values of x between 0.03806 and 0.96194 are given by the formulae

1x = T l(
- cos z

)
for n=2t015 .

The values of n are 0.0, 0.1305, 0.2588, 0.3827, 0.5, 0.6088, 0.7071, 0.7933,
0.8660, 0.9239 and 0.9659. These values of rl are given by

n = sin E
t )

for m=OtolO . (16)
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Appendix B

LIFTING EFFICIENCY OF THICK, CAMBERED SLENDER WINGS

A feature of the results reported here is that the apex region of the

wing produces more lift, both in the wind tunnel and in the nonlinear inviscid

calculation, than was expected on the basis of the fully linearized design

method. This Appendix shows that this result is consistent with the available

analytical solutions based on the slender body approximation. The relation

between the various theoretical models involved, all of which treat an inviscid,

attached flow, is conveniently represented in a table:

Differential equation: $
YY

+ $zz = 0 (1 - "2)+xx + +yy + 4zz = 0

Boundary condition:

in a mean plane slender thin-wing theory subsonic linear theory
(e.g. Ref.3)

on the body surface slender body theory surface singularity methods
(e.g. Ref.10) (e.g. Ref.5)

1 4

The design process used3 for the wing tested proceeded from a warp

surface designed by subsonic linear theory to have a certain lift coefficient

with attached flow at the leading edges and added a volume distribution in a

direction normal to the local cross-section of the warp surface. To use the

analytic results of Portnoy 10 for a slender half-cone, we have to invert the

process, obtaining a warp surface by proceeding equal distances along inward

normals from the upper and lower surfaces of the half-cone. By a familiar

result in the theory of conic sections, the cross-sections of the warp surface

obtained in this way are parabolic arcs. The forward and inverse processes are

not exactly equivalent, in the sense that applying them successively does not

regenerate the original surface, but it is proved in Appendix B of Ref.3 that

they are equivalent to second order in the wing thickness. In this Appendix it

is shown that the use of slender-body theory for the half-cone 10 predicts more

lift than the use of slender thin-wing theory for the parabolic-arc warp

surface, just as the surface-singularity method of Roberts and Rundle5  predicts

more lift on the thick cambered apex of the wing than the subsonic linear

theory design method3,

The results for the half-cone are obtained by taking the limit of

Portnoy's equation (28) as the thin wing of his configuration disappears into

the body. Then
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cL = K%, + UKM 2 '
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where K is the tangent of half the apex angle of the cone and a is the
angle of incidence of the upper,plane,  surface. M 1 and M2 are given by the

appropriate limit (Portnoy's parameter E -f 1) of equation (22) of Ref.10 as

M1 = 4(lT/G - 1) , M2 = 19Tr/9  .

To convert to a half-cone with its lower surface plane and at incidence a , we

need to change the signs of cL and a , giving

19-nCL = -pLa (17)

We can see at once that the lift-curve slope, acL/aa  , is slightly greater
according to slender-body theory, since in the slender thin-wing theory it

depends only on the planform  and CL = 2rKa for a plane delta wing. However,
we are more concerned with what happens at the incidence for which the flow at

the leading edge of the warp surface is predicted to be attached, according to

the slender thin-wing theory.

The warp surface with parabolic-arc cross-sections is equivalent to the

simplest of the wings for which solutions by slender -thin-wing theory are

quoted in Appendix III of Ref.11.  The first solution, with suffix 2, refers to

a wing whose surface ordinate is given by z2 , where

2-c
c s - 4n2 + 51111 - 2 ,

1

where =1 is a constant of proportionality. The same solution applies for a

wing whose ordinates differ from z2 by a function of y only, since such a

term cannot affect az/ax  . Hence the term in Id in this equation can be

omitted to give a wing with parabolic cross-sections:

z2 = - 2ClS(l + 2n2)  .

For the warp surface derived from the half-cone, it is clear that
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z2 (0) - z2(1) = s/2 ,

Appendix B

so that this particular surface is given by

I
5 = 8 - (18)

The incidence of the plane containing the leading edge is -z2(l)/x  and so

o! = 6cls/x  = 6Kc1  = 3K/4 . (19)

The lift at this attached flow condition is given by (19) of Ref.11 as

CL = 2nclK2  . (20)

The relevant comparison is between the lift coefficient of the warp

surface according to slender thin-wing theory, at the incidence for which the

flow is attached, given by introducing (18) into (20) as

cL = 0.251~K~  ; (21)

and the lift coefficient of the half-cone at the same incidence, according to

slender-body theory, given by introducing (19) into (17) as

& + + = 0.5471~K~  . (22)

The slender-body estimate (22) is over twice the slender thin-wing estimate

(211, which is a larger difference than that found between the two estimates in

Fig.7 near the wing apex. This is partly because the forward part of the wing

is not as extreme in shape as the half-cone. It is also likely that the

slenderness assumption over-emphasises the difference.

It should be pointed out that slender-body theory and slender thin-wing

theory give the same value for the overall lift of the wing, since, according

to both, this only depends on conditions in the plane of the trailing edge,

where the cross-section of the wing is just the straight segment assumed in the

thin-wing theory.
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The increase in lift near the apex depends on a combination of thickness

and camber. In general, thick uncambered cross-sections do not produce more

lift than thin ones (see e.g. Ref.12 for rhombic sections, unpublished work by

E.C. Maskell for biconvex sections and the well-known results for elliptic

sections). Highly cambered, thin cross-sections do produce more lift 13 at the
attachment condition than the thin-wing approximation would suggest, but this

does not account for the present result. Taking a conically cambered wing with

a cross-section in the form of a thin circular arc of height equal to a half of

its semispan, to compare with the parabolic arc described above, we find the

lift according to slender-body theory is given by equation (22) of Ref.13,

with B = 1 , i.e.

cL = ~(9aK/4  - 23K2/16)  ,

where a is the incidence of the plane containing the leading edges. Since

the difference between circular-arc and parabolic-arc camber does not affect

the theory to

attached flow

(191, and the

the first order in the camber parameter, f3 , this wing has

according to slender thin-wing theory at the incidence given by

lift is then given by (23) as

(23)

cL = 0.25rrK2  ,

which is actually identical with the slender thin-wing value (21).
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SYMBOLS

A

cD
C
DO

cL

cm
C
P

C

H (x>

J(x,rl)
K

L

R (X,Y>

'ii(x)

AR(x,y)

P
S

SUPS II
s w

ST
UYV,W

X c.p.

aspect ratio

drag coefficient

drag coefficient of symmetrical wing at zero lift

lift coefficient

pitching moment coefficient, based on centre line chord

pressure coefficient

centre line chord, taken as unit of length

see equations (IO) and (11)

see equation (9)

lift-dependent drag factor

overall lift

local load

lengthwise distribution of cross-loading (equation (2))

increase in local load due to 1' increase in incidence

planform  parameter: (wing area)/(span x length)

planform  area

upper and lower surfaces of wing

non-dimensional local semi-span

non-dimensional semi-span at trailing edge

components of disturbance velocity in x,y,z  directions, referred to
free stream velocity

non-dimensional Cartesian coordinates, Ox parallel to free stream,
OY to starboard, Oz upwards

x coordinate of centre of pressure

angle of incidence

Y/S (xl
sin -1 n
cos -1 (1 - 2x)
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