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ROYAL ATRCRAFT ESTABLISHMENT

AN TWPROVEMENT OF THE VELOCITY DISTRIBUTION PREDICTED BY
LINEAR THEORY FOR WINGS WITH STRAIGHT
SUBSONIC LEADING EDGES

by

D. Go Ran.dall, BeSce.

SUMMARY
When the supersonic flow over s non-lifting wing with straight subsonic
leading edges is calculated by thin wing theory, tne resulis are unacceptable
in a small region neer the leading edge. By satisfying the boundary condition
on the wing more exactly near the leading edge, a solution of the linearised
equation is obtained which gives plausible results there.
Llsewhere on the wing it gives results which are in agreement with thin

wing theory.
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EBrrata and Addenda

Page 7, second equation from bottom for x/4 read w/k; for
1 -1,
tan(x) read tan (X)'

Page 10, line 10, Delete the sentence beginning "It seems ..."
Line 16, Delete the sentence beginning "It is ......"
Replace by "It is seen that k is of order unity for most wings with
subsonic leading edges, Hence, it is likely that the last four
integrals in Equation (11) can be neglected for most wings with
subsonic leading edges",

Page 12, equations (17) and (19). For ¢, read 4. .
Throughout the paper, For sin n~! read simn™1,
The critical nature of the approximate solution of the integral

equation should be emphasized. Only in the limiting case of slender wings
(X -> 1) can the approximations made be justified,




1 INTRODUCTION

The assumptions and approximations made in deriving the linearised
equation of supersonic flow from the full equations of motion are so well
known that it is umnecessary to state them again, The only assumption of
interest here is that the deviations of the flow quantities from those of
the free stream aere everywhere small compared with the free stream speed.
This requirement is too stringent, and the linearised equation can sometimes
be used to determine a flow field containing regions in which the deviations
are not small, provided that these regions are of sufficiently limited extent.
The quantities predicted for such regions may then be considerably in error,
but the quantities elsewhere will be given to an acceptable accuracy.

Perhaps the most familier example of the application of linear theory
to a flow field containing small regions where the theory is invalid is the
determination of the supersonic flow over a non-lifting sweptback wing
(whose profiles are not cuspidal) with straight leading edges. At a sonic or
subsonic leading edge the component of velocity normel to the edge is zero
and, in general, the deviation of this component from its value In the free
stream is not small compared with the frec stream speed. Near the edge it is
not permissible either to lincarise the eguations of motion (except for
slender wings) or to replace the boundary condition on the wing by the usual
simplified condition, so that the predictions of linear theory in a small
region containing the leading edge are likely to be unacceptable, In fact,
the component of velocity (in the plane of the wing) normal to the edge is
infinite according to linear thcory.

Large local errors in the flow quantities should be of little conse~
quence when only the forces acting on the wing are required, although the
predictions of even these, using linear theory, are of doubtful value in
certain circumstancesl, When, as in boundary layer calculations, it is
necessary to know the valueg of the flow quantities all over the wing, linear
theory ceimot be applied directly. Either non-linear differential equations
must be solved, or a semi-empirical method must be developed which gives
acceptable results in the vieinity of the leading edge, but does not signifi-
cantly alter the linear theory results elsewhere.

This Note describes such a method. A solution of the linearised
equation is found wrich,at the leading eclge, satisf'ies the full boundary
condition on the surface of a certsin non-lifting wing with straight subsonic
leading edges. This treatment is inconsistent (except for slender wings
because it retains secoad order terms in the boundary condition, but drops
them in the differential cquations; nevertheless, the flow quantities obtained
by using it behave correctly near the leading edge while they do not signifi=-
cantly differ from the linear-theory values over mogt of the wing. The problem
therefore, is solved by one of thosc methods the sole justification for which
is that they give plausible results which can be checked by experimente

2 DERIVATION CF AN INTEGRAL EQUATION FOR THE SOURCE DISTRIBUTION

X,Y and Z are rectangular Cartesian coordinates; the free stream flows
in the X direction, The origin of coordinates is the apex of the wing, which
is symmetrical sbout the planes Y = 0, Z = O, The equation of the upper
surface of the wing is

5(X - Y tan 4), (1a)
5(X + Y tan 4), (1b)

Y >0, Z
Y<0, Z

i

fl

A is the sweepback angle of the leading edge; 0 is a quantity small compared
with unity., The wing has a straight leading edge and a wedge profilc.



A4 disturbance velocity potential, ¢, is introduced; ¢ is such that

velocity in X direction = U(1 + ¢X),
velocity in Y direction = UgivY s
velocity in Z direction = U¢Z,

where U is the free stream speed. ¢ is assumed to satisfy the linearised
equetion of supersonic flow,

B2¢XX=¢H+¢ZZQ

B? is written for (M2 ~ 1), M being the free stream lMach number. Only sub-
sonic leading edges are considered, so that B cot A < 1,

¢X’ q&I and ¢Z must vanish everywhere outside the Mach cone from the

apex of the wing, and the flow must be tengential to the wing swface. The
latter requirement yields the following boundary condition to be satisfied
on the specisl wing surface considered.

5(1‘“‘5}{)"5% ten A - ¢, = 0. (2)

This differs from the usual form in that ¢_ is not ignored altogether. No
significant difference is found when this 1s satisfied on the actual wing
surf'ace rather than on the plane Z = 0, and the latter procedure will be
followed (as in thin-wing theory). Eqn.(2) is the condition on that part
only of the wing for which ¥> 0.

Making the transformation

o X=BL _X+BL (3)
=T 2B YT V2B v BT A

the linearised equation becomes

2 ¢xy = ¢ZZ ’ <1+>

and the boundary condition Eqn. (2) becomes

1+1B+C°tA¢-—1B_°°tA¢ = ¢
V2 Becot & Px TV2 Bceot & Py TPz
on z=0 for Y320 (5)

In these coordinates the equation in the plane Z = O of the trace of the Mach
cone from the apex is

x=0, for Y >0 y=0, for ¥ € O,



Eqn.(la.) is solved by distributing sources over the wing;

J *

i

f(.xy.V)d.Y dx
6 = _,1_/[ 12997 1 ™
5 [a(x - %) (y-y1)~22]

f gives the source distribution, and S is that part of the wing surface cut
out by the Mach forecone from (x,y,z)s On the wing surface, which is to be
replaced by z = 0, it is known that

b, = f(x,3), (72)
12 £0epov,) 3y &y
¢ = - o T (7b)
x max//ux_x,,) (v - 3,)1°
£(x,,y,) dy, dx
== - 1.2 (! L L T e (70)
y Ve ay[/ (= =2) (v =y))

From the symmetry of the problem, f(x,y) = f(y,x), and it suffices to consider
points for which x & y» The boundary condition is then Egn. (5)s

In Fige.1 the area ABCD is S. 4, B, C, D, E, P, G and H are respectively
the points (0,0), (x,Mx), (%,7), (\y,y), (%, ) (7‘-3’:7‘-3’): (Ax,x) and (7\35:7\3{-)'

It is seen thatb
Ay F/A
// f(x1,y1) Wy 8y =/ f £(x,y,) ay, ax,
[( 2

em) o)L g L) (v - ¥)I%

B

-+ 1
[(x-x) (v -y))° / [(x--X)(y--y)]'2~
1 1

MY %, ©

if' the integration with respect to 4 is performed first, and that



x 3
ff £0xy09,) oy @ ] Pty ax ay,
; [(x-x) (v -5,0° L (v - y1)]§

4 (x-—x

H
f(x»l.’YJl) dX1 dy1 : +7X f f(y19x1) dx1 dy’l
A

x=-x) (y - y1)]%

Fr f(y1,x1) dx1 dy1
+
X[y-[ [(x-x) (v -v)]

if the integration with respect to x, is performed firste From the first of

these formulae, after integration by parts, followed by differentiation with
respect to x, it can be shown that

(ME
-

// f(x1’y1 Ay, &, . f(x) dxy
[(x -x) (v -3)12 [(x = =) (v = x/3)

[N

dx

- () /35 1 [[ x1 (x1,y1)
d [x=-x) (v - [(x-x) (v - :q)]

N}

/./ [(x = x) (.V - y1)]2

S‘i and S are respectively the areas AECD and ABE in Figel., Since the flow

field is comca.l with A as apex (there is no determining length in the
problem), £(\t,t) is constant; it has been written as £(A). Hence,

- £(xy,5,) dy, 2 £(») AN
3 V) Wy &y BRI
“”‘fsfux-xp G-wF A &)

1 % Ty, (x,,y,) d&x, dy
=272 £()) sinh <_57_?\___x_ﬁ> + ff (x1 11 3 :,l_
54

[(x-x) (v - 5,017

+J x1(y1,x) d}c d.Y1
[

(- =) (v - y1)]2

G



It follows, from Eqn.(7b), that ¢, will become infinite along the leading
edge (x = Ay) unless £(A) = 0. Assuming that this is so,

- 1/ f’% .
var : [(x=x) (v -5)17

O L) e )]

[NE

1 2
Similarly,
] fy1 (x1:y1) dX1 d.V1 ] fy1 (Y13X1) d-x1 dy1
.- =
oo Vem [(x-=) (v =5)]" van [(x=x) & -5,)1%
51 %

Polar coordinates are now introduced;

'x =r sin 6, y = r cos O, x, =r, sin 61, y, =1y cOs 61 .

f is a function of 8 only; f(r sin 65 r cos 6) will be written as £(0), so

that £(r cos 0, r sin 8) is f(n/2 ~ © Then,

)
r (v, = SE2ri(e),
1
in o
fy (x1,y1) = "S'}'_.%,Lf'(a):
1
cos 8 ¢ [ X _
fx1 (pomy) = = 1 <2 e),
¥ 1°™ r 2

Dashes denote differentiation with respect to 6. ALAfter an integration with

respect to Tyo

4 4
1 %/ ) 4 (cot 61)2 + (cot 0)2
¢X o= e m f d01 f'(e1 (Cot 61)2 10g 1 N
2 . 7 . 2
o, | (cot 61) (cot 8)7]
1 1 z
1 tan(" /) , : )%_ (cot €)% + (cot 0,)°
+ ae f'("‘ - 6 > cot © log T T
Vor 1 2 1 1 (cot ©)% = (cot 61)2
XVL
Hence,
= % z
] /1 L (cot 61)2 + (cot 8)2

tan A 1
Pl 1 1
1 tart (7/2) . - 1 (oot 0% + (oot 8,)°
* Tax ] % f<'§ “61>a'5‘ UCO‘? 09" Tog z z
1 (cot 0)2 = (cot 61)
’I\'./)_*_

(8)



1
Putting u = (tan 6)—5, u = (tan 0, )2 in the first 1ntegral, u, = (cot 01)2
-1

in the second integral, and wr:.t:.ng f(u) for f(ten u ),
1 1
T4un
] 2 (1 M & b
b, = Tom du, (v, ) du, { oy log To,=dl / du, £(u,) u, u, log T,
1 i
=g )
* » (92)
Similarly,
1 1 a U, +u 1 a (1 1+uu1
Y = Vo [ auy £0) 7, (2 208 iy } * T [ auy £y, a‘u';{a‘; oz 1_uu1}-
P
> (5b)

Using Bqne(9a), (9b) and (7a), the boundery condition (5) becomes

B + cotd Uy
{"*%ﬁ‘%ﬁ?ﬁ 2wy 20y) g o 208 ey |

1

7\5

1400
_a_ 10
2n B cot A au, ulg']u J
1 H

A
§B+co1: A!
- [ du, f(u1
',\‘2

_(B:QQ.’G_AL du, f(u)___—ulo bl
ZﬂBcotA g‘ l

"2 B cot A 1--m,1,1

v,
1 1 du1 u1
7L2
= f(u)o
4
(M <ucgi). (10)

This is an integral equation for the source distribution f(u)s A is given

hy Eqne (6).



sides differ by terms of order no higher than 62. The solution (in this
sense) for A = O (sonic leading edge) is

20 . =1 u
£ = o sin

~T
2

L§B2'+ 1) 2-}
55 + U

that this is a2 solution is shown in the Appendix to Refs1.

A solution of Eqns(10) can also be found if M is not too close to zero.
Eqne(10) can be written

5{} LB+ cot )

2% A2 B cot A

1
£(w, )du, _ (B + cot Nu /

YW m B oxaZ B cot A
A

f(u,])du1

ol

1 1

1 1
AZ(B-cot 4) / £(u, )du, _ M2(B-cot A)u / £(uy)dy,

1 —-uu1

" OB cot A u, = u 27 B cot A

"2 nE

1
BECER-1c:79 R ){__1_ Log 1 AT A
21 B cot A Uy P\ L 2 & u - uy (uay) T u, Zu1—u5

2
] ' ANY
A

1

4 1
_(B+cot / au, £(u ){ e 1 _{(u-2%) }
1 1

log - T
2%.B cot A 1= uw, T+ uy 7‘2(1"%”])

nNj-

A

fB- c ot A}
+

1
u, +u u, (u,l -A%)
2rB cot A

du-1 f(ual){lOg lu/l_ul + u1+u - (u1-u)

%lk\ -

e

* 2% B cot A u.,l 1~uu1
X 1

‘ 1+uy, *
(B~ cot A) 1 1 u u _ wu= 22
/ duy f<u1){ 7 108 T, T W Clean) T }:l
4 u, 1 1 1
2

= f(u) . (n%‘um). (11)

If A is not too close to zero the only integrals which do not remain of at
most order & throughout the range of u ere the first and third. (There would
be difficulties near u = 1 if these two integrals only were retained and the
second and fourth integrals must be kept also). The remaining integrals can
be neglecteds Even if f is put equal to & everywhere (the zero of f(u) at

u = ¥\ being ignored) the last four integrals combine to give an expression
always of order & (for A not too close to zero),

N



5 (B t A L 1
T 2% B cot A @ ;-\%co ) + A% (B - cot A):J log (u + A2)
5 |,k 1 1
* ST oot d | M (B + cot A) +"?'\‘;£_(B-cot A)]log (1 + 22u)
7B \Z

If M tends to zero the only term in Bqns(12) which does not remain of
order & is

e Laearl (1)
A2 1+ A%y

The denominator ensures that Eqn.(13) like Eqn.(12) is finite when A = 1.
The largest value of Eqmne(13) occurs when u = v\ , this value being

ko .

_5(B + cot &)
A

1lo =
2% B cot TAOETTL T

?\2

It seems likely thet the last four integrals in Eqn.(11) can be neglected
provided that k is of order unity. In Fig.2 curves have been drawm of MU
(the free stream liach angle, i.e. cot~) B) against A; on these curves

1
2
(B + cot A) 1 log(zx > I

T 2n B cot A A2 1T+ A 7

k teking the values oo, 245, 0ok and O k = oo is given by the line A = p
(corresponding to sonic leading edges) and k = O is given by the lines
A= 7/2 and p = /2, It is seen that the last four integrals in Eqn.(11)
can be neglected for most wings with subsonic leading edges.

Eqn. (11) can then be written

1
‘ 1 ' 1 u 1] _
6(;1 - - —3 du, f(u1) {u,l—-u * 1_uu1’§J = f(u).
7{1-B° cot™ A, sind cos A 7\%
(A cuc<g1). (14)

-10=



Putting 1
1 Y-
u = A2 = A
== o= v, —1 =V,
1 = A% 1 = A2
f{u
(u) = &) ,
{1 - BzcotzA) sind cosA

, (15)

It
m

i <

x(1 - B2 ot A) sin A cosA

Ean. (14) becomes

oo 1 1 i
8{1 ._/ g(v1)dv1 .—[ g(v1){7v+(1-7» )v}dv1 ] - a) .

o * =z %
1 o (1+A%) - 7\2(v+v1) - (1-—7\")1}"«3‘

(0<svet).

The solution of this equation for small v is the same as that of

H S -

since the szcond term is then of order g, The latter equation is the integral
equation for the source distribution which gives the incompressible flow past
a wedge of angle 2e and length unity; the solution, for small values of v, is

g = &V .,

1 A
Hence, remembering that u = (tan 6)% = (x/y)2, the solution of Equ.(10),

when x/y is close to A, is

-t



From Eqne (7a) s

6 = ﬂfﬁﬁ_;_?ﬁ] ; (16)

from Eqn. (5),

1+71_ B + cot A 1 B~ cot A [g le -7\ (17)

5 Bootd Pn V2 Booth 'y | ;. qB

In the plane z = 0, the flow velocity in the direction normal to the leading
edge is

) B sin A + cos A B sin A = cos A
U Lcos A+ 75 % g, = 755 ¢y_l, (18)

and at the leading edge this vanishes because of Eqne(17)s. Since Eqn.(16)
also vanishes at the leading edge, the velocity there is parallel to the
edge,

The above results give the velocities at and very close to the leading
edge., Thin wing theory provides acceptable results for the velocities over
most of the rest of the wing, and the problem is reduced to finding a
plausible way of linking up the two sets of results. On thin wing theory
Egn.(17) becomes

1+_1_ B+co’cA¢ a1 B-—cot./\¢
V2 Boot A "n V2 B cot 4

2
o 61 sin h“l< X;\ry) 2(1-cot Alf) sin h 1/ oy
2 2.7 *= 2 2.2 \y-x)
n(1=B“cot”A) sin fAcosh 7n{1-B cot"A) coth

N

X 2w "

iSTE
L
red
| sl
[V

- (sin‘2 A - cos® 4A) elog
1 = A2 1 = A2

1+ & log

1 1 1
e log| (X/y)2 + 7\2] + (sin2 A~ 0052 A)elog [1 + (L‘/y)z]

1

A
+ 2 5 cos2ilog (1 - A3, (N < F/v 1) (19)



The right hand side of Eqn.(17) (which holds for X/y close to A) may be
expanded in the form

b

=,
m
A

1

X/\2 o 32 X/\2 A2
[ ~j =1+ elog-i-m——-rk—-*-.... (20)

1 =%
Comparison of Egne(19) with (20) suggests writing

>4

A 1
1 B + cot A 1 B =~ cot A X/y)2 AR
1 Brootd TW¢=1“ML—’"

VZ Booth ™ *VZ Boot & .

N+

&

- (Mx ..
+ (:sin2 A - 0032 A) e log 1———(—%— + € Llog [ (X/y)% + A%]

1 -2

5 = L
- (sin2 A~ cos® Melog [1 + (?‘x/y)z] - 2¢ cos® A log (1 = a2)
(21)

everywhere on the wing. Eqn.(21) is spproximately the same as Eqn.(17) if
X/y is close to A; on,the other hand, Eqn.(21) is approximately the same as
Eqne (19) if (¥/y)2 = AZ is not too small. Therefore Eqne(21) will be used
as a relation between ¢y and ¢y for all points on the wing. (At the leading
edge the velocity component normel to the edge is then no longer zero, but it
is a small quantity of order &).

A sscond relation between ¢ and ¢y is obtained by considering the
component of velocity in the direction parallel to the leading edge., This
component is

. ) 1 =B cot A 14+ B cot A
U sin AL’I + T5F ¢x + 75 B ¢y] s (22)

and, on thin wing theory, thig is

. ) 1
U sin AE b cob A s ( “‘m> J . (23)
2 2 2 y =
71 = B cot™ A)

Egn. (23) gives plausible values everywhere over the wing., It will be assumed
that Eqn. (22) and (23) are equal on the modified theory also, so that



2.
1/ &\
y=Ax,

—-’ Lo
+6 T sin h

2
x(1-B2cot2 A )

4
A /2
-2 e cos A sin A log 1.;*_1__111,. .

51—Bco‘t.{l)¢ + 51+Bco‘bA2 s
2Bcot A "x 2Bcot A 7y

1~ (M2
(24)

Eqn. (21) and (24) give
X/ E
1= (M/y)%

g, = 2 ¢ cos® A sin A (B - cot 4A) log 1+

i 1 €
(xﬁl)z - kz]
1 =A%

+71-§cosAsinA(1 + B cot 4) g_
1

(N /p)E !

-1 - (sinZA - coszA) slogl-L-/-g;— ~ e log [(¥/y)% + A%]

1= A% . .

4

i A
+ 2€eccos” Alog (1-22) + (sin2 A - COSZA) e log [1 + (?‘X/Y)zjl

.
AX /N2
¢y = = V2 & cos® A sin® A (B + cot 4) logl—%
1= (M/y)®
1 1€
£X6:22 - xz‘jl
1 =A%

“'}2' cos A sin A (1 -BcotA){L

1
- (AX/Z 1 1
=1 = (sin® A = cos? A)e log -L——-—(~4ﬂ- - elog [(¥/y)% + AZ]
)\'2

1'—

1 1
+2ecos” & log (1-22) + (sin®A "COSZA)E log [1 + (J\x/y)z]} .

3{ equations (6) and (15)

A and €& are given b

¢_ comes from Eqne(16),
x and y are defined by Eqn. (3

rgspectively ;



From Eqn. (18) and (21) the velocity component on the wing in the
direction normal to the leading edge is, apart from a factor U cos 4,

B % ; ° Ax %

X - - 2

LML—%—J - (sin2 A - cos® A) g log 1= {y)
1 - A

/NE o . 2 2 AK /T
-elog [(¥/7)2 + M®] + (sin” 4 - cos™4) elog [1 + (Y/y)?]

i
+ 2 ¢ cos® A log (1 =A%) . (25)

As already stated, this does not vanish at the leading edge but hes a value
of order & there. If it is necessary for this component to vanish at the
edge, this can be achieved by adding to Eqn.(25)

1

1 1€
- (X/N2 o 02 1 2
8{1 - L-LAZL—-—ILJ }{1og (222) + (sin2 A~ 0032 A) log 11++?;\'
1 - 7\.2

1
- 2 cos® A log (1 = 7»2)} . (26)

Ban. (26) is of order 52 over most of the wing, but the sum of Eqn.(25) and
(26) is zero at the leading edge. The velocity component on the wing in the
direction parallel to the leading edge is given by Eqne(23), and the
component normsl to the wing by Eqn.(16)e

b RESULTS AND DISCUSSION

Some results have becn obtained for symmetrical wings whose upper
surfaces have equations of the form of (1a) and (1b).* The free stream Mach
number was chosen to be V2 (iec. B = 1) and & to be 0.1; four values of 4
were chosen, 80°, 70°, 60° and 50°.

In Fige3 the value of the velocity component on the wing in the direction
normal to the leading cdge is plotted against (X cot A = Y)/X cot A + ¥).
(The latter quantity is zero at the leading edge and unity at the centre 1ine).
Only that part of the wing for which ¥ > O is considercd. The figure shows
the values obtained by using thin-wing theory (broken line) and those obtained
by using the modified theory of this notc (full line)s For all fouwr valucs
of A there is very little differcence between the two curves except for a very
small region ncar the leading edgee As X/Y tends to tan A the velocity tends
to negative infinity on thin-wing theory and to zero on the modified theory,

*The method can be extended without difficulty to wings with profiles
vhich orc sharp at the leading edge but which have equations more complicated
than (12) and (1b). The extra terms appesring in Ean.(5) can be treated by
ordinary linear theory without any difficulties arising at the leading cdge.



These results need very little discussion, It is, perhsps, advisable to
repeat that the modified theory developed in fthis note cannot be Jjustif'ied
rigorously, (except, perhaps, for slender wings), because it neglects
second order quantities in the differential equations of motion and, at the
leading edge, retains them in the boundary condition on the wing. The main
justification for the method is that it predicts plausible and continuous
values for the velocity on a straight-edged wing everywhere, including the
region near the leading edge.

LIST OF SYMBOLS

1
B - 1)%
£ Source disgtribution
. £(a)

XY

z
(1 - B2 cot® A) cos A sin A

k Defined in section 3
M Free stream Mach number
1
2 2% , 2 2.
r,r (== +50)7, (%7 +57)
1 1 1
) That part of the wing surface cut off by the Mach forecone from (x,y,z)
S1,S2 In Pig.1, regions AECD and ABE respectively
U Free stream speed
1
u (tan 6)%
u, Defined before (9a)
1
v u = A°
1 -2
1
u, =AZ
1
v, —
1 -\?

X,Y,Z Rectangular Cartesian coordinates defined in section 2

x,¥,2 Defined by (3)
%1534 Variables of integration

) Defined by (1a) and (1b)

5

®

2 .2 .7 .
(1 = B cot™ A) cos A sin A

~16-



LIST OF SYMBOLS (Contd.)

6,0 tan™! X/y, tan /vy

1
A Sweepback angle
A (1 =B cot 4)/(1 + B cot A)
o) Disturbance velocity potential, defined in section 2
REFERENCE
Ref.No, Author Title, etce
1 Randall, D.G. A technique for improving the predictions of
linesrised theory on the drag of straight-edged
wings.

C.Ps 394 January, 1957

WD, 2078.0.P.U18.K3  Printed in Great Britain V!~



THIS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM



FIG. |. GEOMETRY OF THE WING.
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