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lWNKARY 

When the supersonic flow eve, v a non-lifting wing with straight subsonic 

leading edges is calculated by thin wing theory, tne results we unacceptable 

in a small region near the leading edge. By satisfying the boundary condition 

on the wing more exactly near the leading edge, a solution of the linearised 

equation is obtained which gives plausible results there. 

Elsewhere on the wing it gives results which are in agreement with thin 

wing theory. 
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Errata and Addenda 

Page 7, second equation from bottom for x/4 read x/4; for 
tan(:) read tan-'(i). 

Page 10, line 10. Delete the sentence beginning "It seems ..," 
Line 14. Delete the sentence beginning "It is 11 . . . ..o 
Replace by "It is seen that k is of order unity for most wings with 
subsonic leading edges. Hence, it is likely that the last four 
integrals in Equation (11) can be neglected for most wings with 
subsonic leading edges". 

Page 12, equations (17) and (IT). For 6, read $x . 

Throughout the paper. For sin h" read sinh". 

The critical nature of the approximate solution of the integral 
equation should be emphasized. Only in the limiting case of slender wings 
(h -+ 1) can the approximations made be justified. 



1 IJJKCRODUCTTON 

The assuq$ons and approximations made in deriving the linearised 
equation of supersonic flow from the full equations of motion are so well 
know-- that it is unnecessary to state them again, The only assumption of 
interest here is that the deviations of the flow quantities from those of 
the free stream are everywhere small compared with the free stream speed. 
This requirement is too stringent, and the linearised equation can sometimes 
be used to determine a flow field containing regions in yrhich the deviations 
are not small, provided that these regions are of sufficiently limited extent. 
The quantities predicted for such regions may then be considerably in error, 
but the quantities elsewhere will be given to an acceptable accuracy, 

Perhaps the most familiar example of the a&ylication of linear theory 
to a flow field containing small regions where the theory is invalid is the 
determination of the supersonic flow over a non-lifting sweptback wing 
(whose Erofiles are not cuspidal) with straight leading edges. At a sonic or 
subsonic leading edge the component of velocity normal to the edge is zero 
and, in genera, the deviation of this component from its value in the free 
stream is not small compared with the free stream speed. Near the edge it is 
not permissible either to linearise the equations of motion (except for 
slender wings) or to replace the boundary condition on the wing by the usual 
simplified condition, so that the predictions of linear theory in a small 
region containing the leading edge are likely to be unacceptable, In fact, 
the component of velocity (in the plane of the wing) normal to the edge is 
infinite according to linear theory. 

Large local errors in the flow quantities should be of little conse- 
quence when only the forces acting on the wing are required, although the 
predictions of even these, using linear theory, are of doubtful value in 
certain circumstanccsl. When, as in boundary layer calculations, it is 
necessary to know the values of the fisv~ quantities all over the sing, linear 
theory cannot be applied directly. Either non-linear differential equations 
must be solved, or a semi-empirical method must be developed which gives 
acceptable results in the vicinity of the leading edge, but does not signifi- 
cantly alter the linear theory results elsewhere. 

This Kate describes such a method. A solution of the linearised 
equation is found ;&ich,at the leading edge, satisfies the full boundary 
condition on the surface of a certain non-lifting wing with straight subsonic 
leading edges. This treatment is inconsistent (except for slender wings) 
because it retains seco,ld order terms in t!le boundary condition, but drops 
them in the differential equations; nevertheless, the flow quantities obtained 
by using it behave correctly near the leading edge while they do not signifi- 
cantly differ from the linear-theory values over most of the King. The problem 
therefore, is solved by one of those methods the sole justification for which 
is that they give plausible results which can be checked by experiment. 

2 DI3RIVI;TION OF Ai'! IN'I3GRii.L EQUATION FOR THE SOURS DISTRIBUTTON 

X,Y and Z are rectangular Cartesian coordinates; the free stream flows 
in the X direction. The origin of coordinates is the apex of the wing, tvhich 
is symmetrical about the planes Y = 0, 2 = 0. The equation of the upper 
surface cf the ;Jing is 

Y>O, z= 6(X - Y tan A), (14 
Y<O, z= s(x + Y tan A). (lb) 

fl is the sweepback angle of the leading edge; 6 is a quantity small compared 
with unity. The wing has a straight leading edge and a ITedge profile. 
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k disturbance velocity potential, $, is introduced; # is such that 

velocity in X direction = U(l + $L 

velocity in Y direction = wy9 

velocity in 2 direction = U&p 

where U is the free stream speed. $ is assumed to satisfy the linearised 
equation of supersonic flow, 

B2 is written for (&I2 - I), M being the free stream Mach number. Only sub- 
sonic leading edges are considered, so that B cot A < '!a 

$, $ and $z must vanish everywhere outside the Mach cone from the 
apex of the wing, and the flow must be tangential to the wing surface. The 
latter requirement yields the follo<fing boundary condition to be satisfied 
on the special wing surface considered. 

(2) 

This differs from the usual form in that $ is not ignored altogether. No 
significant difference is found when this ?s satisfied on the actual wing 
surface rather than on the plane Z 
followed (as in thin-;Ang theory). 

= 0, and the latter procedure mill be 
Eqn.(2) is the condition on that part 

only of the wing for which Y> 0. 

Making the transformation 

X - BY X t BY 
X=,-B Y=-zB z=b 

the linearised equation becomes 

2 +w = (bzz 9 
and the boundary condition Eqn.(2) becomes 

' 
1 B t cot A 

+E B cot A 

(3) 

(4) 

on z=O for Y>O (5) 

In these coordinates the equation in the plane 2 = 0 of the trace of the Mach 
cone from the apex is 

x = 0, for Y 2 0; y = 0, for Y c 0. 



' Eqn.(4) is solved by distributing sources over the wing; 

f' gives the source distribution, and S is 
out by the Nach forecone from (x,y,z). 

that part of the wing surface cut 
On the wing surface, which is to be 

replaced by z = 0, it is known thii 

#z = f(X,YL 

9, = -7&x$ [( JJ 
fkg ,Y,) dY, wj 

-r 

S 
x - x,> (Y - Yp 

(74 

(7c) 

From the symmetry of the problem, f(x,y) = f(y,x), and it suffices to consider 
points for wiiich x 4 y* The boundary condition is then Eqn. (5). 

In Pig.? the area ABCD is S. A, B, C, D, 
the points (O&h b,~), (%Y>, (~Y,Y), (x,x), 
It ii seen that 

/I- 

fb, ,Y,) dY, dy 
r 

. lb - 
S 

x1) (Y - Yp 

E, I?, G and H we respectively 
!hy,h~), (h,x) and b&de 

x x x Y 
+ 

,I! [( 

f(Xj,Y,) dYq bj ,' f(Yq ;1xJ dY.j k, 
I-+ -I 

x - x,) (Y - Y,)1' o LA! , Lb- x,) (Y - Y,P ’ 
1 

if the intesation with respect to y, is performed first, and that 
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f(Yj 3x,> b, dYq 
f 

Eb - XI) (Y - Y,)F 
? 

if the integration with respect to x4 is performed first. Prom the first of 
these formulae, after integration by parts, followed by differentiation with 
respect to XJ it can be shown that 

X 

- h f(h) 
o [(x-x,) (Y-xx,)F * [(x-x,) (Y’YJIH i 

dx 

I is 

fxq cx, >Yd > 
1 

% * 

Sj and S2 are respectively the areas AECD and ABE: in Pig,?, Since the flow 
field is conical with A as apex (there is no determining length in the 
problem), f(ht,t) is constant; it has been written as f(h). Hence, 

fby ,Y,) dyd h, 2 fb) & 

Lb - 
T = 7 sin h 

x1> (Y rr Yp A" 
s 
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It follows, from Eqn, (7h), that & will become infinite along the leading 
edge (x = hy) unless f(h) = 0. Assuming that this is so, 

#x =d7k JJ 

fx, (x, ,Y,) b, dY, fx, (Y, 3x,) k, dY, 
I- 

[(x-x) (y 
sl 

I 
Tk f( 

- Y,p- JJ 

s2 
x -  “‘1 (Y -  Y,V l 

Similarly, 

tiy = 
iJ 

fy, (x, JY,) k, dY, 

-& [( 

fYl (Y, 3x,) k, dY, 

Tk [( JJ 
f l 

sl 

x - x,1 (Y - Y,F 
s2 

x - “1) (Y - Y’P 

Polar coordinates are now introduced; 

x = r sin 0, y = r cos 0, x = r I I sin 0,) y, = r, DOS 0 
I l 

03) 

f is a function of 8 only; f(r sin 0 r cos 0) will be written as f(0), so 
that f(r cos 0, r sin 0) is f(n/2 ti de Then, 

fXi (X,,Y,) = q f'W, 

fy, (x,,y,) = y f'(0), 

fx, (y, ,X1) = * f' (; - 0) , 

fYl (+x1) = y f' ($ - 0). 

Dashes denote differentiation with respect to 0. After an integration with 
respect to r,, 

, 
X/4 

0, = b in 
T- J tarA 

de, f'(0,) (cot e,+ log 
(cot 0 )+ + (cot e+ 

1 (cot 0,)" I - (cot *)+I 

tad%4 : (cot e+ + (cot e,+ 
(cot e,)-- log - 1 

“/4 
(cot e+ -  (cot e,)H l 

Hence, 

Y4 
1 

$x = ?k 
s 

do, fb,) & 

tm-'h 
1 c 

1 

( cot e,y log 
(cot e,+ f (cot e)2 

I 
' 3 [(cot 0,)2 - (cot p-1 
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Putting u = (tan a)*, ul = (tH, 6,)' in ti>e first integral, y1 = (cot 0, > i 
-1 2 

in the second integral, and rxiting f(u) for f(te.n u ), 

1 

i 
du, '(u, 

A& 

du, f'(u,) & 
I 

@Y = 7% duq fb,) +- 
1 

A" 33 (Yb) 

Using Eqnr(Va), (Vb) ald (Ta), the boundary condition (5) becomes 

&-I*- 
C 2n B cot A 

I 
f(u ) d ‘u log 

c 2 du, 1 

' (B-cot A> 
J 
$ 

c 
L - 2x B cot A u1 

= f(u). 

3 (h G u 6 I). (‘10) 

This is an integt?al equation for the source distribution f(u). h is given 
w m-m. 



sides differ by terms of order no higher th,an 62. The solution (in this 
sense) for h = 0 (sonic leading edge) is 

26 -1 u 
f = -y sin J. ; 

[!B2 '* I)6 + 43' 
2B 

that this is a solution is shown in the Appendix to Ref.1. 

A solution of Eqn,(lO) can also be found if h is not too close to zero. 
Eqn.(lO) can be written 

+ 
(B- cotd) 
2nBcot A d”-1 f(y) 1% c u +u 

J&i-[ 

= f(u) . (A4 rl; u 6 1). 

If h is not too close to zero the only integrcals which do not remain of at 
most order 6 throughout the range of u are the first and third. (There would 
be difficulties near u ;7 I if these two integrals only were retained and the 
second and fourth integrals must be kept also). The remaining integrals can 
be neglected. Even if f is put equal to 6 everywhere (the zero of f(u) at 
u ={I, being ignored) the last four integrals combine to give an expression 
always 0 f order 6 (for h not too close to zero), 

-Y- 



b 
27~ B cot A c 

y + 7~' (B " cot A) log (u + A$ ] 

6 ~^ 
* 27c B cot A 1 ?L' (B + cot A) + 4 (B - 

A' 
cot A) 

1 
log (I + h u) 3 

(12) 

If h tends to zero the only term in Eqnr(12) which does not remain of 
order 6 is 

1 

L 6(B + cot A) I u + ?F 
2% B cot A 2 log T l 

I  +h2u 

The denominator ensures that Eqn.( 13) like Eqn.(l2) is finite when h = 1. 
The largest value of Eqn. (13) occurs when u = f/n, this value being 

I 6(B + cot Al 4 log 2X& 
27c B cot A no - = k6. -lth 

It seems likely that the last four integrals in Eqn, (11) can be neglected 
provided that k is of order unity. 
(the free 

InFig. curves have been dravJn of p 
stream Xach angle, i.e. cot'1 B) against A; on these curves 

(B + cot A) 1 
- 2n B cot A TF log k, 

k taking the values CO, 2.5, 0.4 and 0. k = 00 is given by the line A = p 
(corresponding to sonic leading edges) and k = 0 is given by the lines 
A = 7c/2 and p = x/2. It is seen that the last four integrals in Eqn.(ll) 
can be neglected for most wings with subsonic leading edges. 

Eqn. (11) can then be written 

61” 
c 

-I 
1 

,3 
= f(u). 

x(1-B' cot2 A, 

du, f(u,) 
c 
-& + 

sinA oosA I 

(d *; u G I). 04) 
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Putting 

f(u) 
1 = is(v) Y 

x(1 - B*cot*fL)' sinA cosf!. 

6 
7 = E 9 

n(1 - B2cot2 ~'L)~sin A cosA 
05) 

Eqn.(l.!+) becomes 

&+v, 

v-v - = &s(v) l 

0 I  

(0 4v 4 1) . 

The solution of this equation for smdll v is the same as that of 

since the sworx?i term is then of order E. The latter equation is the i.ntegraL 
equation for the source distribution which gives the incompressible flow past 
a wedge of angle 2s and length unity; the solution, for small values of v, is 

g ;: EVE. 

Hence, remembering that u z (tan 0)& 
when x/y is close to h, is 

= (~,/y}~, the solution of Eqn.(lO), 
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From Eqn.(7a), 

(16) 

from Ew (5)) 

' +E B cot A- 
1 B + cotp # 

nn 

In the plane z = 0, the flow velocity in the direction normal to the leading 
edge is 

u ‘cos A + B sin A + cos A 

i (2 B @x - B sin A - cos A 
32B @Y ' 1 

(18) 

and at the leading edge this vanishes because of Eqn.( 17). Since Eqn.(16) 
also vanishes at the leading edge, the velocity there is parallel to the 
edge. 

The above results give the velocities at and very close to the leading 
edge, Thin wing theory provides acceptable results for the velocities over 
most of the rest of the wing, and the problem is reduced to finding a 
plausible vmy of linking LIP the two sets of results. On thin wing theory 
Eqn.( 17) becomes 

=-cot2n, 1 

1, 

l- 26 1 2(1 
6 sin h 

-- 

n(l-B2cot2A)2sin AcosA 
? 

n(l-B2cot2A) cotn 

- E log [ (“/y)& 

1 

+ x?] + (sin2 A - cos2 A)clog [I + (h"/y,"l 

+ 2 E cos2LLog (1 - C). : (h < x/y < 4). 09) 



The right hand side of Eqn.(17) (which holds for X/y close to h) msy be 
exIwu?ed in the form 

Comparison of Eqn.(lV) with (20) suggests writing 

+ ( sin2 A - cos2 A) s log 
27 

e + E log [ ("/y)$ + AS-] 
1 - ?bF 

( sin2 A ” co2 A)& log [I -I- pyy)$ - 2 & cos2 A log 

(20) 

everywhere on the wing. 
X/y is close to h; 

Eqn.(Zl) is approximately the same as Eqn.(l7) if 

Ewe (19) if cx/y>" 

onlthe other hand, Eqn.(21) is approximately the same as 
- h2 is not too small. Therefore Eqn. (21) will be used 

as a relation between & and #y for all points on the wing. (At the leading 
edge the velocity component normal to the edge is then no longer* zero, but it 
is a small quantity of order 6). 

A second relation between I& and $/ is obtained by considering the 
component of velocity in the direction parallel to the leading edge. This 
component is 

U sin A ? 2 - B cot A 1 + B cot A + 
4.2 B #x + (2 B 'y 1 ' (22) 

and, on thin wing theory, this is 

U sin A 1 - 
i 

46 cot A 7 sinh-' (y 2k;"] . 
B2 cot2 A)' 

(23) 
x(1 - 

Eqn.(23) gives plausible values everywhere over the wing. It will be assumed 
that Eqn.(22) and (23) are equal on the modified theory also, so that 
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= -2ecosA sinAlog 9 (~/y)$ . 

+I - Pm2 

Eqn. (21) aad (26) give 

!& = 42 8 cos2 A sin2 A (B - cot A) log ,-Jt 
1 Ir) P/Y>" 

+&cosAsinA(l +B cot A) 

ha 1 - (sin2 A 2 - cos n) E log ‘-(“/l/& 
I- h” 

- & log [ pyy+ + $1 
. 

f 2 E cos 2 A log (I - &I + (sin2 A - cos2 A) E log [ +I + p/y+] 
3 

$ 

#Y = - (2 8 cots2 A sin2 A (B + cot A) log 

J E cos A sin A (? - B cot A) 

$1 2 &  cos2 A  log (9 -  h$ + (si312n -cos2 A  )  E  log [  9 + (h”/y)$ 

3 

l 

#z comes from Eqnr (16). h and 8 are given b 
respectively; x and y are defined by Eqn. (3 

equations (6) and (~j) 
. 



From Eqn.(l8) and (21) the velocity component on the wing in the 
direction normal to the leading edge is, apart from a factor U cos A, 

L l-h2 J 

.)& a + h-1 + ( sin2 J. - cos* A) & log [I + (?y+] - E log [ p/y 

7 1 

$ 2 & cos- A log (1 - x5) . (25) 

As Calready stated, this does not vanish at the leading edge but has a vslue 
of order 6 there. If it is necessary for this component to vanish at the 
edge, this can be achieved by adding to Eqn.(25) 

.[I - [*~'][log (2 h$ + (sin2 A - cos2A) log Il++?f 
- I\. 

- 2 cos2 A log (I - h ) 
3 

I 
. (26) 

Eqn.(26) is of order 82 over most of the wing, but the sum of Eqn.(25) and 
(26) is zero at the leading edge. The velocity component on the wing in the 
direction parallel to the leading edge is given by Eqn.(23), and the 
component normal to the Tling by Eqn.(16). 

Some results have been obtained for symme"trica1 wings whose upper 
surfaces have equations of the form of (la) and (lb).* The free stream Mach 
number was chosen to be $2 (i.e. B = 1) and S to be 0.1; four values of A 
were chosen, 80°, 70°, 60' and 50'. 

In Fig.:, the value of the velocity component on the wing in the direction 
normal to the leading edge is plotted against (X cot A - Y)/X cot A + Y). 
(The latter quantity is zero at the leading edge and unity at the centre line), 
Only that pert of the wing for ijhich Y z 0 is considered. The figure shows 
the values obtained by using thin-Tfing theory (broken line) and those obtained 
by using the modified theory of this note (full line). For all four values 
of A there is very little difference between the ti?o curves except for a very 
small region near tile leading edge. As X/Y tends to tan A the velocity tends 
to negative infinity on thin-&ng theory and to zero on the modified theory. 

*The method can be extended ;;iithout difficulty to wings with profiles 
\jhich ‘WC sharp at tie leading edge but v;hich have equations more complicated 
than (lo.) and (lb). The extra terms appearing in Eqn.(5) can be treated by 
ordinary linear theory without any difficulties arising at the leading edge. 
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These results need very little discussion. It is, perhaps, advisable to 
repeat that the modified theory developed in this note cannot be justified 
rigorously, (except, perhaps, for slender wings), because it neglects 
second order quantities in the differential equations of motion and, at the 
leading edge, retains them in the boundary condition on the wing. The main 
justification for the method is that it predicts plausible and continuous 
values for the velocity on a straight-edged wing everywhere, including the 
region near the leading edge. 
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LIST OF SyivI8OLs 

(At2 - 1) 
+ 

Source distribution 

f(u) 

7c(1 - 
3 

B2 cot2 A) cos A sin A 

Defined in section 3 

Free stream Mach number 

(x2 + y2+ , (xf + y1’ jB 
That part of the wing surface cut off by the &iach forecone from (x,y,a) 

In Fig.1, regions AECD and ABE respectively 

Free stream speed 

(tan *)S 

\ Defined before (ya) 

Rectangular Cartesian coordinates defined in section 2 

Defined by (3) 
Variables of integration 

Defined by (la) and (lb) 

I 

0 - B2 cot2 A)2 cos A sin A 
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LIST OF SYKEO.LS (Contd.) 

e,e, tan-’ x/y, tan-' Xl/y, 

A Sweepback angle 

h (I - B cot A)/(4 + B cot A) 

4 Disturbance velocity potential, defined in section 2 
. 
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