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SUMMARY 

A theory is presented for the interaction between a weak 
normal shock in an initially uniform mainstream, and an idealised 
boundary layer, with frictionless, one-dimensional, subsonic flow, on a 
flat wall. Reasons are given for believing that, despite the drastic 
simplifications of the model, it is not altogether unreal. Hence it is 
hoped that the results will prove helpful in interpreting experimental 
findings for real turbulent layers. 

In the theory, the flow is assumed to take place in a 
two-dimensional channel. For such flow, the final downstream pressure 
depends on the ratio of the boundary layer thickness to the height of 
the channel, and on the upstream Mach number MC, which is assumed to 
be in the range ? to IpI. Theoretical estimates are given for the 
downstream pressure, and by a slight extension, they may be applied to 
the case of flow through a circular pipe. The theory also predicts the 
shape of the pressure distribution at the wall, and its mode of 
variation with Mach number MO and with channel height or pipe 
diameter. 

I. Introduction 

In, for example, transonic flow past aerofoils, nearly-normal 
shock waves occur and interact with the boundary layer. When the lot 
free-stream Mach number just upstream of the shock exceeds about 1.2, 7-l 
separation is provoked even when, as in most practical cases, the 
boundary layer is turbulent. However, with the thin aerofoil sections 
now coming into use, local supersonic Mach numbers between, say, 1 and 
1.15 sre quite commonly encountered just ahead of the shock when the 
angle of incidence is small. Shocks at such Mach numbers do not provoke 
separation of the turbulent boundary layer, but even so it is usually 
found1 that the pressure rise experienced at the surface of the aerofoilt 
underneath the shock wave is appreciably less than what may be termed the 
full theoretical normal-shock value. The latter is the pressure rise 
whioh would occur for a normal shock in inviscid flow in a duct of 
constant cross-sectional area with a uniform upstream Mach number equal 
to the local Mach number at the edge of the boundary layer upstream of 
the shock on the aerofoil. The theoretical pressure rise is not attained 
partly because of the finite nature of the supersonic region and the 
consequent decrease of Mach number with increasing distance from the 
surface just upstream of the shock2,3. Even, however, when the sortie 
is locally flat, so that the rate of change of upstream Mach number with 
distance from the surface is zero at the wall, local pressure rises 
considerably less than the theoretical normal-shock values are often 
observed&. The reason is that the boundary layer thickens under the 
shock wave, so that just outside the boundary layer the stream-tube areas 
are reduced downstream, with a consequent reduction in pressure. 
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These effects of boundary-layer thickening, which will always 
be present even when the effects of the finite nature of the supersonic 
region are also important, could be studied in isolation in a suitable 
experiment. Thus a pipe could be used, with air flowing through it at 
a Mach number a little above 1 initially, and dropping to below 1 through 
a normal shock. If the radius of the pipe were extremely large compared 
with the thickness of the boundary layer, the theoretical normal-shock 
pressure would be attained everywhere across the pipe sufficiently far 
downstream. For more moderate ratios of pipe radius to boundary-layer 
thickness, the asymptotic downstream pressure would be somewhat less 
than the full theoretical value. 51 all cases, however, it is likely 
that the pressure distribution at the wall would depart from the 
theoretical discontinuous jump in pressure that would occur in the 
absence of a boundary layer, and instead would exhibit a spreading out 
proportional to boundary-layer thickness. Also, the pressure immediately 
under the shock might possibly rise only to a value considerably lower 
than the final value, which might not be reached until many boundary-layer 
thicknesses downstream of the shock. 

The present paper gives a very approximate theory for the 
conditions of the above hypothetical experiment, except that, for 
simplicity, the flow is considered as being in a straight two-dimensional 
channel instead of the experimentally more convenient pipe. It is hoped 
that the paper will throw light on the effects associated with 
nearly-normal shock waves on aerofoils in transonic flow, insofar as these 
effects are concerned with boundary-layer thickening rather than with the 
curvature of the surface and the corresponding non-uniformity of the 
upstream flow. Hence the slightly supersonic mainstream is assumed to be 
initially uniform and the wall to be flat. The problem is simplified by 
treating the boundary layer as if it were a uniform subsonic frictionless 
layer of initial upstream Mach number MS0 and thichess to, as in 
Fig. 1. The initial free-stream Mach number is MO, a little greater 
than 1. This model of the flow is the same as that used by Tsien and 
Finston5, but the analysis is different because the equations of motion 
in the external flow cannot be linearised in the same way for Mach numbers 
near 1 as they can for larger Mach numbers. Wthermore, the external 
flow is subsonic downstream of the shock in the present case. 

It might be thought to be a retrogressive step to adopt the 
inviscid model used b 
theories (e.g., 

Tsien and Finston, in the light of more recent 
Ref.6 3 which take account of viscosity. However in the 

special case of a turbulent boundary layer with a free stream Mach number 
near 1, the neglect of viscous and turbulent friction is probably not a 
fatal defect. Fig.2 shows the shape of the real velocity profile both at 
an upstream position and also downstream, after the boundary layer has met 
with an adverse pressure gradient. The profile in the laminar sublayer 
must distort as shown, so that the friction stress increases with distance 
away from the wall, thus balancing the pressure gradient. Hence the 
laminar sublayer will experience a large proportional increase in thickness. 
Friction plays an essential part here, because in the absence of friction 
the slowest-moving fluid would immediately be brought to rest by the 
slightest pressure increase. However for the more rapidly moving fluid, 
friction is not so important. All the subsonic stream tubes in the 
boundary layer will expand on encountering increases of pressure, but 
where the velocity is relatively high, this expansion will largely be due 
to the inviscid "Eernouilli" effect. Since in a turbulent boundary layer 
with a free-stream Mach number near 1 a large fraction of the boundary 
layer is subsonic, and the laminar sublayer is very thin compared with 
this subsonic region, the thickening of the sublayer will not be a 
dominant factor, though it may well be important. Also, although friction 
may play a significant r&e in the more rapidly moving parts of the layer, 
the frictionless "l3ernouilli" effect here is likely to be the most important 
one, and the present model which considers only this factor and ignores 
effects of friction will not be completely unreal. It is not, of course, 
to be expected that the results of the analysis will be quantitatively - 
exact for the real case, but it is hoped that they will give a useful 
qualitative picture of what happens. 

In/ 
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In view of the crudity of the assumption that friction can be 
neglected, it seems inappropriate to attempt a complicated analysis if 
further simplifications can be made. This is the reason why the form 
shown in Fig.1 has been chosen for the idealised boundary-layer profile, 
since it is in any case necessary to assume that there is a non-zero slip 
velocity at the wall. For otherwise, if a realistic boundary layer 
velocity profile were assumed with the flow frictionless, the fluid 
immediately adjacent to the wall would be unable to withstand any pressure 
increase. 

In the interests of simplicity again, the flow in the subsonic 
layer is treated as one-dimensional, i.e., the pressure and velocity are 
treated as constant across the layer, and dependent only on the distance 
x along the wall. This probably introduces only small errors since the 
inclination of the flow to the wall is everywhere small, and the solution 
obtained involves no discontinuities of slope at the edge of the layer. 

As mentioned above, the case considered in the analysis is that 
of the flow in a two-dimensional channel. The overall flow pattern for 
the interaction between the shock and the subsonic layers on the two 
walls of the channel is as shown in Fig.3. The centre line is of course 
a line of symmetry so that only one half of the channel need be considered. 
In the external flow near the edge of the subsonic layer there will be a 
band of compression waves which will be terminated downstream by the 
shock wave. The solution for the compression-wave region upstream of the 
shock is comparatively easy to obtain, but the flow downstream of the 
shock presents a difficult problem. This is partly because the boundary 
conditions at the edge of the subsonic layer snd just behind the shock 
are complicated. The shock boundary conditions, in particular, depend on 
the shape of the shock, which in turn is affected by the downstream flow. 
When the height of the channel is limited, so that the final downstream 
pressure differs appreciably from the full normal-shock value, it turns 
out to be easier to obtain a formal solution for the downstream flow than 
when the channel is infinite. However the accurate evaluation of the 
downstream solution for the finite channel is impracticably tedious, and 
a crude approximation is accordingly made to it. 

Section 3 presents the somewhat lengthy analysis resulting in 
what is, granted the basic assumptions, the almost exact solution for the 
flow upstream of the shock, and the very rough solution for the downstream 
flow, and the relevance of all this to the real case is discussed in 
Sections 4 and 5, 

2. List of Symbols 

X 

x 

J 

0 

yc 

t 

distance measured parallel to the wall, measured from the point 
at which the shock intersects the subsonic layer 

distance measured normal to the wall 

distance along a streamline 

distance normal to a streamline 

s?am function defined by Equation (IT), and the condition 
= 0 at the edge of the subsonic layer 

equal to Nx, where N is given by Equation (37) 

equal to Nq, where N is given by Equation (37) 

value of Jr on the centre line of the channel 

distance of the centre line of the channel from the wall 

thickness of the subsonic layer 
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6 total thickness of the real turbulent boundary layer upstream 
of the region of interaction 

Y thickness of the subsonic part of the real turbulent boundary 
layer upstream of the region of interaction 

X x of the shock 

x NX, where N is given by Equation (37) 

0 angle between the shock and the normal to the flow just 
upstream of it, or between the shock and the normal to the 
wall 

e deflection angle of the flow on passing through the shock 

a inclination of the flow to the wall 

q total velocity 

U velocity component in the x direction 

V velocity component in the y direction 

P pressure 

P density 

I enthalpy 

M Mach number 

Y ratio of specific heats 

k related to pressure by Equation (8) 

kF final downstream value of k 

e defined by Equation (21) 

m defined by Equation (22) 

A constant in the approximate relation (34) for the thickness 
of the subsonic layer 

N defined by Equation (37) 

S defined by Equation (46) 

F ratio tdY 

suffix S refers to conditions in the subsonic layer 

suffix 0 refers to conditions upstream of the region of interaction 

suffix SO refers to conditions in the subsonic layer upstream of the 
region of interaction 

suffix I refers to conditions just upstream of the shock 

suffix 2 refers to conditions just downstream of the shock 

3./ 



3. Analysis 

3.1 Characteristics of the shock wave 

Consider an oblique shock inclined at an angle 8 to the normal 
to the flow just upstream of it, as in Fig.&. Let quantities just upstream 
of the shock be distinguished by suffix 1. In the central part of the 
channel these upstream quantities will take their undisturbed free-stream 
values, denoted by suffix 0, but near the walls the shock will occur as the 
termination of a compression-wave region, as shown in Fig.3, and hence here 
the flow conditions just upstream of the shock will differ from those in 
the free stream. If quantities just downstream of the shock are 
distinguished by suffix 2, we have:- 

Y P, q; Y PI q; 
Energy: -0- -0 + -0 = 00" -0 + -0. . . . (1) 

y-1 P, 2 Y-l P, 2 

Momentum parallel to bc in Fig.4: 

Pa - P, = Plq,(q, - q, cos 4Y . ..(2) 

where e is the angle of deflection of the flow on passing through the 
shock. 

Momentum parallel to ac in Fig,&: 

qa sin (0 + e) = ql sin 0, 

or tan0 = 
qasin e 

- -----------. 
q, cos "-cl, 

Continuity: P, q2 cos (0 + e) = P, q, cos 0, 

or 
P,9, cm “-P,4, 

tan0 = --------------- . 
P,$, Sin e 

But from (2) 

so that 

- (3) and (4), 
P,4&l,-q, cos 4 

P, = -0---0-0-0- --w-o-. 

q&q1 cos ‘-cl,) 

Pa-P1 
. q, = q1 - ----- set e, [ 1 PI% 

(P,-P,) cosac 
pa = ------------------------------, 

9% sir-la& 
pa-1 

‘I I 1 

q1 - ----- 
PI% 

.  l l (3) 

. . . (4) 

. . . (5) 

. . . (6) 

Hence,/ 
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Hence, 

or 

iJl (1) 

/ 

[‘;.c$qls”j~l~ 
Pa-P, a 

1 
Y 

- m--m- secad = --- 

1 YPI Y+‘1 
sina, --e----m---- + -c--- 

Y(Pa-Pi) 
- --------- 

l)(Pa-P,) 2(Y- 1) wblq; I! Y- 

= 

Put 

(Pa-P,) --------- 

c 

l- 
(Y-UP& 

YPI (Y+l)(Pa-PI) -B-B - ------------ w 
Plsa, 2 Piss, 1 0.0 (7) 

P 2Y 
-- = 1 + --- 

PO Y+l 
(M; - I)(1 - k), . ..(8) 

pa-pi 

I 

seca e 
m---e ----a 

p~q~ pa-p, 

PI 4 
-- + -- 

’ Pl 2 

2m a --------- 

> 
(Y-1 > Pis2, 

so that when k = 0 the pressure takes the value that it has just 
behind a normal shock with upstream Mach number 

5 
. Throughout the 

external flow-field, the Mach number M is relate to the enthalpy I 
by the relation: 

Hence 

Upstream of the shook the flow is isentropic and 

2 
- IYA 

P Y 
= 

( > 
-- 

I PO 

Thus from (8) IO 2 (Y-1 > 
-- rr 1 
I 

- -;;;-- (1 - k)(s - 1) 

if MO is close to 1, and 

Ma - 1 = (2k - I)(% - I) . . . (9) 

in the external flow upstream of the shock*. From (8) it follows that 

Pa-Pi 2Y 
----- e ;;; (kl - k,)(q - I), 

PI 

and hence Equation (7) reduces approximately to 

e -------- (kl + k, - I)$ (kl - ka). 
= (Y+I) M"o 

. . . (10) 

This approximation is quite good even if MO is not very close to 1. 
Thus for example if k, = I, the errors in (10) arise mainly from 
those terms in the bracketed expression on the left hand side of (7) 
which are neglected in deriving (10). The omitted terns are equal to 

y+l/ __-____------------------------------------------------------------------ 
*Relation (9) is, in fact, approximately valid everywhere in the external 

flow. 



-7- 

Y+l (Pa-P,) 2 
----mm - --------- - -w----m , 
*(y--0 (Y-l)p,M2, (Y-1)M2, 

and partially cancel one another. 

An expression for the angle 0 between the shock and the 
normal to the flow just upstream of it can be obtained from Equations (3) 
a2-d (5). Approximately 

qze 
2 

Qlqle 
0 

YPlMag’ (Y+I )M; & 
2 m w-B-------- e ----w 2 -a---- = -----m---m----. 

q, cos "-cl1 P,-P, P2’pi *(kl-k2) @;-I > 

Hence from (10) 8 = (Mi - I)* (kl + k2 - I)‘. . ..(W 

This is approximately the angle between the shock and the normal to the 
wall, since, as is shown later, the angle between the flow just upstream 
of the s$ock and the wall is, like e in Equation (IO), of order 
(M; - 1)% 

The configuration of the shock wave shown in Fig.3 is in 
accordance with relation (11). At the centre of the channel the shock 
must be normal and 0 zero by symmetry. provided the height of the 
channel is sufficient, the flow upstream of the shock will be outside the 
compression-wave region, so that k, = k 

? 
= I. Hence k, = 0, 

i.e., the full normal-shock pressure is at ained just downstream of the 
shock on the centre line. However the final pressure far downstream will 
be less than this, unless the height of the channel is infinite. At the 
junction with the subsonic layer there can be no abrupt change of flow 
angle or discontinuity in pressure at the shock wave, and this condition 
is satisfied if the compression-wave region extends as far as a local 
external Mach number of I with k, = k, = &, [See Equations (9) and 
(IO).] Hence the shock, which is here of zero strength, is again normal 
to the wall. At points between the centre line and the junction with the 
subsonic layer, k, will be between I and 4, and k, between 3 and 0. 
Probably k1 + k will be greater than I - it cannot be less than 1 by 
(10) - hence the2shock will be inclined as shown in Fig.3. 

5.2 The relation between pressure and flow angle in the 
compression-wave region 

It is assumed that the compression-wave region is of the 
simple-wave type. This means that Mach waves emanating from adjacent 
points at the outer edge of the subsonic layer must, as shown in Fig.3, 
intersect and be terminated by the shock wave before they intersect each 
other. This assumption cannot be conclusively checked without howing 
the complete solution to the problem, since the form of the shock wave is 
affected by conditions downstream. However according to the solution 
obtained in a later section for the flow upstream of x = 0, (the line 
defined, as in Fig.3, by the points at which the shock intersects the 
edges of the subsonic layers), the Mach waves are a long way from 
intersecting each other on x = 0, and although the shock is some 
distance to the right of this line, it seems likely that the waves will 
still not have intersected each other before they reach it, This justifies 
the simple-wave assumption, according to which the angle between the flow 
and the wall can be determined from the pressure, as follows:- 

Fig.5 shows a short length ac of a streamline in the 
simple-wave region. The line ab is a Mach line! so that k is constant 
along ab, and bc is normal to ,ac. The angle abc is 
tan-l (Ma - I)* s tanW1[(2k - 1)" (Mi - I)'] by Equation (9). Hence 
if n represents distance along the normal and s distance along the 
streamline, 

w 
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ak kb-kc ka-kc &,-kc) 
we = --m-e = -m-s- = w-----s 
an bc bc 

(2k-I)' (M;-I)' 
ac 

1 ak 
= -(2k-I)' (it+1)' ;;. 

The pressure gradient normal to the streamlines balances the centrifugal 
force associated with the streamline curvature. Thus if the angle of the 
streamline to the wall is a, 

Eut 

ap a0r aa 
mm = 
an 

- pqa -- fi - yp$lI"o --* 
as as 

ap 2=0 -- = - ---- (ME - 1) :lf by (8). 
an y+l ” 

aa 
Hence -- = 

2(M;-1) ak 
------- mm 

as (y+l)Mt an 

and a 
2 (tie-l )i 

= -------- [I 
3(y+l)M; 

since a = 0 when k = 1, 

an 

2(qy )3 1 ak 
= - TY;~--- (&I )T -- 

+ 0 as 

- (2k=l)~l, . . . (12) 

in the undisturbed free stream. In (W, 
be supersonic in the simple wave region. 
k there is not much difference between 

the deflection angle through the shock, 

since the flow must 
ic?ff(s',ps For this range of 
(12) and relation (10) for e, 
if in (lO)we put k = 1 andk 
ka would mean that the flow reache d 

= k. These values for k and 
the pressure corresponding to k 

abruptly through a shock, with no region of gradual compression; the 
flow angle in these circumstances would, however, be little different at 
the low Mach numbers considered here from the flow angle produced by a 
continuous simple-wave compression to the same pressure. 

3.3 The equation for the external flow downstream of the shock 

The equations for the external flow are, in the usual notation, 

au au ap 
m --+pv- = ---, 

ax aY ax 

av av aP 
pu --+m-- = ---9 

ax aY ay 

ah> ah) m---m + --w-m = 0, 
ax aY 

. ..(I31 

..&4) 

l ** 05) 

and 
Y P (u"+v? Y PO u"o 

s-w - + --w--m- = I-- -- + mm 
Y-l P 2 y-1 PO 2 ’ 

where suffix 0 denotes initial upstream conditions. 

. ..(16) 

Let/ 
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Let a stream function $ be defined by the relations 

and pv = 

..* 07) 

and the condition that $ = 0 at the junction between the external 
flow and the subsonic layer. Equations (13) to (15) can be written in 
terms of x and J, as independent variables, as follows:- 

pu ( ii;, = - ( a:)$ + (~-I+ ;z; ( $ ) . ..(18) 

X 

_ (M;& ,p", NPU) c 1 + (Mag-1) 3 w a(d --m-m ---- 
PoUo aJI x c I ----a = 0. ..(20) 

PoUo aq x 

P 2Y 
As before we put -- = 1 + --- (Mb - l)(l - k). . ..(8) 

PO Y+l 

We also put 
U 
VW = 1 + (M; .. I)& . ..(21) 
"0 

V 
and -- = (Mz01)~ m, . ..(22) 

uO 
since the proportional variation in u/"o will be of the same order as 
that in p/p,, and v/u,, which is approximately the angle between the 
flow direction and the wall, must be of the same order as e and a in 
Equations (l,O) and (12). Equation (49) becomes 

. ..(23) 

The equation, s-fnilar to (13) and (j4), relating the total velocity 
q = (u2+va)a to the variation of pressure with distance s along 
a streamline is 

%I ?l? 
m-- = ---1 

as as 

and it follows from (16) that p/py is constant along any streamline 
downstream of the shock. Strictly speaking, p/Py varies from 
streamline to streamline since the shock is curved, but this variation 
can be neglected since, at Mach numbers near to I, P/PY downstream 
of a shock differs from its upstream value, P&OY, only by a term 
of order (M;-1)". Hence from (8) 

P/ 
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I 
v 2 2(Y4 > 

= 1 + --- 
Y+l 

(Mu-1)(1-k) - (y;j" (~~l)~(l-k)~ 
+ 

Substituting (8), (21), (22), and (24) in (18) gives 

pOu; I+ ;;; (M;-1)(1-k) - . . . [I + (ML-1)4] (M;-I) 

+ . . . . . 

. ..(24) 

= PO ;; (M;-I) ( "k ) 
2Y 

ax 
- p. ---,(M;+ 

If Y+l 
+ ;;; (%-1)(1-k) - . . . 

I 

m(;a;) . 
X 

Hence e h - ~~-~j~ (I - k), 
+ 0 

and, in fact, e = - i;-fj~~ (I - k) [I 
+ + o(Mag-1 1” 1, 

0 
ak 

since, as can be verified from results obtained later, 
( > 

-- and 
ak 

( > 

ax 
Jr -0 are of the same order. Hence from (21) and (24) 

aJr x 
PU 2 (M;-I)' 

---- = 1 + -------- k(1 - k) + O(tio - I)", 
(Y+I )M; 

. ..(25) 
po”o 

and Equation (20) becomes approximately 

= - ------- . ..(26) 

It follows from (23) that 

ask ask aaka 
--- + -0- = ---- . 
aqa axa axa 

o-0 (27) 

This equation of motion is useful principally in the external flow 
downstream of the shock, but it does in fact apply everywhere in the 
external flow-field except, of course, actually at the shock, where the 
derivatives are discontinuous. It is easily verified that the solution 
in the compression-wave region, where 
satisfies (27). 

k is constant along Mach lines, 
For by (9) the Mach lines are approximately at an angle 

tan-' (@ - I+ = tan-'[(2k - I)' (""0 - I)$] to the normal to the wall, 
and since from (17) 

Jr fi constant + (Mu - l)i,, 

k must be a function of [(2k - I)' $ - x] in the simple-wave region. 
Hence in this region 

ak I ak 
-0 = - (2k - I)" -- , 
w 

. ..(28) 
ax 

and (27) f0ii0ws. Similarly (23) and (28) are equivalent to (12), since 
V 

a 2 -0 = (Mt - I);,. However the simple-wave solution is only valid 
uO *en/ 
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when (2k - 4)' is real, i.e.,when k 24 and the flow is supersonic; 
downstream of the shock the solution takes a different form discussed in 
a later section. 

3.4 The conditions imposed by the shock 

If conditions just upstream and downstream of the shock are 
denoted by suffices 1 and 2 respectively, and a denotes the angle 
between the flow direction and the wall, then aa = E + al, where e 
is given by (10) and a1 is given by (12) with k put equal to k;. Thus 

2 1 
ma c -I---L- 

c 
- [I - (2k, 

(y+l)Mag 3 
- $1 + (ki + k, - I)$ (Ic, 

since from (22), m is approximately (PO - I)+ times the flow angle. 

If x at the shock is denoted by X, it follows from (II) and (17) that 
approximately 

dx 
-0 = 

W 
. ..(30) 

This relation determines k,, the value of k immediately downstream 
of the shock, in terms of the unknown, but in principle determinable, 
relation between X and $. Thus, as has already been mentioned, (30) 
implies that k, = 0 on the centre line of the channel, where 4 = 1 
and dX/d$ = 0. In general, k upstream of the shock can be determined 
as a function of x and q, as will be shown in a later section. Hence 
k, is given for a given form of shock, and (30) then gives k,. 
Similarly (29) imposes conditions on k downstream of the shock. Thus 
consider for example conditions near the centre of the channel, where 
k = 1. 

1 
Relation (29) simplifies to 

Hence 
am2 2 
-00 = ------- 
d'lf (Y+I )M; 

2 
--o---- 

= (Y-tefo 

by (30). Similarly 

2 
ma = C-----L 

(y+l>q) 

dm 
2 -0- = 

d$ 

2 
= ------- 

(y+l)M; 

by (23) and (26). Hence 

(I - k2)k2'. 

(l-3k2) *, 
--w---- 0-0 

2k,s dq 

(1-3k, > 
m--o -o[( ;!)2 +k,a( ~)~ 

2k,g 

= 0. . ..(31) 

But/ 
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But 

Hence 

i-lax 1 elk, 
--- = --mm --- bY (30) 
W= 2k,* d$ 

d"X 
(1 -5k,) ;Jlz+ (1-Q) . ..(32) 

For any given form of the shock, relations (31) and (32) determine the 
first derivatives of k just behind the shock in the central part of 
the channel, and similar, but more complicated, relations can be obtained 
for the region nearer the wall where kI 4 I. 

3.5 The conditions imposed by the subsonic layer and the solution 
upstream of the shock 

The pressure and other flow parameters in the subsonic layer 
are assumed to be constant across the layer and to be functions only of 
Xm This asswnption is probably fairly accurate since the streamline 

. forming the boundary with the external flow is continuous everywhere in 
its slope, which is everywhere small. Denote by suffix S conditions 
in the subsonic layer, the additional suffix 0 being added to distinguish 
initial upstream values. Then 

PS pS 2Y 
-w- = -- = 1 + --- (M; - I)(1 - ks) by (8), 

Pso PO Y+l 

by Bernouilli's equation. Also 
1 

;; ($!;-?)(I -ks) 1 7 
. 

Hence if' the thickness of the subsonic layer is t, 

t  

%0%0 
mm = -w-w- -  by continuity 
t0 ps"s 

If Mo is extremely close to 1, or if k is close to I, (33) 
approximates to 

t 2(M;-11)(1-M;) 
em = 1 + -M------------ 

t0 (Y+I )Ms; 
(1 - kc&, 

but this becomes very inaccurate for small values of kS at Mach numbers 
above about 1.03. It is preferable, therefore, to use an approximate 

slation of the form 
t 2(M;-l)(l-Ms;) 

VW = 1 + -------------- . . . (34) 
t0 (Y+I 1"; 

[I - s + A (1 - kS)'l, 

where/ 
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where the constant A is chosen to give agreement with the more 
complicated exact form (33) at kS = 0. Values of A thus determined 
are given in the attached Table. 

TABIXI 
" ,I, "I ,I I -, ,, ,, "",, 1",,, ,,,,,,, ,111 ,111 111111111.1 111 II, I, ,,,," ,,,,, I, ,, ,,," "I, I, ,* "I ,, ,,, ,,,,,, . ,,,,, ,,,, ,,,,,,,, ,,,,,,,,,, ,,, ,,I 111,1,,,,, ",,, ,, II 

MO ; 1 1.02 1.04 1.06 1.08 ,,I0 i 
I . I- II ----~-.- II_."-*"I *", I * I "11 I ,""W _ I*" **** "11 " * " *I_. 

; A for = 0.6 ' 0 0.185 0.47 0.73 1.72 4.40 I MS0 

0.7 I 0 0.160 0.36 0.62 0.98 1.56 i 
i 

0.8 ; 0 0.170 0.34 0.56 0.83 I,48 i 

0.9 ; 0 0.201 0.52 0.80 1.12 1.50 1 
,,,/ ,*,, ,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,, ,, ,,/, ,,,, ",,, ," I, ,,/I, ,," ,, ,."I,,,*,lI"I,",,,",, I,,,, 8, ,,",/, ,,, ,,,, // ,,,M,,/, ,,,,111~,",1 111, ,,,1*1111,-11 111 I/ II ,,m/ ,,,,,,,,,,,,,,,, ,, ,.,,,. ,"1,1 ,,,,,/ ,,,,,,,,, I ,,,,,,,,~,,,,, 1," ,,,,,,,,, I* ,",,,,, .m,,w I,,, ,,,, ,,l,lllll"lllill,,,,,,i, ,,,, ,/111,,,11 II ,I I, ,,11111 

Provided A is not too great, the approximation (34) represents the 
accurate form (33) quite well over the whole range 12kS20, ascan 
be seen for the following calculated example, for MO = 1.10, 
Mso = 0.8 and A = 1.18. 

TABLB 2 
II ^ ,I ,,,, I ,S," ,,,,,,1 l,l,ll,,il,w II ,,,, 1,111,,111111 III,,,ml,ll,lll ll*mlmlmll I ,m,ll,li llllll,lllnllll,,,,l,llll,lll ,,,, I" I 1111 "llllmm ,,m111,1,11,111 II, llillll ! ,,, ",, ,,,,,,,,,,, ,,,, ,,,,,,,, ",,,"1,,,",, ,,," ,,,,, ,,,,, 1 ,,-, * ,m,,lll ,,,,,,,,,,,,~,,,,~~ ,,~,,,,,,, ,,,,,,, ,, ,,,,,,,,, ,~,,,,,,,,~,~," ,,,,,,,,, ,,,,,~~,,,~,,~, ~~~~~~,,,,,,,,,,,,,,,,,,, 1,,111111*111111111111*1,1111111*~1111111111,111: 

kS 0 0.2 0.4 0.6 0.8 
[*.- ""1,,** l-_l__,,*l -_____ "-,._I_~--,""- _" ..i..*..M.-.... 

1.0 1 
_"" "l_"ll" ~"I * I " _I I ,"" _I ",,",".,"l"l,~ I _ 1 

; t/t, according to (33) i I.215 1.146 1.093 1.054 1.023 1 [ 

i t/to according to (34) / 1.215 1.153 1.101 1.058 1.024 1 1 
: ,,,,, ,,,,,,,,, ,,.,,,,,,,,,,,, ,,,,,, ,,/ II ,/,,, ,,,,,,, * ,,,,,,, 1,,,",,, ,,,"1,,1,, u,,, ,,,,,,,,,,,,,, ,//,,,,,,,,, ,#,, ,, /,,,/ I ,,,illilll,, ll,l,,m,,,,,,, ,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I/ ,,,1( ,m ,,1111,,111111 ,,,,,,,,, I, *, ,, ,,,,,,,,,, ,,,,,, ,,/,,& ,milllllll i,llll,l,, mII ,,,, I" ,, ,//I,, ,I ,,,( 

Fmm (34) 

dt 2 (M;-l)(l-Ms;)tO d"s . -- = - -.wy; jiw;---- [ 1 + 2fL(, - ks) ] . ..(35) 
dx + 

so 
dx 

This is equal to the angle between the wall and the streamline 9 = 0, 
which forms the boundary between the external flow and the subsonic layer. 
On this streamline k = kS, and it follows from Equation (12) that 
upstream of the shock 

N 
[I + X(1 - kS)] dkS --- + - [I - (2kS - I):] = 0 . ..(36) 

dx 3 

where N E 
M&M;-I)' 
---------- . 
@obMs;)tO 

. ..(37) 

Equation (36) 
Nx. 

can easily be integrated numerically for ks in terms of 
Values are given in the attached Table for various values of A. 

TABLE3 
I( ,,,,,,, *,/,, ,, /, ,,,, ,,,,,, ", ,,,,,111111m, ,Ul,,",,,, ,,,, ",," I", i"y,",,,,, ,111 I_ ,w,,-, ,111 ,,,-,.l," "I ,,,, ," ,,,,,,,,, ,," ,,,,,,,,, ,,,,,,,,,,,,,, ,,,,,,,,,,,/,,, ,,,,,,,,,, ," ,,,,,,,,,,,,,,,, /,,j /,,,,,,,,,,,.,,,, I,,/ II ,u,,,u,/ I,,,,, I/ I, " 

kS i 0.5 0.6 0.7 0.8 0.9 0.95 ; 
“I ” _“-1--- --;--” _” I” __,_---, “. . “* ” -. I I- _* -“*” I _ * I_x ,” __ -,--__ __ 

1 -Nx for A = 0 ; 0 0.312 0.673 1.143 1.893 2,614 a 

0.4; 0 0.434 0.886 1.447 2.287 3.049 ; 

0.8 / o 0.536 1.098 1.754 2.678 3.482 i 

1.2 ,; 0 0.648 1.311 2.059 3.071 3,917 ; 
,I ,~ ,*, ,,,,/, I 111,” ,,,I I “, ,11”1, ,,I, /,/,, * ,111 ,“,,1,11”, ,, ,,,“,,*,ly,llill~ll~III ,,,,,,,,, “,,,/ ,,,,,,,, *,,,“,11,,~,,“,1 ,111 “, ,,,,,,, ,,,,,,, “,,” ,,,,,,,,,,,,,,,,, ~,,*,u,,,” ,,,1,,,,, ,,,,,,,,,,,,,,,,,,, * ,,,,,, ,/,,, ,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,” ,,,, ,,,,,,,,,,,, ,,,,, ,/a ,,,,,,,,,,,, ,,,,,,, “,,, ,,,, ,,,,,,,,,,,, ,h,, “,,” ,,,,,,,,,,,, ,,,,,,,,,,,,,,,,, ,, ,,,111111111111,*1 1”1111,11”,, ” 

me/ 
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The solution for kg, equal to k along the streamline @ = 0, 
determines k everywhere else in the external flow upstream of the shock. 
This is because k is constant along );he Mach lines, which are inclined 
at an angle tan-' [(2k - 1) a 
(Compare section 3.2.) 

(Mi - I)'] to the'normal to the wall. 

At $ = 0 it follows from (22) that 

at 
-- = 
dX 

(""0 - l)$m. 

Hence at $ = 0, 

Sam 

("2, -,)H- = 
2(tio4 3k 
---_- - by (23) 

ax (Y+I 1% w 

2(M;-l)(l-Mg3to daks dkS = 
= - ---------------- J --- 

(Y+, )"G 1 

[I + 2A(l - kS)] --- - 28 

( 0 
dX 

by (35). Hence 

ask ak = 
[I + 2A(l - k)] a~ - 2A -- 

( > 

ak 
+ N -- = 0 at \Ir = 0, ..(38) 

ax w 

by (37). This relation applies both upstream and downstream of the shock, 
but it is only required as a boundary condition for the downstream flow. 

From (36) it can be seen that at 9 = 0 

f- [I + 2A(l 
ak ask ak 2 

- k)] -- = [I + 2A(l - k)] --- - 2A -- 
ax C > 

ax axa ( > ax 

+ 0 as k + 6, i.e., as x + 0. 

Thus from (38) ak/a$ = 0 a$ x = 9 = 0. From the equation of 
ask 

motion (27), --; = 2 z!! 
'I ( > 

at x = I) = 0, where k = 3. 
ax 

PUS a2k/av is non-zero and positive whilst ak/aq = 0. However, 
downstream of the shock k cannot become greater than 3, because it is 
assumed that the flow is subsonic. Hence there is a singularity 
immediately downstream of x = \Ir = 0, 
value of a3 k/q?. 

implying an infinite negative 
This singularity is, however, due only to the 

approximations made in the analysis. Really at x = $ = 0 the gradient 
of k is zero in a direction locally normal to the streamline $ = 0, 
rather than normal to the wal&. 

2(P-1)E 
Hence, since the streamline 9 = 0 is 

inclined at an angle ---0,--- to the wall at x = 0, [c.f. (12)], 

Hence 

3 (y+l)Mag 

ak 1 ak 
-- c by (17) 
w 

iiiI;j$ & 

2(M;-1) ak 2 (Mb-1)N 
= ___---_- -- = - -m----------- 

3(y+l)po ax V(y+l)M;(l+A) 

ak 2(M2-l)aM 2 
-- =,,-,,--,,~-----,s~---,,_ by (37). 
ay V(Y+~ >nff,(l-M&) (l+A)tO 

by (36). 
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But from (27), (36), aa (17) 

a=k '(M;-l)"M& 
--- = e----m------------- at x 
aYa ~M~(1-MS;)2(l+A)2t; 

= I)= 0. 

Thus there is no need for a3k/ay3 to be infinite. Nevertheless, it 
remains true that at X=I@ = 0, ak/a(N$) is much smaller thsn at most 
other points in the external flow (except where the flow is parallel to 
the wall), and a3k/a(N$)3 and higher derivatives with respect to Nq 
are exceptionally large in magnitude; this choice of independent variable 
is pertinent because according to the next section, 3.6, k is a function 
only of 

imposes 
channel 
ycj it 

A, Nx, W, and the height of the channel. 

The fact that the channel is assumed to be of constant height 
an integral condition, as follows. If the centre line of the 
is the streamline $ = C, and its distance from the wall is 
follows from (17) that 

Hence from (34) and (25), approximately, 

2(M;-l)(.l-M&j%; 
YC 

= to + - -______-_-; -a__ [I - kS + A(.1 - kS)2 ] 
(y+l Ms0 

c 2(M;-1); c 
+ -_---_ - -------- 

(M;-I$ s (Y+l>G 0 
k(l - aw...(39) 

Hence since k = 1 far upstream, 

s 

C 

l- kS + A(1 - kS)a = N k(1 - k)dq. 
0 

. ..(40) 

Far downstream the pressure must be uniform across the channel, so that 
k must asymptote to its final value kF everywhere. In other words, 

k-' sas x+00 . ..(41) 

ana from (40), NC = 
l+A(l-s) 
---------* . ..(42) 

% 
From the equation of motion (27) it can be seen that 

ask 
-:-[k(l-k)] = -;;--. 
axa 

Hence (40) can be written 

;; [I - kS + A(1 

This is equivalent to (38), since 

ak 
-- = 0 at $ = C, 
w 

.** (43) 

by/ 



- 16 - 

by symmetry. Thus provided the boundary conditions 
(43) are satisfied, (40) will also be satisfied, so 
separately considered. It is worth noting too that 

a3k 8'k a2n+lk 

g3;,w; {$a 9 

synnnetry requires 

and 

--- = m-m = .... = ------ = = 0 
w3 a*= 

2n+l .... 
w 

on the centre line, in addition to (43), but these additional conditions 
are automatically met provided (43) is satisfied, when they follow from 
successive differentiations of the equation of motion (27). 

3.6 The form of the solution downstream of the shock, and its 
rough evaluation 

The equation of motion (27) has to be satisfied under the 
conditions, described in section 3.4, imposed by the shock, and under the 
further-boundary conditions (38), (41), (42), and (43). Write Nx = x, 
W = If, and Nx = % Equation (27) becomes 

ask ask a2ka 
-mm + -mm = -mm 
a$" al a? ' 

. . . (27’) 

and the relations (23), (26), (29), (30), (38), (41), (42) and (43) Can be 
written as 

(y+l)Mag am ak t 
------- -- = -- 

a% a$ ' 
.,.(23') 

2 

(Y+l >s am 
----I-- -- = -; (k-ks), . ..(26') 

2 aT 

(Y+l)q) 1 
------- m a = 

2 
- [I - (2k, 
3 

- I)$ + (kl + k, - 1)' (k, - k2), ..@V’) 

dx I 
-- = 
d$ 

(k, + k2 - l)Te . ..(30’) 

ask 
[I + 2A(l - k)] --- - 211 

aEa 
+-- = 0 at $ = 0, . ..(38') 

k+ % as '; + 00, . ..(41’) 

NC = 
l+A(l-k$ 
-------me 

!F ' 
. . . (42) 

, ak 
and mm = 

a$ 
0 at J = NC. . ..(43’) 

C_learly, therefore, k is a function only of x, $, A, and 
X (defining the position of the shock) is a function only o '$ 

whilst 

and !F 
9 A, 

The upstream solution for k has already been given in 
section 3.5. Consider conditions a long way downstream, and write 

k = kF + k'. 

Equation/ 
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Equation (27') becomes 

dak Bak 
--- + -00 = 
a$" aiia 

and far downstream it must approximate to 

ask 
-00 + (1 -2%);; = 0. . . . (44) 
ai/T2 

This is because 
aa, 

must become very small compared with --- ; 
a;;” 

if the two terms were of the same order, k' would need to be proportional 
to log x, which is incompatible with (41'). Similarly the boundary 
condition (38') approximates downstream to 

[I + 2A(l - k$ ;; + ; = 0 at i/? = 0. . ..(45) 

The solution of (44), under the boundary conditions (45), (41'), (42), 
at-d (43'), is 

k = s + ai cos(B,S)e'BAx 

where s = (I 

+ 

+ ar cos(BrS)e-M 

and for integral positive values of r 

I [l+A(l-~)l 
B,( 1 - +" ----;----- = m - &, 0 < $r < ; , 

and tan$r = 
Br[l+2A(l-k$l 
o--------- ---. 

(I-2k# 

r%J 

) . ..(46) 

If s is sufficiently small, Br 5 ---2 , and even when 
l+A % is as 

large as 0.25, B, is roughly equal to 2B,. 

The asymptotic solution (46) may be made the basis of a solution 
of the full equation (27'). Thus we may write 

k = s + al cos(B,S)e-B$X + aa cos(B,S)egBaX + a3 cos(B,S)e'BaX + . . . . 

+ g($)ea2Blx + h($)e -(B,+B~)' + i(~)e-JBl’ + . . . . . ..(47) 

where the equation (27') and the boundary conditions (38'), (41'), (42), 
and (43') will determine the functions g, h, i, etc., in terms of the 
arbitrary coefficients aI, aa, a3, etc. We thus obtain a solution with 
an infinite number of arbitrary coefficients, which can be found from the 
conditions imposed by the shock,-(23') and (30'), in conjunction with (23') 
and (26'). The singularity at x = $ = 0, mentioned in the preceding 
section, might give rise to scme difficulty, but, in principle at any rate, 
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a solution in the form (47) is clearly possible. The functions h, i, etc., 
are tedious to evaluate, but g can be obtained relatively easily as 
fOll~S. $ substituting-(47) in (27') and considering coefficients of 
eoBlx > '3 

-B,x and e-2Blx we obtain, respectively, two relations which 
are identically satisfied,'end a third relation, 

Ml(? - a$g + --- = @I ai cosa @,S). l l l (48) 

The boundary conditions (42) and (43') require 

a3 l+A(l-kF) 
-- = 0 at ;5; = -.--m-m--- . 
d3i 

. ..(49) 
% 

The boundary condition (38') yields-equations, $-Lch are satisfied by 
(46), for the coefficients of- eVBiX and eWBax, and a third equation 
for the coefficient of e -2B,x 

? viz., 

dg 
4ql + aQ1 - Ql@; + ;; = 4ABa, a: cos'(B,S) at $ = 0. l w (50) 

The solution of Equations (48) to (50) is * 

aa 
B1aai 43 = ----:--- + p cos(2B,S) + ----m--w 

2wq 

T 
2(1-2kE)5 

[ !?5*! - $1 sj&‘B,S) 

where sin(2B,Sz) + @,[I + 2A(1 - $,I c.s(2B,Sz)j 

cos@&) 

m------- sin(2BiSZ) 

and Sz z S at ij = 0. 
..I I  (51) 

some values computed from (46) and (51) car 
for cos(BIS), cos(B,S), and $a: at $ = 0 

cos(BIS 
G = nC 

c 
cos(BaS 
da", 

A = 0 TABLE 4(a) "" __-,, 1"1,11,",1,1"1"~" .I ,_(-,- I .-,,-. l-,l.l---...l--_l."-,""" --1"11."1 "^ "-lx, I 
0.05 0.10 0.15 0.20 

------ ---_I -_ -!?5 _ 1 
0.157 0.314 0.471 0.635 0.810 ; 
0.314 0.634 0.970 I.352 1.798 i 

-187 -19.7 -6.29 -2.92 -1.62 1 

- 0.987 - 0.944 -0.872 -0.774 -0.657 
’ 

0.949 0.816 0.652 0.505 0.366 I 
-177 -15.9 -4.17 -1.76 -1.05 1 

I 1 I I 1 
1 I 1 1 

1 

-187 -19.1 -:. 58 -2.09 -0.62 
1 
; 

-,I ,,-,- “,,ll-I,Iy,,,“,“I*l -“-,l”l”.l*,l~“““.l”. _” “_^,_ll__.l”“-“l-l.lll ” .1111 -“..“,,,*, “” 1”111 I,,,, I, ,, 1,111, llilllll /II I 
TARLE 4(b)/ 
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kE = 0.15 TABLE 4(b) 
,111" II,,/ 1,111 ,* ,,, ," ,,,, l*^l,**",l*-l" ,i,,,,,, I,,"u. ,,,,,,m,,, mm+" ,w-,,,,,,,,,,,, *,m* ,,,1,,,,1, * ~~~,/,~~,~,,,,,,,~,,,,,~,,, I ,,,,,,,,,,,,,,,,,,,,,,,,,, * ,,,,,," ,,,,, 1,,,,,, * ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,~,,~~~,, ,,,* ,ll,,,,llillll *,,,11* ,,,, *,, ,~,,,,,,~~~~,,,,,, ,w ,,1,11,1,1 lliilllil ,,, ,,,,, ,,*, 11,111" 1,,1(111111 I,,,,, I1111 I illllllm ,,ml ,1,1111111,1,1 II,, "1,111 1111 - 

t A 0 0.4 0.8 4.2 ; 
g * I 1-1 ---_.~--:---------“--- -_I- “_ -_-- -_“I ._--- 1--1-““” ,ll”l_,l”- -__* ; 

Bl 0.471 0.341 0.267 0.217 
0.465 Ba 0.970 0.713 0.563 

p/at : -6.29 -4.36 -3.69 -3.18 

! ! -0.872 -0.826 -0.800 -0.782 
i q=o 0.652 0.574 0.533 0.509 

-2.57 -2.04 -1.70 , i -4.17 

I $ 
1 I 1 

i -:.65 
I 1 

-2.98 -2.47 
I “,,,,,,,.,,, 1,,,,// ,,,,,,,,,,,,,, “,1,,,,, ,,,,,,,,,,,,,.,, I,,~ ,,,,,,,,,,,,,,, II,,,I,II,,I*u,Y, ,,,, ,,,, I* ,,,, u,,,l,,l,l /,,, llllll*l,.“*iiii(llll,,* //,,,,,,,,,,,,,,,,,,,,, *,,11111,,,,,,” ,,,,,~~~~~~~~~~~~,,,,,,,,,,,~,~,~,~,,,,/~ ,,,,,,,,,,,,, *,,, ,,,~,WYII ,,,,,,,” ,,,,,, cIIIIII”///,lllll,IIlllll,*lIIIIIIIIII1”IIIIIIII “llll,lllllllll”llillllllllililiiiilll ,I” ,111 llll”lli,ll IIu,i*llllll,l,,III*IIIII #,,I 

It will be noticed that da: becomes very large for small 
values of kF. This is not surprising because the exponential terms in the 
asymptotic solution (46) then decay very slowly, and (4-6) loses its 
usefulness as the basis for a solution in the form (47). 

A very rough estimate of the magnitude of the coefficients a, 
and aa9 and of the pressure distribution at the wall, can be made by 
assuming that k can be represented by 

k= 5 + a1 cos(B,S)eoBix + a, cos(BaS)emBaX + g($)e'2BlX . ..(52) 

right up to the shock. Since B is roughly equal to 2B,, it is 
appropriate to neglect the termsain (47) involving a3, etc., if the terms 
involving h, i, etc., are neglected also. Equation (52) involves two 
U~~II~W~S, aI and 'a> since g can be found as above in terms of ai. 
The unknowns aI and a, can be found by imposing the conditions that 

k = $ at x = 3; = 0, l ..(53) 

and that k = 0 on the centre line immediately behind the shock. 
section 3.1.1 The shock in the centre is some way to the right of 

= 0. [c.f. Fig.3.1 From Equation (30') we see that the 
maximum possible value of dX/d@ would occur with the maximum possible 
values of k md ka9 and since 1 P k, > & end 3 a k, 2 0, the 
maximum possible value of wd$ is l/42. 
maximum value of wd$, 

Frobably however _the actual 
which will occur somewhere between @ = 0 

and the centre line $ = nC, will be in the region of 2. Since 
ti/di$ = 0 both at 5; = 0 and $ = nC, it is reasonable to assume 
that the average value of wd$ is in the region of l/8, so that on the 

nC 
centre line X = -- = 

l+A(l-kF) 
--------- by (42). Thus the condition that 

8 
k = 0 immediately behind the shock on the centre line is roughly 
equivalent to 

k = 0 at%= 
l+A(l-kE) 

iji = 
l+A(l-kF) 

-------- > ---------. l ..(54) 
8% % 

Conditions (53) and (54) applied to (52) determine a very rough solution. 
Computed values are given in the Table. 

TABLE 5(a)/ 
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A = 0 TAEEE 5(a) 

1 
,,, /II ,,,,,,,,,~ ,111, I/ /"",, ," ,,,.,,,,,," ,,,,,,,, 1 ,~~,,,,,,,,,~ ,,,,,, ,,,,,,,,,,, * ~~~~~,,,,,,,,~,,, I,,,, u,,*(, ,,,, ,,,,,, ",,," ,,,,11111 ,,,,, *-11"11 ,,,,~,,,,,,,,, w,,ll" ,,,,,,, *,,111111(1111 111111111,,,,,,, % .,,1 x, ll,l"ll"lll,ll., ,,, *,lllmll I.IIIIX1lll_ll,llllllllllll-lll-l .l".,.ll " I, ; 

kF 0.05 0.10 0.15 0.20 0.25 I 

1 a1 - 0.231 -').275 -0.343 -0.412 -0.632 i 

' 'a 10.20 1.64 0.830 0.555 0.694 
" ,,,,,, ,,,,,,, *,,,*,,, ,,,,, ,, ,-""" ,,1,,,,,,,." ,,,,,,,, I, ,," -,,,, //,//,I ,,,, 1,," ,,,, ,,,//, I ,,,,,,,,l ,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,, I 111 ,,,,,,,,,, * ,,,,,,, ,,ll",,,,,.,,l~ ,/,, ,,,,,,,,,,,,,, ,,,,, ,,,,, Wlillll ,,,,,,,,,,,,,, 1111111,111111,,1"**"1111111, #II/ II ,lllllllllll"*,lIIIIIIIIIIIIIII,iilliliiilll " 

k at &O for kFO.05iO.50 0.41 0.34 0.28 0.24 0.20 0.17 0.15 0.13 0.12 0.11 
0.10;0.50 0.36 0.28 0.22 0.18 0.16 0.14 0.13 
0.15;0.50 0.35 0.27 0.22 0.20 0.18 
0.20:0.50 0.36 0.29 0.25 0.22 
0.25io.50 0.39 0.32 0.28 0.27 1*,“,““,,1*,* -,-- 1*“111-1111,11-“*-,~ -,,,,, ..,.A ,,-,, Iu ,,,,,, “I” ,,,,, I ,,,,,, * ,,,,1,1,, 1”,1”,,“*1” ,-,,, “I I_ ,,,.,-, “*,,“**1,- /1/11 *“,11”11*11 1,,* “111( 1111 **llll*(l”l-l-llll_-“~-,,“““-,““--”lll --1-1.1”-111**1” ~*tllllllll”llll ,111 

kF = 0.15 TABLJZ 5(b) I A 0 0.4 0.8 j i %4 al -0.343 0.830 -0.348 0.652 -:* . :z 
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k at $=O for A=0 IO.50 0.35 0.27 0.22 0.20 0.18 
0.4;0.50 0.38 0.31 0.26 0.23 0.20 0.19 0.18 
0.8;0.50 0.40 0.33 0.29 0.25 0.23 0.21 0.19 0.18 0.18 
1.2jo.50 0.42 0.35 0.31 0.28 0.25 0.23 0.21 0.20 0.19 0.18 
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These values for k at $ = 0, together with the values for 
ghe upstream solution given in Table 3 of section 3.5, are plotted against 
x inFigs. 6 and 7. It can be seen that in all cases the pressure 
gradients tend to be a good deal less steep downstream of the shock, where 
the external flow is subsonic, than they are just upstream of the shock. 
It is, of course, not certain that the accurate solution for the flow 
downstream of the shock would behave like this. The solution in the form 
(52) is very crude, and it would be desirable to consider many more terms 
of the complete solution (47). However, the practical difficulty of 
working out the terms h, i, etc., would make this very laborious. The 
expression (52) in effect extrapolates up to the shock a form of solution 
which is valid at large values of 2. This procedure is perhaps to some 
extent justified by the fact that the terms in a, and g in (52) tend 
to cancel one another. Hence the solution for k at 3; = 0 would not 
be vastly different if it were sim ly assumed that a, = g = 0 in 
(5% and the single condition (53 P were applied to find ai. Thus it is 
at any rate plausible to suppose that the full solution of the problem 
would agree qualitatively with Figs. 6 and 7. 

4. The Application of the Solution to the Problem cf the Interaction of 
of a Weak Normal Shock with a Turbulent Boundary La.yer 

As was pointed out in the Introduction, it is not to be expected 
that the simple model studied above should give results in close 
quantitative agreement with experiment. The most important factor 
neglected by the theory is turbulent friction. Even apart from this, 
however, there is no clear-cut relationship between the model shown in 
Fig.1 of a uniform subsonic layer, and the real turbulent boundary layer 
profile. The initial Mach number M 
layer must be chosen so as to give w iz 

and thickness to of the subsonic 
$!t may be regarded as the best 

representation of the real profile, but such a,choice is, within limits, 
arbitrary. Since the solution depends on MS0 and t0 insofar as it 
depends on 

N = 
M,&(M;-1) 3 
-m.--------- 
M;(l-M&)tO 

Y 

it/ 
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it is plausible to choose MSO and to such that 

(1 -Ms;))Y 
----I--- = ------ dy and to = FY, 

Ms: 

where M(y) is the Mach number in the undisturbed turbulent layer upstream 
of the region of interaction at a distance y from the wall, Y is the 
thiclazess of the subsonic part of the layer, so that M(Y) = 1, and 
F is some fraction of order 1. If we assume that the velocity distribution 
in the undisturbed turbulent boundary layer can be represented by 

cl. 
U 

-0 = 

uO 

where u. is the velocity outside the boundary layer and 6 is its total 
thickness, we have for the case of zero heat transfer, where it can be 
assumed that the total temperature is constant across the layer, 

= 

It follows that for y = 1.4 

Thus the thickness Y of the subsonic part of the layer is given by 1 
Y 2 

t0 
= -- , 

i = F6 

l-MS; I Y (I-M2) 

s 

12 
and --w-m = 0 ----- - dy = -- . 

Ms: YO M? 25 

Hence Ms0 = 0.822. The constant A can thus be determined as a 
function of MO by interpolation from Table 1 of section 3.5, and it is 
given together with to/F6 in Table 6 below. Values of l&TN6 are also 
included in this Table, enabling the independent variable x of the 
solution to be converted to a physical distance. Thus x = Nx so that 
X FZ 

= w-0. Finally the ratio of the half-height yc of the channel to 
s FN6 
the boundary-layer thickness 
(4-a 

6 has been computed from Equations (39), 
and (42) and presented in Table 6 as a function of the final 

downstream value of k, kF: the relation for y,/F6 is 

12[1+A(l-kF)]M; 
+ ---- ----------- . 

25&#;-1> I 

TABU 6/ 
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TABLE 6 
,,,, ,# 1,,11,1 "1111 ,,,I,,,,, ,,,I I, ,,,, ,, ,111, 111,1 I,,,,,,, "1,,,1 ,,,,, ,, ,,, II, 1,,11 1,,11 I,,, I,,,,,,,, I. I. 1""1 ,I, " ,I I" ,, . 

i MO ; I 1.02 1.04 1.06 1.08 1.10 : t $ 11""1 _ I 1.-- "_l_" _ .,._" _II_ _--- "" "+- _ ""__*l"_ _ _ I _ ,* _ I "_ _I- ,.--__"I*"".* I _ - "__" 
I 0 0.18 0.35 0.56 0.83 1.2 i 
i 

tc/Ft ~ 

= Y/S ~ I 0.89 0.79 0.72 0.64 0.58 i 
l/FNG : co 2.49 1.44 1.11 0.88 0.74i 

i I- ” * _ _* -_l_“_l”____,_ “__” _-__ .___ ___ _ _. I 
i 

-__ _. __ ” -“II_ ” - - i 

i yc/F6 for kF=O, 05 ~ 00 259 134 0.10 / co 130 67 :: ;i ;; i 
0.15 j co 85 44 32 25 22 

1 0.20 i 00 
0.25 ! w 

64 g 
51 

24 ;; 
19 

;; ; 1 

5 i //,, * /1,111111111111 111 ,,,,,,, ,,,,," ,,, ,,,, ",1 ,._,,, _,_ ,,,,,,, ,,, ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, d ,,,,, ",~1 ,,,,,,, " ,,,, ,, " ,,,, ,,,, ,, ,,,, ,,,,, 1 ,,,,, ,," ,,-,," ,,,,, *,," ,,,, II,, ,,",, ,,,,,, ,,,,,, * ,,,1, ,,,1 ,,,,,,,,,,, ,."*l,"ll"^" ,,,, 111.,_1 "I ,/ ,, I 
For a section of the channel of width o, the cross-sectional 

area of the boundary layers on both walls is 26~8, whilst the cross 
section of the channel is 2Yc% so that the ratio is WY,. If we 
consider the flow in a circular pipe of radius r, the cross-sectional 
area of the boundary layer round the pipe circumference is 27cr6, whilst 
the area of the pipe is ma, so that the ratio is 26/r. Hence for a 
weak normal shock in a circular pipe r/6 needs to be twice as large as 
YJ6 as given in Table 6 to give the same final downstream pressure. 

The ratio of the overall increase of pressure through the shock 
to the increase of pressure that would in theory occur in the absence of 
a boundary layer is equal to 1 - kF. Hence it is evident from Table 6 
that in any experiment with normal shocks in a channel or pipe the 
boundary layer must be very thin compared with the channel height or pipe 
diameter if a large fraction of the theoretical inviscid pressure rise is 
to be achieved with an initial Mach number MO near 1. This makes the 
experiment a rather difficult one because it is desirable to have as thick 
a boundary layer as possible for the measurement of pressure distributions, 
velocity profiles, etc. It is probably partly because of this difficulty 
that no such experiment has been performed to date. The results of the 
theory can in certain respects be compared with experimental results 
obtained in transonic flow past, for example, an aerofoil. However the 
surface is usually curved in such a case, and the upstream supersonic 
flow is certainly not uniform, so that there are important differences 
from the case of a shock in a straight channel or pipe. Thus, as Ackeret, 
Feldman, and Rott2 and Enmons3 have shown, surface curvature would, even 
in the absence of a boundary layer, be expected to give rise to a 
singularity at the shock with a reduced downstream pressure. Probably, 
however, in the presence of a boundary layer, the relatively steep pressure 
gradients that occur where the external flow is supersonic would be little 
affected by surface curvature or by lack of uniformity in the upstream flow. 
Thus the maximum pressure gradient under the shock should depend only on 
the external-flow Mach number M 

8 
just upstream of the shock near the wall 

and on the thickness of the boun ary layer. 

According to our solution, the pressure gradient at the wall 
at x = 0, where the supersonic region terminates, is close to the 
maximum gradiznt. [See Fi s. 6 and 7.1 At x = 9 = 0, where 
k = kg = a, Equation 36) shows that 

dkS N 
w-m = - --m-w- . 
dx 3(l+A) 

This means that the maximum pressure gradient at the wall is given by 

6 
2y (M;-l)N6 (M;-I)N6 

fi -em ------es = 0.39 -------- , 
Y+I 3(l+A) l+A 

if y = 1.4. In terms of the stagnation pressure H 
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a P 
6 

( > 

0.3Y(M;-l)N6 
-0 - = Inn-----------, 
dxH (1+A)(1+~~y5 

5 
Values have been computed from Table 6 as functions of MO, and are as 
follows : 

Maximum values of F6 -- j o 0.005 0.016 0.028 0.040 0.050 i 

a P j 
Maximum values of F6 -- ( - > : 0 0.003 0.008 0.014 0.019 0.023 f 

dx H I 
i ,, #,I ,I 111,,1,,m1,mm /111// /I 111,,,,1,,,,1111111,,,,,,,,, ,, ,, ,,,,/, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,, ,,,,,,,,,, ,,,, ,,,,,, ,,,,,,,,, ,,,,,,,, ,,,,,,,, ,, ,,,,,,,,,,,,, ,,,/,,,,,,,,,,,/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,, ,,,,, ,I ,,,, ,,( ,, ,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,( ,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,, ,, ,,,,,,,,,,, ,,1 

Experimental results7 obtained from a two-dimensional curved 
surface attached to the wall of a subsonic wind tunnel are shown in 
Fig.& The figure shows a family of pressure distributions in the 
neighbourhood of the nearly-normal shock for various free-stream Mach 
numbers, The thickness 6 of the turbulent boundary layer was about 
0.35", so that for the weakest shock, for which M, = 1.14, 

a P 
6 -0 " 

( > 
2 0.08. The values of Table 7, extrapolated to MO = 1.14, 

dxH a P 
suggest that at that Mach number, F6 -- 

( > 
- c 0.028. Thus to obtain 

ax H 
agreement with experiment we need to assume F -n 0.35. This seems at 
first sight rather small, since the most obvious assumption is that to, 
the thickness of the subsonic layer in the model of Fig.1, is equal to 
Y, the thickness of the subsonic part of the real layer. Thus one might 
reasonably suppose that a value of F quite near 1 would take care of 
any errors arising from the somewhat arbitrary choice of Ms0 and t0. 
The smaller value of F, however, probably compensates in a rough and 
ready way for the neglect of turbulent friction effects in the theory. 
Equation (34) for the thickness t of the subsonic layer may be written 

t-t0 = 
2(M2-I<) (I-M&)tO 
---~~;-;~-n;---- [I - kS + A(1 - kS)2], . ..(34') 

+ so 

and the left hand side of this equation is equated with the amount by 
which the innermost streamline of the external flow is displaced outwards 
from its original distance from the wall. This displacement is probably 
overestimated by (34') if to is put equal to Y on the right hand side, 
because (34') is based on the assumption of frictionless flow. In reality, 
because of friction, the subsonic flow is not slowed down by increasing 
pressure as much as is assumed, and hence the stream-tube areas do not 
increase as much. This makes it understandable that the best agreement 
with experiment should apparently be obtained with F c 0.35. However 
more detailed comparison with experiment is desirable to determine 
whether or not the value F = 0.35 brings roughly into line with 
experiment the other predictions of the theory, such as the relationship 
given in Table 6 between y,.., the half-height of the channel, and MO 
SIIa kF. 

The distributions of Fig.8 show that the pressure gradient 
under the shock increases at first with increasing Mach number MO for 
values of MO near 1, where MO corresponds to the minimum pressure 
at the surface of the aerofoil just upstream of the shock. However the 
gradient tends to an approximately constant limit for rather higher 
values of MO. The results of Table 7 appear to be consistent with this. 

1-u 
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It is interesting to note that the solution indicates that as 
the Mach number MO approaches 1, the region of upstream influence of 
the shock increases, despite the fact that the pressure rise through the 
shock decreases. This apparently paradoxical result is due to the fact 
that the thickening of the subsonic layer tends to be proportional to the 
pressure rise, and hence to (Mi - I), whilst the maximum deflection of 
the extepal flow from its free stream direction is proportional to 
(Ma - I):. To accommodate the increase in boundary layer thiclazess, 
thgrefore. the region of upstream influence tends to vary as (Ma, - I) . 4 
This effect is, h&ever, only operative at Mach numbers close to" 1, . 
because of the non-linear relation between pressure and the thickness 
the subsonic layer. 

of 

Put 

It may be desired to obtain a rough estimate of the overall 
increase Ati* in boundary-layer displacement thickness through the 
shock wave. The left hand side of Equation (34’), (t - to), may be 
equal to Ah*, and assuming MS0 = 0.822, y = 1.4, and, tentatively, 
to = 0.35Y, we obtain 

A@ 
m-w = 

6 
0.14 (M; - 1) + A(1 - k$'l, 

where k~, the final downstream value of k, depends on the dimensions 
of the channel, as in Table 6. For an infinite channel or pipe 

% 
= 0 and- 

A@ 
-em = 

6 

Y 
0.14 (M; - I)(1 + A) -0 

6 

Values of this expression computed from Table 6 are given in Table 8. 
The upstream value of the displacement thickness 6* is approximately 
equal to 0.166 for MO in the range I tis 1.1, [c,f. Ref. 81, and * 
values of the proportional increase in 6*, ---, have also been included 

in the Table. 6* 

TABIE 8 
1111 1,,1,111 * II ,111111,11 ,, ,- ,m, mII ,111 lrn ",,,*" , ,,,,, I" I,, "I,,". ,,W" . "I I " " . 1,11 ,,, ,I ,/,, VII . 

j--e _ I _ . ..-.A..- _--^---.- -l 1.02 ?."---- 1.04 _______ *_"_ ----- 1.06 ___"-- _-__.".-. 1.08 _-------.--- 1.10 -- I 
1 A&X 
; -we 0 0.006 0.012 0.019 0.027 0.038 ; 
i 6 I 

;A&", 
; -ii o 0.04 0.08 0.12 0.17 0.24 ; 

The results of Table 8 are of course only tentative since it 
is only a possibility that by putting to = 0.35Y and Ms0 = 0.822, 
as above, the behaviour of a real turbulent bo&?dary layer can in all 
respects be approximately represented by the theoretical results for a 
uniform frictionless layer. 

5. Conclusions 

The solution obtained suggests that Figs. 6 and 7 represent 
the general shape of the pressure distributions at the wall for 
interactions between a weak normal shock wave in a straight channel and 
a turbulent boundary layer. However the following points must be borne 
in mind:- 

e model of a frictionless subsonic layer shown in Fig.1 is 
an arctics one , (a) because it ignores friction, and (b) because even 

if/ 
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if friction played a negligible r(^ole in the real case, (except very near 
the wall where it is essential if flow reversal is to be avoided), the 
real profile is not the same shape as Fig... . 

(ii) Downstream of z = 0 the accurate solution has not been 
found even for the simplified model of Fig.1. 

With regard to this last point, there are reasonable grounds 
for believing that the accurate solution would be of the same eneral 
shape as shown in Figs. 6 and 7, at least to the exqent that ?I k - kF) 
would be appreciable over about the same range of x for both the 
accurate and approximate solutions. Point (i)(b) is also probably of 
fairly minor importance; if friction only played a negligible part in the 
real layer, except very near the wall, the solution for the model of 
Fig.1 would probably represent the behaviour of the real liyer quite well 
with Ms0 put equal to 0.822 and t 

fz 
put equal to FY with F not far 

from 1. In reality, however, the ef ects of friction will not be confined 
to the laminar sublayer. If F is put equal to 0.35, the theoretical 
prediction for the maximum pressure gradient with MO = 1.14 can be 
made to agree with experiment. This somewhat low value of the factor F 
serves partly to account in a rough and ready way for friction effects, 
and it may be that, very crudely, putting F = 0.35 suffices to bring 
all the theoretical results quantitatively into line with experiment. 
*en if this does not prove to be the case, however, it seems quite possible 
that the results will still resemble qualitatively those that would be 
obtained with real turbulent layers. 

Although the theoretical results have been obtained for the case 
of a straight two-dimensional channel, it is likely on physical grounds 
that there would be little difference with a pipe of circular cross section, 
provided that the radius of the pipe were related to the height of the 
corresponding channel as discussed in the preceding section. Hence the 
above remarks can be taken to apply to the flow in a pipe as well. Pipe 
flow is of course easier to achieve experimentally than two-dimensional 
channel flow. 

To sum up: The theoretical results suggest that in experiments 
with upstream Mach numbers MO in the range j to 1.1, and with the 
dimensions of the pipe or channel adjusted so as to make the overall 
pressure rise a given fraction of the theoretical normal-shock value, the 
pressure dis,tributions at the wall should not be too sensitive to MO 

when plotted in the form of p-po * -2 ----- 
(Ms-l)q x 

-------- 
(M;-l)po against M;(l+A)i s' 

where A 

and Y/6 are given as functions of MO in Table 6, p is pressure, 
P the upstream pressure, and 6 the boundary-layer total thickness. 
Ip this method of correlating experimental results should prove fruitful, 
and the results resemble qualitatively those shown in Figs. 6 and 7, it 
would be reasonable to conclude that friction is not of dominant 
importance in the interaction, but that the frictionless "Bemouilli" 
thickening of the subsonic boundary-layer flow with increase of pressure 
is at least a very significant factor also. 

References/ 
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