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SULARY

Results from a systematic sevrics of simulated responses to alleron
manoeuvres are discussed. It is shown that large amplitudes in incidence
and sideslip can occcur on aircraft having large inertias in pitch and yaw
when performing quite modest rolling moanoeuvres. In general these
amplitudes increase progressively with the duration of the rolling
manoeuvre and with the incidence of the principal inertia axis. The
aircralt response deteriorates ropidly as the rolling velocity approaches
a value detemmined by the matural frequencies of the uncoupled lateral and
pitching oscillation of the aircraft.

If the incidence of the principal inertia axis is below 2 critical
value an autorotational rolling state exists towvards which an alreraft
tends to diverge once it has exceeded o cerbain critical rolling velocity.
For aircraft with large incrtia in pitch this critical valuc can be as
low as about 20°/sec. The practical significance of this phenomcnon to
the pilot is not yet fully urnderstood.

_ Various alternative schemes of autostabilizotion have been explored.
They require generally very powerful control movements and may not
necessarily relieve the tail loads as such,.
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1 Introduction

Recent f£light incidents invelving loss of control during rolling
manceuvres on some advanced American supersonic fighter and research aircraft’
have revealed the existence of a coupled lateral-longitudinal moticn which
cannct be accounted for by classical stability theory.

Phillip52 has pointed out that the equations of moticn for the rigid
aircraft contain product terms which ccuple the lateral and longitudinal
motion of a rolling aircraft if it has extremely large inertias in pitch and
vaw. This leads to a system of six simultaneous ncnlinear differential
equations for which no analytical solution exists. By suitable simplifica-
tion Phillips has reduced these equations to a linear system and has predicted
a cambined lateral-longitudinal divergence for rates of rcll beyond certain
critical "resonance frequencies",

However, this attractivcly simple approach cannot predict the ampli-
tudes in incidence and sideslip occurring during actual flight manoeuvres
and is thus unsble to assess the stress preoduced and the handling limitations
of an actual aircraft design. With electrcnic computing aids it has, however,
become possible to cbtain solutions for nonlinear equations of motions and in
particular to compute recponses to aileron manoceuvres for any given aircraft.
This has been done on a considerable scale in the U.S.A. without sc far
revealing sufficiently general criteria though it is indicated that the
stability boundaries according to Phillips give a useful indicaticn for the
rates of roll, at which difficulties may arise.

In crder to obtain a fairly gencral appreciation of the problem at
first hand a series of computations have been undertaken on GEPUS, a general
purpose simulator in RAE, which was mede available for this investigation.

The author wishes to express his gratitude and appreciation for the assistance
received from Mr. T.R. Stretton,who suggested the circuit Fig.53 for computing
sin and cos ¢, and his Staff. Without them the results presented in this note
could not possibly have been obtained in such a short time., The results of
this investigation, which was mainly plamned as a preliminary study tc a more
comprehensive further prograsme, are presented in this note. In suppert of
this empirical work a theerctical study of the prcblem was begun in crder to
explore the possibilities cf an analytical solution beyond the determination
of the stability c¢f an aircraft rolling with steady rates of roll as given in
Ref.2. At the time of writing this theoretical work is still in progress,

but as the results obtained to date appear cncouraging they will be briefly
summarized in Appendices E and F.

For the course of the computaticns on the simulator a tendency of
certain aircraft configurations t¢ develep a divergence in roll was observed -
in addition to unstable motions predicted by Phillips - and a theoretical
study has proved the existence of autorotational rolling states for aircraft
with large inertias if the principal inertia axis is below a certain critical
incidence.

Pinally the possibilities of pilet's control and automatic stabilisation
have been investigated. The equations for the ideal autostabiliser operating
on rudder and elevatcor have been derived,

2 Stability equations

2.7 FRulcr equations

The Euler cquations for the rigid aircraft when referrcd to a system of
cartcsian coordinates fixed in the body, (sce Ref.3), ave:



!

X = aV(5=-7rp+ qa) (1)
T = v (B - pa + ) (2)
Z = mv(&-q +pB) (3)
L = &p-(B-0C)aqr+D(x2=q2) - E(pq+1r) +F (pr~q) (&)
M = By~ (C=A) rp+E (p2~1r2) -F (qr+p) +D(ap - 1) (5)
N = or-(A=B)pqg+F(q?-p%) -D(rp+d) +E (rq-p) (6)

The forces and moments acting on the airaraft X, ¥, 2, L, M, and N are
aerodynamic gravitational and gyroscopic couples generated by the angular
momentum of the engine., In order to inbroduce the grawvity components into
the force equations the orientation of the aircraft in the gravitational
field had to be computed by the kinematic relations:

a‘l‘/dt = sec® {rcos¢ +qsin ¢} (7)
de/dt = qoos¢ =1ry sing (8)
d¢/dt = By + tan 6 (rcos¢ +qsing) . (9)

Stability theory usually employs the concept of small disturbances
from an equilibrium state, i.e, the variables p, g, r, u, B, a are
assumed small so that the products of vhe varicbles in equations (1-6)
become small of second order and negligible, This permits the system of
six simultancous differential equations (1-6) to be split into two
independent groups, describing the lateral and longitudinal motion separately,
if - as is usually permissible - aerodynamic coupling between these as well
as the gyroscopic engine couples are assumecd negligible.

Howcver, in controlled flight rate of roll, p, at least, camot
generally be assumncd small, ratcs of more than 3 radians/scc constituting
quive legitimate manoeuvres, and conscequently the products with p in
equations (1~6) will havce to be considered in the study of general rolling
manocuvres, in parvicular if the inertia differences (B = A) and (C - A)
are large.

242 Choice of axes

The sysvem of coordingtes normally used in airecraft stability investi-
gations is the so-called, "wind axes" system., This system is a body-fixed
system of cartesian coordinates with the origin in the CG whose X axis
coincides with the flight path in the equilibrium state. This choice is
largely determined by two considerations:



(1) aerodynamic data are generally given in this system;

(ii) the pilot refers the aircraft motion to the flight path and the
variebles of motion should therefore be expressed as deviation from this
natural datum and referred to this datum.

However, equations (41-6) are greatly simplified when referred to principal
inertia axes thus eliminating product of inertia terms DEF.

Aerodynamic data must, of course, be transformed to this system of
axes, (RAe.C. Data Sheet Aircraft 00.00.06), but such trensformation becomes
necessary generally when considering motion with large disturbances as the
force and moment equations are expressed in body fixed "wind axes" which
are true wind axes only for smell departures from the equilibrium statc, in
the sense understood in the usual presentation of aerodynamic derivatives.

2¢3 Eguations of motion used in the present analysis

The notation used throughout this note is generally thas of R & M 41801
with the exception that the angles a and B replace the incremental
velocitics w and v .

Principal inertia axcs are used, thus product of inertias

In the theoretical analysis lincar aerodynamic derivatives are assumed
throughout and gravity is neglected. Further as shown in Fig.i:

Aa = incremental incidence
o= &+ A = incidence of principal inertia axis
Ay = incidence of the principal inertia axis in equilibrium flight.

Forward spccd is assumcd constant eliminating the X-Force equation. Thus
cquations (2-6) become:

1 . :

~ {YBB+Yrr+LPp} = p-p(ag+ha) + v (10)
1 . .

o {ZaAa+qu + Z&a} = a=q+DPB (11)
LE«E + LBB + Lpp +Lr = Ap - (B= C) ar (12)
Mﬂn + MaAa-i-h&a + qu = Bqg =~ (C=~A4) rp (13)

NE +NZ + NP+ Mpp 4 Nyx = cr ~ (A-3B)pqg . (14)

On the simulator gravity was also represented and the most marked
linear variabions of the lateral derivatives with incidence where considered

in the form e.g.:

s

-9 -



LB = LBo +—= o = LBO + LB «* (15)

where LB is the value for LB at a flight attitude where the incidence «
o

of the principal axis would be zero. In this form the simulator computed

automatically the changes of these derivatives with CL .

With these terms the equations of motion used in the present series of
similations (rudder Z and elevator T assumed fixed) where:

1 g . :
7 {YBB + Yrr + Ypé} --; gin ¢ - r + pao = B (16)

10, g
— {AaAa + qu + Z&%} -7 (1 -cos ¢) +q-1

fo)

w
4
Re

(17)

L - = Af

gg + LBB + Lﬂa ol + Lpp + er + (B =0)qr Ap (18)
M A +-M&& + qu +(C-A) rp = By (19)
Ny o + NgB + Nbop + Npapa +Nr+(A-B)pg = Cr . (20)

As gravity has been generally found to be of secondary impertance its
represcntation has been simplified to the above form by assuming 6 to be
small so that the kinematic relation equation (9) can be reduced to:

¢ = / pat . (21)

3 Brief discussion of existing work

a1 Plight evidence

The present investigation has been prompted by a number of flight
incidents involving loss of contrel reported from the U.S.A.! where large
amplitudes in & and P have occurrcd on some occasions when advanced high
speed alrcraft executed prelonged rolling or rolling pull out manccuvres in
a flight condition where otherwise satisfactory stability characteristics
exist. As an example a typical monceuvre as recorded in flight is shown
in Fig.2. It wos found that this twne of instability could be related

- 10 =



to a critical rolling velocity and that in general the magnitude of the
divergence of the aircraft in a and B increases progressively with the
duration of the manoceuvre and also in proportion to the load factor applied
during the manoeuvre.

Simulator computations were carried cut in many instances in support
of this filight work, These have proved conclusively that the observed
flight phencmena can be satisfacterily explained by the effects of the
product terms in the Euler-equations.

Although recorded evidence of £light incidences or inertia cross—
coupling is only available from very rccent cases, there is no reason to
assume that isolated cases of inertia cross-coupled instability have not
happened before.

Based on flight experience pilots have also been advised to refrain
from recovery action with rudder and elevator and to bring ailerons gently
back to neutral once rolling instability is experienced. It should be nected
that the terms instability and divergence are used here loosely to describe
the occurrence of large peak values during a manocuvre though it is not
necessarily the result of instability of motion in the strict sense of the
word.,

362 Theory

Considering stability for constant values of ratc of roll p =p_ in
Ref.2 the system of differentisl equations (10-14) has been linearised and
as p 1is now a parameter the rolling moment equation (12) becomes redundant.
The remeining Tour simultanecus differential equations have a quartic as the
characteristic equation which is reduced to a biquadratic if all the damping
terms are neglected, as shown in Jippendix D. The sclution given there in
equation (D.11) is identical tc that given by Phillips in Ref.2, but written
in the notation adopted for this ncte. When domping is neglected the
solution depends on the twe uncoupled angular frequencies of the aircraft
in yaw and in pitch

o s 54

o = s @3

on and on the ratic cf the inertias A/ . For A/B = 0 this solution
by B 5
2 W .
)" and ( Wb&

The major region in the upper right hand corner represents stable motion
with twe neutrally stable oscillatory modes with the frequencies w, and
Wy s hs P, increases, or cither of the two uncoupled frequencies, i.e.

m and n_ are reduced, one of the twc oscillatory modes degenerates into

has been computed and plotted in Fig.3 against (wG/po

a divergence. The stability boundaries are indicated in Fige.3 and show that
the motion is stable if

p, < w\lI and 128 < Wy .

For very large values of P, > l.e. if

and P, > Wy

o 4

the motion becomes again stable as indicated by the hatched regicn in Fig.3.
- 41 -



These boundaries apply for an aircraft with inertia in roll (A) small
when compared with inertia in pitch and for negligible damping in pitch and
in yaw. Generally with A % O but inertias concentrated in one plane, i.e,
C =B + A and negligible damping the two stability boundaries will lie at

2 W 2 2 B
99-) = 1.0 and <-1"—9 = 1 = (Y + 4 (24)
Po PO PO B - A

as showm in Fig.lL. For increasing inertia in roll when compared with inertia
in pitch the stability boundary in w, is moved vowards the origin, with
which it will coincide if A = B , but the aircraft will still be unstable
for p > Wg .

The effect of damping in yaw and/or in pitch on the stability boundaries

is shown schematically in Fig.,5. The two stable regions are now connscted by

a trough snd an aircraft with _&:‘_’_6__ % 1,0 should be stable for all values of p.

o]

4 Phillips criterion and design trends

Following the work described in the previous section, Phillips has
suggested as the primary stability criterion ’

(25)

Though the adequacy of this expression as a relisble criverion may be
disputed, it is useful for demonstrating the design trends which have led to
the advent of the divergence in rolling manocuvres in some present designs
and to assess future devclopments.

For this purpose equation (25) will be rewritten

2
p? < v Vi 0.0765 . (26)

iB<1 - %) Vg */y

This discloscs rcadily the four principal features which combine to lower
the critical rate of roll into the range required in normal aireraft handling,
say below 3 radians/sco:

(1) increasing wing loading,

(ii) iy , which in this note is reforred to semispan ¥/, , increases

as Tuselages become more elongated and loads are distribufed more evenly over
the full volume of the fuseloge.

(iii) A/B s i.c. the ratio between inertia in roll and in pitch

decreases with the reduction in wing span in relation to the fuselage length
and in general for the reasons quoted undor (ii).

- 12 -



Tor a typical World War II fighter L p was of the order of 0.8 whereas

with modern supersonic projects ratiocs of 1/5 and less are commonplace. It
should be noted, however, that increasing inertia in roll will not neces-
sarily be the ideal remedy, as it might easily create difficulties in basic
aileron centrol as shown in Ref.l.

(iv) Increases in operaticnal height will allow the achievenment of
high rates of roll at low indicated speed, i.e. at a flight conditicn with
a low critical value of op.

The effect of the ratio A/B on the critical rate of roll p = w¢

is illustrated in Fig.6. Values for p =W for a representative

crit = ¥,
range of aircraft are shown in Fig.7 where the effects of the design trends
discussed above are clearly demonstrated.

This attractively simple analysis is, however, insufficient to predict
fully the flight behaviour of an aircraft in practical rolling manoeuvres
and in particular the peak values of incidence and sideslip occurring during
such a motion.

The actual criterion for these may be dictated by structural limita-
tions, pilots discomfort and fatigue, effects on navigational techniques etc.

These peak values of o and B can only be cbtained by computing
the response of an aircraft to a given aileron manoeuvre.

The work undertaken at RAE was largely directed to determine
systematically these critical quantities.

5 Computations on a General Purpose Simulator (GBERUS)

5e1 Scope of the Investigation

in extensive programme of analcgue couputations was carried out on a
general purpose simulator (GEEUS). Due to the large number of multipliers
installed in this computor the equations of motion could be fully repre-
sented including the effect of gravity and non-constant aerodynamic
derivatives.

The programme was divided into two main tasks:

(1) Investigation of individual aircraft designs in cooperation with
the manufacturers. As none of the aircraft analysed showed eny alarming
characteristics it is not proposed to repcrt on these investigations here.

(ii) A systematic investigation of the effect of all the relevant
parameters both with respect to aircraft design and the execublon of the
flight monceuvre. This programme was centred round a typical advanced
superscnic Tighter design, but in the course of the investigation con-
siderable veriations of all major coefficients were explered, so that the
results cover a fairly wide range of aircraft configurations. The primary
task of this preliminary series cf computations was, however, to determine
the predominant parameters so that the number of relevant parameters could
be reduced to a manageable order and then to draw up a programme for a more
comprehensive study. At the time of writing such a programme has already
been started and it is hoped that the results of this werk will give more
general data than those presented here,

- 13 =



542 Representation of the equations of motion and the aercdynomic forces
and moments

The equations of motion represented on the simulator have been derived
in section 2,3 ond are equations (16~21). The circuit representing these
equations is shown in Fig.52 and has been so arrangcd that the aerodynamic
derivatives arc set independently from speed, inertias, p, . This assisted
in the procedure of varying individual parameters by reducing the number of
coefficicnts to be reset for each variation to the absolute minimum. Further-
more, since all goins represent then numerically familiar quantities, errors
in setting and resetting a problem are more readily spotted,

It should also be noted that a number of apparently superfluous
amplifiers in scries with integrators has to be used as the integrators on
GEPUS can only be set for a limitcd number of widely spaced discreet values
of time constants.

The circuiv computing sin ¢ and cos ¢ as required %o represent
gravity in the force cquation is shown in Fig.53.

The aerodynam’c, inertia snd geometric data for the supersonic Tighter
presented as the "standard aircraft" in the programme orve given in Table 1.
When the individual paramebers wore varied the flight condition M = 0,8 at
40,000 't altitude was chosen as the reference throughout,

It may be interesting to note that in the process of transforming the
original acrodynmmic derivetives (in wind axes) to the valucs tabulated as
referring to principul inertia axes, -, has chenged sign and Dpg has
been coonsiderdbly altered., Unfortunatély n, has been represented by a
constant volue, buv it is realised now that even for a basically constant
n,(C) , ny in body axes will vary considersbly with incidence and this
cbviously important effect will be investigoted at the earliest possible
roment,

5.3 Simulated flight menoeuvres ond method of analysis

In order to obtain repetitive results and to be able to separave the
effects of design modification from irrelevant factors s it was necessary to
specify a well defined input, A% the same time this input had to bear a
recasonable resemblance to recalistic flight manoeuvres. For the first reason
rudder and clevator had to be assumed fixcd, Aileron was applied as a
single squarc wave function to a preset value of Z_ . It was held until a
desircd angle of bank A¢ , as computed on the simulator and displayed on a
meter in front of the operator was reached., E and A¢ were varied
systematically to cover a representative range of flight manceuvres. A
typical record of such a manoeuvre is shown in Fig, 8.

After the ailerons are returned %o £ = 0 the aircraft does not
instantancously cease to roll so that the angle of bank through which the
aircraft finally rolls is considersbly in excess of A¢ .

In order to check whether the results obtained by these obviously nct
quite realistic manceuvres are sufficiently representative of a roll where
the airereft is stopped at A¢ , the latter case was frequently attempted
by manually controlling & through the knob of a varisble resistor. This
rather arbitrary procedure was repeated several times and it was generally
found that vthe peak values in o and B obtained thereby scattered within
the band of +52 5 about the values obtained with the standard monoeuvre.

An exanple of such a series of tests is shown in Fig.9. This was accepted

-1l -



as reascnable correlation sc that the nominal bank angle A¢ can be
interpreted as approximately representing the angle of bank change of a
corresponding actual flight manoeuvre. This interpretation is, however,

not valid for a case where p diverges after & 1is returned to neutral and
results obtained in this condition have generally been rejected.

It is perhaps significant that pilots! eflorts to terminate the
monoeuvre quickly (that is what the operator has actually tried to achieve
in the above mentioned manoeuvre) are apparently mcre likely than not to
worsen the response in « and B , as is borne out by the predominance of
the scatter towards an increase in o and B . This would substantiate
similar flight experience in the U.S.A.

Fig.8(b) illustrates the method of ccmputing peak values of Aa and
B , which were taken as the significant quantities describing the behaviour
of the aircraft in roll. Aamax and Bmax are defined as the larger of the

first two peeks recorded in a and B respectively. It was assumed that
if the motion would continue to diverge further the pilot would have taken
some corrective acticon.

Bel.  Alrcraft responses®

Typical time histories of responses computed on the simulater are
shown in Figs.10 to k. Fig.10(ag represents the supersonic fighter chosen
as the principal example (Table 1) flying at a Mach Ne. = 0.8 and 40,000 ft
altitude., This ccondition was selected because it represents approximately
the greatest height at which subsonic speed will be practicable. This was
expected to give the worst response because m_ is at a minimum befere it
rises to its substantially greater supersonic value. Ailerons are held at
£ = 1° until a bank angle A¢ = 90° was reached.

If the principal inertia axis was inclined -5° (nose down) as compared
with the basic +5° the motion shown in Fig.10(b) was obtained.

Fig.11(a) shows the response to a manoeuvre with & held at 8° until
Ap = 180°; the amplitudes in a and B are considerably larger when com—
pared with the roll through A¢ = 90° shown in Fig.10(a).

Figs.12 and 13 show the same rclling manceuvres on an aircraft with
m_ increased te four times the value of the "standard" configuration. The
w . . .
peak values in « are reduced, those in P incrcased.

If the basic value of (0.20) is reduced to one quarter of its value,
the amplitudes in B are substantially increased, o being slightly smaller
as seen in Fig.1u(a).

The dominating influence of the inertia erosscoupling terms on the
aircraft response in rolling is illustrated in Fig.15 where these terms:

pa(B=-4); opr(C~-4) and g (C-B)
have been omitted during twe otherwise identical manoeuvres.

In additicn to the yawing and pitching motions, which are the principal
topic of this note, Figs.10(b) to 14(b) all display a new tyge of instability
in roll itself. It can be seen that in these cases (o = =5°) the aircraft
continues rclling after the ailerons are centralised and will finally settle
down to an autorotational rolling state, which is independent of the original

* The results shown in Figs,10-1, are slightly in error. Although the con-
clusions drawn are not invalidated by these errors, the time histories
carnct be taken as correct in detail,



aileron application, This steady state is seen perticularly well established
in Figse11(b) end 13(b). This phenomenon will be discussed in detail in
section 6.1 and Appendix A, where it is showm to ocour for values of a, below
a certain critical value.

The actual significence to the pilot of this rolling instability camnot
be deduced immediately from these simple computations, where the motion is
allowed vo develop unchecked, Purther study will be devoted to this aspect
by computing the control movements required to stsbilise the motion.

5«5  Effect of warious aircraft parameters and £light condition

The effects of varying the inertia and aerodynamic parameters of an
alroraft and the flight condition are investigated by considering only the
peak values in Ao and $ reached during a given rolling manoeuvre. It
must be strongly emphasized that the trends established here for the coffects
of varying individual parameters are strictly applicable only to the particu~
lar aircraft configuration and flight condition for which they were obbained
and do not necessarily admit of generalisation., Some of the conclusions drawn
here mey have to be amplified as more results are asccumulated in the course of
the continuabion of the present series of computations.

5.51  Duration of aileron application

For all the configurations investigated the duration of the aileron
application and thus the angle of bank rcached during that time (as defined
in section 5.3 and illustrated in Fig.8) has been systematically varied.

Analysis of the variation of the peak amplitudes in Ao and B with
A¢ shows already the difficulties in laying down sufficiently generalised
rules, as three distinectly different trends have been observed for diffcrent
combinations of inertia and/or aerodynamic derivatives.

(1) Aa and B increase progressively with the duration of the
max moax P

aileron epplication, i.e., with A¢ and reach a maximum after which no further
deterioration occurs even if ¥ is held on indefinitely. See Fig,16. It
appears that as the aileron angle ¥ and thus the rate of roll is increascd this
maximum is reached at larger bank angles.

(ii) begy,. and P max increasc progressively with the duration of the

aileron application up to a cerbain value of A¢ . If ailerons are held on
longer, the peaks in Aa and B become smaller, reach a minimum after which
they start to incrcasc again., For the example shown in Fig,17 for g = 10°
rolling through A¢ = 90° results in a peak value of Ax = 10% If tre manoeuvre
were continued through £¢ = 180° only A, . = 3% would be recorded.

(341) tap,., ond Bpay incroese progressively with A4 indicating

the presence of a divergent mode of motion. RExamples for this condition are
shown in Tig,.18.

These trends are examinced thcoretically in more detail in section 6e3
vhere they are illustrated by the first results of the new series of simula-
tions (see Figs.l9 to 51).

5e¢52  Allcron angle and rate of roll

In Fige20 A . and PBp., have been plotted against aileron angle ()
for various flight conditions. As an alternative to g the abscissa is scaled
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in terms of p, i.6. the steady rate of roll corresponding to & , if it

were held on indefinitely. (The values of p, were obtained by observing
this condition on the simulator). The actual peak values Oof p reached in
the computed manoeuvres are, however, only approximately Z.0f these values

Doy -

In ell cases computed A%y, and Bpax dinorease progressively withg

(or p,) ond reach a maximum at a certain value of p, beyond which the air-
craft rolling characteristics arc again improved.

This phenomecnon can be explained by the results of the stability
analysis of Ref.2, This is illustratcd in Fig.19, showing schematically
the stability boundaries of Fig.3. The radial line through the origin
represents variation in p for a given aircraft flying at a given speed
and height, i.e. with a given wg and wy . Within the range p4 < P < Pp
zhe)lateral-longitudinal aircraft motion will be unstable., From equation

)

P4 = w P2 = Wg (27)

Yo

can be established, thus instability occurs between

< P < wy Aif we > Wy

or ( 28)

>P>weif°"e<“’1}:o

whichever applies.

These ranges arc indicated in Fig.20. They lie at approximately 50%
of the values of p, at which Awy,, and Bp,, have their maxima, As
mentioned above the actual peak values of p reached during these manoeuvres
were roughly 4 P and an average figure for p is approximabely 0.5 peo »
If these values of p are taken as representative the range p4 < p < po
will then coincide with the maxima in Aoy and Bmax

5653 Incidence of the principal inertia axis and pull-out manoeuvres

It wos noticed early in the compucations that the incidence of the
principal inertia axis d, (with respect to the flight path in the trimmed
equilibrium condition) has a dominating influence on the velues of the peak
amplitudes in Aa and B recorded. Consequently &, was trcated as an
independent parameter during the whole investigation and not taken as the
incidence of theparticular aircraft chosen for an example as it would apply
to che various {light conditions examined. By discussing these effects of
height, speed and incidence separabely more generally applicable conclusions
can be drawn.,

Theoreticel enalysis {section 6,3 and Appendix E) shows that Admpay

and Py, are largely proportional %o @, , contd ning in addition a

contribution proportional to » This is well represented in the results
obvained on the simulator as shown in an example for many similar results
in Fige21(a).



The steep rise of § . and ¢ towards negative values of &, seen

in Fig.21(b) is the result of the development of a divergent rolling motion as
discussed in scetions 5.4, 6.1 and Appendix A and is not directly a feature of
the lateral~longitudinal wocion discussed here.

From the influence of' @, on the aircraft response shown in Fig.21(a),
the behaviour of an aircraft in rolling pull outs may also be assessed, though
such manocuvres have nov so far been acbually computed in the present series.
The application of g will result in an increase in incidence and thus in a..
This will worson the aircraft response in the sense indicated in Fig.21(a)
apart from so far unexplored effects of simultaneously applying rate of pitch.

5.54  Speed and height

Results obtained for the supersonic fighter aircraft described in Table 1
at 60,000 £t altitude have beca plotted against Mach No. in Fige.22. The sharp
drop in Aap.. and Bmax through the transonic range is largely the resulb
of the increase in m,; from the low subsonic value of 0.083 to 0.25 at
M = 1.0. The more gentle progressive reduction in the supersonic range reflect
pure specd effects more dircetly as the derivatives vary less.

These trends will be fairly rcprescntative for an alrcraft in which, as
has been assumed in the example chosen, ny 1s maintained fairly constant up
to high supecrconic speeds. Should ry drop substantially with Mach No, the
aircraft response in Umax C2n be expected then tvo deverioratbe.

Variavions with altitude at a constant Mach No, i.e., with constant
derivatives and almost constant true speed, arc shown in Fig.23. For the
fighter aircral't represented there is a very regular progressive deterioration
with heightv, which cam be expressed by the empirical law:

1

Moo = oons’b\/ [o - (29)
In this analysis Uy (i.e, incidence) has bcen assumed consbant as

@y = +5°%, If 8,y 1s The incidence of the principal incrtia axis at zero

lift and aq the 1lift slope of the complete aircraft, @, can be computed as

8,0 /s
@ = Q& i atmamasane
o] 00
a1y, 2
oy R
W (30)
840 S
lxo = FLOO F ——— c———

.

& Vo4

Thus if a,, > 0 , G, will incrcase progressively with height end with the
inverse of speed. If @y, <O @, will be zero somewherc within the flight
range and ]ao[ will increase from there in both directions. Witih equation
(30), the results shown in Figs.22 and 23 can be readily modified to apply o
level flight Incidence if it is cssumed (see section 5,53) that Aap,, and
Pmax are directly proportional to &, . As @, will generally increase with

height and 1/\/‘ the trends shown in Figs.22 and 23 will be further accentuated,

555 my, , n, and inertias

From the stability analysis of Ref.2 it would be expected that the static
stebilities in pitch and in yaw, my and ny respectively and the inertias
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are the predominant perameters, Considering these individually camot be
expected to reveal generalised trends as the stebility of the mogion is
determined as shown in Figs.3=-4 by the combination of the three parameters.
This is reflected in the results shown in Figs.24~26 where my , 1, and
the inertias (maintaining A:B:C = const) are varied individually from the
standard configuration of the aircraft chosen as an example.

Increasing my (Fig.24) improves Aa without materially altering the
response in yaw (B).

Increasing n, worsens the response in pitch, as expected but again
B is 1little affected.

Proportional increases in the inertias eppears to have little effect
within the range covered; reductions from the assumed originel values show
the expected improvemert, The argument advanced in the discussion of the
effect of rate of roll in section 5,52 and demonstrated in Fig.19 can
similarly be applied to variation of inertias and there is in fact an
indication of a resonance region at approximately 1.2 x original inertias;
this agrees well with the centre of the unstable range intersected in
Phillips stability diagram when a representative average rabe of roll of
approximately 2/3 of %the recorded peak velue is taken,

It appears from the above discussion of the effects of variations in
inertias and in my , that the alreralt chosen as an examplc represent a
oritical combination at least with respcct to these parameters.

Inertia in roll was reduced independently of that in pitch, reducing
the ratio 4/ from the value of the standard aircraft =  to 5. Contrary
to theoretical expectation this improved the aircraft response slightly, as
can be seen by comparing Figs,16(a) end 17.

Contours of constant values of MNip,, and Bma.x have been evaluabted

for two rolling manoccuvres in Fig,27 (rolling with & = 8° through 180°)
and Tig,28 (rolling with & = 4° through 180°). Agein based on a
represcntative p = 2/_3 Pmax ‘the stability boundaries obtained from Ref.2
with acrodynamic dsmping neglected are represented. In this form, the
curves should directly reflect the implications of the theory advanced in
Ref.2., It will immediately be noticed that large peak values of Aa and £
are obtained well within the stable region. However, there is a strong
tendency (somewhat complicated by local distortions of the contours) for

Ao and P to increase more rapidly as the stability boundaries are
approached and a rcasonable correlaticn between the Phillips criteria and
the actual flight behaviour of an aircraft is indicabed, With the limited
number of availsble resulvs the unstable region near the ordinabte axis is
not very well esteblished and it is intended to explore this further in a
fuburce cxpansion of the present Erogramne. Reduced to the nondimensional
parameters (we/p)z end (W /P) Figs. 27 and 28 shouid be identical.

Therc arc however considerable discrepancies which can only be attributed
to tho difference in the execublon of the respective rolling manoeuvres,
These arc illustrated in Fig.29. It can be scen that there are two
essential differences, For £ = L° ailerons have to be held on longer
(248 scc as compared with 1.8 secs) to roll through the same angle of
bank A¢$ = 180°, As the parameters affecting the response of the sircraft
in roll heve been unalbcered, rate of roll has almost approached its
agymptotic steady value and the time history in p is less peaked when
compared with the manoceuvre with & = 8°, Secondly, as the duration of the
aileron application is altercd, alilerons are taken off at a different
instant in the motion of tvhe aircraft in a and B and this is bound %Yo



affect the eventual peok amplitudes as thesc almost universally occur
after cessation of the aileron application,

5. 56 m

q? n and autostabilisation

The effects of variation of m_ and n_ are shown in Figs.30 and 31.
Changes in n_  have practically no éffect; increasing m_ recduces the
pitching emplitudes, but the values of m_ for which a substantial improve-
ment would be obtained are campletely outSide the scope of practicable tail-
plane design limits, but there is reasonable scope for artificial pitch
daﬂlping .

These conclusions appear tc be well substantiated by the latest
American results and can be token as generally valid.

The yawing and pitching motions discussed above are largely generated
by the two product terms in the yawing and pitching moment equations and
their removal has been shown to substantially improve the aircroft response
(see Fig.15). Consequently if rudder and elevator can be applied to
counteract these terms:

N, Z (B = 4) pq (31)

A

it

- (C - 4) pr (32)

{f

M
nﬂ

complete autostabilisation would be affected. As opposed to conventional
methods of autostebilisation this technique would require the maintenance of
the correct signal throughout the flight regime as, obviously, cverccmpensa—
tion would reintroduce the product terms; if the signal has more than twice
the proper value the response will be worse than with the original aircraft.
Undercompensation would be less disastrous as it can only be expected to
reduce the effectiveness of the installation. It can be shown that the
amount of control demanded by the stabiliser is requiring up to and perhaps
more than full control and this puts entirely new problems to the designer
both with respect to reliability and safety and performance of the
installation.

In order to show whether autostabilisation either by conventional yaw
and pitch damping or by perfect campensation of the product terms according
to equations 31 and 32 would in effect relieve the fin and tail loads sub-
stantially these have been camputed on the simulator. The results are
presented in Table 2 giving comparable values for thc load peaks experienced
with and without stabilisaticn., The results are disappointing as the loads
on the tailplanc are actually increased by the perfect stabiliser, Only
pitch and yaw damping brought substantial relief., Either method would of
course be e¢ffective in relieving the wings, as the build up in incidence is
suppressed, Either method also relieves fin loads.

An alternative method of autostabilisation is outlined in the thecoreti-
cal analysis in secticn 6.2 and Appendix B,

557 Miscellaneous

The remaining aerodynamic derivatives werc also checked for their
influence on the aircraft response in rolling. These checks indicated the
following trends:

zZ, and y, are mainly affecting damping in pitch and yaw respectively
and can be included with the corresponding rotary damping terms in the
familiar combinations:
- 20 -
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or e
<i0+yv> and (iB+ZW> .

and ng are detrimental. These terms are responsible for the
values ©f A&p,~ and By, obtained for @, =0, where otherwise no
pitvohing and yawing motion would occur. If @, is increased these effects
become, however, progressively less important,

4y affects the autorotational rolling divergence but has otherwise
no significant influence on the yaw end pitch response. &, is unimportant.
The offect of gravity was frequently checked and in no case was there any
noticcable difference. In fact iv was found impossible to sclect two
corresponding records in which the effect of gravity would be greater than

the acouracy of the computing and recording equipment used.

6 Theorctical analysis

6.1 Autorotational rolling instsbility

Prompted by the observation of autorotational rolling states during
the computations on the simulator, the equations of motion (10=1L) were
exanined for the existence of quasisteady equilibrium states apart from
the trivial solution p=gq=7r = a = § = O. By postulabing such a steady
state with

é:izi‘:&:é:o (33)

the equakions of motion are reduced to a system of five nonlinear algebraic
equations which have been solved in Appendix A to give a biquadratic in p

i

/3..)2 L +(__‘:’_6_>2 r //3_ £ +<:°__<_s_>2 ce] - (o) -+
K“’wo & “y J o ¢

0 e
where (34)

£ in' - i
v B A

vos By oo T 35
&p Ty ( )

¥ A 2

m b /o

K = ZW .H:l. (1 - .'é) ...._..( --—-——/‘) . (56)
v B M‘2

Bquation (34) has real solutions if

2 2
o o@D e
\lIO Ii[O

i.c. there exists an autorotational equilibrium state if @, is below a
certain critical value (since v < 0). These critical boundaries for a,
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2
are plotted against (_f_@_) and x as parameters in Fig,32. If <m9>+ 1
W Wy
Vo Yo
autorotational instability in roll exists even at positive ¢ _, i.e. with
the principal inertia axis inclined nose up. Damping in pitcﬁ my (being the
main factor in x ) shifts the stability boundary towards mors negative Qg o

For a equation (34) predicts two pairs of equilibrium states

0S &5 |
crit
ip1 and ipz vihich have been computed and plotted in Figs.33-35 for the

significant range of the relevant parameters, If

|P4| < P2

‘p1} will be ncutrally stédble and thus never occur as a steady state in
flight, The upper value of lpz‘ constitutes 2 steady state towards which

the eircraft will diverge, once p4 has been exceeded. This interprebation

of the physical significence of these eguilibrium rolling states is illustrated
in Flg.}6.

For the supersonic fighter aircraft used as an example throughout this
note values of py and p, huve been estimated for a number of flight con-
ditions for a, =0 and a = ~59 and the results arc given in Table 2,
Autorotation exists for all conditions quoted apart from one case. The
divergence boundary is well within the operational flight regime, p4 Verying
between 50 and 150°/ssc.

For a supergonic bomber project this boundary was found to be as low as
20?/360 and this condition would amount to practically complete loss of roll
damping, as the roll-subsidence must be expected to deteriorate for rolling
velocities p -» Py o

6.2 Pilots'! control and autostabilisation

In an attempv to assess the chances of a pilot to keep the aircraft
laterally and longitudinally under control against the action of inertia
forces in rolling manoceuvres, the rudder and elevator movements required to
kesp A2 = 0 and B = O throughout where estimated in Appendix B. For this
ideal control coordination vhe pilot would have to scnse p2 and ﬁ , as
the major terms obtained read:

’ - L S ()
7t) = 5 %P (%) (38)
&
C - A

n(t) = a2 (t) (39)

These control movemenss have been computed in Appendix C for two typical
rolling manocuvres, which were uclccted to give the smoothest possible
movement s0 as not to exaggerate the olready very violent control manipula-
tions demanded from the pilot. These manoeuvres are shown as time histories
Z(t) and m(t) in Fig.37.(rolling through A¢ = 180° in 2 secs) and in
Fige38 (rolling through Ag = 90° in 1 sec). The manoceuvres appear beyond
the scope of even a highly skilled pilot and are further complicated by the
fact that he has to know the incidence of the principal inertia axis for any



particular flight condition, before he even knows in which direction hs is
to move his controls,

Equations (38) and (39) indicate, however, the signals required for a
perfect autostabiliser, which operating as a demand system rather than a
suppressor offers perfect stabilisation, provided it can technically be
realised. The difficulties discussed in secvion 5.56 apply of course here
as well,

6.3 Response calculation

The systcm of nonlinear differential equations (10-14) camnot be solved
by conventional methods of differential calculus, In order to gain some under-
standing of the results obtainecd on the simulator an attempt was made to
estimate the response in pitch and yaw in an idealised rolling manoeuvre. If
p = const, the cquabions of motion become linear and the stability of the
system can be analysed as suggested in Ref,.2 and shown in Appendix D. If the
investigation is restricted to rates of roll below the critical wvalues as
defined by

P < ug and P < Yy o (40)

the aircraft will perform two coupled lateral-longitudinal oscillations with
the frequencies w and w and zero damping. Neglecting damping in pitch
and in yaw these frequencies have been computed from Ref,2 and are plotied
in Fig.39.

The amplitude ratios between a and { has been derived in App.D and
are plotted against (‘*)e/po)2 in Pig.40 for the high frequency mode w4y and
for ths low frequency mode w, in Figey1. It has also been shown that the
emplitude ratios arc imaginary, i.e. B is 90° phase advanced on a if
(-’g) > 0 and vice versa if (-g) < 0. Thus the aircraft motion in Aa and B

in response to an instantaneously applied rate of roll p, must be of the
form

Aa(t)

a

&, + &y, COS (wgt) + o, sin (w1t) + @y COS (wt) + a,, sin (wzt)
(41)

AB(%) B, - a11<%)1 sin (w1t) + a12<§.>1 cos (w,lt) - a, <%>2 sin (wzt)

i

+ oy, (g)z cos (a,t) . (42)

Solutions for all the constants in these equations have been derived in
Appendix B and it has bevn shown, that aparv {rom some secondaxy contribu~-
tions, they are all proportional to a, s the incldence of the principal
inertia axis, This explains the predominent influence of o, on the ampli-
tudes in a and P computed on the simulator.

If the frequencies of the two oscillatory modes of the coupled laterale-
longitudinal motion are sufficiently apart, say

w
1/002 > L,
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the peaks in Aa and B reached during a given manoeuvre can be simply
estimated by adding algebraically the amplitudes of the two harmonics:

bap .. ® @, * (a1 + “2) (43)
¥
. B
Brax * B@i(.a. ay + %) a, (44)
1 2 «
taking whichever sign gives the larger result, where
| 2 >
o, = \1a11 ta, (45)
2 2
a, = le," v, . (46)

In Appendix F this enalysis has been extended to the saloulation of
the response to a square wave in p(%), i.e. Py 1s applied instantaneously
at %t =0 and held until t = t, » The motion is computed in two steps
covering

(1) o0 > % > ¢ty with P = P,

(1) t4> t > o with p = 0 .

In both regimes p = const, the differential equations are linear and an
analytical solution is readily obtained. Range (i) is computed with the
procedure outlined above and the values of the variables computed for

t = ¥, are then introduced as inivial conditions into the solution of the
motion for range (ii) with p = 0. In this range the motion consists of the
two uncoupled oscillations in pitch and in yaw.

In Figoell to 46 a number of such responses hove been computed for two
aircraft with the characteristics listed in Table 4, As =Ny =0 the
response in o ond B is proportional to a, thus the results are presented

%o

uniquely determined when introducing ( Po ) as nondimensional time ond are
then spplicable to all values of Pg » provided vhey satisfy the given values

in terms of é.ﬁ. and B. . Further it can be shown that the response is
)
0

wg Ay ) 5
of | —},i and (t.!po) . PFig.y(z) and 4.6 show responses to a step

P/ "\ Po
function in and the two cscillatory modes of motion can be easily recognised
in both Aa(tg and B(%) . .

It can be scoen that the high frequency oscillation (amplitude ay with

2 2
frequency ) is less prominant in the case with (&)—9—> =/2.‘JL) = 2 (Fig.b)
fug 2 fuyN2 VAN
when compared with the case ! 0. (——‘L‘-> = 4 in Pig.hl{a). It appears to
\ P Py
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be a general trend - supported by more unpublished calculations - that the

long period mode becomes dominant as the stability boundarics in < f".@) and
b

W
/__1_];_) are approached,
\Po

In Figs.kl4(b) and 45 responses have been computed for the same air-
craft configuration when p, is terminated instantaneously after various
bank angles have been reached.

The amplitudes of the "residual" pitching and yawing oscillations
(after %y , i.e. with p = 0) are plotted against bank angle A¢ = poty in
Figse47 and 48 for the two cases considered. Fig.h6 shows clearly, how the
duration of the rolling manoecuvre affects the alrcraft response in a quite
unsystematic marmer, (see also Fige17) and that by rolling through A¢ =5
radiens the smplitudes of the residusl yawing motion are less than % of
those obta ned when rolling through only 3 radians.

2 2
For the case (-1%)3) = <ﬂ> = 2 %this trend is much less pronounced
b

o o)
and within the range covered (O < A¢ < 8 radians) the amplibudes increase
practically progressively with A¢ « This may be explaincd by the much
smaller amplitudes of the high frequency mode «4 present when the aircraft
was rolling ond the much longer pericd of the low frequency mode o .

Considering also the amplitudes in Aa and P occurring before 14,
the peak values bay,. and 8, obtained anywhere during the whole motion

0 <% < » were calculated and are plotted in Fig.49.

The same results werc obtained on the simulator during a latest series
of compubation whers a time history in p(t) as illustrated in Fig.50 was
used as the input instead of g(t) as used during the present series.

p(t) dis applied as an exponentially rising function

...‘t/
P = Pg (1 -€ tp)

and followed at t4 with an exponential decay with the same time constant
t
p .

The values of B, for a seriecs in which both t, and %4 were
varied systcmatically are shown in Fig,51. The case 1t = 0.02 sec
represent s practically a perfsct square wave and the results are practically
identical with those calculated in Fig.k9. As %, 1is increased, i.e. as
rate of roll is applied and taken off more gently the response in B becomes
much less violent and also the variation of Bp,, with A¢ is more
progressive.

7 Conclusions

L systematic series of computations of responscs of a supersonic
Fighter aircraft to aileron movements has been carried out on an electronic
simulator representing elrcraft motion in 5 degrees of frcedom. It has been
shovm that the gyroscopic forces couple the pitching and yawing motion
resulting in largc peak amplitudes in incidence and sideslip when inertia
in pitch is large. These peak amplitudes occur usually after the termina-
tion of the actual rolling manoeuvre, From systematic variations of flight
conditions and aircraft data the following conclusions can be drawn,
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Aircraft response deteriorates progressively with increasing inertia in
pitch, (and therefore in yaw) and with rolling velocity.

Usually the peak values of o and B recorded are greater if ailerons
are held on longer. In some cases, however, intolersable peaks are reached
when rolling through only 90° bank angle and less end the response hardly
deteriorabtes vhen the duration of the manoeuvre is increased. In some cases
again the response is noticeably improved if ailerons are held on longer and
the resulding motion depends in a rather unsystematic manner on the precise
insfant at which the manoeuvre is terminated. Rapid control movements are
generally detrimental,

Simultancous increases in myg and ny are generally beneficial,
vhereas increasing these stsbilities individually tends to relieve the motion
in the freedom directly concerned at the expcnse of the other freedom. This
is in agreement with the general indications of theoretical analysis.

Simulated responscs and simplified theoretical analysis has shown that
the peak amplitudes in pitch and in yaw are largely proportional to the
incidence of the principal inertia axis in steady flight a5 with an
additional contribution due to Iy and Ny .

Damping in yaw is ineffective,.

Damping in pitch is moderately beneficial., An autorotational rolling
state has been shown to exist, which is provoked ciace an alrcraft exceceds a
given critical rolling velocity. This phenomenon is also generated by the
effects of inertia coupling and will occur only if the trimmed incidence of
the principal inertia axis isc below a certain critical value, Numerical
solutions for all the rolevant quantities are given. For a typical advanced
supersonic aircraft the crivical rate of roll can be as low as 20°/sec. The
practical implications of this phenomenon are not yet known.

Pilot's control coordination to suppress completely the pitch and yaw
divergence reqiires very large elcvator and rudder movement which appear
unrelated Yo readily perceptible physical or visual sensations.

Autostaobilisation has been studied in detail and three alternative
technigues are discussed:

(l) Pure pitch or combined pitch and yaw dampi are relatively
efficient.

(ii) Elevator and rudder convrol to counteract the inertia cross-
coupling cffects:

n o« pr

L e« P4
would almost completely suppress the pitching and yawing motion. As this
technique does not operate on en error signal the derived conbtrol law must
be precisely maintained, as e.g. overcompensation reintroduces the inertia

ef'feots with reversed sign.

(iii) Perfcct rolling with Aa = 0 and B = 0 would be achieved with
an autostabiliser operating rudder and elevator according to:

n PZ &y
ch;éao
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where @, is the incidence of the principal inertia exis relating to
equilibrium flight condition. This technique also requircs precise operation
of the stebiliser servo for the reasons discussed under (ii).

A1l three proposals demand very large control movements which mey even
exceed the physically available range.

A simple analytical method to compute the aircraft response in yaw and
pitch to an ided ised rolling manoeuvre has been outlined and the resulbs

obtained to date appear to predict some of the trends observed on the
simulator.

8 Tuture work

An extension of the programmec of analogue computations described
herein is slready under way with the particular aim to reproduce a closer
approximation to realistic rolling manoceuvres and to explore the general
effects of piloting techniques It is then intended to cover a wider range
of inertia variations and to simulate rolling pull out manoeuvres.

- 97 -
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Asuffix

inertia in roll )

inertia in yaw

rolling moment

yawing moment J

span

LIST OF SYMBOLS

4

wing area
speed of flight
aircraft weight
side force

normal farce

g gravitational acceleration

m(b/p)?

n(b/p)?

inertia in pitch ) in principal inertia axes

pitching moment ¢ in principal inertia axes

damping parameters (Appendix E)

inertia coefficient in roll

inertia coefficient in pitch

in principal inertia axes

iy, = ' 5 inertia coefficient in yaw
m(b/5)
m = W/g mass of aircraft
Coufrix nondimensional rolling moment derivative
Mo fPix pitching moment derivative
DeifPix yawing moment derivative
Po steady rate of roll
P rate of roll
q rate of pitch F
r rate of yaw
% time J
Yeuffix side force derivative
Z . normel force derivative
suffix
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I

i

i

i

incidence of the principal inertia axis

inclination of the principal inertia axis to the flight path
in steady flight

incremental incidence
peak amplitude in Aa
sideslip

peak amplitude in P

root of a charactistic equation

e lq (L) (2
by T B) \b/2

relative density

pSb/,
B i, at sea level
it - (]
. O
w & n
P v

air density

P/Po relative density

angular frequency (T = Period)

iy

frequencies of the coupled lateral longitudinal motion of the
rolling aircraft

t

Uﬂgg

frequency of the isolated pitching oscillation

frequency of the isolated directional oscillation

cakgz

,B+A
N

W

¥ modified directionsl frequency

B-A

aileron angle
rudder angle

elevator angle



A
6

¥

angle of bank

change in bank during a rolling manoeuvre

angle of pitch

angle of yaw

Suffices and quantities to which they relate:

o, W
B, v

P

No.

2

3

L

incidence
sideslip

rate of roll
rate of pitch

rate of yaw
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APFENDTX A

Avtorotational rates of roll of an aircraft
with inertia-coupling

Neglecting small terms

Yb - Lr = Y} = Yﬁ = Zq = 0 and gravity

and assuming a quasisteady motion with

p = const., ﬁ = 0
r = const., r = O
q = const., 51 = 0
& = const., ®« = O
B = const., B = 0

the equations of motion of the aircraft in five degrees of freedom
(equations 7-11) are reduced to

LBB-t-LPp = 0 (4.1)
Ny B - pa(B~-4) = O (4.2)
M, @ - Mq g +prB= 0 (A 3)
“ (4.4)
= -pB = O Al
mV x + g P

ww T 4 p((x e (xo) = 0 (A¢5)

If the variables q, r, a and B are eliminated by substitution the system
of equations will give a biquadratic in p:

4 2 2 2 2 2 2 2
pr=p (0S+w +a vw ) +wl o+xw,) =0 (4.6)
6 l!’o ° wo Yo 0 *o
where
2
2. % m, (V3/0/2)" 4
= - = -
0 B i My P2
2
w2 S w2 B+ A _ By (Vi/b/Z)
) = — = - g
Yo VB-4 BT Moo
‘oL g
V = 7 -?-Y. :LB lA’
T "woé n
1Y v )2
m (Q/b
£ = g -3 ( %) A
W By Ho



Equation A.6 gives:

<;;§:>2 =% {1 +G—:Z>2+ao v}:!: 71::{1 + 6—::)2 + o V}z— G—%;)z-x (4.7)

In addition to the trivial solution of equations (A.1~A.5) p = O equation
A.7 gives for values of «, less than or equal to a certain critical wvalue,

four real solutions in p, + P, and + Py which constitute equilibrium states
of autorotational rolling.

This analysis gives no indication of the stability of these quasi-
steady states, but from a number of observations on aircraft responses
obtained on the simulator it appears that only the larger values of + p
are stable. The lower values + p, have never been observed as steady s%ates
and seem to constitute a stability boundary, i.e. whenever + p, has been
exceeded the aircraft will tend to diverge (or converge) towards the true
autorotational state + P,e This interpretation is illustrated in Fig.36.
The solutions of equation (A.7) have been plotted against a representative
range of parameters in Figs.23~35.

Inspection of equation (A.1) shows that for L, = O there is only one
solution p = O and thus the solutions shown in Figs.33-34 for a v = O are
not valid for v = ¢ = 0. Equation (A«1) can be used to obtain

¢ b/p
B = -p-(-s- ¥ (A'8)

which states that for all values of p # 0, B = » for ('v = O. Physically
this may mean that there is instability in p but autorotational equilibrium
rat p =+ Py will only be reached at t =« when B = w

Equations (A.2 = A.5) give corresponding steady values for the other

varisbles
2
&)
¥

o= - — (4.9)
v
2% b2
o v

r = p (ao + ) (A.11)
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APPENDIX B

Control menceuvres required to roll with
Aa = 0 and B = O

Setting da =P = a = P = O and neglecting gravity eqations 10 and

(%4

q:O

T p o, and r = P ag

]

Thus the equation of motion of the aircraft (equa.tions 12-14) arae reduced to

L L p-Ap = Bu1
g £+ 1P P 0 (B.1)

N€€+Npp+Nrocop+Néé-‘Cpao = 0 (B.2)

2

M n+(C-A)p a =0 (B.3)

k! o)
H when L& = 0.

r

If the aircraft is set to perform a rolling manoeuvre given by

(%

¢ = o(t) (Bok)
then p = p(t) = -(-1—-%%1)- (8.5)
po= p(r) = 22l (8.6)

are also determined and equations (B.1 -B.3) can be used to compute the
control movements E(t), Z(t) and m(t) required to perform this manoeuvre
with zero incremental incidence and sideslip.

B(t) = £ () - 2 n(t) (B.7)
g g
. 2(8) = ﬁqg o, B(t) - p(t) (i% v % - % E(t) (B.8)
: n(t) = - CM; £ o p(t) (.9)
Retaining only major terms equation (B.8) will simplify to
(1) = -ﬁ% 2, B(t) (B.10)



Equations (B.7 - B.9) can be rewritten as

l'120 i ¥

) - 25 -—é%—*’:p(t) (B.11)
i
20 o, b2 (Tp  Ix %z

) = Ty w0 - Cl;né AECRELO
* (Bo12)
oo i =iy by o

n(t) = 2 L2 %(4) o (B.13)

(Vi /1702 ™
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APPENDIX C

Numerical example for ideal control coordination
in rolling manoeuvres

So as not to exaggerate the control demends the smoothest possible
manoeuvre will be chosen, as used in Ref.4:

() = Aqs{-é“;--:;sin(qc;f;)cos <nfj} (Co1)

Differentiation gives:

(%) » {1 - cos® (o: ;;9; + gin® <1c -3—‘;) } (C.2)
i%_ on cos <7c TZ—;) sin (7\'. ;’9'-;) (Ce3)
m

where A¢ is the total change in bank angle and t the duration of the
manoeuvre. Assuming:

k&

p(t)

A$ = 3 radians = 172°

tm = 2 secs

by, = 4O H = 40,000 £t @, =0.12 57
V = 800 ft/sec v, = 400 ft/sec £ =20 f%
b/p = 20 T iy = 0,05 €, = -0:20
iC = Q.5 n; = =010 n:p =0 n, = ~0.4
ng = 0.02 W, = -0,09

The manoeuvre illustrated in Fig.572 has been computed from equations (Bs 11~
B.13). For the same aircraft rolling through A¢ = 86° in t = 1 sec has

been computed and the control movements obtained are plotted in Figs. 37
and 38.
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APPENDIX D

Aircraf't motion with constant rate of roll

if rate of roll is assumed to be constant i.e. p = P, and gravity
neglected the equation of motion of the aircraft become l:Lnear'

L§E+LBB+LI,I'= -Lppo (D.1)
NE€+NBB+Nrr~(B~A)qu-Cr =-Nppo (D.2)
MaAa+qu+M&a+(C~A)rpo-—Bq:O (D.3)
YB .

P R e
z,

vaa-—p B+g=-a = O (D.5)

»)

By postulating p = Pys £ becomes one of the five variables in this system
of five simultaneous equations and its solution would determine the

* aileron movements required to achieve the postulated value of p analogeous
to the procedure applied in Appendices B and C, Knowledge of this
control manoeuvre is, however, irrelevant to specific problem posed in
this chapter, consequently equation (D.1) becomes redundant and will be
omitted from the remainder of the analysis. This leaves the term N, &

in equation D.2 undetermined and it has to be neglected though this may
constitute a serious omission.

Introducing:
N M
R S ; -
G _ww, B = Y and using C = B + A the
remaining four equations are now
N N
2 X _B"A » _ ._‘E
. Wy B+ T-gTEP e = =G B, (D.6)
I .
) Aa+Bq+—B—5L+por-q = 0 (D.7)
s
—ﬁfﬁ-i-poAa-r-B = =P, @ (D.8)
Z
vaot, p B+q—oc = 0 (Do9>



FPor the present simplified analysis demping terms Nr’ Mq, M&, YB and Z,
are neglected and the above equations are then reduced to

Aa B g r
© “’i - 358 % -} - de' %

-’ 0 Y D, 0 (Ds 10)
P, ~A 0 -1 ) -P, ao

A -p, 1 o | 0

The determinant on the left hand side equated to zero gives as the charac-
teristic equation a biquadratic in A with the solution in terms of ?»/p ot

This corresponds to the solution given in Ref,2. There it has been shown
that for values of P, <p equation 11 will have two pairs of conjugate

) ] . crit
imaginary solutions

X1,2 = +iw, and )‘3,14- = £ 1w,

end the present analysis will be c onfined to this condition, i.e. to
the regime where the aircraft motion is described by two neutrally stable
oscillatory modes.

Equation (D.10) can be used to obtain a solution for the ratio between
the amplitudes in B and a pertaining to these two oscillations:

2
~Wg -\ P,
P, o -1
-\ +1 0
g . 0 N
a - P,
-A 0 -
-po +1 0
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giving

|

(8 s <§§>2 ) <§i>2 (B 12)
Ux‘l ST 2(@3_10) ) l<“>1 ®

p

and

{&} . . - l<§- , (D\ 13)
2R )

These amplitude ratios are imaginary, thus if <%> > 0 B will be advanced
90° in phase with respect to a and vice versa., Using values for w, and w
as given for an aircraft with A = O (or generally A << B) in Ref.2 and

plotted in Pig.1 the amplitude ratios % s and % corresponding to
\ */1 )
the high frequency and low frequency modes respectively have been computed
and are plotted in Fig.40 and 41. It can be seen from Figs. 40 and 41
that for velues of P, not too close to the stability bo these ampli-
Eiy
®/2

tude ratios are practically independent of Py FPurther , the ampli-

tude ratio of the low frequency mode and thus 6f. the generally more predomin-
ant motion is approximately determined by:

(8- o

This expression explains why generally increasing mos ie€e Wg relieves the

amplitudes in pitch a% the expense of P and vice versa, as has been
observed in flight and in simulated responses: The stability boundaries
are determined by putting in equation D.11 N = O, Equation D.11 will
then be satisfied if

-Gy GY -Gy -3 -6Y)- o

or W N2
- )

f_d_\jf_zB+A_ o

P B-4A 7 62

1 w [

)

This equation is satisfied for all values of

o\ (9\Bra
r,/)  \p/B-2

- 38 -

(D.15)




If

G—i—)z = 140 (D.16)

(—1—:’#{9)2 = 140 (De17)
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APPENDIX E

Aircraft response to instantaneously applied p

Using the results obtained in Appendix D , the rcsponse of an
aireraft to an instantancously applied rate of roll P, can now be estimated.

Considering again only values of p_ for which the ad.rcraft motion
consists of oscillatory modes the gencral solution of equations (D.6~9) is

be = o + @ sin (w1t)

- 44 ©08 (w1t) +

12
(Ee1)

+ 0y, COS (wzt) + oy, 8in (wzt)

It has been shown in Appendix D that the emplitude ratios (B/a)4
and (B/a), corresponding to w, and w, are imaginary, B being advanced
90° in phase with respect to a. Consequently the solution for P corres-
ponding to equation (E.1) can be expressed in terms of a,,, 4, etc:

B =B, -<%>1 a,, sin (w,‘t) * 0,0 <%2 cos (w1‘c)

(Be2)
- -@- a .@-
%y <a sin (wzt) + oy, (o) cos (wzt)
2 2
Differentiation gives
@ == a, w sin (w1’c) + %, @, 008 (w1t)
(E.3)
- 0y, W, sin (wzt) + Oy W, COS (wzt)
5 - - B - EY a1
B = a“<“/1 w, cos (w1t) LTI ) sin (w1t)
5 5 (Bok)
- %y, <E> w, cos (wzt) - a22<a> sin (wz‘c)
2 2
At t = O we have the initial conditions:
A = O B = O qQq = 0 r = 0
and from equations (D.8) and (D.9)
g = 0 9 = aOPO (E.5)



Substituted in equations (B.1-4) this leaves:

0=+0t°°+a”+a21 )
_ B 2]
O_+Bw+a12<a1+cx22 ) !
! (E.6)
0 = a W, + &, W

12 1 22 2

2 9
= =-a W, = o W '
oo " <0L'1 4 21 u22 J

a.p

!

o, and B, are the quasisteady values for a and f, which will be determined
later in this Appendix.

In determinent form equations (E.6)

%49 %12 %21 %22
+1 0 +1 0 -Q,
- -3
o &, o @,
o 1 4 2 ©
A = = (.7)
0 W, 0 W, 0
9 &)
- 0 -{E=Y) w 0 o p
! \a 1w,] ), 2 0vo |
can be solved for Ryas Cyos Goy and %poye The amplitudes in a of the two
oscillatory modes are then given as
2 2
o, = JaH + o, (E.8)
2 2
% = «} %21 * %22 (&.9)

The respective amplitudes of the yawing motion are then given as:
ol (—‘3) (E.10)
1\« A

a, (g)z (B.11)

The response in Aa and P can now be computed from equations (B.1) and (E.2).

i

Py

Py
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A quick assessment of the peak values of Auma.x and Bmax is possible

if w, >> w,., say Y1/, > 4. It can be shown that in superimposing two such
oscillatorfr functionsy, the absolute maximum will be reasonably well
approximated by the algebraic sum of the amplitudes of the two harmonics.
If the sbove quoted condition applies then:

ha @ (oa1 + oc2) (E.12)
and
Brax © Pw 2 (By + Bp) (E.13)

taking whichever sign gives the larger values.

Equation (E.7) gives the constants a,, «.. @,, &S

11 22
“oPo ~ %o <%>2 “2
a, = (Be L)
B w, - ,/P-> o,
) \*/
By ¥

0y, = “<£3.> ) _.<ﬁ> - (B.15)
o 2 o 1
1 2

T \* A
= E.16
%24 /B B (£.16)
i W, - W
\OC 5 2 a 1 1
a22 - /B /B (E-17)
%) 2~ \a ) “1
1 2
Ls shown later (Equations E.28 to E.3%) a_ « o and By o= & if n, = 0.
Thenfor n = © all the constants %, to x5, are proportional to X s le€e

the response of the aircraft in pitch and in yaw to rolling is directly
proportional to the incidence of the inertia axis (in equilibrium flight).
Further with negligible aircraft demping B, will be zero (equation E.30).
This will simplify equations (E.8) and (E.9) to

0, = Ey e & (E.18)

A, = Gy, o & (E.19)



The values of a and f_ represent the trim change in pitch and in yaw and
can be estimated by equating steady terms in the equations of motion.

Ny Be + N, r,-(B-4)p, q = - N, 2, (E.20)
Moo+ M(1 q + (C~4) Py Tw = O (E.21)
Y
B : L ,
V' ﬁoo + PO (lm rao = PQ ao (E' 2.5)
Zy
% ~ P Pota =0 (Be2k)
Setting
@ = aao * o (E.25)
B, = B“o + By (B.26)

where «, and B are the contributions proportional to (a’a po) and @
) )
and B, the contributions proportional to (Np Po) , these values can then be

obtained as solutions of the determinant:

@ B 4 r
N N N
B A T ]
0 B - (1 - B> P, B B Po
M M
3 -4 -
c © ) (1 > P, 0
Y = (E027)
B
P, mvV 0 -1 - Py &
7
o !
asSs
aoc
—o _ L (E.28)
% {i@ ) fa‘z&’(ib)z & _ (.”.3)2 &
1_®2+?_Ei+po PJ\Ps/ Po \Po/ P,
P Po Po Y2 a4 a
1 - (=2} 4 -9
PO PO p(.')
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(E.30)
BN _ 1
=T - a
b /2 PN, % e P, L e ey, B %
nV v o 1 (»)1‘1; PO pO w‘ll po P pO PO
Wwa2 4 4a
NS
P P. P
°re (B.31)
where wz ) N@
¥ B-A
Q
2 L .
8 = B

and doc’ dB’ dr’ dq represent damping terms:



o
doc"mV
Y
a =—@'
B mV
Nr
d. = §=3%
el
dq: B

o and Ba are directly proportional to damping terms and should therefore
be negligible,
] and BN have been computed for a limited range of parameters and

14
o

are plotted in Pigs. 42 and 43.



APPENDIX F

Aircraft response to a square wave function p(t)

If P, is applied as a step at t = O and taken off instantaneously
at t = t %he computation of the aircraft response to this simplified

rolling manoeuvre can be carried out in two steps for the two regimes

P (Fo1)

(a) 0>1t2>t, P o

(v) by >t w p = O (F.2)

This procedure will be outlined here for the simplified case where aircraf't
damping is neglected. In both regimes p = const. and consequently the
equations of motion are linear, A and B for O > t > t1 will be computed

by the method developed in Appendix E,

For t+ > t,, p = O the cross—coupling terms disappear from the
equations of motion (D.6 to D.9), which are thus reduced to:

ui But =0 (¥ 3)
2
wg dat = g = 0 (Fod)
- P - é = 0 (F‘5)
q - & = Q (F.é)

This system will split up into two uncoupled second order equations
B-B = 0O (F.7)

W

Aa -~ A& = O (7.8)

G>I\) - N

These describe the two uncoupled and - as assumed -~ undamped aircraft
oscillations in pitch ard in yaw with the frequencies w, and w, respectively

6 ¥
with the general solutions
s = G+ 2z, 008 (wet) + agp sin (wet) (F.9)
B = Cg + by, cOS (w\l’t) + by, sin (w‘yt) (7.10)

As there is no external disturbance applied, the constants



If the values for Aa, B, A% and é as computed for the step function
withp=p at t = t1 are substituted as initial conditions into the solution
F.9 and F.10, the constants a31 ssee b 5, can be calculated and the response
computed for t > t,, When redusing equations (D.6 to D.9) to equations

(Fe3 to Pe6) the product, terms with p disappeared which constitute dis-

continuities in r, q, é and a at t =°t1.

Thus if r, 61 and 5.1 are instantaneous values at t = t1 - & where

€ is infinitesimally small, the corresponding values at t = t1 + € will be

obtained by substracting the corresponding discontinuities:
£ (b, +8) = b (b, —e) eA o (Fa11)

1 1 B+A 0™
('1(1@l +€) = c';l(t,l-e) - B, T4 (Fa12)
8 (t1 +e) = B (b, = &) = p, A2, - D @ (F.13)
x (t1 +8) = @ (t1 -g) + P, [31 (Fotly)
If fort <t 4 We introduce

Y =t -t (Fa15)

o’
Equations F.9 and F,10 can be rewritten and differentiated

ba = @5, 008 (wet’) + 05, sin (wet’) (F.16)
B = 631 cos (w¢t') + B, sin (agtt) (F.17)
& = wg = @y, sin (ugt!) + ag, cos (agt')] (F.18)
B = o §- B,, sin (wwt‘) + By, cos (u¢t')} (F.19)

Substituting the initial conditions at t! = O this gives

ba, = @y (F.20)

B, = ﬁ31 (Fa21)

a (b, =) +p, B, = wg @5 (Fo22)
g (b =€) =p,ba, =p a = o By (Fe23)

This determines the constants a Ry g o and the amplitudes of the
"residual" pitching and yawing oscillation for t > t 4 are then given by

- 47 -



b

2 2
(7(3 = Ja31 + a52 (FQZLF)

B

{]

2 2
3 \/631 + Byp (F.25)

These values can be calculated without computing the responses a(t) and
B(t), Only the values at t = t, of Aa, B, & and @ have to be computed
from equations (Bel ... Eo4) and substituted into equations (F.20 ... Fe23)
to give the amplitudes @y and 53 according to equations (F.24) and (F.25).
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TABLE 1

Geonetric, inertia and aerodynamic data of the

supersenic fighter aircraft used as an example

3 = 400f% b = 35ft £ = 28 Pt
4 = 900,000 1b £t i, = 0.125
W= 25,00 1b B = 4,100,000 1b £t2 ig = Ou5k
C = 5,000,000 1b £t2 i = 0.65
Nach No. | 0.8 1,0 1.5 2,0
Height 0 40,000 60,000 | 60,000 | 60,000 | 60,000
V (f£4/sec) | 892 770 770 960 | 1,440 1,920
™ 47.3 186.2 492 492 492 492
Oy ~0425 ~0,25 | 0,12 | =0.09
o ~0,25 -0.27 | <0430 | ~0.25
&, ~0.10 ~0,11 | =0.09 | ~0.075
dng/da -0, 07 ~0.07 | 0,07 | =0,07
Dy, 0.05 005 | 0.05 | 0.05
an/aa 043 “0e3 | =0s3 | 0.3
n, 020 0,22 | 0,25 | 0.24
n, 0. 46 ~0e48 | =0u52 | =0,43
m, =0, 083 wOu 2046 | =04 335 | ~0e 300
my ~0. 376 0,481 | 04295 | ~04196
e 0.218 04292 | 0,070 | =0.005
Yy ~0. 32 0,32 | ~0.32 | —0.32
%, 2,175 ~2:875 | 1,77 | 1419
‘6: =¥, = n‘g0 = d&v/aa = O
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TABLE 2

Effect of autostabilization on fin and tail loads experienced

by an aircraft rolling through A¢ with & = g%

(2) Tail load peaks

Autostabilization M 8xM
term uperating Basic M( r) (pxx) 8 xM d
TS aircraft px + 4 +
%S S~ - Npxaq) 8 xI,
90° 745 5 6 L 2.5
180° 10 12 13 7.5 5
270° 16 16 22 12 5
3600 17.5 16 28 12 5
() Fin load peaks
. cq s . -
~ Autostabilization M 8x
~ term Basic M( ) (pxr) 8x M e 8xn,
\\ aircraft pxr + .
8xN
A \\ Mo xq) *Tr
90° 12 9 9 10 | 7.5 7
180° 26 9 9 10 | 7.0 7
270° 30 9 9 11 7.0 9
3609 30 11 9 16 9.0 16
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(%

Critical rolling velccity py

TABLE 3

and sutorotational rate of

roll pp for the supersonic fighter aircraft of Table 1

{
. 6 i, -2i NG
N 2 2 C A
he;%ht Mach No. wg | W, {zw z¥ o } <§6 > v
7o P v ¥,
40,000 0.8 2.8 Le15 ~2+18 0.675 | 04083
60,000 0.8 lel| 1e3 ~2.18 0.85 0.032
140 50| 2485 -20%3 175 0.024
1eb 11.2 ] 6425 ~0.85 1.80 0.008
=0 a, = "50
Height
(ft) Mach No. <%1 > (%2 ) 78} P2
D@ @)+ |
m¢o w¢b wllro wwo
40,000 0.8 0.8 1,0 | 94 9/sec| 117 | O.74 | 1.15 | 80 ©/sec| 125
60,000 | 0.8 - - - - | 0,81} 1.17 | 53 86
1.0 1,051 1,70 | 110 164 | 0,92 | 1.75 | 89 170
1¢5 16041 1e75 | 149 250 | 0.98 | 1.80 {140 258
TABLE L
Data cbtained in the computation of aircraft responses to
& sguare~wave in p by the method of Appendices E and
é".@)z /i”.f)"' A /_‘.“.1> o2 6@ G | 1| 2
\po KPO B KPO K?o) * 4 a)z % % %
4 4 025 | 2480 | 110l | ~0.960| 0806 | 0.20 | 04230 | 0,430
2 i 2 0] 240 1 Oulily | ~1.000| 44,000 | +1,000| 0,207 | ~1207
%42
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FIG.2. TYPICAL FLIGHT RECORD OF A ROLLING
MANOEUVRE OF A MODERN FIGHTER
AEROPLANE AT 40,000 FT. ALTITUDE.
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FIG. 6. EFFECT OF INERTIA DISTRIBUTION ON
RESONANCE FREQUENCY [N YAW.

(Wy = ANGULAR FREQUENCY OF THE UNCOUPLED
PURE DIRECTIONAL OSCILLATION).
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FIG.7. CRITICAL RATE OF ROLL FOR A NUMBER
OF AIRCRAFT FLYING AT V;=240KNOTS.

(Pour INCREASES PROPORTIONAL TO V;).
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FIG.8.@sb)ILLUSTRATION OF THE MANOEUVRE COMPUTED
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COMPLETE COMPUTATION.
—————— INERTIA CROSSCOUPLING OMITTED.

FIG.IS. EFFECT OF INERTIA CROSSCOUPLING
ON THE RESPONSE OF AN AIRCRAFT TO

AILERON MANOEUVRES.
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THE PEAKS REACHED INCREASE PROGRESSIVELY WITH THE
DURATION OF THE AILERON APPLICATION & REACH A MAXIMUM
AFTER WHICH NO FURTHER DETERIORATION IS OBSERVED. NO INSTABILTY.

FIGI@eH)VARIATION OF Adpq AND SBoo, WITH ¢
THE ANGLE OF BANK A@ WHERE AILERON
WAS CENTRALISED.

20

AoLMAK

M=0'8 G ;
H= 40000 FT_ Plo°
20° A REDUCED TO 2
-20 \

THE DURATION OF THE AILERON APPLICATION IS
CRITICAL FOR THE RESPONSE IN o AND /3. WORST PEAKS
OCCUR WHEN AILERON IS TAKEN OFF AFTER A® = 80°

FIG.17. VARIATION OF A Amax. WITH A @
WHERE AILERON WAS CENTRALISED.
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P, P,/ RANGE INDICATING DIVERGENT MOTION ACCORDING TO REF.2,
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ck, = INCIDENCE OF PRINCIPAL AXIS OF INERTIA
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— INSTABILITY IN ROLL

® s-+
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M=1}-0

FIG.2I@sb)EFFECT OF INCIDENCE ON
Ad max. AND /3"\0)(.
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NOTE:= THE CHANGES IN THE AERODYNAMIC DERIVATIVES WITH
MACH Ne2. HAVE BEEN TAKEN INTO ACCOUNT, THUS THE

TRENDS INDICATED ARE NOT PURE SPEED EFFECTS.

FIG. 22. VARIATION OF Admax AND ﬁqu
WITH MACH No. (AIRCRAFT OF TABLE I)
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CONDITIONS ¢
THE STANDARD AIRCRAFT

A/g = '4'7_ Aoz 5°
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CONDITIONS FOR THE
STANDARD AIRCRAFT
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FIG.29. ROLLING MANOEUVRES SIMULATED
FOR THE COMPUTATION OF THE DATA

PRESENTED IN FIGS. 27 AND 28.
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FIG. 37.(a-d) CONTROL CO-ORDINATION REQUIRED
TO PERFORM THE ROLLING MANOEUVRE
ILLUSTRATED IN (@ WITH Aot= R-O THROUGHOUT.
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FIG.38@-d CONTROL CO-ORDINATION REQUIRED TO
PERFORM THE ROLLING MANOEUVRE

ILLUSTRATED IN @ WITH A of=5=0 THROUGHOUT.
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OSCILLATIONS IN PITCH AND YAW AFTER
p, IS TERMINATED AT t, SECS. ie. AFTER

A ®:p t, BANK ANGLE.
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FIG. 48. AMPLITUDES OF THE RESIDUAL UN-—
COUPLED PITCHING & YAWING OSCILLATIONS

AFTER p, IS TERMINATED AFTER t,SECS, ie.AFTER
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FIG49. PEAK AMPLITUDES A&,,. AND Py IN
RESPONSE TO A SQUARE WAVE Pg(t) PLOTTED
AGAINST A0 (THEORECTICAL ANALYSIS)
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FIG.SO. ROLLING MANOEUVRE SIMULATED FOR
ANALYSIS IN FIG.SL.
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FIG.5I. PEAK AMPLITUDES IN B |IN RESPONSE
TO THE SIMULATED MANOEUVRE

ILLUSTRATED IN FIG. 50.
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FIG. 52. SIMULATOR BLOCK DIAGRAM REPRESENTING AIRCRAFT MOTION IN 5 DEGREES OF FREEDOM
IN PRINCIPAL INERTIA AXES. (SCALING FACTORS HAVE BEEN OMITTED FROM THIS GRAPH).
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FIG. 53, SIMULATOR CIRCUIT TO COMPUTE
SIN ¢ AND (-cos ¢).
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