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Preliminary note on the effect of inertia crws-coupling 
on aircraft response in rolling manoeuvres 

T. J. G. Pinsker 

Results from a systematic series of simulated responses to aileron 
manoeuvres are discussed. It is shooi-m that large amplitudes in incidenae 
and sideslip can occur on aircraft having large inertias in pitch and yaw 
whe,r performing quite modest rolling manoeuvres. In general these 
amplitudes increase progressively with the duration of the rolling 
manoeuvre and with the incidese of the principal inertia axis. The 
aircrzift response deteriorates rxpidly as the rolling velocity approilches 
a value determined by the natural frequencies of the uncoupled latero-1 and 
pitcM.ng oscillation of the aircraft. 

If the incidence of the prinoipal inertia axis is below a critical 
value an autorotational rolling state exists to-.:akk which an aircraft 
tends to diverge once it hLLs exceeded :‘i cortnin critical rolling velooity. 
For aircraft vkth large inertia in pitch this critical value can be as 
low as about 20°/sec. The practical significance of this phenomenon to 
the pilot is not yet fully understood. 

Various alternative schemes of E;utostabiLizo.tion have been cqlored. 
They require generally vcq powx-ful control movements and may not 
necessarily Klievu the toil loads as such. 
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I _I_troduction 

Recent flight incidents involving loss of control during rolling 
manoeuvres on some advanced American supersonic fighter and research aircraft' 
have revealed the existence of a coupled lateral-longitudinal motion which 
cannot be accounted for by classical stability theory. 

Phillips2 has pointed out that the equations of moticn for the rigid 
aircraft contain product terms which ccuple the lateral and longitudinal 
motion of a rolling aircraft if it has extremely large inertias in pitch and 
yaw. This leads to a system of six simultaneous nonlinear differential 
equations fcr which no analytical solution exists. By suitable simplifica- 
tion Phillips has reduced these equations to a linear system and has predicted 
a combined lateral-longitudinal divergence for rates of rcllbeyond certain 
critical "resonance frequencies". 

However, this attractively simple approach cannot predict the ampli- 
tudes in incidence and sideslip occurring during actual flight manoeuvres 
and is thus unable to assess the stress produced and the handling limitations 
of an actual aircraft design. With electronic computing aids it has, however, 
become possible to obtain solutions for nonlinear equations of motions and in 
particular to cclnpute rt, >cgonses to aileron manoeuvres for any given aircraft. 
This has been done on a ccnsiderable scale in the U.S.A. without se far 
revealing sufficiently general criteria though it is indicated that the 
stability boundaries according to Phillips give a useful indication for the 
rates of roll, at Which difficulties may arise. 

In crder to obtain a fairly general appreciation of the problem at 
first hand a series of computations have been undertaken on GEPUS, a general 
purpose simulator in R&3, which was made available for this investigation. 
The author wishes to express his gratitude and appreciation for the assistance 
received from&. T.R. Stretton,who suggested the circuit Fig.53 for computing 
sin and cos #,and his Staff. Without them the results presented in this note 
could not possibly have been obtained in such a short time. The results of 
this investigation, which was mainly planned as a preliminary study tc a more 
comprehensive further prograime, are presented in this note. In suppcrt of 
this empirical work a thecrcticnl study cf the problem was begun in crder to 
explore the possibilities cf an analytical solution beyond the determination 
of the stability ci an aircraft rolling with steady rates of roll as given in 
Ref.2. At the time c-f writing this theoretical work is still in progress, 
but as the results obtained to d ate appe,a.r encouraging they will be briefly 
summarized in Appendices E and 3'. 

For the course of the computaticns on the stinulator a tendency of 
certain aircraft configurations to develcp a divergence in roll was observed - 
in addition to unstable motions predicted by Phillips - and a theoretical 
study has proved the existence of autorotational rolling states for aircraft 
with large inertias if the principal inertia axis is below a certain critical 
incidence. 

Finally the possibilitie s of pilct's control and automatic stabilisation 
have been investigated. The equations for the ideal autostabiliser operating 
on rudder and elevatcr have been derived. 

2 Stability equations 

2. I Euler equations - 

The Euler equations for the rigid aircraft when referred to a system of 
Cartesian coordinates fixed in the body, (see Rcf.j), are: 

-7- 



x = mv(o- rp + sd 

Y = mv(B - pa + r> (2) 

2 t mV (;X -q 4PI3) (3) 

L z A;-(B- C> qr + D (r2 - q2) - E (pq + G) + F (pr - 6) (4) 

M = B&(C u A) Q t 3 (p2 - r2) - F (qr + i) + D (Q - &) (5) 

N = CG - (A - B) pq + F (q2 - p2) - D (rp t ;r) + E (rq - 5) (6) 

The force3 and moments acting on the aircraft X, Y, 2, L, M, tuzd N are 
aerodynemia gravitatior&J. and gvroscopic couples generated by the angular 
momentum of the engine. In order to intro&oe the gravity component3 into 
the force equations the orientation of the 3ircraft in the gravitational 
field had to be computed by the kinematic relations: 

dv filt = set 0 1 r co3 # t q sin (p ] (7) 

de/& = qcos$ -rB sin# (8) 

9 at = % +tsnO (r cos$ tqsirig)) . (9) 

Stability theory usually employ3 the concept of small disturbances 
from an equilibrium state, i.e. the variables p, q, r, u, S, a are 
assumed 3maLl 30 that the product s of the variables in equation3 (1-6) 
become smcilX of second order and negligible. This permits the system of 
six simultc?nc:ous differential equation3 (1-6) to be split into two 
independent groups, describing the lateral and longitudinal motion separately, 
if - a3 is usually permissible - aerodynsmic coupling between these a3 well 
as the gyroscopio engine couples rare assumed negligible. 

Howi-ver, in controlled flight rate of roll, p, at least, cannot 
generally be asaumod smtil, rates of more thaw 3 rac%ians/sec constituting 
quite legitimate manoeuvres, and consequently the products with p in 
equations (l-6) will have to be considered in the 3tMy of 

r; 
ener3l rolling 

manoeuvres, in particular if the inertia differcnccs (B - A and (C - A) 
arc 13qe. 

2.2 Goice of axs 

The system of coordinates normally used in aircraft stability investi- 
gations is the so-caUed, %i.nd axes" system. This system is a body-fixed 
system OS cartesian coordinaEe3 with the origin in the CG whose X axis 
coincides with the flight path in the equilibrium state. This choice is 
largely determined by two considerations: 



(i> aerodynamic data are genercally given in this system; 

(ii) the pilot refers the airor&? motion to the flight path an3 the 
varisbles of motion should therefore be expressed as deviation from this 
natural datum and referred to this datum. 

Bowever, equations (q-6) are greatly simplified when referred to principal 
inertia axes thus eliminating product of inertia terms DET?. 

Aerodynamic data must, of course, be transformed to this system of 
axes, (RAe.C. Data Sheet Aircraft 00,00.06), but such transformationbecomes 
necessary generally ticjn considering motion with large disturbances as the 
force and moment equations are eqressed in body fixed %ind axes" which 
me true v&nd axes only for small departures from the equilibrium state, in 
the sense understood in the usual presentation of aerodynamic, derivatives. 

2.3 E.quations of motion used in the present cmalysis 

The notation used throughout this note is generally that of R & M j801 
with the exccpzion that the angles CI and p replace the incremental 
velocities w 3na v . 

Principal inertia axes care used, thus product of inertias 

In the theoretical analysis linear aerodynamic dlerivatives are assumed 
throughout and gravity is neglected. Further as shown in l?ig.j: 

Aa r incremental incidence 

a=uo+Aa = incidence of principal inertia axis 

aO : incidence of the principal inertia axis in equilibrium flight. 

Forward speed is assum& constant eJ3minating the X-Foroe equation. Thus 
equations (2-G) become: 

(11) 

L c + L 
E P 

fl + Lpp + Lrr = A; - (B - C) qr (12) 

Mq + MaA~+Nh& + Mqq = B; - (C - A) rp (13) 

On the simulator gravity was also represented and the most marked 
linear variations of the lateral derivatives with incidence where considered 
in the form e.g.: 
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=L 73 Lp Po+--&C(=L 
P, + LP aa (15) 

where L 
PO 

is the value for L 
P 

at a flight attitude where the incidence a 

of the principal ‘axis would be zero. In this form the simulator computed 
automatically the changes of these derivatives with C L' 

Vith these terms the equations of motion used in the present series of 
simulations (rudder S and elevator q assumed fixed) where: 

& 
L 
YpP + Yrr + Ypp 

3 
-t sin$- r + pao = i 

$ 
i 

ZaAa + Zqq + ZSg 
3 

-;(I- cos $) + q - pp = d; 

LF;E + LpP + Lpc, a@ +Lpp+Lrr+(B-C) qr = As 

MaAa + M$t + Mqq + (C - A) rp = B's 

NcaSa + NpP + Npop I- Npap + Nrr + (A - B) pq = CG . 

(47) 

(20) 

1~ gravity has been generally found to be of secondary importance its 
representation has been sj,,lified to the above form by assuming 0 tobe 
small so that the kinematic relation equation (9) can be reduced to: 

$ z 

J 

pdt . 

3 Brief discussion of existing work I ----II_- 

3.1 Flight evidence 

(21) 

The present investigation has been prompted by a number cf flight 
incidents involving loss 
amplitudes in 

of control reported from the U.S.A.' where large 
a and P have occurred on some occasions when advanced high 

speed aircraft executed prolonged rolling or rolling pull cut manoeuvres in 
a flight condition where otherwise satisfactory stability characteristics 
exist. As an exainple a typical manceuvre as recorded in flight is shcwn 
iia Fig.2. It ES found that this 'C--K cf instability cculd be related 
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to a critical rolling velocity ayld that in general the magnitude of the 
divergence of the aircraft in a and P increases progressively with the 
duration of the imanoeuvre and also in proportion to the load factor applied 
during the manoeuvre. 

Simuiator computations were carried out in many instances in support 
of this flight work. These have proved conclusively that the observed 
flight phenomena can be satisfactorily explained by the effects of the 
product terms in the Euler-equations. 

Although recorded evidence of flight incidences or inertia cross- 
coupling is only available from very recent cases, there is no reason to 
assume that isolated cases of inertia cros" ti-coupled instability have not 
happened before. 

Based on flight experience pilots have dlso been advised to refrain 
from recovery action with rudder and elevator and to bring ailerons gently 
back to neutrai once rolling instability is experienced. It should be noted 
that the terms instability and divergence are used here loosely to describe 
the occurrence of large peak values during a manoeuvre though it is not 
necessarily the result of instability of motion in the strict sense of the 
word. 

3.2 Theory 

Considering stability for constant values of rate: of roll p = p in 
Ref.2 the system of differential equations (10-14) has been linearisedoand 
as p is now a parameter the rolling moment equation (12) becomes redundant. . . The remamlng four simultaneous differential equations have a quartic as the 
characteristic equation which is reduced to a biquadratic if all the damping 
terms are neglected, as shown in Appendix D. The solution given there in 
equation (D.11) is identical to that given by Phillips in Ref.2, but written 
in the notation adopted for this note. When damping is neglected the 
solution depends on the two uncoupled angular frequencies cf the aircraft 
in yaw and in pitch 

---.. 

*I) = ,’ I / 
‘NP c (22) 

we = \ I -7; (23) 

on po and on the ratio cf the inertias A/B . For l&/B = 0 this solution 

has been computed and plotted in Fig.3 against ('e/,o)' and ("$/po)2 l 

The major region in the upper right hand corner represents stable motion 
with two neutrally stable oscillatory modes with the frequencies 
w2 l 

As p, increases, 
w, and 

or either of the two uncoupled frequencies, i.e. 
rnIY and nv are reduced, one of the twc oscillatory modes degenerates into 
a divergence. The stability boundaries are indicated in Fig.3 and show that 
the motion is stable if 

PO ( w If 
and PO < w 

0 l 

For very lLarge values of p, , i.e. if 

P, ' w$ and PO > we 

the motion becomes again stable as jlldicated by the hatched region in Fig.& 
- 1-l - 



These boundaries apply for an aircraf% with inertia in roll (A) small 
when compared with inertia in pitch and for negligible dsmping in pitch and 

Generally xith A $ 0 but inertias concentratedin one plane, i.e. in yaw. 
C sB+ A and negligible damping the two stability boundaries wili lie at 

2 
E 1.0 and z!iL - 

0 

2B+A 
= 

PO B-A 

as shown in Fig,& For increasing inertia in roll when compared with inertia 
inpitah the stability boundary in w 
whioh it will ooincide if A = B , 

is moved towards the origin, with 
bit the aircraft will still be unstable 

for p > we. 

The effect of damping in yaw and/or in pitch on the stability boundaries 
is shown schematirxally in Fig&. The two stable regions are now connected by 

a trough and an aircraft with wo - :: 1.0 should be stable for sll values of p. 
*JI0 

4 Phillips criterion and design trends 

Following the work described in the previous section, Phillips has 
suggested as the primary s7;ability criterion 

P< B-A = U$ . 
J 

AL- 
0 

(25) 

Though the adequacy of this expression as a reliable crir;erion may be 
disputed, it is useful for demonstrating the design trends which have led to 
the advent of the divergence in rolling msnocuvres in somo present designs 
and to assess future developments. 

For this pqose equation (25) will be rewritten 

P2 C nv Vi2 
0.0765 . w 

This discloses readily the four principal features which mmbine to lower 
the cri%icel rate of roll into the rcange required in normal aircraft hsndling, 
say below 3 radians/see: 

W increasing wing loading, 

(ii> b , which in this note is referred to semispan b/2 , increases 
as fusekges become more elongated and loads are distributed more evenly wer 
the full volume of the fuselage, 

(iii) A/B , i.e. the ratio between inertia in roll and in pitch 
decreases with the reduction in wing spzn in relation to the fuselage length 
and in generd. for the reasons quoted under (ii). 

-12- 



Par a typical World Var II fighter -r,/, was of the order of 0.8 yfhereas 

with modern supersonic Trojects ratios of '/5 and 1 ess are commonplace. It 
should be noted, however, that increasing inertia in roll will not neces- 
sarily be the ideal remedy, as it might easily create difficulties in basic 
aileron ccntrol as shown in Ref.&.. 

(iv) Increases in operational height will alla7 the achievement of 
high rates of roll at low indicated speed, i.e. at a flight condition with 
a low critical value of p. 

The effect of the ratio l&/D on the critical- rate of roll p = 6~~ 
0 

is illustrated in Fig.6. Values for pcrit z wq for a representative 

range of' aircraft are shown in Fig.7 where the e;fects of the design trends 
discussed above are clearly demonstrated. 

This attractively simple analysis is, however, insufficient to predict 
fully the flight behaviour of an aircraft in practical rolling manoeuvres 
and in particular the peak values of incidence and sidcslip occurring during 
such a motion. 

The actual criterion for these may be dictated by structural limita- 
tions , pilots discomfort and fatigue, effects on navigational techniques etc. 

These peak values of 01 and 9 can only be cbtained by computing 
the response of an aircraft to a given aileron manoeuvre. 

The work undertaken at RAE was largely directed to determine 
systematically these critical quantities. 

5 Computations on a General Purpose Simulator (GEPUS) 

5.1 Scope of the Investigation 

An extensive programme of analcgue computations was carried out on a 
general purpose simulator (G3EUS). Due to the large nwriber of multi@iers 
installed in this computer the equations of motion could be fully repre- 
sented including the effect of gravity and non-constant aerodynamic 
derivatives. 

The programme was divided into two main tasks: 

(0 Investigation of individual aircraft designs in cooperation with 
the manufacturers. 1~s none of the aircraft analysed showed any al&g 
characteristics it is not proposed to repcrt on these investigations here. 

(ii) 1: systematic investigation of the effect of all the relevant 
parameters both with respect to aircraft design and the execution of the 
flight mznceuvre. This programme was centred round a typical advanced 
supersonic fighter design, but in the course of the investigation con- 
siderable variations of all major coefficients were explcred, SC that the 
results cover a fairly wide range cf aircraft configurations. The primary 
task cf this preliminary series of computations was, however, tc determine 
the predominant parameters so that the numiber cf relevant parameters could 
be reduced to a manageable order and then to draw up a programme for a more 
comprehensive study. At the time of writing such a programme has already 
been started and it is hoped that the results of this wcrk will give more 
general data than those presented here. 

- -I3 - 



5.2 Representation of the equations of motion and the aercdyXGamic forces 
and moments 

The equations of motion represented on the simulator have been derived 
in section 2.3 and are equations (16-21). 
equations is shown in Pig.52 and has been 

The circuit representing these 

derivatives arc 
so arrangod that the <aerodynamic 

set independently from speed, inertias, g2 . This assisted 
in the procedure of varying individual parameters by reducing the number of 
coefficients to be reset for each variation to the absolute minimum. 
more:, since all. gains represent then numerically familiar quantities, 

Further- 

in setting and resetting a problem me more readily spotted, 
errors 

It should also be noted that a number of apparently superfluous 
amplifiers in series with integrators has to be used as the integrators on 
GEPUS can only be 
of time constants. 

set for a limited number of widely spaced discreet MLues 

The circuit computing sin $ and cos $ as required to represent 
gravity in the force equation is shown in Fig.53. 

The aerodyntic, inertia snd geometric data for the supersonic fighter 
presented as the "stCandard aircraft" in the programme are given in Table -I. 
When the individu,i parameter- u wc;re varied the flight condition N t= 0.8 at 
40,000 ft 61ti,%ude was chosen as the reference throughout. 

It may be interesting to note that in the prooess of transforming the 
original aerodynamic derivatives (in T:\ind sxes) to the values tabulated as 
referring to principal inertia axes, n: 
been coonsiderably altered. 

has changed sign and nl,s has 
Unfortunat$y nv has been represented by a 

constant value, but it is realised now that even for a bas.icalPJ constant 
"v(Q 9 nv in body axes will vary considerably with incidence and this 
obviously important effect will be investigated at the earliest possible 
moment. 

5.3 Simulated flight mcanoeuvres ?rld method of analysis 

In order to obtain repetitive results and to be able to separate the 
effects of design modification from irrelevant factors, it was necessary to 
specify a wall defined input. At the same time this input had to bear a 
raasoWble resemblance to realistic flight manoeuvres. For the first reason 
rudder and elevator had to be assumed fixed. Aileron was applied as a 
single square wave fun&ion to a preset velue of g It was held until a 
desired angle of honk A$ , as computed on the 
meter in front of the operator was reached. co 

simu?aior and displayed on a 
ad a$ were varied 

systematically to cover a representativ e range of flight manoeuvres. A 
typical record of such a manoeuvre is shown in Pig.8, 

After the ailerons are returned to 5 = 0 the aircraft does not; 
instantaneously cease to roll so that the angle of bank through which the 
aircraft finally rolls is consider&ly in excess of A# . 

In order to check tilether the results obtained by these obviously not 
quite reslistio manoeuvres are sufficiently representative of a roll where 
the airor&% is stopped at A$ 
by manually controlling E 

the latter case w,s.s frequently attempted 
thr&gh the knob of a variable resistor. This 

rather arbitrary procedure was repeated several times and it was generslly 
found that the eak values in a and 

& 
P obtained thereby scattered within 

the band of +5 
-2d 

about the values obtained with the standard mznoeuvrc. 

An example of such a series of tests is shown in E7ig.c). This was accepted 
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as reasonable correlation so that the nominal bank angle A$ can be 
interpreted as approximately representing the angle of bank change of a 
corresponding actual flight manoeuvre. This interpretation is, however, 
not valid for a case where p diverges after E is returned to neutral and 
results obtained in this condition have generally been rejected. 

It is perhaps significant that pilots' efforts to terminate the 
manoeuvre quiclLLy (that is what the operator has actually tried to achieve 
in the above mentioned manoeuvre) are apparently mere likely than not to 
worsen the response in a ad P , as is borne out by the predominance of 
the scatter towards an increase in CL and p . This would substantiate 
similar flight experience in the U.S.A. 

Fig.G(b) illustrates the method of ccm?uting peak values of Aa and 
P , which were taken as the significant quantities describing the beJhaviour 
of the aircraft in roll. Aa- and p,, are defined as the larger of the 
first two peaks recorded in a and 13 respectively. It was assumed that 
if the motion would continue to diverge further the pilot would have taken 
some corrective action. . 

5.4 Aircraft responses* 

Typical time histories of responses computed on the simulatcr are 
shown in Figs.10 to 14. Fig.lO(a 

1 
represents the supersonic fighter chosen 

as the principal example (Table I flying at a Mach MO. z 0.8 and 1kO,OOO ft 
altitude. This ccnditian was selected because it represents approximately 
the greatest height at which subsonic speed will be practicable. This was 
expected to give the worst response because m7 is at a minimum before it 
rises to its substantially greater supersonic %Jue. Ailerons are held at 
s =4O until a bank angle A$ = 90' was reached. 

If the principal inertia axis was inclined -5" (nose down) as compared 
with the basic +5’ the motion shown in Fig.lO(b) was obtained. 

Fig.ll(a) shows the response to a manoeuvre with E held at 8O until 
A$ = 1800; the amplitudes in a and fi are considerably larger when com- 
pared with the roll through A$ = 90° shown in Fig.lO(a). 

Figs.12 and 13 show the same rclling manceuvres on an aircraft with 
m increased to four times the value of the l'standard" ccnfiguration. The 
pzak values in a are reduced, those in p increased. 

If the basic value of r~v(O.20) is reduced to one quarter of its value, 
the sm@itudes in p are substantially increased, a being slightly smaller 
as seen in Fig.&(a). 

The dominating influence oI cI the inertia orossceupling terms on the 
aircraft response in rolling is illustrated in Fig.15 where these terms: 

pq (B - A) ; pr (C d A) and qr (C - B) 

have been omittud during two otherwise identical nmnoeuvres. 

In additicn to the yawing and pitching motions, which are the principal 
topic of this note, Figs. IO(b) to l.!+(b) all display a new t 
in roll itself. q 

e of instability 
It can be seen that in these cases (ao = -5 ) the aircraft 

continues rolling after the ailerons are centralised end mill finally settle 
down to an autorotational rolling state, which is independent cf the original 

* The results shown in Figs. IO-14 are slightly in error. Although the con- 
clusions drawn are not invalidated by these errors, the time histories 
cannot be taken as correct in detail. 
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sileron application. This steady state is seen particularly well established 
in Figs.ll(b) and l>(b). Thi s phenomenon will be discussed in detei.1 in 
section 6.1 snd Appendix k, where it is shove to occur for values of Q. below 
a oerttin critical value. 

The actual significance to the pilot of this rolling instability cannot 
bc deduced immediately from these simple comptiations, where the motion is 
&lowed to develop unchecked. Further study will be devoted to this aspect 
by computing the control movements required to stabilise the motion. 

5.5 Effect of %rj.ous aircraft par=ameters and flight condition 

The effects of varying the inertia end aerodynsmic parameters of a31 
aircraft end the flight condition are investigated by considering only the 
peak values in Aa and p reached during a given rolling manoeuvre. It 
must be strongly emphasized that the trends established here for the effeots 
of varying individual parameters are strictly applicable only to the partiou- 
lar airorsft configuration rind flight condition for which they were obtsined 
and do not necessarily admit of gcnerslisation. Some of the conclusions drawn 
here may have to be amplified as more results are accumulated in the course of 
the continuation of the present series or computations. 

5.51 Duration of aileron application 

For eI1 the configurations 
application and thus the angle 

investigated the duration of the aileron 
of bank roached during that time (as defined 

in section 5.3 and illustrated in Fig.8) has been systematically varied. 

Analysis of k 7; E vstriation of the peak emplitudes in Au snd P with 
A$ ShOws already the difficulties in laying down sufficiently generalised 
rLil.eS, as three distinctly different trends have been observed for different 
combinations of inertia and/or aerodynamic derivatives. 

(j-1 Aam, CQIA B- increase progressively with the duration of the 
aileron appliaation, i.e, with Api snd reach a mtium after which no further 
deteriora%ion occurs even if S is held on indefinitely. See pig.16. It 
appesrs that as the aileron angle 5 and thus the rate of roll is incre<ased this 
msximum is reached at larger bank angles. 

(ii) Aamax land Fm,: increase progressively with the duration of the 
aileron application up to a certain value of A$ . If silerons are held on 
longer, the peaks in Acr and p become smsller, reach a minimum after which 
they start to increase again. For the example shovJn in Fig.17 for E; 5 IO0 
rolling through A$ = 9Oo results in a peak value of Aa s IO? Ii3'th.e manoeuvre 
were continued thrQu& A# = 180' only Ah = 3O would be racorded. L 

(iii) Aa,, and Pm0 h increase progressively with A$ indicatdq 
the presence of a divergent mode of motion. 
shown in Fig.18. 

Examples for this condition a2e 

These trends are ex<ami.ned thcorecically in more det;sil in section 6.3 
where they are illus-trateci by the first results 
tions (see Figs.&.7 to 5-t). 

of the new series of simul3- 

5.52 Aileron angle and r&c of roll 

In Fig.a Actmax and Pm,, have been plotted against aileron angle (e) 
for various flight conditions. As an alternative to E the abscissa is scaled 
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in terms of pDo i.e. fhc steady rate of roll corresponding to 4; , if it 
were held on indefinitely, (The values of & were obtained by observing 
this condition on the simulator). The actual peak ~alues~of' p reached in 
the computed manoeuvres are, however, only approximately S$,of these values 
Pea l 

In all oases computed Aa- and @max increase progressively with< 
(or p,) and reach a maximum at a certain value of p, beyond which the air- 
craft rolling characteristics are again improved. 

This phenomenon oanbe explained by the results of the stability 
analysis of Iief .2. This is illustrated in Fig.19, showing schematically 
the stability boundaries of Fig.3. The radia3 line through the origin 
represents variation in p for a given airoroft flying at a given speed 
and height, i.e. with a given we and @,I, , Within the range PA < p < p2 
the later&.-longitudinal airoraf% motion will. be unstable. From equation 
(UC): 

can be established, thus instability occurs between 

(28) 

ijhichet-er applies. 

These r‘anges are indicated in Fig.20. They lie at approximately 5% 
of the value-s of p, at which Aamax and pmsx have their maxima. As 
mentioned above the actual peak values of p reached during these manoeuvres 
were roughly $ pw and an average figure for p is approximately 0.5 pm . 
If these values of p are taken as representative the range pq < p < p2 
will then coincide with the maxima in ACX- and omax , 

5.53 IncidencP of the principal inertia axis and PLU-out manoeuvres 

It was noticed early in the computations that the incidence of the 
principal inertia aks cl0 (with respect to the flight path in the trimmed 
eq*ui.librium condiiS.on) has a dominating influence on the values of the peak 
amplitudes in Ace and p recorded. Consequently a0 was tr;atcd as an 
independent parame-t;er during the whole investigation and not taken as the 
incidence of theparticular aircraft chosen for an example as it would apply 
to zhe various flight conditions examined. By discussing these effects of 
height, speed and incidence separately more generally applicable conclusions 
can be drawn. 

Theoretical snolyois (section 6.3 and Appendix E) shows that A%% 
ad @ma% Eu‘e largely proportional to a, , confai ting in addition a 
contribution proportional to np . This is well represented in the results 
obtained on the simulator as shown in an example for many similar results 
in Fig.21(a). 
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The steep rise of BW snd cmax towards negative values of ao seen 
in E'ig.,?i(b) is the result of the developaent of a divergent rolling motion as 
discussed in sections 5.4, 6.1 and Appendix A and is not directly a feature of 

-- the lateral-longitudinal motion discussed here. 

From the influence of' (ro on the caircreft response shown in Fig,2l(a), 
the behaviour of an aircraft in rolling pull outs may also be assessed, though 
such manoeuvres have not so far been actually computed in the present series. 
The application of g will result in Z-L increase in incidence snd thus in c'~. 
This will worsen the aircraft response in the sense indicatedin EYg.Zl(a) 
apart from so far unexplored effects of simultaneously applying rate of pitch. 

5.54 Speed and hei#t 

Results dbt aim d for the supersonix fighter aircraft described in #Table 1 
at 60,000 ft altitude have been plotted agtinst li'Lach IJo. in Fi.g.22. The sharp 
drop in Aam,, znd Pm,, 
of 'the increage in qY 

through the Eransonic range is largely the result 
from the low subsonic value of 0,083 to 0.25 at 

M = 1.0. The more gentle progressive reduction in the supersonic range reflect 
pure speed effects more directly as the derivatives vary less, 

These trends will be f&sly representative for an aircraft in which, as 
has been nosumod in the example choscr,, 
to high super:;onic sL]eeds. Should rv 

I+ is maintained fairly constant up 
drop substantially with Mach Xo, the 

airc9Mt response in cLmcLX can be expected thon to deteriorate. 

Vnri&tions wi,th alkitude at a constant Mach No, i.e. Mth constant 
dcrivativcs and almost constant true speed, arc:: shown in Fig.23. For the 
fighter aircraft represented there is a vary regular progressive deterioration 
mith height, which csn be expressed by the empirical lm: 

AC,, c , 

In this analysis ~lo (i.e. incidence) has been assumed consthlZt as 
a0 = +5 0 , If %o is the incidence of the principal inertia axis at zero 
lift and al the lift slope of the complete aircraft, a0 cam be computed as 

ox 

a0 = 84.0 w,'s aoo t - - 
"I vi2 

Thus if a,, >/ 0 , G!~ i$li incrcaze progressively with height and vJith the 
inverse of speed. If a,, < 0 a0 ~kll be zero somewhere Cthin the: flight 
range and 1 a0 1 VCI.U increase from there in both directions. Kith equation 
(30), tna results shown in Figs.22 and 23 can be readily modified to apply to 
Xc\-el fright incidence if it Is 
P 

assumed (see section 5.53) that Affmax and 
max are directly proportional to a0 , As a0 will generally increase vjith 

height and 1/v the t rends shown in Figs, 22 and 23 ~611 be ikrther accentuated, 

5.55 qXJ , nv and inertias 

From the stability analysi.~ U of Eef.2 it would be expected that the static 
stabilities in pitch and in yaw, qv and nv respectively and the inertias 
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are the predominant parameters. Considering these individuslly cannot be 
expected to revesl generalised trends as the stsbility of the motion is 
determined as shown in Figs.3~4 by the combination of the three parameters. 
This is reflected in the results shovqnin Pigs,2&-26 where m, , r+ and 
the inertias (maintaining A:B:C = const) are varies individually from the 
standard configuration of the aircraft chosen as an example. 

Increasing qv (Fig.&) improves Aa without materially altering the 
response in yaw (p). 

Increasing nv worsens the response in pitch, as expected but again 
(3 is little affected. 

Proportional increases in the inertias appears to have little effect 
within the range covered; reductions from the assumed original values show 
the expected improvement. The argument aamncea in the discussion of the 
effect of rate of roll in section 5.52 ma demonstrated in Rig.19 0813 
simikrlybe applied to variation of inertias and there is in fact an 
indication of a resonance region at approximately 1.2 x original inertias; 
this agrees well with the centr e of the unstable range intersected in 
Phillips stability diagram when a representative average rate of roll of 
agproximately 2/3 of the recorded peak value is taken. 

It appears from the above discussion of the effects of variations in 
inertias and in m, , that thz aircraft chosen as an example represent a 
critical combination at least with respect to these paramefcrs. 

Inertia in roll was reduced independently of that in pit?, reducing 
the ratio A/B from the vdlue of the standard aircraft = a to x9 Contrary 
to theoreticslexpectationthi s iqirovea the aircraft response slightly, as 
can be seen by comparing Figs.l6(aj and 17. 

Contours of constant values of Aama and pm;uc have been evaluated 
for two rolling manoeuvre s in Pig.27 (rolling with E = 8' through 180') 
and Fig.20 (rolling with E = 40 through 180'). Again based on a 
representative p z 2/j pm= the stability boundaries obtained from Ref.2 
with aerodynamic damping neglected ere represented. In this form, the 
curves should directly reflect the implications of the theory advanced in 
Ref. 2. It v&l1 immediately be noticed that large peak values of Aa and fi 
are obtained well within the stable region. However, there is a strong 
tendency (somewhat complicated by local distortions of the contours) for 
Aa =snd p to increase more rapidly as the stability boundaries are 
approached and a re asonable correlaticn between the Phillips criteria and 
the ac?tu,il flight behaviour of an aircraft is indicated, '&ith the limited 
number of available results the unstable region near the ordinate axis is 
not very well established and it is intended to explore this further in a 
future expansion of the present 

(Wt3/p)2 
3. 

rogranme. Reduced to the nondimensional 
p2mmeters aci (yJp> Figs.27 and 28 shouid be identical. 
There are however considerable discrepancies which can only be attributed 
to the differenoe in the execution of the respective rolling m-anoeuvres. 
Those are illustrated in Fig.2~. It cm be seen that there are two 
essential differences. For 5 = 4" ailerons have to be hela on longer 
(2.8 see <is compared with I.8 sets) to roll through the same angle of 
honk A$ z 180°. bs the parameters zffecting the response of the aircraft 
in roll IWE been unaltered, rate of roll has almost approached its 
asymptotic steady v&W and the time history in p is less peaked when 
corqsredaith the m;Nloeuvro with 5 z 8O. Secondly, as the duration of the 
aileron application is alterea, ailerons are taken off at a different 
instant in the motion of the aircraft in a and p and this is bound to 
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affect the eventual peak amplitudes as these almost universally occur 
after cessation of the aileron application. 

5.56 m y nr and autostabilisation 

The effects of variation of m and n 
Changes in n 

are shown in Figs.30 and 31. 
have practically no &fect; &creasing 

pitching ampl?tudes, mq 
reduces the 

but the v~alues of m for which a substantial improve- 
ment would be obtained are canpletely ouLide the scope of practicable tail- 4. 
plane design limits, but there is reasonable scope for artificial pitch 
damping. 

These conclusions appear to be well substantiated by the latest 
American results and csn be taken as generally valid. 

The yawing and pitching motions discussed above are largely generated 
by the two product terms in the yawing and pitching moment equations and 
their removal has been shown to substantially improve the aircraft response 
(see Fig. 15). Consequently if rudder and elevator can be applied to 
counteract these terms: 

N&i = (B - A) pq (31) 

(32) 

complete autostabilisation would be affected. As opposed to conventional 
,methods of autostabilisation this technique would require the maintcnonce of 
the correct signal throughout the flight regime as, obviously, cverccmpensa- 
tion would reintroduce the product terms; S the signal has more than twice 
the proper value the response will be worse than with the original aircraft. 
Undercompensation would be less disastrous as it can only be expected to 
reduce the effectiveness of the installation. It can be shown that the 
amount of control demanded by the stabiliser is requiring up to and perhaps 
more than full control and this puts entirely new problems to the designer 
both with respect to reliability and safety and performance of the 
installation. 

In order to show whether autostabilisation either by conventional yaw 
and pitch damping or by perfect compensation of the product terms according 
to equations 31 and 32 would in effect relieve tht: fin and tail loads sub- 
stantially these have been ccmputed on the simulator. The results are 
presented in Table 2 giving comparable values for the load peaks experienced 
with and without stabilisation. The results are disappointing as the loads 
on the tailplane are actually increased by the perfect stabiliser. @-J-Y 
pitch and yaw damping brought substantial relief. Either method would of 
course be effective in relieving the wings, as the build up in incidence is 
suppressed. Either method also relieves fin loads. 

An alternative method of autostabilisation is outlined in the theoreti- 
P 

cal analysis in secticn 6.2 and Appendix B. 

5.57 Miscell,meous 

The remaining aerodynsmic derivatives were also checked for their 
influence on the aircraft response in rolling. These checks indicated the 
following trends: 

z and y are mainly effecting damping in pitch and yaw respectively 
and canwbe included with the corresponding rotary damping terms in the 
familiar combinations: 
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np and n are detrimental. These terms are responsible for the 
values of Acz~~ % and pmax obtained for clo = 0 , kere otherwise no 
pitohing and yas&ng rnotion would occur. If CC, is increased these effects 
become, however, progressively less ir2por~Ent. 

4, affects the autorotational rolling divergence but has otherwise 
no significant influence on the yavr and pitch response. er is unimportant. 
The effect of gratity was frequently checked and in no case was there any 
noticeable difference. In fact it; was found impossible to select two 
corresponding records in which the effect of gravity would be greater than 
the accuracy of the conlputing and recording equipmen% used. 

6 Theoretical analysis 

6.1 Autorotational rolling instabi1it.y 

l?romptedby the observation of autorotationdl rolling states dUring 
the computations on the simulator, the equations of motion (40-l&) were 
exanined for the existence of quasisteady equilibrium s%ates apart from 
the trivial solution p = q E r z CI z Q tl 0. By postulating such a steady 
state with 

the equations of motion are reduced to a system of five nonlinear algebraic 
equations which have been solvedin Appendix A togive abiquadratic in p 

where 

K. 

E~quation (34) has red solutions if 

(36) 

(37) 

i.e. there exists an autorotational equilibrium state if cl0 is below a 
certain critical value (since u < 0). These critical boundaries for a0 
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are plotted against 2 and IC as parameters in Fig.32. If 4 

autorotational instability in roll exists even at positive a. i.e. with 
the principal inertia axis inclined nose up. Damping in pitog 'm 
main factor in K) 

(being the 
shifts the stability boundary tomrds more neg&ive cxo. 

For a0 6 a0 
crit 

equation (34) predict s two pairs of equilibrium states 

+p, and ?p2 which have been computed and plotted in Figs.33-35 for the 
significant range of the relevsnt parameters. If 

lp, I xi.11 be ncutrslly stable and thus never occur as a steady state in 
flight. The upper value of lp2i constitutes a steady state towards which 
the airoroft nil1 diverge, once pj has been exoeeded. This interpretation 
of the physical significsnoe of these eytilibrium rolling states is illustrated 
in Fi.g.36. 

For the supersonic fighter aircraft used as an example throughout this 
note v‘alues of pl and p2 have been estimated for a number of flight con- 
ditions for a0 = 0 and ao = -5' and the results arc given in Table 2. 
Autorotation exists for all conditions quoted apart from one case. The 
divergence boundary is well within the operational flight regime, pl varying 
betneen 50 and 150°/sec. 

Por a supersonic bomber project this boundary was found to be as low as 
20°/sec and th5.e 0 condition would amount to praotically complete loss of roll 
darqing, as the roll-subsidence must be expected to deteriorate for rolling 
velocities p + pq . 

6.2 Pilots' control and autostabilisation 

In an attempt, to assess the chances of a pilot to keep the aircraft 
laterally and longitudinally under control against the action of inertia 
forces in rolling manoeuvres, 
keep Aa 

the rudder and elevator movements rec@.red to 
= 0 and p = 0 throughout where estimated in Appendix B. For this 

ideal conLro1 coordination the pilot would have to sense p2 mla Ii, , as 
the major terms obtained read: 

(38) 

r)(t) = c-8 a0 p2 (t) , 
% 

(39) 

These control rovemon7;s have been computed in hppendix C for two typical 
rolling manoeuvres, whioh were stilectca to give the smoothest possible 
movement so as not to exaggerate the already very violent control manipula- 
tions demanded from the pilot. These manoeuvres are shown as time histories 
g(t) Land rib> in Figr37.(rolling through A# = 180' in 2 sees) and in 
Fig.38 (rolling through A$ = 90' in 1 SW). The manoeuvres appear beyond 
the scope of even a highly skilled pilot end are further complicated by the 
fact that he has to lclzow the incidence of the principal inertia axis for any 

D 

c 
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particular flight condition, before he 
to move his controls. 

even knows in which direction hl3 is 

Equations (38) <and (39) indicate, however, the signals required for a 
perfect autostabiliser, which operating as a demand system rather than a 
suppressor offers perfect stabilisation, provided it can technically be 
realised, The difficulties discussed in section 5.56 apply of course here 
as well. 

6.3 Ret sponse calcul ati on 

The system of nonlinear differential equations (10-44) cannot be solved 
by conventional m&hods of differential calculus. in order to gain some under- 
stanting of the results obtained on the simulator an attempt was made to 
estimate the response in pitch cand yaw in an idealised rolling manoeuvre. If 
P" const, the equations of motion become linear and the stability of the 
system CEIX be analysed as suggested in icef.2 and shovJn in Appendix D. If the 
investigation is restricted to rates of roll below the critical -E&zes as 
defined by 

p<wg a.nd 
p < wlir, 

(401 

the aircraft will perform two coupled lateral-longitudinal oscillations with 
the frequencies WA and w2 and zero damping. Neglecting danping in pitoh 
and in yaw these frequencies have been computed from Ref.2 and are plotted 
in Fig.39. 

The amplitude ratios bztween a and fi has been derived in &p-D and 
are plotted against (%/po) in E.g.4.0 for the high frequency mode wq and 
for the low frequency mode w2 in Fig.41. It has also been shown that the 
amplitude ratios are imaginary, i.e. p is 90° phase advanced on a if 
(@ > 0 and vice versa if P (3) ( 0. Thus the aircraft motion in Aa and p 
in response to an instantaneously applied rate of roll p. must be of the 
form 

AR(~) = gW + a,, cos (c",t) + a?2 sin (u,t) + a2, cos (w,t) + az2 sin (ogE) 

(41) 

N-i;> = F, - a,, e 
0 a 1 

sin (w,t) + a12 !Z. 
0 a 1 

cos (op) - a2'21 P 
0 a2 

sin (w,t) 

‘B‘ 
+"22 a 

0 
cos (w,t, . 

2 

(4-d 

* 

Solutions for all the constants in these equations have been derived in 
Appendix E and it has betin shown, that apart from some secondary contribu- 
tions, they are all proportional to a0 , the incidence of the principal 
inertia axis. This explains on the ampli- 
tudes in a and P 

the predominant influence of cl0 
computed on the simulator. 

If the frequencies of the two oscillatory modes of the coupled lateral- 
longitudinal motion are sufficiently apart, say 

WI / 
w2 

>4, 

b 23 - 



the peaks in Aa and @ reached during a given manoeuvre can be sinrply 
estimated by adding slgebrsically the amPlitudes of the two harmonics: 

P max 
I 2 

taking whichever sign gives the larger resuit, lyhere 

(44) 

12 - 
“I = J”11 + 7z2 (4-9 

2 2 
a2 = ,;a21 +a22 l 

(46) 

In J+ppendi.x F this analysis has been extended to the oelculation of 
the resPonse to a square wave in p(t), i.e. p. is applied instantaneously 
at t = 0 and held until t = t, . The motion is computed in two steps 
covering 

(i) 0 > t > tl with P = PO 

(ii) t, > t > 00 with p=o . 

t 

l 

* 

A 

In both regimes p = const, the differential equations are linear and an 
analytical solution is readily obtained. Range (i) is computed with the 
procedure outlined above and the values of the variables computed for 
t *I are then introduced as inir;ial conditions into the solution of the 
mozion for r,ange (ii) with p = 0. In this range the motion consists of the 
two unooupled oscillations in pitch and in yaw. 

In 
aircr&t 

response 

in terms 

Figs& to 46 a number of such responses have been computed for two 
with the characteristics listed in Table 4. As "p = nE = 0 the 
in a and 0 is proportional to a0 thus the results are presented 

A of a and P. 
“0 

a 
Further it can be shown that the response is 

0 

uniquely d&crmined v&on introducing (p, ) as nondimensional time and ore 
then applicable to al.1 values of P o , provided they satisfy r;he given values 

of (z),(z) and (tjpo). Fig..!+&(a) and &6 show responses to a step 5‘ 

function in 
in both Aa(t 

and the two oscillatory modes of motion can be easily recognised 
and P(t) v " 

It can be scan that the high frequency oscillation (anrplitude a4 with 

frequency "4) is less prominant in the case vsith 

whsn comp,ared with the case = 4 in Fig.&(a). It appears to 
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R  

be a general. trend - supported by more unpublished 

long periodmode becomes dominant as the stability 

tk 
{PO 

ore approaohed. 

calculations - that the 

boundaries in ix-d. 

In Figs.&(b) and 45 responses have been computed for the same air- 
craft configuration when Po is terminated instantaneously after various 
bank angles have been reached. 

The amplitudes of the "residual" pi%ching and yawing oscillations 
(after tl , i.e. with p = 0) are plotted against "bank angle A$ = pot, in 
Figs.47 and 48 for the tv;o cases considered. Fig.46 shows clearly, how the 
duration of the rolling manoeuvre affects the aircraft response in a quite 
unsystematic mmer, (see rzlso Fig,?i') and that by rolling Ghrough A$ -7: 5 
radians the ,zunplitudes of the residual yawing motion are less than & of 
those obtained when rolling through only 3 radians. 

For the case 2 this trend is much less pronounced 

and within the range covered (0 < A$ c 8 radians} the amplitudes increase 
practically progressively with A# . This ma,y be explained by the much 
smaller amplitudes of the high frequency mode WI present when the aircraft 
was rolling and the much longer period of the low frequency mode w2 . 

Considering also the amplikdes in Aa and p occurring before tl, 
the peak values Acxmax and Pm, obtai,ned anywhere during the whole motion 
o<t<co were calculated and are plotted in Fig,@. 

The same results were obtained on the simulator during a latest series 
of computation where a time history in p(t) as illustrated in Fig.50 was 
used as the input instead of c(t) as used during the present series. 
p(t) is aPplied as an exponentially rising function 

-vt 
P s p. (I -e P) 

am3 followed at GI with an exponential decay with the same time constant 
tP ' 

The values of Pmclx 
varied 

for a series in which both tp and tl were 
systematically are shown in Fig.51. The case tp s 0,02 set 

represents practically a perfect square wave and the results are practically 
identical with those calculated in Fig.49. As t, is increased, i.e. as 
rate of roll is apPlied and taken off more gently the response in /3 becomes 
much less violent and also the variation of pmax with A# is more 
progressive. 

7 Ccncl usi 0x3 

6 systematic series of computations of rosponscs of a supersonic 
fighter aircraft to aileron movements has been carried out on an electronic 
simulator representing sircraft motion in 5 degrees of freedom. It has been 
shown tlxat the gyroscopic force- c3 couple the pitching and yawing motion 
resulting in large peak amplitudes in incidence end sideslip when inertia 
in pitch is large. These peak amplitudes occur usual.Zy after the termina- 
tion of the actual rolling manoeuvre. From systematic variations of flight 
conditions and aircraft data the following conclusions can be drawn. 
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Aircraft response deteriorates progressively with increasing inertia in 
pitch, (and therefore in yaw) and with rolling velocity. 

Usu~ally the peak values of tt and $3 recorded are greater if ailerons 
are held on longer. In some cases, however, intolerable peaks are reached 
whenrolling through only 90° bank angle and less and the response hardly 
deteriorates v&n the duration of the manoeuvre is increased. In some cases 
again the response is noticeably improved if ailerons are held on longer and 
the resulting motion depends in a rather unsystematic manner on the precise 
instant at which the manoeuvre is terminated. Rapid control movements are 
generally detrimental, 

Simultaneous increases in % and nv are generally beneficial, 
Whereas increasing these stabilities indi.viduaJly tends to relieve the motion 
in the freedom directly concerned at the expense of the other freedom. This 
is in agreement wit;h the general indications of r;heore%icel analysis. 

Simulated responses and simplified theoretical, analysis has shown that 
the peak amplitudes in pitch and in yaw are largely proportional to the 
incidence of the principal inertia axis in steady flight a0 with an 
additional contribution due to r P and n 

F' 
Damping in yaw is ineffective. 

Damping in pitch is moderately beneficial. An autorotational rolling 
state has been shown to exist, which is provoked c:lce an aircraft exceeds a 
given critical rolling velocity. This phenomenon is also generated by the 
effects of inertia coupling and still occur only if the trimmed incidence of 
the principal inertia axis is below a certain critical value. Numerical 
solutions for all the relevant quantities are given, For a typical advanced 
supersonic aircraft the critical rate of roll can be as low as 20°/sec. The 
practical implications of this phenomenon are not ye% known. 

Pilot's control coordination to suppress completely the pitch and yaw 
divergence reqire s very lrarge elevator and rudder movement which appear 
unrelated to readily perceptible physical or visual sensations. 

Autostabilisation has been studied in detail and three alternative 
techniqieo are discussed: 

W Pure pitoh or combined pitch and yaw damping are relatively 
efficient. 

(ii) Elevator and rudder control to counteract the inertia oross- 
coupling effects: 

vKX&d almost comple%ely suppress the pitching and yarting motion. As this 
technique doe s not operate on CXA error signal the derived control law must 
be precisely maintained, as e.g* overcompensation reintroduces the inertia 
effeots with reversed sign. 

(iii) Perfect rolling with Aa J 0 and S = 0 would be achieved with 
an autostabiliser operating rudder and elevator according to: 

5 
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. 

where a0 is the incidence of the principal inertia axis relating to 
equilibrium flight condition. This technique also requires precise operation 
of the stabiliser servo for the reasons discussed under (ii). 

All. three proposals demand very large control movements which may even 
exceed the physically available range. 

A simple analytical method to compute $he aircraft response in yaw end 
pitch to an ide&ised rolling manoeuvre has been outlined and the results 
obtained to date appear to predict some of the trends observed on the 
simulator. 

a Future work 

An etiension of the programme of ansJ.ogue computations described 
herein is already under way with the particular aim to reproduce a closer 
approximation to realist5.c rolling manoeuvres and to explore the general 
effects of piloting technique. It is then intended to cover a wider range 
of inertia variations and to simulate rolling pull out manoeuvres, 
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Iv 
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LIST 03' SYMEIOLS 

inertia in roll 

inertia in pitch 

i 

in principal inertia axes 

inertia in yaw 

rolling morra3nt 

pitching moment in principal inertia axes 

yawing moment 

wing srea 

speed of flight 

aircraft weight 

side force 

normal force 

span 

%uff ix dampa 
g gravitational 

parameters (Appendix E) 

acceleration 

iA = A 

4w2>2 
inertia coefficient in roll 

1 

% 

B =: 
mb/d 2 

inertia coefficient in pitch 

iC = c 

m(b/2 > 2 
inertia coefficient ~.II yaw 

m = w/g mass of aircraft 

4 surf ix nondimensional rolling moment derivative 

msuffix pitching mxnent derivative 

nsuffix yawing moment derivative 

PO steady rate of roll 

P rate of roll 

q rate of pitch in principal inertia axes 

r rate of yaw 
t time I 
ysuff ix side force derivative 

"suffix normal force derivative 

. 
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Y 

L 

a incidence of the principal inertia axis 

a 0 
inclination of the principal inertia axis to the flight path 
in steady flight 

ha 

L\aIMX 

P 

%ax 

h 

incremental incidenoe 

peak amplitude in Aa 

sideslip 

peak amplitude in P 

root of a charactistic equation 

P G2 
relative density 

PO: b/2 p2 at sea level 

ev ilj - ig 
V = 2 

w% n V 

P air density 

d ZZ P/PO relative density 

%n 
w c 

T 
angular frequency (T = Period) 

9 frequencies of the coupled lateral longitudinal motion of the 

w2 
rolling aircraft 

r- 

Ma 
% = "B frequency of the isolated pitching oscillation 

freque&ncy of the isolated directional oscillation 

YJ, = 
modified directional frequency 

aileron angle 

rudder angle 

elevator angle 
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# angle of bank 

M 

e 

$ 

Sdfices 

a, w 

b v 
P 

q 

r 

No. - 

I 

change in bank during a rolling manoeuvre 

angle of pitch 

angle of yaw 

and quantities to which they relate: 

incidence 

sideslip 

rate of roll 

rate of pitch 

rate of yaw 

Author 

2 William H. Phillips 

3 W.J. Duncan 

4 W.J.G. Pinsker 

Title, etc 

NACA high speed flight section: flight 
experience with two high-speed air-planes 
having violent lateral-longitudimil 
coupling in aileron rolls. 
NACA RM S55Al3 (1955) 

Effect of steady rolling on longitudinal 
and directional stability. 
NACA T.N. 1627 June 1948 

The principles of the control and 
stability of aircraft. 
Cm-bridge University press 1952 

Aileron control of small aspect ratio 
aircraft in particular delta aircraft. 
ARC 16711, Oct. 1953 
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Autorotational rates of roll of an aircraft 
with inertia-coupling 

Neglecting mall terms 

Ya = Lr = Y, = Yp = Zq = 0 and gravity 

and assuming a quasisteady motion with 

P = const., ;! =: 0 

r = const,, G = 0 

9 = const., h .z 0 

a = const., & = 0 

s = const., g=o 

the ewations of motion of the aircraft in five degrees of freedom 
(equations 7-11) are reduced to 

Lp/3+Lpp = 0 (Ad 

NPP-pq(B-4) = 0 (A. 2) 

*a a -lyfs q+prB = 0 (A.3) 

b4) 

(A, 5) 

If the variables q, r, a and f3 are eliminated by substitution the system 
of equations will give a biquadratic in p: 

p4-.p2 (w2+6J2 2 

* 0 * 
+aoUw s.f~J 

d 0 
;o(cd~+~ "rZ) = 0 

0 

where 

2 Mfx mw (vi/b/2)2 4 
w. = "T = -q 

p20 b/z 

fAJ2 
$0 

= = 
n 

q?q 
oJi/b,2)2 

p20 

(A. 6) 

V = 5 .5aiA 
W4 

P nv 

u 
@/b/2J2 

= 
p2 



Equation A. 6 gives: 

In addition to the trivial solution of equations (A.l-A.51 p = 0 equation 
A.7 gives for values of a0 less than or equal to a certain critical value, 
four resl solutions in p, 2 pj arkI 2 p2 which constitute equilibrium states 
of autorotational rolling. 

This analysis gives no indication of the stability of these quasi- 
steady states, but from a number of observations on aircraft responses 
obtained on the simulator it appears that only the larger values of + p 
are stable. The lower values + p, have never been observed as steady s z ates 
and seem to constitute a stability boundary, i.e. whenever f p has been 
exceeded the aircraft will tend to diverge (or converge) a34 tow s the true 
autorotational state f p2. This interpretation is illustrated in Fig.36. 
The solutions of equation (A.7) have been plotted against a representative 
range of parameters in Figs.23-35. 

Inspection of equation (A.?) shows that for Lp = 0 there is only one 
solution p = 0 and thus the solutions shown in Figs.33~34 for a0 u = 0 are 
not valid for Y = 4 = v 0. Equation (&I) can be used to obtain 

P e b/2 = -p 2 v 
V 

which states that for sll vslues of p * 0, /3 = CD for ev = 0. Physically 
this may mean that there is instability in p but autorotational equilibrium 

vat p = t p2 will only be reached at t = Q) when /3 = 0. 

Equations (A.2 - A.5) give corresponding steady values for the other 
veriables 

(A.91 

(A. IO) 

r = P (a0 + a) (A.11) 
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liEE3NDI.X B 

Y 

c 

Control rrmoeuvres required to roll with 
Aa = 0 and /3 = 0 

Setting ha = p = k = fi = 0 and neglecting gravity e*aticns 10 and 
II give 

q = 0 
. 

r = pa0 and r = ia0 

Thus the equation of motion of the aircraft (equations IL?-14) am reduced to 

~~g+L~p-l;, = 0 (B-1) 

N< 4; + Np p + Nr a0 P + Nz; 2; ti c $ a0 = o b-59 

MT ?I + (C - A) p2 a0 = 0 63.3) 

when 

then 

“r = 0. 

If the aircraft is set to prform a rolling manoeuvre given by 

9 = SW 

P= p(t) = as(t.> 

G 
d& 

= &> = dt 

(B.4) 

b 5) 

03.6) 

are also determined and equations (B.l -B.3) can be used to compute the 
control movements E(t), z(t) and n(t) required to perform this manoeuvre 
with zero increnmental incidence and sideslip. 

(B. 7) 

i=(t) = cu,i(t) -p(t)($+ao~-~B(t) (B-8) 

C -A ?l(t) = .- 7 a0 p2(t> 
rl 

Retaining only major terms equation (B.8) will simplify to 

z(t) = #- a0 ii(t) 
r; 

(B.9) 

(B.10) 
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Equations (EL7 - B.9) can be rewritten as 

p20 
rtr(t) = iA 

(V /b/2)2 
- ia-) " 

i % 
(B.11) 

1-(20 
z(t) = iC 

- a0 ii(t) - 
('j, /b/2>2 % 

(B.12) 

lr20 
v(t) = - 

ic - iA _b/2 2 

(Vi/b/J2 "q 
4 P w a0 03.13) 
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Numerical example for ideal control coordination 
in rolling manoeuvres 

So as not to exaggerate the control demands 
manoeuvre till be chosen, as used in Ref.4: 

Differentiation gives: 

(c* 2) 

@*3) 

where A$ is the total change in bank angle and tm the duration of the . .~_ 
manoeuv-re. li.SSurmngC 

W = 3 radians = 172 0 

the smoothest possible 

tm = 2 sets 

P20 =40 

v = 800 ft/sec 

b/* 
= 20 ft 

iC = 0.5 

% 
= 0.02 

H = 40,000 ft 

vi 
= 400 ft/sec 

a 
0 

= 0.1 = 5.7O 

e = 20 ft 

5 = 0.05 e = -0.20 
P 

*;l: = -0.10 
“P = 

0 n = -0.4 
r 

mr, 
= -0,oy 

The manoeuvre iilustrated in Fig.%a has been computed from equations (B.ll- 
B.13). For the same aircraft rolling through A$ = 860 in t, = 1 set has 
been computed and the control movements abtsined are plotted in Figs. 37 
and 38. 
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i'iE!FENDIX D 

Aircraft motion with constant rate of roll 

If rate of roll is assumed 
neglected the equation of motion 

to be constant i.e. p = p, and gravity 
of the aircraft become linear: 

NE g + Np P + Nr r - (B - A) p, q - C$ = -N P PO @. 2) 

I$ Aa + Mq q + M; k + (C - A) r p, - B i = 0 b 31 

yP zP+p,Act-r-b = - PO ao 

& Aa -p,B+q-i c 0 

(D.4) 

CD* 5) 

By postulating p = po, F, becomes one of the five variables in this system 
of five simultaneous equations and its solution would determine the 
aileron movements required to achieve the postulated value of p analogeous 
to the procedure applied in Appendices B and C. Knowledge of this 
control manoeuvre is, however, irrelevant to specific problem posed in 
this chapter, consequently equation (D.l) becomes redundant and will be 
omitted from the remainder of the analysis. This leaves the term NE 5 
in equation D.2 undetermined and it has to be neglected though this may 
constitute a serious omission. 

Introducing: 

and using C = B + A the 

remaining four equations are now 

N 
--POP-;‘ = --$P, 

- w;Aa + !!!!I 
Me 

I Dq+$h+por-;l = 0 

Z 
m-Aa-poP+q-k = 0 

(D.6) 

b 7) 

(D.9) 
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For the present simplified analysis damping terms Nr, Mal M;, Yp and sa 
- are neglected and the above equations are then reduced to 

Aa P q r . 

0 B-A 
- B+A PO -A 

2 4 8 0 -A PO 

PO -A 0 -1 

-A 
-PO 

I 0 

I 3 c po 
0 

= 

-PO OLo 

0 

(D.10) 

The determinant on the left hand side equated to zero gives as the charac- 
teristic epation a biquadratic in h with the solution in terms of h/pa: 

1 
-_ _--_I_--__r --- 

(D.11) ' 

This corresponds to the solution given in Ref.2. There it has been shown 
' that for values of p, < pcrit eqation 11 will have two pairs of conjugate 

imaginary solutions 

A,,* = & iw, and X3,+ = k iu2 

and the present analysis will beconfined to this condition, i.e. to 
the regime where the aircraft motion is described by two neutrally stable 
oscillatory modes. 

Equation (D.lO) can be used to obtain a solution for the ratio between 
the amplitudes in /3 and a pertaining to these two oscillations: 

2 
++I -A P 0 

PO 0 -1 
I 

L = 
a I0 -A PO 

-A 0 -1 

I 
-P, +I 0 
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giving 

and 

13 
(Q =- 

4 -~~2 +(ij2 
= I 

a 
I #I i2 F 

(d 

.(“) 

9 

c3 hi. =- -l -(.a2 +Q2 
a = 1 

2 
i2 w2 

(d 

,(“) 
a 2 

P 

(Dw 12) 

(De 133 

These amplitude ratios are -kiaginary, thus if 0 
Q a > 0 /3 will be advanced 

90° in phase with respeot to a and vice versa. Using values for w, and w2 
as given for an aircraft with A E 0 (or generally A -c< B) in Ref.2 and 

plotted in Fig.1 the amplitude ratios (t)l, and ($), oorresponding to 

the high frequency and low frequency modes respectively have been computed 
and are plotted in pig.40 an3 41. It can be seen fromFigs. 40 and 41 
that for values of p, not too close to the stability boun(&y these ampli- 
tude ratios are prackcally independent of p,. Further .k 

u a 2' 
tude ratio of the low frequency mode snd thus MC the generally 
ant motion is approximately determined by: 

the ampli- 

more predomin- 

CD. 14) 

This expression explains why generally inoreasing mw, i.e. w8 relieves the 
amplitudes in pitch at the expense of 0 and vice versa, as has been 
observed in flight and in simulated responses: The stability boundaries 
sre determined by putting in equation D.ll X = 0. Equation D.11 will 
then be satisfied if 

or 

This equation is satisfied for all values of 
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If 

0 
A2 
P 

= Ial0 

and far all values af 
0 
22if 
P 

a*0 2 

( > PO = 1.0 

(D.I~) 

. 

(33.47) 
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,.kircra.ft response to instantaneously applied p 

Using the results obtained in Appendix D , the response of an 
aircraft to an instantaneously applied rate of roll p, can now be estimated. 

Considering again only values of p fcr which the eircraft motion 
consists of oscillatory modes the gencrd solution of eqations (D.6-9) is 

Aa = a, + a,, cos (w,t) + a,2 sin (a,%) 
(Ed 

+ a2, cos (w,t) f az2 sin (w2t) 

It has been shown in Appendix D that the amplitude ratios (p/a), 
and Wa):, corresponding to o, and 02 are imaginary, P being advanced 
go0 in phase with respect to a. Oonsequently the solution for @ corres- 
ponding to equation (E.1) can be expressed in terms of a,,, a,2 etc: 

P=B,- i 0 
a,, sin (w,t) + a hi 

Qja “i ) 
DOS (up) 

1 

e 
-21 a 0 

sin (w2t) + a22 t cos (w2t) 
2 0 2 

(E. 2) 

Differentiation gives 

it z - a,, ", sin (up) + a,2 w1 cos (up) 

- a2, w2 sin (w2t) + aa w2 co9 (w2t) 

B =-II ( 0 ajl? cos b,t> - 52 0, a 0 B sin (up) 
I 

- 0121 P 0 F 2w2 co9 (cd,t) - a22 0 sin b,t) e cI 
2 

At t = 0 we have the initial conditions: 

Aa =O p=O q=O r=O 

end from equations (D.8) and (De9) 

b4) 

fi =o b = aoPo @. 5) 



Substituted in equations (E.l-4) this leaves: 

0 = + "1, + all + a2l 

0 = + pm + "12 (:),+ "22 (Q2 

1 

j 
> (E* 6) 

0 = 
al2 @I + a22 O2 

ap = -all 
e 

0 
@I - a2l 

e 
00 

a +l 0 
w2 I 

a2 i 

am and /3, are the quasisteady values for a and p, which will be determined 
later in this Appendix. 

In determinant form equations (E.6) 

a = 

0 

all "12 

+I 0 

0 
0 
& 

a 1 

0 
*I 

- e 0 a2 
w2 0 

-a co 

+uJ 

can be solved for a,?, a12, a2, and CX~~. The amplitudes in a of the two 
oscillatory modes are then given as 

-..- 

?i 
2 2 

a, = "II + al2 

, 

. 

(3.7) 

03.N 

(E. P> 

The respective amplitudes of the yawing motion are then given as: 

(E.10) 

(E.11) 

The response in Aa and /3 can now be computed from equations (E.1) and (E.2). 

c 

- 4-l ” 



A quick assessment of the peak values of Aa- and @max is possible 
if (J >' w,, say WI/u2 > I$. It can be shown that in superimposing tmosuch 
osci&ator$ functions, the absolute maximum will be reasonably well 
approximated by the algebraic sum of the amplitudes of the two harmonics. 
If the above quoted condition applies then: 

and 

taking ahichever sign g&es the larger values. 

Equation (E.7) gives the constants aA, . . . a22 as 

‘xopo - ace 0 e w* a F! 

“12 = - gj* 

( 
Bj w, 

a21 = ;$f$$$- 

eo 9 
u22 = (q-yqqy 

(E.12) 

(Em 13) 

(E. 14) 

@a 15) 

(E.16) 

(E. 17) 

Ls shown later (Equations E.28 to E.31) a- CC ao and p, CC a0 if np = 0. 
Thenfor n = 0 all the constants a,, to a22 are proportional to ao, i.e. 
the respo:se of the aircraft -in pitch and in yaw to rolling is directly 
proportional to the incidence of the inertia axis (in equilibrium flight). 
Further with negligible aircraft damping p, will be zero (equation E.9). 
This will simplify equations (E.8) and (E.9) to 

(E. 19) 



The values of aa and P, represent the trim change in pitch and in yaw and 
can be estimated by eQuati.ng steady terms in the equations of motion. 

Np 'W + Nr rw - (B - A) P, qaD = - Np P, (E.20) 

Ma 06, + Ms. qw + (C - A) p, r, = 0 (E.21) 

5 P, + p, a - r, = 00 - PO ao (E. 23) 

Setting 

2 
&a mV ~0 " PO P, + 5l = 0 w (E. 24) 

a = a co a of% 
03.25) 

P, = Pa + 8, (E.26) 
0 

where aa ad Pa 
0 

are the contributions proportional to (a0 po) and c$ 

and p, the oontribuiions proportional to (Np p,), these values can then be 
obtained as solutions of the determinant: - 

a m 

0 

M 
a 
c 

zd 
mV 

Ee %a r w 

NP A 

( > 
Nr B -I-j$P, B 

-% 1 0 

32 
B 'o 

(E. 27) 

as: 

(E.28) 



. 

* 

(E.29) 

where 

2 ‘a 
% =-F 

and d a’ dp, dr’ dq represent damping term8 : 



3% 
$3 = mV 

Nr dr = - B-A 

UN aft Pa are directly proportional to damping terms and should therefore 
be negligible. 

a 
a a-d P, have been computed for a limited range of parameters and 

me pl.otied in Pigs. 42 and 43. 

l 
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Aircraft response to a square wave funotion p(t) 

If PO is applied as a step at t = 0 and taken off instantaneously 
att=t j the computation of the aircraft response to this simplified 
rolling manoeuvre oanbe carried out in two steps for the two regimes 

(4 0 > t > t, P = PO @J> 

(b) t, > t > m P = 0 (Fd 

This procedure will be outlined here for the simplified case where aircraft 
damping is neglected. In both regimes p = con&, and consequently the 
ewations of motion are linear. Aa and /3 for 0 > t > t, will be computed 
by the method developed in Appendix E. 

For t > t,, p = 0 the cross-coupling terms disappear from the 
equations of motion (D.6 to D.y), Jlhich are thus reduced to: 

-w;Aa-; = 0 (F.4) 

-r-8 = 0 (F* 5) 

q -ii = 0 (F.6) 

This system will split up into two uncoupled second order equations 

cd2 p - ; ulr 
= 0 (I?* 7) 

u2 Aa 0 - A’o = 0 CF* 8) 

These describe the two uncoupled and - as assumed - undamped aircraft 
oscillations in pitch ard in yaw with the frequencies w8 and w respectively 

Jr 
with the ger,eral solutions 

na = Ca f a3, cos (Wet) + a 32 sin b,t> 

P = Cp + b3, cos (a$) + bj2 sin (ti,$) 

As there is no external disturbance applied, the constants 

(F.9) 

(F.10) 

ca E c = 0 
P 
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with p 
If the values for Au, P, A& and 6 as computed for the step function 

= p, at t = t, are substituted as initial conditions into the solution 
F.9 an& P.10, the constants a l . . . b32 can be calculated and the response 
computed for t > t,. When re&!cing equations (D.6 to D.9) to equations 
(F.3 to F.6) the pro$ot terms with p 
continuities in G, q, b and & at t ='t 

disappeared which constitute dis- 
1' 

E is 
Thus if ;*, ;L1 , B and i, are instantaneous values at t = t - E where 

infinitesimally small, the corresponding values at t = t, a & will be 
obtained by substracting the corresponding discontinuities: I 

5! (t, + E) = g (t, - E) $ $$+ p, q, 

t (tj + E) = ;1 (t, - 12) - p, r, 

b (t, + E) = r3 (tq " E) " PO Aa, - PO a0 

i. (tq + E) = ii (t, - E) + p, P, 

If for t < t, we introduce 

t' E t-t, 

Equations F.9 and F.10 oan be rewritten and differentiated 

ha z 
a31 co6 (wett) + a 32 sin (bet') 

P = @3i 00s (k'$') f Ps2 sin (w,t*) 

tz = *e [- "31 sin (ogt * ) -k aj2 cos (wet ‘)) 

b = w \tr I- @31 sin (up*) $ p3, cos (u,t')] 

Substituting the initial conditions at tf = 0 this gives 

Au, = 
a3l 

@I = P3? 

6 (t, - 4 + P, P, = w0 a32 

; (tq - 4 - P, Aa, - P, a0 = wJI P32 

(F.11) 

(F.12) 

(F.13) 

(w4) 

0'0.15) 

(F.? 6) 

(F.17) 

(IF. 18) 

(WY) 

(F.20) 

(F.21) 

(F. 22) 

(F.23) 

This determines the constants a3, .,.. p32 and the amplitudes of the 
"residuals' pitching and yawing oscillation for t > t, are then given by 
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a3 = J a;1 + a:2 

(F.25) 

These values can be calculated without comp$%ng $he responses a(t) and 
p(t). Only the values at t 
from equations (E.1 . . . 

= t, of Aa, p, a and p have to be computed 
X.4) and substituted into equations (F.20 .a. F.23) 

to give the amplitudes a 3 and p3 according to eqations (F.24) and (F.25). 
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~onetriq&ertia and aerodynamic data of Che 
mpcrsonic fi -.r aircraft used as an exzynple 

3 = 400 ft2 b = 35 ft & = 28 Pt 

4 = yoo,ooo lb ft2 

'iv' = 2j,,Jci0 ti 33 x 4,100,OOO lb ft2 

c = ~,LWO,COO lb f-b2 

0.8 

0 40,000 60,000 
892 770 7-m 
47.3 186.2 492 

-0.25 

-0.25 

-0.10 

407 

0.05 

-0.3 

0.20 

-0.46 

-0.083 

4,376 

0.218 

-0.32 

-2.175 

1.0 I.5 

6u,ocx1 60,000 

960 Wt.0 

492 492 

2.0 

60,000 

1,920 
492 

-0.25 -O.-l2 -0. oy 

-0e27 -0.30 -0.25 

-0.11 -0. oy -0.075 

-0.07 -0.07 -0.07 

0.05 0.05 0*05 

-0*3 -0.3 4*3 

0.22 0.25 0.24 

-0.48 -0~52 -0.48 

-0.246 -0,335 lo.300 

-o.l+tH a.295 -0.196 

0.292 0.070 -a005 

-0,32 -0.32 -0.32 

-2.875 -1 l ?7 4.19 

iA = O.d25 

$ = 0.54 

i, = 0.65 
u 

q. = .A Yp = ngo = d&J&a ~1 0 



Effect of autostabilization on fin 3& tail loads experienced 
by an aimraftrollingthrough Ad with E= CY 

(a) Tail load peaks 

.  Autostabilization 
iyn operating 

'A . . 
A$ 

9o" 
180° 
2700 
3600 

(b) Fin load peaks 

1 

E 

~ 

Basic 
aircraft \L---' 

I me + I = I n +,, 

7.5 5 
10 12 
16 16 
17.5 46 

N(PXP) OxNr 

6 4 2.5 
13 7*5 5 
22 12 5 
28 12 5 

9o" 12 
180° 26 

2700 30 
3&O 30 

YPxr) YP..) 
'(Pxd 8xM '(Pxd 8xM 

(1 (1 
8xi'1q 8xn 8xi'1q 8xn 

r r 

N(P:d 
8x+N r 

9 9 9 9 10 10 7.5 7.5 7 7 
9 9 9 9 IO IO 7.0 7.0 7 7 

9 9 9 9 II II 7.0 7.0 y y 
11 11 9 9 16 16 9.0 9.0 16 16 

P  
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Critical rolling velccity pl an5 hutorotational rate of 
roll p2 for the supersonic fighter aircraft of Table 1 

40,000 0.8 2.8 4.15 -2.18 0.675 0.083 

60,000 0.8 1.1 1.3 -2.18 0.85 0.032 

1.0 5,O 2~85 -2.13 4.75 0.024 

-0.85 1.80 0.008 , I*5 11.2 6.25 

c 4Sv iC-2iA wB 2 
"w% nv I~(-> j "$0 lJ 

] Height1 I------ 

(f-t> Mach No. 

a = 0 
0 

40,000 0.8 0.8 
60,000 0.8 - 

1.0 1.05 

I.5 , I.04 

aO 
=- 5O 

1.0 94 O/set 417 0.74 4.15 
0.81 I.17 

1.70 110 464 0.92 9.75 
1.75 149 250 o.ys 1.80 

pl p2 

80 O/se0 123 

53 8G 

89 170 
W 23 

Data obtained in the computation of aircrd't responses tO_ 
asquare-wave in p by the method of Appendices E and b 

4 4 2,80 -0,yGo 0.806 0.20 
/2,2 

0.25 1.104 0.230 -0.430 
0 2.414 0.414 -1 .OOo +I ,000 +I .OOO 0.207 -1.207 
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FLLGHT PATH 

FIGJ. AIRCRAFT INCIDENCE IN DISTURBED FLIGHT 

JA\ 
I \ 

lI I 
/ 1’ I A 
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. 
\ 

I I t - / / (3 I _ 

FIG2 TYPICAL FLIGHT RECORD OF A ROLLING 
MANOEUVRE OF A MODERN FIGHTER 
AEROPLANE AT 40,000 FT ALTITUDE. 
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01 VERGENCE 

FlG.3. STABILITY DIAGRAM FOR THE ROLLING 
AIRCRAFT. 

(THE mKOuPLE0 LATERAL AND LONGITUDINAL FREQUENCIES w, AND w2 ARE 
THE F=WENClES oF THE OSCILLATORY MODES OF MOTION OF THE AIRCRAFT 

‘XUlNG AT RATE t’) FROM NACA T.N.16273. 

FlG.4. EFFECT OF INERTIA 
DISTRIBUTION ON 
STABILITY BOUNDAR I ES. 

4 

c J 
We2 
P 

2 

0 

FIG. 5. EFFECT OF 
DAMPING IN PITCH 
OR/AND YAW ON 
STABILITY BOUNDARIES. 

Y 

. 
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c 

2 

0 

A 

ASSUMING C= B+A 

0-I 092 O-3 
A 

0.4 

FIG. 6. EFFECT OF INERTIA DISTRIBUTION ON 
RESONANCE FREQUENCY IN YAW. 
( WY = ANGULAR FREQUENCY OF WE UNCOUPLED 

PURE DIRECTIONAL OSCILLATION). 

DOUGLAS Y- 3 

EXPERIMENTAL SUPERSONIC AIRCRAFT 

TRANSONIC FIGHTER 

I  ”  ,/,’ ~ J GNAT 

RESON,4NCE FREQUENCY p 

FIG.7. CRITICAL RATE OF ROLL FOR A NUMBER 
OF AIRCRAFT FLYING AT Vp240KNOTS. 

(P CRlT IKREASES PROPORTIONAL To Vj). 
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FIG8(aeb)lLLUSTRATION OF THE MANOEUVRE COMPUTED - 
ON THE SIMULATOR. 
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STANDARD MANCEUVRE STEP IN 5 
--s MANUAL CONTROL OF 5 ATTEMPT I 
----me MANUAL CONTROL OF f ATTEMPT It 

. 

FIG. 9. EFFECT OF PILOTS CONTROL MOVEMENTS 
ON AIRCRAFT RESPONSE IN ROLLING 
MANOEUVRES WHEN COMRARED WITH THE 

“STANDARD MANOEUVRE:’ 
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FIG.lO(as b). SIMULATED RESPONSES OF A SUPERSONIC FIGHTER AT 40,OOOFT M=O-8 
AILERONS TAKEN OFF WHEN THE AIRCRAFT HAS ROLLED THROUGH A $ = 909 



n r 
d- 

d 

/ 
/ 

I 

0 
0 

/ 
/ 

4’ 

. 
. 

4 

, 
, 

z! 

3 

I 

: 

‘\ \ \ 
A 

---+- 
/ 

/ I’ 
/ 

0 I 
\ 
1 

L----- 
7 

0 

\ 

C 

0 

/ 
/ 

/ 
/ 

/ 

cn OO 
i- 

I 



i 
\ 2 4 6 8 SEC. 
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FIG.12.SlMULATED RESPONSES OF A 
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L” v’ 

R-4, 

*’ 
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-7 \ 
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/’ 
/ 

,,,,/p 

d. 0= -5* 

-7 
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6 8 SEC. 

.\ 1 \ \ \ 
r\- 

SUPERSONIC FIGHTER AT 40&O FT 
M =098 WITH m,,,, INCREASED TO -0.32 AlLERONS TAKEN OFF WHEN 

AIRCRAFT ROLLED THROUGH A +=90? 
P 
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FlG.l3.@b)SIMULATED RESPONSES OF A SUPERSONIC FIGHTER AT &OJOOO FT. 
M=Oe8 WITH m, INCREASED TO -0e32 AILERONS TAKEN OFF WHEN THE 

AIRCRAFT ROLLED THROUGH A+=l80? 
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FIG, 14. 

\ 1 . I \ / \ I 
‘NW PI 

/ 
‘\J (aioc,=+5? 

b&b) SIMULATED RESPONSES -. _ _ _.~~~~ 
3 L 

OF A SUPERSONIC FIGHTER AT 40,OOOFT. 
Mr008 WITH n,, REDUCED TO O*OS AILERONS TAKEN OFF WHEN AIRCRAFT 

HAS ROLLED THROUGH A += 180? 

SEC. 
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COMPLETE COMPUTATION. 

---e- - INERTIA CROSSCOUPLING OMITTED. 

FIG.15. EFFECT OF INERTIA CROSSCOUPLING 
ON THE RESPONSE OF AN AIRCRAFT TO 

AILERON MANOEUVRES. 



Ad MAX 

P MA% 

-20 

M= 0-8 d,=5" 6" I 

0 a 

3 

c 

THE PEAKS REACHED INCREASE PROqRESSlVELY WITH THE 

DURATION OF THE AILERON APPLICATION & REACH A MAXIMUM 

AFTER WH\CH NO FURTHER DETERIORATION IS OBSERVED. NO INSTABILTY, 

FIGl6~~b).VARIATION OF A%qX AND p,. WITH 
THE ANGLE 0~ BANK A@ \;VHERE AILERON 

WAS CENTRALISED. 

MZ0@8 d,=5 
H = 40,000 FT , 

-20" 
A REDUCED TO “z 

I 

THE DURATION OF THE AILERON APPLICATION IS 

CRITICAL FOR THE RESPONSE IN d AND /3. WORST PEAKS 
OCCUR WHEN AILERON IS TAKEN OFF AFTER A@ = 90: 

FlG.17. VARIATION OF A drnax, WITH A @ 
WHERE AILERON WAS CENTRALISED. 
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l-l = 40,000 F-r. 
m,z-0.166 
na= 0980 
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--I-+ s-40 

I 

M = o-8 
’ H = 40,000 FT, 

mu= O-083 
% = 0.80 

‘0’ *@ 360’ 

- 4” 

I  

FIG*l8* ad ma% AND /$max IN ROLLS 
DlVERGiNT CON Dlil ON. 

2 
0 0, 

P 52 

FIG.19. EFFECT -OF VARYING p ON 
THE STABILITY OF THE 

LATERAL-LONGITUDINAL MOTION. 
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Pa/ RANGE INOlCATlNG DIVERGENT MOTION ACCORDING TO REF. 2. 

CORRESPaNDlNG STEADY RATES OF ROLL jJ, 
I I 1 I 
0 100 ZOO 300 O&EC. 

Ad ‘MA%. 

0 a d,= t5O 
H = 40,OOoFT. 

M = O-8 

At+ =30" 
-- 180” 

--- 360’ 

(b> do= -5* 
H = 40,000 FT. 

M = O-8 

0 c do=+50 
H= 60,000 FT. 

ML O-8 

NOTE :- pa I5 THE STEADY RATE OF ROLL CORRESpOND\NG TO 5. 

FIG.20@-c)EFFECT OF AILERON ANGLE OR RATE 
OF ROLL ON Atimax . AND p,,* . 



d, = INCIDENCE OF PRINCIPAL AXIS OF INERTIA 

1 

,O a 3= 120 

T. H = 40,000 F 

M = 0.8 

I-zooI 

INSTAbILITY IN kOLL 

H = 60,000 

M= I.0 

FIG.Zl(ae,b).EFFECT OF INCIDENCE ON 

FT. 

Ad max AND . Pmax . 



NOTE:- THE CHANGE5 IN THE AERODYNAMKL PERIVATIVES WITH 

MACH No-. HAVE BEEN TAKEN INTO ACCOUNT, THUS THE 

TRENos LNDICATED ARE NOT PURE SPEED EFFECTS, 

FIG.220 VARIATION OF Admax AND &I,,, 
WITH MACH No. (AIRCRAFT OF TABLE I) 
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40 HEIGHT 60 x I,OOOFT. 

FIG. 23. EFFECT OF HEIGHT ON A chmax AND . 
fl max . IN ROLLS. (AIRCRAFP OF TABLE I M=O-8) 
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FIG.24.EFFECT OF m,ON PoCmax AND Fdmax 
(H=40,000FT. M-O+ cq=+5” n,-0*22 l=8”) 
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FlG.26. EFFECT OF INERTIA “ARlATlOiS 

I I I 
REGION OF AlRCRAFT DIVERGENCE ACCORDlNG 

j+j TO REEZ BASED ON p= 2/3 PMAX.= llOe~SEc. 

( 
ON * Ocmax AND Pmax 

H=40,000FT. M=0*8 Dc,e 5’ ’ x-83 
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CONDITIONS : 
THE STANDARD AIRCRAFT 
A/8 = 19 do” 5O 

3~8” A+=180” 8 

PEAK p 2 I~O~/SEC. 

@ H= 40,OOOFT. Mz0.8 Wg+=-!% 

@ H = 60,000 FT. M= 0.8 
6 

0 H= 60,oOOFT. M= I-0 6 
0 H=60,000FT. Ms l-5 

ANGLES QUOTED BESIDE ma4 
POINT ARE : Ad MAx. 

OP MAX. 4 

2 

I6 

FIG.27 PtD-l- -sax AND Amax AGAINST u* AND G) 2 . 8 Y l 

l 



CONDITION5 FOR THE 
STANDARD AIRCRAFT 

A/s = 4 Ao= so 

‘5 = 4- h 4 = 180° 

PEAK p b 1000~5EC. 

IO 

6 

4 

0 2 4 6 

FIG.28. PLOT OF AMmax . AND B,,, . 

a 
2 NP 

wq=r 

I APF. STABILITY BOUNDARY BASED ON p = z/3 
I I I I I 

10 I2 14 I6 
SEC2 

AGAINST W; AND U;. 

P 44 * a, 
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FlG.29. ROLLING MANOEUVRES SIMULATED 
FOR THE COMPUTATION OF THE DATA 

PRESENTED IN FIGS. 27 AND 28. 

:L 
FIG.30 EFFECT OF M, (PITCH STABILIZATION) 
ON Autm,,, AND Pmar.. (%= 83 AT 40,000 FT, 

M=O$ do= t 5”). 

B MAX. -.-o- 

FIG. 31. EFFECT OF&(YAW STABILIZATION) 
A&uu -AND &ax. (I= s”, AT 40,000 FT, M= Oe8, 
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FIG. 32. BOUNDARIES OF CRITICAL VALUES 
OF 4, BELOW WHICH AUTORATIONAL 

INSTABILITY IN ROLL OCCURS. 
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FIG. 33. AUTOROTATIONAL RATES OF ROLL (Mq=o>. 
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~1~34. EFFECT OF DAYI~~PIW IN PITCH m 0N THE 
ROLL DIVERGENCE Of AN AIRCdFT , . 

FIG.35. EFFECT OF DAMPING IN PITCH ON THE 
ROLL DIVERGENCE OF AN AIRCRAFT. 
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(a) ROLL MANWJVRE 
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FIG. 37.(a-d)CONTROL CO-ORDINATION REQUIRED 
TO PERFORM THE ROLLING MANOEUVRE 
ILLUSTRATED IN(a) WITH hoc= /S=OTHROUGHOUf. 
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FIG.38(a-d)CONTROL CO~ORDINATION REQUIRED TO 
PERFORM THE ROLLING MANOEUVRE 
ILLUSTRATED IN (CII WITH A oC=p =0 THROUGHOUT. 
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FIG.39. FREQUENCIES OF THE OSCILLATORY MODE 
OF AN AIRCRAFT ROLLING WITH p=~ HAVING Ac<B. 
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FIG. 40. AMPLITUDE RATIO p/d OF THE HIGH 
FREQUENCY OSCILLATION OF AN AIRCRAFT 
ROLLING WITH p=po HAVING A<<B, 

- 5*0 

0 

FIG. 41. AMPLITUDE RATIO j/Cc OF THE LOW 
FREQUENCY OSCILLATION OF AN AIRCRAFT 
ROLLING WITH p=po HAVING AJLB. 
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FIG. 42, INCIDENCE TRIM CHANGE INd OF AN 
AIRCRAFT ROLLING WITH p = po, HAVING MC B 
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FIG. 43. TRIM CHANGE IN f3 OF AN AIRCRAFT 
ROLLING WITH p=po, IF Mq = n, = ‘9” = Jo= 0 l 
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FIG.45(asb)RESPONSE iN PITCH AND>zW To A SQUARE WAVE-FUNCTION p=p,K)R 
o>t >t, [(yfy = (#q’= 4*0 ~=0*25.] 
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FIG.47 AMPLITUDES OF THE RESIDUAL 
OSCILLATIONS IN PITCH AND YAW AFTER 
p. IS TERMINATED AT t, SECS. i.e. AFTER 

A 0: p*t, BANK ANGLE. 
I / \ 

I/ \ I 

FIG. 48.AMPLITUDES OF THE RESIDUAL UN- 
COUPLED PITCHING & YAWING OSCILLATIONS 
AFTER p,, IS TERMINATED AFTER t,SECS, i.e.AFTER 



FIG.49. PEAK AMPLITUDES A$,,,,. AND h,x. IN 
RESPONSE TO A SQUARE WAVE p&PLOTTED 
AGAINST A@ (THEORECTICAL ANALYSIS) 

[($yj$ =4 t=o.zs]. 

I 

tr 
FlG.50. ROLLING MANOEUVRE ‘SIMULATED FOR 

ANALYSIS IN FIG.51. 

FIG.% PEAK AMPLITUDES IN p IN RESPONSE 
TO THE SIMULATED MANOEUVRE 

ILLUSTRATED IN FIG. 50. 

i 

1’ 

[(zy=&J = 4 $;..,,]. 
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