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Summary.—A method of calculation of the rate of heat transfer from the surface of an aerofoil maintained at a

temperature above that of the stream was required, including allowance for the effect of dissipation of energy in the

boundary layer.

A convenient method of calculation is developed for laminar boundary layers, and the best method

of applying Reynolds’s analogy to the turbulent layer is discussed. The methods are applied to calculate the heat
transfer from the aerofoils N.A.C.A. 2409 and 2415 at C, = 0:24 and C, = 0-8.

b2

[#;]

Appendix I—Alternative Form of Reynelde s Analogy. .

Simple formulae for the rise in surface temperature due to dissipation are derived.

‘CONTENTS

Introduction
Notation . .

Laminar Boundary Layers
3.1. Heat Transfer for Laminar Boundarx Lay ers
3.2, Comparison with more Accurate Solutions
3.3. Calculations for Laminar Flow
3.4. Comparison with Experiment

Turbulent Boundary Layers . ..
4.1. Heat Transfer for lurbulent Beundar\ Layers .
4.2. Calculatxons for Heat Transfer in Turbulent Flow

Kinetic Temperature . .. .
5.1. Kinetic Temperature Laminar Flow
5.2. Comparison with Experiment .
5.3. Kinetic Temperature. Turbulent Flow ..

Application

Appendix II-—Kinetic Temperature for Turbulent Boundary Layers. .

List of References

*RALE. Reports Aero 1783 and 1783a, received ]uly and November, 1943,

(72173)

1943.

P

— ﬁ
— O 0 VNN NSNS OO W M N e

12



THIS DOCUMENT PROVIDED BY THE ABBOTT

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

2

1. Introduction.—The use of exhaust heat for the prevention of ice formation on wings and
propellers makes it desirable to be able to calculate the rate of heat transfer from aerofoils
maintained at a temperature above that of the stream. It is also desirable to be able to estimate
the heating effect of dissipation in the boundary layer. This report deals with these aspects
both for laminar and for turbulent boundary layers.

The laminar layer case is straightforward in the sense that the governing equations are known
and the problem is to determine their solution in a convenient form. For the turbulent layer,
it is, however, necessary to rely on the extended form of Reynolds’s analogy, which is certainly
not strictly valid in regions where the boundary layer is subjected to pressure gradients.
Proper clarification of this matter will have to await more detailed knowledge of flow in
turbulent boundary layers. :

2. Notation.—The following notation will be used :—

Suffix 0 denotes values in the undisturbed stream.
Suffix 1 denotes values at the surface of the body.

=

R
-2

I
=2
— T

x

MO S e Q T;‘D TR
e

T Temperature at a point in the fluid.
T Temperature at edge of boundary layer.
T, Temperature in free stream.
T, Temperature at surface.
AT, Kinetic temperature rise at surface.
] Mechanical equivalent of heat.
¢, Specific heat at constant pressure.
c, Specific heat at constant volume.
x Distance measured along the surface from the stagnation point.
x Distance measured along the surface from the leading edge.
v Distance measured normal to the surface.
0, Displacement thickness of boundary layer.
0 Momentum thickness of boundary layer.
S Displacement thickness of thermal boundary layer.

Velocity in boundary layer parallel to surface.
Velocity at edge of boundary layer.
Stream velocity.

Thermal conductivity.

Density.

Thermometric conductivity.
Prandt]l number.

Kinematic viscosity.

Diameter of circular cylinder.
Aerofoil chord.

Rate of heat transfer per unit area.
Reynolds number. '

: l . .
Nu Nusselt heat transfer coefficient ?e_TQ—T where / is a representative
length. (Ty = T)
k Heat transfer coefficient e based on stream velocity.
" e, Uo(Ty — Tp)
k' Heat transfer coefficient

based on velocity at edge of
boundary layer. &U(Ty — Ty .

Total energy increment per unit mass defined as
(Je,T + 1 u?) — (Je, Ty + 3 Ug?)
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3. Laminar Boundary Layers.

3.1. Heat Transfer for Laminar Boundary Layers.—The method of analysis for calculating
heat transfer in laminar flow is analogous to that put forward in Ref. 1 for the calculation of
laminar skin friction and consists in adopting a standard shape of velocity and temperature
distribution across the boundary layer, the thicknesses of the momentum and thermal boundary
layers then being determined by the momentum and energy equations. The selected standard
shape for the velocity and temperature distributions is the Blasius velocity distribution for the
flat plate.

Considering first the frictional boundary layer, the solution of the momentum equation may
be taken to be!
0-441» +
| Ubdx

e,
where x is measured along the surface from the forward stagnation point, 6 is the momentum

thickness and U is the velocity outside the boundary layer. For the Blasius velocity
distribution 6,/6 = 2-59, where ¢, is the displacement thickness, so that

h2 —

2-960» =
80,2 = 76 --‘JOUE'dx. . .. .. .. (1)
Let—g: f (9__?_?10&’) be the Blasius velocity distribution, which is tabulated on p.136 of

Ref. 2, where « is the velocity at a point distant y from the surface. The factor 0-8604 is
introduced so that we shall have, according to the definition of 1

(™ % [T
51 h ‘lﬂ (1 U) dy 0-8604 JO [1 f(??l)]d??l’
where iy = Qﬁ?oﬂ ;
1
this is satisfied, since |11 — f(5)1dyy = 0-8604."
) ) <0

For the thermal boundary layer we define a thermal displacement thickness 6, by the equation

[T — T
by = — 0l d
b JU I:TI - TD:[ y,
where 7" is the temperature at a point distant y from the surface, T} is the surface temperature

and T is the temperature in the free stream. It is assumed that the temperature distribution
is similar to the velocity distribution, so that

T — Ty _,  ,/0-8604y
=1/ ; ) L ©®

If the velocity is low enough to permit the neglect of dissipation of energy due to friction*,

and if the temperature differences are small enough to permit the neglect of the density
variations, the energy equation for the thermal layer (Ref. 2, p. 615) becomes

d o0 - 6]‘"
.&;DU u(T—T[,)dy]_z(ﬁl, R ;|

where » is the thermometric conductivity klgc, and the suffix 1 denotes the value at the
surface y = 0. :

~ * The priricipal effect of the dissipation is to reduce the effective temberature, if the surface iS_}.léf;!.ted, by ap amount
which is calculated in §5.

(72173) A%
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From (2) we obtain

oT 0- 8604 _ 0-5715
T = 0)(8y) 0 == T
since * [ (0) = 0-6641.

We require to express the integral on the left-hand side of (3) in terms of 6, and é,. Substitution
for w and T gives

a5 =T - 0 [ 0]
~ 58 j /(%) o ~ fo)
on putting 5, = 0-8604y/d,. Hence ' |
[u@ 1)y =0T ~TYas (). . - . 06
where ' $ (5) = 8604[ f(az’?'z) (1 — fin)] dng. . .. (6)

* From the known values of f(r) the function ¢ has been tabulated for values of 4,/4; between
0-5 and 2-0 and is given in Table 1. Substituting from (4) and (5), equation (3) becomes

d s\] _ 0-5715%
E’}': [Ua2 ¢ (51)] T . 62 ’

for which the integral is
| ' A *
[U 8y b (g;)] —1-143x | " Ugds.

Dividing by (1) we obtain

1 x
5 é(a) 0-351 U, Usda @
"US dx
4]
where ¢ = »/x is the Prandtl number for the fluid.
TABLE 1 -
8/, e .. |05 0-625 | 0-667 | 0-833 | 1:0 1-25 | 1-429 | 1-667 | 1-818 | 20
¢ (8,/6,) .. | 0-2075 | 0-257 | 0-272 | 0-332 | 0-3861 0-4563 | 0-4988 | 0-5478 | 0-5750 | 0-5994

s S (0) .. 10052 | 0-100 | 0-121 | 0-230 | 0-386 | 0-713 | 1-018 | 1-522 ‘| 1-901 | 2-398
1 i o
|
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Since ¢ is a known function of 4,/é, and the velocity distribution outside the boundary layer
is also known, equation (7) determines 6,/;. The evaluation of ¢ from (7) is best effected by the

method of successive approximation, as a first approximation omitting ¢ from the right-hand
side, so that

Uif"de.

5,2 16 0-3881 Y

et e
o

The value of ¢ obtained from (8) is substituted in the right-hand side of (7) to give a second
- approximation, but, since ¢ is a slowly varying function of 4,/4,, it will generally be found

sufficient to stop at the first approximation. The left-hand side of (8) is tabulated ih Table 1
and shown in Fig. 1. - .

The method of calculating the heat transfer from the surface for any particular case is now
as follows :—

(a) Tabulate the right-hand side of (8).

(b) Determine the values of 8,/4, from Table 1 or Fig. 1 and equation (8).

(¢) Determine 4; from (1).

(d) Determine 6, from (b) and (c).

(¢) Determine the surface temperature gradient from (4). The local heat transfer per unit

area is — k(87/dy), and the Nusselt number is given by — d(87/ay),/(T; — T,)
where d is a representative length.

¥

3.2. Comparison with More Accurate Solutions.—To estimate the errors due to the approxi-

mations introduced to derive the above simple solution, comparison with two accurate solutions
will be made. -

(a) Flat Plate.—For the flat plate U is constant and eqﬁal to U, so that (1) and (8) give
_ 2:960ux |

Uy
8,2 45\ __ 0-3861
3.2 ? (El) =

From Fig. 1 or Table 1 values of d,/, can be derived for any value of ¢ and the surface temperature
gradient is then given by (4). The results obtained are compared with Pohlhausen’s exact
solution (Ref. 2, p. 623) in Table 2 and good agreement is obtained.

3

TABLE 2

Values of — \/ g_ (é‘?f/ayj)}) Jor the flat plate.
0 1 0 .

e ‘ 06 . 07" | 08 ‘ 0-9 1-0 1-1
| |
Approximate solution .. | 0-552 0-585 0-612 ! 0-638 . 0-664 0-686
Exact solution .. .. .. ‘ 0-552 0-585 0-614 |  0-640 0-664 0-687
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(b) Stagnation Point.—Near the stagnation point of a round-nosed body the velocity outside
the boundary layer increases linearly with distance from the nose so that we may put U = U/,
where / is a representative length. Equations (1) and (8) then give

| vl
2 =0-493

’ U,
8,2, (3 1158,
st () ="

The surface temperature gradient is derived as before from (4) and is compared with the exact
solution (Ref. 2, p. 631) in Table 3. '

TABLE 3
Values of — \/ v --(ah%l,‘- for the stagnation point.

U(] T] - 70

. | . | —_—
o 0-6 | 07 0-8 09 | 1-0 1-1
Approximate solution .. .. ‘ 0-445 | 0-474 | 0-499 ! 0-521 | 0-543 0-562
. | S | | - |

Exact solution .. .. .. 0466 = 0495 | 0-521 | 0-546 | 0-570 0-592

The agreement is still quite good in this case, the approximate solution giving results about
5 per cent. too low : this is due to the use of the Blasius velocity distribution, which is far from
exact near a stagnation point.

3.3. Calculations for Laminar Flow.—The method developed above for calculating heat
transfer for laminar boundary layer has been applied to the circular cylinder and to the
aerofoil sections N.A.C.A. 2409 and N.A.C:A. 2415 at C, = 0-24 and C, = 0-8, in each case
taking ¢ = 0-715. )

The velocity distribution chosen for the circular cylinder is given in Fig. 2 and corresponds
to the case of sub-critical flow with boundary layer separation at an angular position of about
80 deg. measured from the forward stagnation point. The results for the circular cylinder
are given in Table 4 and Fig. 2, which gives values of Nu/4/R for angles (denoted by «) up to
80 deg. from the forward stagnation point. The Nusselt number Nu is defined as
— d (0T /oy),/(T; — T,), where d is the diameter of the cylinder.

The velocity distributions for the aerofoils were taken from calculations made by Theodorsen’s
method, which were already available.? These velocity distributions and the calculated values
of Nu/y/R, for distances up to 26 per cent. of the chord measured along the surface, are given
in Tables 5 and 6 and Figs. 3 and 4. For the aerofoils the Nusselt number is defined by taking
the chord as the representative length. The magnitude of the peak heat transfer at the nose
is very. sensitive to the actual shape of the velocity distribution there, which is difficult to
determine accurately, and consequently the heat transfer peak may be in error by as much as

20 per cent., but the error should be considerably less a short distance on either side of the
peak.

3.4. Comparison with Experiment—A comparison between theory and experiment for the
circular cylinder is shown in Fig. 2, the experimental curve being the mean of a wide range of
experimental data given by Schmidt and Wenner? and reported in Ref. 5. The agreement is
quite satisfactory.
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4. Turbulent Boundary Layers.

4.1. Heat Transfer for Turbulent Boundary Layers.—It is well established that Reynolds’s
analogy between heat transfer and skin friction, as modified by Karman, gives satisfactory
results for heat transfer to fluids flowing through pipes (Ref. 2, p. 658). There is no reason
to doubt that this will also be true for heat transfer from flat plates at zero incidence, though
the experimental data are less reliable. For aerofoils, however, it is not obvious how the analogy
should be presented and the effect of the pressure gradients may destroy its validity.

With regard to the presentation of the analogy, it is usually stated, for the simple case ¢ = 1,
in the form :—

- Y G T

& ec,U(T, — T) 2 oU?”’ . o ©)
where the symbols have their usual significance. But it is not specified whether the velocity U
refers to the stream velocity or to the velocity outside the boundary layer. To settle this,
consider a cylinder with flat sides in a stream constricted by walls ; it is clear that, if the cylinder
is long enough, the velocity to be used in applying Reynolds’s analogy is the velocity outside
the boundary layer on the flat sides of the cylinder. This illustration is sufficient to show that
the velocity U in (9) should refer to the local velocity outside the boundary layer and not to
the stream velocity.

The use of (9) to determine the heat transfer, with the velocity specified as above, involves
~ the neglect of the effect of the pressure gradients along the boundary layer, which will certainly

have some influence. An alternative analogy based on an assumed similarity between the
velocity and temperature distributions across the boundary layer is considered in detail in
Appendix I ; this leads to very different values for the heat transfer for the rear half of an
aerofoil, where the effect of the pressure gradients is most important. However, in the absence
of definite experimental data it is recommended that the ‘analogy in the form (9) should be
provisionally adopted. For o not equal to unity the formula (9) is replaced by Karmdn’s -
generalisation (Ref. 2, p. 654)

1 _ e, U(Ty,— Ty) _ pU? JPﬁ- D Lo (143
kﬂ" T Q]_ B T{) + o ro (G ) + Ogs( + 6 (G 1)) N et (10)
If k, is the standard heat transfer coefficient based on the stream velocity U, then
U ,
kHzﬁ-o Ry . .. .. i .. .. (11

There are no experimental data reliable enough to check equations (10) and (11) as applied
to aerofoils, or to decide definitely that this standard form of Reynolds’s analogy is more
nearly correct than the alternative analogy.

4.2. Calculations for Heat Transfer in Turbulent Flow—Calculations of heat transfer have
been made for the aerofoils N.A.C.A. 2409 and N.A.C.A. 2415, for R = 107, for C, = 0-24
and C, = 0-8, using equations (10) and (11) and taking ¢ = 0-715. Transition to turbulent
flow was assumed to occur in each case at 0-05c. and 0-10c. from the stagnation point measured
along the arc. The results of the calculations are given in Tables 7-10 and in Figs. 5 and 6.
For other values of R not differing from 107 by a factor of not more than 2 it is sufficiently
accurate to assume that %, is proportional to R7%2.

5. Kinetic Temperature.

5.1. Kinetic Temperature. Laminar Flow.—The kinetic temperature at a point of a body
immersed in a stream of velocity U, at infinity is the temperature which is taken up when the
body is non-conducting. For two-dimensional flow it is convenient to take the equation for
the temperature in the form (Ref. 2, p. 612) -

(u % 4 v % ) (]cpT + %u'ﬁ)' = x %; (]cpT 4 %auz),

which becomes

6e . De 02%e 0% sut |
— —_— — ¥ . = X — e — . . .. 12
Max + v 5 % iy #(o — 1) iy (2), (12)
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on putting & = (J¢, T + du?) — (J¢, Ty + 3U4?). The quantity « represents the increment in
total energy per unit mass at a point in the fluid and vanishes outside the boundary layer. At
the surface the normal temperature gradient vanishes when the body is non-conducting, so that
0¢/0, = 0 for y = 0, since (2/8,)(u2/2) = 0 for y = 0. The known solution & =0 for ¢ = 1
follows immediately from inspection of (12). - . :

Consider the energy balance in a strip of the boundary layer starting at the forward stagnation
point and extending to any station x along the surface. The energy inflow from the body
vanishes and so does the energy outflow across the outer edge of the boundary layer. In
addition the energy inflow at the stagnation point vanishes since the velocity is zero there and
hence the energy outflow across any section of the boundary layer normal to the surface
vanishes. Expressed mathematically this requires that

[Ceuedy=0 ... .. .. .. . .3
0 )

for all values of x; this result can also be obtained by integration of (12). It shows that the
conditions at any station are independent of the flow upstream except in so far as this flow
affects the velocity distribution across the boundary layer at the station. In addition (12) gives,

on putting y = 0, - e
0%s\ B 2% fu® o du\2 /7
@_2)1 =(1—0) 5o (%), = =0 a_y)l' L (14)

Equations (13) and (14) together with the equation of state suffice to determine the energy
distribution across the boundary layer when the velocity distribution is known. For the flat
plate the solution has been obtained in a different way by Pohlhausen (Ref. 2, p. 627), who
derived for the energy at the surface the formula _ "

2 2
o= Jo, ATy — Go- = Uo* (g2 1),
where AT is the rise in temperature at the surface above the stream temperature.” Now it
follows from (13) and (14) that the only difference between a cylinder and a flat plate is that
the velocity at the edge of the boundary layer at a station x is U instead of U, (provided that
the velocity distributions across the boundary layers are the same), so that the surface energy
for any cylinder is given by

a=Jo AT — Q= ey (1)

The effect of various practicable velocity distributions across the boundary layer has been
tested and found to be relatively unimportant* so that (15) may be assumed to be valid for all
laminar layers. Thus we obtain finally for the kinetic temperature rise at a point on the wall

T UU2 _E 112_1] .
Ml_%[“rw(‘f_ ] TP i 1)

5.2. Comparison with Experiment.—Measurements of the pressure distribution and surface
temperature over a non-conducting circular cylinder of rubber have been made by Eckert and
Drewitz5 at a Mach number of 0-885. The measured temperature distribution is compared
with the results given by (16) for values of ¢ equal to 0-7 and 0-75 in Frg. 7. It will be seen
that the agreement is good. - ' : '

Hilton® and Eckert” have shown that Pohlhausen’s solution for the flat plate gives results
in good agreement with experiment. '

* This is confirmed by célgﬁétions given in Refe_zf e;l-ce:S. e
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5.3. Kinetic Temperature. Turbulent Flow.—The argument given in §5.1 about the energy
flow across a section of the boundary layer applies equally to turbulent flow, provided that
pu represents the mean mass flow and ¢ the mean total energy per unit mass, including the
energy associated with the turbulent velocity components: hence (13) is still valid. Also,
since the flow near the wall is laminar the wall condition (14) is unchanged. It follows that the
principal difference between laminar and turbulent flow 'is due to the different velocity
distributions across the two kinds of boundary layer. It is true that the distribution of energy
dissipation across the turbulent boundary layer is different from the distribution for the laminar
layer, but this is not represented properly by the approximate solution for either case, appearing
only through the wall condition (14), which is correct for both kinds of flow. The energy
dissipation is normally largest at the wall for both layers, but is more concentrated near the
wall for turbulent layers.

Since (13) and (14) hold for both laminar and turbulent layers we may expect that the wall
temperature for the latter will be given by a formula similar to (16) with ¢ raised to a different
power. This is confirmed in Appendix II, where it is concluded that the kinetic temperature
for turbulent boundary layers is given by the formula

_ Uy U? s _ .
AT, 27, [1 + Uuz(a 1)] S .. .. (17)

Hilton’s experiments® on plates of various thicknesses gave an extrapolated value for the
kinetic temperature of a thin flat plate with a turbulent boundary layer in good agreement
with (17). A really satisfactory experimental check can only be provided by kinetic temperature
measurements on a body for which the velocity outside the boundary layer is considerably -
greater than the stream velocity and these measurements are not at present available.

6. Application.—The procedure for determining the rate of heat'transfer from the surface
of one of the aerofoils for which calculations have been made is as follows :—

(1) Determine the kinetic temperature distribution, for the conditions specified, from
equations (16) and (17), using the correct velocity distribution outside the boundary
layer, and- estimate a suitable mean value. Assume for the subsequent calculations
that the surface temperature is decreased by this mean kinetic temperature.

(2) With the reduced surface temperature given by (1) determine the rate of heat transfer
for the laminar layer by the method of §3.1 or from the tables. The effect of change
of scale is covered by the proportionality of Nu to 4/R or of k, to 1/4/R.

(3) With the reduced surface temperature determine the rate of heat transfer for the
turbulent layer by the method of §4.1 or from the tables, bearing in mind that
Reynolds’s analogy is of doubtful application in regions where the pressure gradient
is large. For values of R not differing from 107 by a factor of more than two %, may
be assumed to be proportional to R02, -
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APPENDIX 1

Alternative Form of Reynolds’s Analogy for ¢ = 1.

The form of Reynolds’s analogy represented by (9) is an analogy between the surface
conditions controlling heat transfer and skin friction. Where there is no pressure gradient
along the stream this form corresponds to similarity of the velocity and temperature distributions
across the boundary layer, provided that ¢ = 1 and the validity of the momentum transfer
theory is accepted, but this is not so when a pressure gradient is present (Ref. 2, p. 649). Some
insight into the probable effect of the pressure gradients may be obtained by assuming that
the temperature and velocity distributions are similar in the presence of pressure gradients,
as this should give values for the heat transfer at the opposite extreme to those given by the
standard formula (9). We shall therefore derive an expression for the heat transfer on this basis,
limiting consideration to the simple case ¢ = 1.

The energy equation for the boundary layer, corresponding to (3), neglecting the heating due
to friction and the variation of density in the field, is

3"7_[[: u(T—TO]dy]:Q Cde e e ee e (18)

x Pl

Assuming that the temperature and velocity distributions across the boundary layer are similar,
i.e. that '
T — T,

u
n-1, U

equation (18) gives
1 d u u a , U’
L L a1 gy =9 L Uy
1T e JUT, — Ty U dx [U( U( U) 3’] PP
where &, is defined by this equation and 60 is the momentum thickness of the boundary layer
defined by _
o— (% (1 "\ gy
' o U (] U) 4y

The value of U is known and 6 may be calculated by the method of Ref. 8.

Since 0 satisfies the equation®

do U’ . Ty
o T HEA0= 5
it follows that
v 1 U

The two different expressions for the heat transfer coefficient become identical when U’ = 0,
so that there is no pressure gradient. For U’ # 0 there may be quite large differences between
the values of £, given by the two methods : this is illustrated by Fig. 8 which gives the different
values of k&, for the upper surface of N.A.C.A. 2415 for C, = 0-24 and C, = 0-8, for R = 10,
and ¢ = 1-0.

The physical aspect of the increased rates of heat transfer given by the use of the alternative
form of Reynolds’s analogy in regions of rising pressure is that the increasing pressure causes
rapid thickening of the boundary layer, which must therefore contain more heat than a thinner
layer, if the temperature and velocity distributions are similar. This increased heat content
in the boundary layer must be provided by an increased rate of heat transfer from the surface.
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APPENDIX II
Kinetic Temperature for Turbulent Boundary Layers

For speeds less than half the speed of sound it is permissible to neglect the dené.ity variations
across the boundary layer and take (13) in the form

(Cueay —0. .. .. .. . . .. (19
Jo

This equation, together with (14), can be used to determine the surface temperature. Let the
velocity distribution in the boundary layer be given by #/U = g(y), and the temperature dis-
tribution be similar to the square of the velocity distribution so that’

Jeut = ) = 2 [1 - gtm)]

in this equation 2 and g are constants, and 7" is the temperature at the edge of the layer, which
is different from T, since the velocity U at the edge is different from U,. This form satisfies
the condition for zero temperature gradient at the surface and has a certain plausibility.
Outside the boundary layer the total energy is constant so that

Je, T + U2 = Je, Ty + 3U,2

~ With these expressmns for the velocity and temperature the increment in total energy takes
the form

e [ {1 — g*y/p)} — {1 — g* y)}]

For ¢ — 1 we shall have 2 — 8 — 1, ¢ — 0, as desired.

Equation (14) gives the relation
' i = ap2 .. . . B /1)

Substituting the above expression for ¢ and # in (9) gives
[ [10 - gm0 - gop| =0 .. L e

For turbulent boundary layers the velocity distribution can be fairly well represented by a
power law of the form g(y)xy* where » is about 1/7. This fails to represent the conditions
near the wall, but this will not seriously affect the value of the integrals across the layer appearing
in (21). We therefore put

g(y) = (y/o) for O <y <9
g(y) = 1 for y =9,

where o is the boundary layer thickness. For values of f less than unity, equation (21) then
leads after some reduction to the formula

Rt
Combinirig this with (20) gives
: nt1 -1
w43 w43
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For n < 1/7 and values of ¢ not very different from unity it is sufficiently accurate to take
A=ql3 g — g3,
These give
Al N . . U2

for the value of the total energy increment at the surface, which leads to the expression

. _ Uy Uz
sty [1+ G -]

5 =),

- Mgy 17)
for the kinetic temperature rise at the surface. ‘

The above amalysis has been carried through for # < & which requires that ¢ > 1. For
values of ¢ less than unity, which correspond to g > 6, the evaluation of the left-hand side

of (21) is complicated by the change of form of g(y) as y passes through 8. It is found, however,

that this does not affect to an appreciable degree the value of the surface temperature provided
that ¢ is greater than 0-5. K
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TABLE 4

Heat transfer for circular cylinder. Laminar boundary layer. o = 0-715.
o 1s the angle measured from the stagnation point
\ Rad. 0 | 02 04 06 08 1:0 1-2 1-4
o
I Deg 0 ‘ 11-4 22-9 34-2 45-7 57-3 687 | 80-1
U/U, 0 | 0381 | 0708 | 102 | 1296 | 1497 | 1.592 | 1.543
Nu/y/R . | 0-911 ’ 0-907 | 0-889 0-865 0-825 0-768 0-691 0-560
' |
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TABLE 5

Heat transfer for N.A.C.A. 2409. Laminar bbundary layer.

o = 0-715.

x denotes arc measured from the stagnation point.

¢ denotes aerofoil chord.

Al

Positive values of x/c refer to the upper surface and nega:tix?e values to the lower su_rf‘acé..

At C, = 0-24 the stagnation point is 0-001¢ above the leading edge.

AtC,

point is 0-013¢ below the leading edge.

0-8 the stagnation
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TABLE 6

o = 0-715.

Heat transfer for N.A.C.A. 2415. Laminar boundary laver.

0-24 the stagnation point is 0-001¢ above the leading edge.

At C, = 0-8 the stagnation point is 0-018¢ below the leading edge.

At C, -
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TABLE 7

Heat transfer for N.A.C.A. 2409. Turbulent boundary layer.

107,

R =

g = 0_‘715.

Transition at x/c = 0-10.

CL = 0‘8

C, =024

xfe

10° £,

U/U,

U/U,
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TABLE 8

Heat transfer for N.A.C.A. 2409. Turbulent boundary layer.

R = 107, o = 0-715.
Transition at xjc = 0-05.

| C, = 0-24 C,—0-8
xfc [ . | . _* _____
| U/U, i 103k, F U/U, l 103k,
Upper Surface
0-05 ! 115 3-83 | 1-70 4-93
0-07 i 1-17 3-04 | 1-62 3-74
0-10 | 1-19 2-70 1:545 - 3-14
0-15 | 1-20 2-41 1-47 a 2.66
0-20 ‘ 1-20 2.26 1-425 2-41
Lower Surface
0-05 1-135 3.62 : 0-70 2-70
0-07 1-125 2-86 | 0-76 2-25
0-10 1-10 2-43 1 0-80 2.02
0-15 1-08 2-14 1 0-84 1-87
0-20 1-065 1-98 0-87 175
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TABLE 9

Heat transfer for N.A.C.A. 2415. Turbulent boundary layer.

s = 0-715.

Transition at x/c = 0-10.
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C,=0-24

C,=0-8
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TABLE 10
Heat transfer for N.A.C.A. 2415.  Turbulent boundary layer.

R =107 o = 0-715.
Transition at x/c = 0-05.

CL — 0'24 : CL

I

0-8

U/U, 10%%, U, 102k,

Upper Surface

|
1-06 ! 3-70 | _ 1-66 5-58
1-15 ‘ 3410 1-66 4-07
_ 1-23 2-87 1-63 3-43
| 1:27 2-61 1-58 2-99
‘ 1-28 2-43 1-53 2-61

Lower Surface
0-05 1-15 3-91 0-73 2-83
0-07 1-18 3-07 0-80 2-37
0-10 - 1-185 2-67 0-87 2-18
0-15 r‘ 1-17 | 2-35 0-92 2-03
0-20 ‘ 1-155 ! 2:15 0-945 1-93
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Heat Transfer for N.A.C.A. 2409 and N.A.C.A. 2415. Laminar Boundary Layers. o = 0-715.
(#" is distance along the surface measured from the leading edge.)
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Heat Transfer from N.A.C.A. 2409 and N.A.CA. 2415. Turbulent Boundary Layers.

o = 0-715. R = 107, Transition at x/c = 0-10.
(x" is distance along the surface measured from the leading edge).
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