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1. Summary . - -The  steady motion of an incompressible viscous fluid due to an infinite rotatin~ 
plane lamina has been considered by Von K~rm~n 1 and by Cochran 2 : the motion of fluid flowing 
with axial symmetry towards an infinite stationary plane lamina has been dealt with by H6mann 3. 
The present paper deals with the general question of steady irrotationalflow with axial symmetry 
against an infinite rotating lamina, of which the above are two special cases. 

2. Nolat ion.--Let  r, 0, z be cylindrical polar co-ordinates: the lamina is taken  to be the 
plane z = 0, and is rotating with constant angular velocity co about the axis r ---- 0. Let u, v, 
w be the components of fluid velocity in the directions of r, O, z, increasing, and let/9 be the 
pressure. Axial symmetry is assumed, so that  all quantities are independent of 0. 

3. Solution for Non-Viscous F lu id . - -W he n  viscosity is ignored, the solution will be the same 
f o r  a rotating as for a stationary disc, since the rotation of the disc only affects the fluid velocity 
through the viscous drag which it exerts. This solution may then be obtained from that for a 
source in the presence of an infinite plane by letting the distance between source and plane tend 
to infinity. 

If the source is of strength m, at the point (0, 0, a), and the plane is given by z = 0, then 
it is known that  the potential of the resultingflow is 

where 

l ' = { ( a + z ) ~ + r ~ }  11~ f . . . . . . . . . .  (3.2) 

Expanding the expression for ¢ in powers of l/a, we obtain 

= a 2a ~ ~- 0 . . . . . . . . . . .  (3.3) 

So that  if m and a tend to infinity in such a way that m/a a remains equal to h, a finite constant, 
then 

¢ = k(z ~ -- { r ~) . . . . . . . . . . . . . . . .  (3.4) 

ignoring the,constant term 2ka ~. 

! 
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From this, 

3¢ _ kr 
u - -  3r 

2 5  9 = - -  - -  2 k z  I 
3z J 

and by Bernouilli 's  equat ion 

f ?  _ .l_q~ = _ ½_k~ (r ~ + 4z~.) 

so tha t  

( 3 . s )  

1 (po _ p) = _~_ k2 (r ~ + 4z~) . . . . . . . . . . . . . .  (3.6) 
p 

where Po is the  pressure at the s tagnat ion point, i .e . ,  at the  origin. 

This is the  complete solution for the non-viscous case ; the result is quoted  by H6mann.  We 
shall use it as giving a guide to the form of the solution when viscosity is taken into account. 

"4 .  E q u a t i o n s  o f  M o t i o n  f o r  V i s c o u s  F l u i d . - - T h e  general equations governing the s t eady  motion 
of the fluid are, assuming axial symmet ry  

cont inui ty  

3u 3w 0 
u + r Ur + r -~z = 

Navier-Stokes 

. . . . . . . . . . . . . .  (4 .1)  

3u 0u v ~ _  13p  ('0~u l~u  3~u u )  
u ~  + W 3 z  r p Or + v \ ~ - / r ~ r  + 0 z  ~ r 2 . . . . . .  (4.2) 

~v Ov uv (3~v 1 3 v + 3 2 v  v "~ 
------v + - ~ r  0z 2 r ~ j  . . . . . . . .  (4.3) u ~ r + w g ? +  r \Trr ~ r 

39 3~ 13p (~2~ +_~ 39 3~9 
u -~r + W 3 z - -  p 3 z + V \ 3 r 2 r ~ r  + ~Zfi~ ) . . . . . .  (4.4) 

For boundary  conditions, we have tha t  at  the disc the  velocities of fluid and disc are equal, i .e . ,  

u = 0 ,  v---- my, w = 0 w h e n z = 0  . . . . . . . . . . .  (4.5) 

And  far from the  disc the  velocity will t end  to tha t  a t ta ined in the  non-viscous case, at  least for 
u and v : there  is a finite change in w, the axial inflow velocity, due to the  radial outflow now 
caused by  the  disc's rotation, i .e . ,  

u - +  kr ,  v - +  O, w --+ - - 2 k z  - -  c a s  z - -~  02 . . . . . . . .  ( 4 . 6 )  

where c is some constant  to be determined.  

. We seek a solution in the form 

~ = r ~ l  (z), ~ - -  ~vl  (z), 9 = 9 1  (~),  

1 (Po - p )  = -~ k2r~ + p l (z) . .  p 
(s  l )  
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then  the equat ions become o 
d w l  

2u~ + dz  - -  0 . . . . . .  

d 2~ 1 d u l  k~ + v _ _  . .  . .  
u l  2 - -  v ~  2 + w ~  dz dz  ~ 

dv~ d~v~ 
2 u l  v~ + w~ dz - -  ~ dz  ~ . . . . . .  

d w l  @ 1  d~wl  

W ~ -dz - -  dz  ~- v dz  ~ 

with boundary  conditions 

U 1 = O, V 1 = 60, w~ = 0 when z = 0 

U l " - - - ) ' k  , V l - - ) ' 0  , w ~ - - > - - 2 k z - - c a s z - +  oo  

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6)  

6. The equations may  now be made  non-dimensional  by  the subst i tut ions 

u l  = v l  = w l  = X ( ; ) ,  

P l  = . . . . . . . . . . . . . . . .  (6 .1)  

where V = (k ~ + co2) 1/~, ~ ---=(v/v) 11~z. 

Equa t ion  (5.2) is then  automat ical ly  satisfied, and (5.3) (5.4) (5.5), become 

N '~ - -  9 " G  ~ - -  2 N N "  = K ~ + N ' "  . . . . . . . . . .  (6.2) 

2 G N ' - -  2 G ' N  = G"  . . . . . . . . . . . . . .  (6.3) 

4 N N ' - -  2 N " =  P '  . . . . . . . . . . . . . .  (6.4) 

where ~? = co/~, K = k l v  so tha t  69 ~ + K 2 = 1 and primes denote  differentiation with respect 
to ¢. Boundary  conditions now are 

N = 0 ,  N ' = 0 ,  G =  1,when¢ = 0  "~ 
(6.5) 

N - +  K ~  + ½ C, N ' - ~  K ,  G ~ 0 a s $ - +  c~ 

where C = c / ~ / ( v / v )  

These substitutions,  and the resulting equations,  reduce with slight modifications to those 
used by yon KArmAn and Cochran when k = 0, and to those used by  H 6 m a n n  when oJ ----= 0. 
There is however  an error of sign in Cochran's equat ion (10.) which corresponds to (6.4) above ; 
the  te rm corresponding to P '  is given a negat ive sign. This affects the integral  of the  equat ion  
also. 

7. S o l u t i o n  o f  the E q u a t i o n s . - - - E q u a t i o n  (6.4) integrates immedia te ly  to give 

P---- 2 ( N  ~ + N') . . . . . . . . . . . . . .  (7.1) 

since P = 0 when N ,  N '  vanish. 

Equat ions  (6.2), (6.3) have been in tegra ted  numerical ly for various given values of ~ : folk. 
The me thod  was to find a series solution for N, G which held for small values of ¢ : this involves 
two unknown parameters  a ,  b. By successive use of forward integrat ion fo rmula  on values 
calculated from these series using trial values of a, b, tables of values of the functions were 
buil t  up for increasing ¢. Then by  adjust ing the  tr ial  values, solutions could be found which 
satisfied the  boundary  conditions for large ~. Final ly these solutions were keyed in with values 
computed  from an asymptot ic  expansion for large ~, and the three parameters  of this expansion 
were thereby  determined.  
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. For small ~ the series expansions are 

N = a ¢ 2 - - ~  a 1 (  t*~ ) 
12 1 + /,i b¢~-- 

1 #~ 

1 /,2 1 1 + tP N'  = 23¢- -½¢2  _ 3  ~ t ,  ~ b¢a--  1-2 

/,2 1 #2 
N " = 2 a - - g - - ( l ~ # , : ) b g ~ - - 3 ( 1  +-~7 ~) 

1 (t~ 2 --  1 --  8tt2ab~¢5 
+ g o  1 + , 2  / 

G =  1 + b~ + ~a¢ a + -~½-(2ab-- 1) $4 30 17~P/~5 

G' : b + 23¢ 2 + ½ (2ab -- 1) ~3 _ 6  / , 2 j  

2 232 + b = ¢5 . . . .  
15 1 +.~2 

The asymptotic solution for large ¢ is found by putting 

= ' N " =  " N ' "  x '"  ~ N K ¢ + ½ C + x  i . e . , N ' = K q - x ,  x , -= 

J G = y  i.e., G' = y ' ,  G" = y "  

where x and y are small and powers higher than the first are neglected. 
in (6.2), (6.3) 

x'" + 2(K¢ + }C)x"  - -  2Ku'  = 0 

y "  + 2(K¢ + ½C)y' --  2Ky  = 0 

i.e., , ' ,  y both satisfy 

f "  + 2(K~ + ½ C ) f ' - -  2 K f =  O. 

If now K -~ 0, write KS + ½C = t and (8.3) becomes 

K d-~ + 2t df  dP  ~ - -  2 f =  0. . .  

The complete solution of this is 

f =  Rl t  + R #  u -2 e -~'m du ..  

. .  (8.1) 

. .  (8.2) 

Substituting these 

. . . .  (8.3) 

. . . .  (8.4) 

. . . .  (8.s) 



where R 1, R 2 are arbi t rary constants.  
infinity, R 1 must  vanish, and so the solutions for x' and y are 

To satisfy the condit ion tha t  f tends to zero as t tends to 

X' = At fTu  -~ e -~'1~ du t 

y = Bt f T u  -2 e -'~/'< du 

. . . . . . . .  ( 8 . 6 )  

where A, B are arbi t rary constants.  Since 

N = K¢ + ½C + (terms of 1st order) 

we m ay  replace K¢ + ½ C ( =  t) by N in the  small terms, and finally, simplifying the integral, 
write the asymptot ic  solution for N', G as 

N' , ~ K  -- A e -N°/s' -- 2N/w/K e -~" du 
' N/CK 

{ } G ~ B e -a=/K -- 2N/ K e -~ du 
NI¢K 

(8.7) 

If now K = 0, (8.3) becomes 

f " + C f ' = O  

so tha t  x', y are both  proport ional  to e -c~, and the  asymptot ic  solutions are 

N'  ~ A oe -~* ) 
(8.8) . o • • o . • • , • ° • 

G ~-~ Boe -< 

9. I t  is of interest  to consider the relationship between the two solutions (8.7), (8.8). 
aatisfy equat ion (8.3) 

. f"  + 2(K¢ q- ½C)f'--  2 K f =  0 

with formal boundary  conditions 

Both  

f (K, ¢) -= ~b0 (K) when ¢ = ¢0 

f (K, ¢) --+ 0 when ¢ --+ oo 

where 6o(K) is the value obta ined from the in tegra ted  solution with which a join is to be made at 
= ¢0. Solutions of (8.3) are 

f (K, = K¢ + ½C 

f (K, = ( K ,  + ½ C )  u -~ e-"v~: du 
K~+ kC 
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So tha t  the  character is t ic  equat ion  is 

L~ 
~" - +  co 

K¢ + ~c K¢0 + ½c 

= O .  . . . .  (9.1) 

. . . . . . . .  (9.2) 

which gives finally 
C ~ 

A - - ,  A o ~ e ~°:~" (1 + O(K))  . . . . . . . . . . . . .  (9.3) 

This equat ion  shows the var ia t ion  of A wi th  K when K is small. A similar expression holds for B. 

10. Details of  the Numerical  So lu t ion . - -The  solution was ob ta ined  for five values of ~ :  
= 0 , ½ ,  1 ,2 ,  co. These correspond respect ively to K =  1,12 = 0 ;  K = 0 . 8 9 4 ,  12 = 0.447;  

K = 0.707, 12 = 0.707 ; K = 0.447, 12 = 0.894 ; K = 0, 12 = 1. The case # = 0 had  a l ready been 
t rea ted  by  H6mann ,  bu t  his numerical  results were inaccurate  and  have  been corrected. Accura te  
results for the ease :, = co had  been produced by  Cochran,and are quoted  here for completeness.  

For  a given value of ~, tr ial  values ~, ~ of a, b could be guessed from the evidence of 
previous solutions or by  rough approximations.  Us ing  ~, ~, the first few entries in the tables of 
N,  N ' ,  N ' ,  N " ' ,  G, G', G" were computed  from the series expansions (8.1) and the equat ions  
(6.2), (6.3). The ~ in terval  was taken  as 0.1. Fo rward  numerical  in tegrat ion was then performed 
using the three-str ip  formula  of Milne 

4h 
y~  - y0  = 5 (2q~ - q~ + 2q~) 

checked by  Simpson's  rule 

2h 
Y~ --Yo = ~- (qo + 4q~ + q~) 

where q = y '  and  h is the interval .  The errors of these two formuke are almost  equal  and in 
opposite senses ( +  14/45 q~ h ~, --  16/45 q~V h ~) so tha t  where  the  values obta ined  f r o m  them 
differ, the  mean,  or more . accura t e ly  the  weighted mean  (in the rat io 8 :  7) is a more accurate  
es t imate  of y~ --  yo than  ei ther  separately.  

6 

f (K, ~ ) - ~ f  (0, ~) as K- ->O 
so tha t  

~ / K  e -'~ du - +  A 0e -c¢ as K - +  0. 
d N / g K  

For  small K 

2 N  - : d u  ~ e -Nv~ 1 2 N  ~ + . . . .  
C K  N:.~ 

Subs t i tu t ing  in (9.2) 

K 
A e - N " / K  - -  - - ~  A 0 e - c ¢  

2N 2 

(K~o + ~C) ~-~ e-"/~ a~ 
0 K~o+½C 

This has no root  for 0 ~< K ~< 1, i.e., there  is no character is t ic  n u m b e r  for K in  this range. T h e n ,  
by  a known existence theorem,  since the  coefficients of equat ion  (8.3) and  the b o u n d a r y  con- 
dit ions are all un i formly  cont inuous functions of ¢ and analyt ic  in K the solution is also Uniformly 
cont inuous in and analyt ic  in K for 0 ~< K ~< 1. In  par t icular  



A running check on alternate vatues using the Simpson two-strip rule in the form 

h 
y~. - -  yo = 5 (q0 + 4ql + 2q2 + 4q3 + . . . . . .  + 4q~._1 + q2~ 

h 

was carried out on every entry in the N"  and G' columns for ~ >~ 1.5 ; by linking the values ob- 
tained with the two entries Yo, Y~ at the very beginning of the table, this check smoothes out most 
of the tendency to periodic fluctuation which may be introduced by the ordinary method. This 
fluctuation first occurs in N"  and in G', and if controlled there does not affect the columns pro- 
duced by integrating these. 

The integration was carried on until the functions N', G showed signs of becoming constant, 
generally at about ~ = 2.0. By extrapolation an estimate of their limiting values nl, gl, could 
be obtained. Then similar integrations were carried out using trial values (~ -¢- el, fl), 
(~,/~ + el), (~ + el, fl + e~)where ]eli was taken generally as 0.1 (in one case 0.01) and the 
sign of et was determined by inspection so as to decrease the errors of nl, g l .  Limits (¢~, g~), 
("3, g;), ("4, g4) were obtained for these three sets of trial values, and bi-linear interpolation for 
the given boundary conditions then led to a new trial starting point Cql, fl~l. This gave rise to 
another set of trial values (~1 + e11, ¢?~1) (~11, ~1~ + e~l), (~1~ + e~, ¢?~1 + ~11) where [e11] was 
0.1 ]e 1]. From the corresponding set of limits better trial values cq 1~, ~ ~ 11 could be determined, 
and in general these were now sufficiently near the true for the required adjustment to find 
a, b to be obvious. 

The process of finding the integrated solutions corresponding to various trial values of the 
initial parameters could in some cases be shortened. Where numerical solutions N~, N / .  . . . . . .  
G/ ' ;  N~, N (  . . . . . . . .  G.," had been worked out for initial values c~,/31, and ~,/3 ~ respectively, 
then the solution for initial values Lo:~ + Mc,.~, L/31 + 3.//~ ~ could be found approximately by 

N = L N 1  + M N ~  

N '  = L N /  + M N 2 '  

G " =  L G / '  + MG.," 

The first few entries for each function were then corrected by accurate calculation from the 
series expansions ; successive approximations to the true values for all ~ could then be obtained 
from these by integrating up the approximate values using the Simpson two-strip rule. The 
successive approximation process converged very rapidly if c~1 /31 and ~, $~ were fairly near 
points. 

Having found a, b and computed the solution based on them, the parameters of the asymptotic 
series were found simply by substitution.' The asymptotic series hold when ( K  --  N')3, G 2 are 
small enough to be ignored ; i.e., for three decimal accuracv, for ~ such that K -- N ' ,  G < 0.023. 
All values of N',  G for ¢ > ¢ o, where ~ 0 defines this limit)ng condition, provide estimates of the 
parameters A, B, C ; using the means of these estimates, the functions N' ,  G were computed 
from the asymptotic series, and their values compared with the integrated solution. In no case 
did the difference exceed 0.001, so that this method appears to be satisfactory. 

11. The case ~ = 0 (i.e., K = 1, ~9 = 0), a stationary disc with forced flow, had already been 
dealt with by H6mann, who had solved equation (6.2) and obtained the result a = 0.6586-- 
there is of course no angular velocity. However his method is not satisfactory ; he produces a 
series expansion up to terms in ¢ ~0 and then equates this to an asymptotic s01ution similar to 
(8.7) at an apparently arbitrary point ¢ = 1.8. The equations thus produced determine the 
five unknown parameters. The solution thereby obtained has a discontinuity at ~ = 1.8, im- 
mediately obvious on differencing, and indeed to be expected from the method. In fact this value 
of a leads to a terminal value for N '  of 1.015 instead of the required 1. However the correct 
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Value of a could be de te rmined  in this case by interpolat ion for a single variable only (by use of 
equat ion (6.2) which now contained only functions of N and its differential coefficients) ; it 
proved to be a = 0.656. Using this solution, equat ion (6.3) was then  solved ; for given N, N'  
(6.3) is a linear differential equat ion for G, and so de terminat ion  of b was by linear interpolation.  
This value of b (1.075) is meaningless in itself, since G ~ 0 for this case, but  it is a !imiting value 
for the  other  solutions. Coefficients for the  asymptot ic  series were obta ined as previously 
described. 

ff = oo (i.e. K = 0, X2 = 1) had already been t rea ted  by  Cochran ; he obta ined the  values 
a = 0.255, b = --0.616, A0 = 0.934, B0 = 1-208, C = 0.886. The asymptot ic  series here takes 
the  form (8.8) and more terms of it can be derived, as higher powers of the  exponential  e-~¢. 

/~ = ½, ff = 1, ff = 2 were t reated by the  process described above, using trial values suggested 
by  the  solutions already obtained. Tables and graphs of the values of a, b, A,  B, C and of the  
variat ion of N, N' ,  G, and P as functions of ~, are given at the end of this paper. 

[Values of the  constants  and functions were actually obtained using t h e  equations involving 
the  parameters  in a less convenient  form ; the above choice was only made  later, and  the  results 
obtained from the  previous process have been conver ted to those which would have been ob- 
ta ined in this way. The conver ted tables have been checked by integrat ing up using the  Simpson 
rule]. 

12. Frictional Moment Coefficient.--The constant  b is of especial interest  since it iS proport ional  
to the viscous torque exerted by the l iquid on the disc. The shearing stress opposing mot ion  is 

pv = pvo)r  b 
z = O  

so tha t  the total  re tarding momen t  on one side of a disc of radius s, neglecting edge effects, is 

Wri t ing S = :7:s ~, the  disc area, and R = s~o~ ~/~, the Reynolds number,  (12.1) becomes 

M = ½ p s 3 ~ S R  -lJ~ b . . . . . . . . . . . . . .  (12.2) 

so tha t  we can take b as the  torque coefficient 
RI]~ 

b --  pSs8 ~ ~ M . . . . . . . . . . . . . . . . .  (12.3) 

Von KArmAn and Cochran use a similar form for their special case K = 0. The variat ion of this 
coefficient with # is shown in Table 6 and in graph 5. 

13.. Inflow Vdoc i ty . - -The  constant  C has also direct physical significance. The disc has two 
distinct effects on the velocity of the  fluid along the axis ; it acts as a centrifugal fan by  its 
rotat ion and so sucks the  fluid towards it, but  it also acts as an infinite plane barrier opposing 
by viscosity the  radial flow due to an externally imposed fluid motion. C is a measure of the  
resul tant  of these two effects on the  fluid's velocity far from the disc ; when C is positive, this 
resul tant  effect is a suction, indicat ing tha t  the ' fan ' effect is predominant .  When  C is negat ive 
the  barrier effect dominates.  As would  be expected, when the  forced flow is of small impor tance  
relative to the  rotat ion (i.e., for K zero or small) C is positive ; it decreases to zero as K increases, 
vanishing for K = 1/4 approximately,  and then decreases further  to i ts final negat ive value when 
there  is no rota t ion at all (i.e. K = 1, D = 0). This variat ion is shown in Table 6 and graph 6. 

14. Boundary Layer Analogue : Displacement and Momentum Thickness . - -The solution found 
is a solution of the exact Navier-Stokes equations with no boundary  layer approximations.  
Cochran has pointed out that ,  in the case with, which he deals, the solution does in fact bear 
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out the usual boundary layer assumptions, in that  the effect of the motion of the disc on the 
velocity of the fluid is perceptible only in a layer of thickness O{ (v/~o) 1/2} and the pressure change 
is O(pvco) through that  thickness. The general case also fulfils these conditions. I t  is con- 
venient for this purpose to consider a s tat ionary disc with a fluid given a rotation as well as a 
forced motion against it ; it follows immediately tha t  the solution for this case is given by 

1 1 ½co2r2 
=- u ,  ~ -= r~o - -  v ,  ~ -= w ,  - (Po - -  P )  = - ( P o  - -  P )  + 

P P 

where u, v, w, p, are the velocity and pressure components of the solution already given. Then 
the ' main s t ream'  velocity tangential  to the disc is the resultant of components k r ,  ~or and so is 
~r ; and the fluid velocity becomes indistinguishably different from this for some finite ~, tha t  
is, since z ---- (~ /~) i~ ,  in a distance O~(v/~)l/~}. The pressure change is 0(pv~), so tha t  the 
assumptions of boundary layer theory are again satisfied. 

We can calculate also from this solution analogues to the boundary layer quantities, displace- 
ment thickness (~) and momentum thickness (0). They are defined by the relations 

= ~ (U - u)dz U~ 
J 

U~O = f u ( U  - -  u) dz 

where U is the main stream velocity, u the velocity in the boundary layer. 
relations become 

~r~ = f [~r  - { u  ~ + (~ r  - ~,)~}~/~] dz . . . . . .  

I n  o u r  ca se  t h e s e  

. . . .  (14.1) 

~2r20 - = / { u  ~ + ( . r  - -  v) ~} l ' ~ [ v r  - -  ( u  2 + ( ~ r  - -  v)"} 1/~ 1 d z  . . . .  (14.2) 

or since u ---- ~ r  N '  (~), v = o~r G(~) ,  ~ ---- z 

f [1 - { N '~ + ~ (1 - 6) ~ } ~  d: . . . . . .  (14.3) 

/ (  N '~ + 9 2 (1 -- G) 2} lj2 [1 -- { N '~ + 92(1 -- G)2} 1,~]d , (14.4) 0 

(re~v) 112~, (~ / v ) l J20 ,  and the ratio ~/0 = H have been calculated for the various/~, and are shown 
in Table 7 and graph 7. H is usually assumed constant and taken as 2.4 in turbulence calculations ; 
i t  may be seen tha t  the value here varies from 2.294 to 2.153 as ~ increases from zero to infinity. 

15. My thanks are due to Prof. W. G. Bickley, who suggested this problem to me and has 
helped at every stage of the work. 

No. 

1 ° .  

2 . .  

3 

• ° 

• ° 

R E F E R E N C E S  

• • 

Title, etc. 

Zeitschr. fi angew. Math• u. Mech. 1 (1921), 244-247. 

Proc. Camb. Phil• Soc. 30 (1934), 365-375. 

Zeitschr. f .  angew. Math. u. Mech. 16 (1936), 153-164. 
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T A B L E  1 T A B L E  2 

I--.a 

Values of G, N, N', P 

0 
0.1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2-1 
2.2 
2.3 
2.4 
2.5 
2.6 
2-8 
3.0 
3.2 
3.4 
3-6 
3.8 
4.0 
4.2 
4.4 

G 

1.000 
939 
878 
819 
762 
708 
656 
607 
561 
517 
468 
439 
404 
371 
341 
313 
288 
264 
242 
222 
203 
186 
17i 
156 
143 
131 
120 
101 
O83 
071 
059 
05O 
042 
035 
029 
024 

N 

0 
0.003 

009 
019 
032 
046 
062 
079 
097 
115 
133 
151 
168 
186 
2(32 
218 
233 
248 
261 
274 
286 
298 
309 
319 
328 
337 
345 
36i 
373 
384 
393 
401 
408 
413 
418 
422 

N, 

0 
0.046 

084 
114 
136 
154 
166 
174 
179 
181 
180 
177 
173 
168 
162 
156 
148 
141 
133 
126 
118 
111 
104 
097 
091 
084 
078 
O68 
058 
O50 
042 
036 
031 
026 
022 
018 

When # =  co 

K = 0  

~Q = 1  

P 

0 
0-092 

167 
228 
275 
312 
340 
361 
377 
388 
395 
400 
403 
405 
406 
406 
405 
404 
403 
402 
401 
399 
398 
397 
396 
395 
395 
395 
395 
395 
394 
394 
393 
393 
393 
393 

Values of G, N, N ' ,  P When # = 2 

i.e. K = 0.447 

Y2 = 0.894 

G N N '  P 

0 
0-1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1-6 
1-7 
1.8 
1.9 
2-0 
2-1 
2.2 
2.3 
2.4 
2-5 
2.6 
2.7 
2.8 
2-9 
3.0 

1.000 
920 
842 
765 
692 
622 
556 
494 
437 
383 
335 
291 
251 
216 
184 
156 
131 
109 
091 
076 
062 
051 
041 
033 
026 
021 
017 
013 
010 
OO8 
006 

0 
0.003 

012 
027 
046 
068 
094 
122 
153 
186 " 
221 
257 
295 
334 
374 
414 
455 
498 
540 
583 
625 
668 
711 
755 
800 
844 
888 
932 
977 

1.022 
1-066 

0 
0.064 

119 
166 
207 
242 
272 
298 
320 
339 

.355 
370 
382 
392 
401 
408 
415 
42O 
425 
429 
433 
436 
438 
44O 
441 
443 
444 
445 
445 
446 
447 

0 
0.130 

238 
333 
418 
493 
562 
626 
687 
747 
808 
873 
938 

1.007 
1.082 
1.159 
1.244 
1.336 
1.433 
1.538 
1-647 
1'764 
1.887 
2.020 
2.162 
2-311 
2.465 
2.627 
2.799 
2.981 
3"167 



}....a 

TABLE 3 

Values of G, N,  N ' ,  P When  # = 1  

K = 0 - 7 0 7 "  

t9 = 0 . 7 0 7  

0 
0-1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0-9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2-7 
2.8 
2.9 
3.0 

1 0 
0-907 0.005 

816 017 
727 038 
643 065 
564 098 
490 137 
422 180 
361 228 
305 279 
256 334 
213 391 
175 451 
143 512 
116 576 
093 640 
073 706 
057 774 
044 841 
033 910 
026 979 
019 1"049 
015 1"119 
011 1.189 
007 1-259 
005 1.329 
004 1 . 4 0 0  
003 1.470 
002 1.541 
002 1"611 
001 1"681 

0 
0.089 

168 
240 
303 
360 
411 

_ 455 
495 
529 
559 
586 
607 
625 
642 
655 
665 
675 
683 
689 
693 
697 
70O 
702 
703 
704 
705 
7O6 
7O6 
707 
707 

0 
0.178 

337 
483 
614 
739 
860 
975 

1.094 
1.214 
1.341 
1.478 
1.621 
1.774 
1.948 
2.129 
2.327 
2.548 
2.781 
3.034 
3.303 
3.595 
3.904 
4.231 
4.576 
4.940 
5-330 
5.734 
6-161 
6-605 
7"066 

Values of G, N,  N ' ,  P 

TABLE 4 

When  # = ½ 

K = 0.894 

Y2 = 0.447 

~" G N N '  P 

1 
0.898 

798 
702 
611 
526 
448 
377 
314 
251 
210 
169 
134 
105 
082 
063 
047 
035 
0 2 6  
018 
013 
010 
007 
OO5 
003 
002 
OO2 

0 
0.006 

022 
048 
083 
126 
176 
232 
294 
360 
433 
507 
584 
664 
746 
830 
916 

1.002 
1 "089 
1.176 
1-265 
1 "354 
1 "443 
1.532 
1-621 
1-710 
1 "800 

0 
0.112 

214 
307 
391 
466 
533 
592 
643 
688 
727 
760 
788 
812 
830 
846 
858 
868 
875 
880 
885 
888 
890 
892 
893 
894 
894 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1-4 
1-5 
1.6 
1.7 
1-8 
1.9 
2.0 
2-1 
2.2 
2.3 
2-4 
2-5 
2.6 

0 
0.224 

429 
619 
796 
964 

1.128 
1.292 
1.459 
1.636 
1.829 
2.034 
2.258 
2.506 
2-773 
3.070 
3.394 
3.744 
4-122 
4.526 
4-970 
5.443 
5-944 
6.478 
7.041 
7"636 
8.268 



T A B L E  

Values of N, N', P When # = 0 

K = I  

9 = 0  

N N' io 

0 
0.1 
0.2 
0"3 
0'4 
0'5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2-3 
2-4 
2-5 

0 
0.006 

025 
055 
094 
143 
200 
265 
335 
412 
492 
577 
665 
756 
849 
944 

1 "040 
1.138 
1.235 
1.334 
1.433 
1 '533 
1.632 
1.732 
1.832 
1.932 

0 
0.126 

242 
349 
445 
532 
609 
677 
736 
787 
839 
865 
896 
920 
940 
955 
967 
975 
983 
988 
992 
995 
997 
998 
999 
999 

0 
0.253 

486 
703 
908 

1.104 
1.298 
1.494 
1.697 
1.912 
2.145 
2-397 
2.677 
2-985 
3-322 
3.693 
4.099 
4.538 
5.019 
5.536 
6.092 
6.686 
7"320 
7"994 
8'706 
9.460 
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Values of a, b, A, B, C 

T A B L E  6 

For various #, K 

# 

b 

A 

B 

C 

CO 

0.255 

--0.616 

Ao=0.934 

Bo----1-208 

0'886 

0'343 

--0"800 

0.133 

0.567 

--0:275 

0-468 

--0.933 

0.269 

0"485 

--0.440 

0"583 

-- 1-025 

0-358 

0.466 

--0-526 

0.656 

-- 1"075 

0.408 

0.421 

--0"569 

K 0 0'447 0"707 0-894 1 

T A B L E  7 

Values of Displacement and Momentum Thickness Coefficients (~/v)1123, (~/V)1120 and 
H = 8/0 for various/~, K 

00 

(~/},) 112(~ 1' 143 

(~7/,,)1/~o o.531 

H 5/0 2-153 

K 

2 1 

0.787 

0.348 

2.261 

0.447 

0.661 

0.289 

2.284 

0-707 

0.596 

0.260 

2.292 

0'894 

0.569 

0.248 

2.294 
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