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Summnary.—A new method of determining velocity distribution on slender bodies of revolution in axial flow is
expounded, analogous to the linear perturbation method widely used for slender symmetrical profiles in two dimensions.
The proposed method leads to simple approximate formulae for velocity distribution on a body, once the equation of the
meridian line is given, either in the form of a polynomial, or a square root of one. The new method avoids many
inconveniences of the older procedures, and is much more rapid. Although theoretically applicable to bodies of small
thickness only, it works with satisfactory accuracy up to quite considerable thickness ratios. It has been further
improved by taking into account not only axial but also radial velocity components, following a suggestion of Lighthill’s
supersonic theory. It may be easily applied to compressible subsonic flow.

The method has been used for computing velocity distributions on twelve different bodies, of seven different thickness
ratios (0-04-0-28) each, so as to exhibit the most characteristic features in typical cases, and especially to show some
unexpected effects of thickness changes. Several practical conclusions have been derived from the examination and
comparison of these results. '

The method may find useful applications in the design of fuselages, nacelles and wing junctions, and especially in
determining critical Mach numbers for such bodies.

1. Introduction.—Axial potential flow past bodies of revolution has been the subject of several
rigorous investigations in theoretical hydrodynamics, and much of this work has been sum-
marized in Chapter V of Lamb’s Hydrodynamics®. The existing rigorous solutions are not
numerous and apply rather to some particular geometrical shapes, while it is very difficult to
find such solutions, giving velocity potential and velocity distributions for arbitrarily chosen
meridian lines. The inverse problem, ¢.e., designing meridian lines for assumed velocity distribu-
tions, is even less tractable on the lines of the exact theory. Hence, there have been several
attempts to work out simpler methods applicable to elongated bodies suitable for airships or
aircraft fuselages and nacelles. These methods usually followed Rankine’s idea of distributing
point sources and sinks along the axis (Ref. 1, Art. 97). Systems of isolated sources and semi-
continuous or continuous source distributions were all tried***, and shapes of more or less the
required form could be obtained, and the velocities calculated, in a rather cumbrous way. An
extremely elaborate method, based on sources and sinks in special curvilinear co-ordinates, with
rigorous solutions by infinite series for arbitrarily assumed shapes, was worked out by Kaplan®.
This is highly accurate but so troublesome to apply that it may be only seldom used, e.g., as
a dependable check for simpler approximate methods.

* R.A.E. Report Aero. 2389, received 3rd February, 1951.
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For the analogous two-dimensional problem of symmetrical profiles at zéero incidence, though
admitting a comparatively easy solution by conformal transformation, a strikingly simple
approximate method has been introduced by Squire® and others. This applies to profiles of
small thickness ratio ¥ and is based on continuous distribution of (linear) sources and sinks
along the chord, with three simplifying assumptions: (a) the local strength of the source
distribution is taken to be proportional to the local slope of the profile contour ; (b) the velocity
component v, parallel to the chord, induced by the source system, is calculated not along the
contour but along the chord; (c) the component v, perpendicular to the chord is neglected.
The procedure gives finite values, small of the order #, of the induced velocities everywhere,
except at stagnation points, and it is easily proved that errors are small of the order 92 This
method is a particular case of the much more general  linear perturbation theory ’, as worked
out by Goldstein and Young (R. & M. 1909"). It has found application also in three-dimensional
problems, expecially for swept-back wings at zero incidence (R. & M. 2713%)

An idea suggests itself, to try a similar method for thin bodies of revolution, the local strength
of source distribution along the axis having to be assumed this time as proportional to the local
rate of increase of the cross-section area. However, one fundamental difficulty arises, in that
the axial velocity component v,, induced by such a source system, becomes logarithmically
infinite on the axis itself. This makes it impossible to introduce the simplifying assumption (b)
as above. Young and Owen tried to overcome this difficulty by calculating v,, instead of on the
given surface, on that of an ellipsoid of revolution of the same length and thickness ratio, and
this led to their simplified theory (R. & M. 2071%), as applied to development of high-speed or
low-drag shapes (R. & M. 2204). This theory is neither a true analogue of the two-dimensional
linear method, nor so simple as that one (though much simpler than Kaplan’s solution) ; it leaves
some doubts as to the order of magnitude of v, and of the errors involved, and also as to the
effect of varying thickness ratio. Its merit is that it can be worked both for the direct and the
inverse problem,

It is shown in this report that the difficulty mentioned above can be overcome in quite a
different way. The integral for »,, which becomes logarithmically infinite on the axis, may be
transformed so that only one simple term infinite on the axis remains, while the rest of the
integral may be calculated on the axis, with all resulting simplifications. It appears that the
total v, induced consists of two terms, one being small of the order 92 In ¢ and the other one of
the order ¢*. Both must be taken into account, and the errors committed are of the order
9*In ¥, 9%, and higher. One important conclusion is that the velocity distribution varies with
# not in proportion to any function of ¢, and that indeed the law of distribution itself may be
modified considerably owing to a change in thickness ratio so that, e.g., the position of maximum
supervelocity may be shifted, or even the number of maxima altered. This is very different
from what happens in two dimensions where supervelocities are simply proportional to #, in
first approximation. The inference bears upon the effects of compressibility (see R. & M. 26242
and Ref. 14). The comparison of the new method with that of Young and Owen shows that
the latter is not free from errors of the order 2.

The analytical procedure suggested leads to an entirely new method of calculation (section 2)
reposing on the formula (2.24) for v,. It is further improved (following Lighthill’s (R. & M. 2003°)
suggestion in connection with supersonic theory) by introducing the radial component v, ; this,
being itself small of the order 4, involves a contribution of the order 9* to the resultant super-
velocity (formulae 2.27 and 2.29). The method is particularly suitable when the meridian line
is expressed by an algebraic equation, especially in the form of a polynomial, or a square root
of a polynomial (so that the square of the ordinate is, in both cases, expressed by a polynomial
in terms of the abscissa). Such an equation suffices to cover practically all shapes likely to be of
interest, including those with rounded, pointed, and cusped noses and tail ends. Explicit
formulae, involving a large number of arbitrary coefficients, and specified for particular classes
of bodies, are givep in section 3. This is followed by a number of examples in section 4,
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illustrated by Figs. 3 to 15, including some characteristic geometrical shapes and some suitable
for fuselages and nacelles. Velocity diagrams have been computed, showing the contributions
of v, and v, separately and the resultant supervelocity ratio 41V /U, for seven different thickness
ratios. (0-04-0-28) in each case. The results are discussed, leading to several practical conclusions,
in section 5. An Appendix deals with the question of inaccuracies caused by larger thickness
ratio, by comparing exact and approximate sclutions for ellipsoids of revolution.

The new method is not directly applicable for solving the inverse problem, i.e., designing
shapes for assumed velocity distributions. This, however, should lose some of its importance,
for the following reasons. First of all, the new method is so rapid and simple that a great number
of shapes may be examined easily with little outlay of time and effort; and then shapes may be
chosen to suit any realizable velocity distributions. Further, the designer has to adapt the shape
to so many constructional and technological requirements, that the main question for him is to
find out whether an otherwise convenient shape will have a reasonably advantageous velocity
distribution, and what changes are needed to improve this distribution if necessary. For such
purposes, the proposed method should be particularly suited.

Acknowledgements are due to R. P. Purkiss and A. R. Beauchamp for their help in computa-
tional work and in preparing the illustrations. '

2. Fundamentals of the Method.—Let us consider an arbitrary body of revolution (Fig. 1), the
equation ot whose meridian line is:

7 = 7(x) (—b <x <b). . .. o . .- .. (2.1)
It will be convenient to introduce the function:
Flx)y=7", .. .. .. - . .. .. .. .. . (2.2)
so that the area A of a cross-section at a station x will be:
A=n.Fx . .- . .. o . .. . . (2.3)
The first derivative of (2.2) is:
Fx)=2r.7v"(x). .. . .. .. . .- .. .. . (2.4)
Suppose now that the body is thin, ¢.e., that its thickness ratic:
S D = V)b .. .. .. .. .. .. .. .. .. (2.5)

may be considered as small. Then #(x) and its derivatives are small of the order ¢, while F(x)
and its derivatives are small of the order 9%,

We consider the flow of an ideal incompressible fluid, with undisturbed velocity U parallel
to the x axis and directed against it. In order to determine the velocity distribution on the
body surface, we assume tentatively that the disturbance due to the presence of the body 1s
equivalent to that produced by a continuous distribution of sources and sinks along the axis.
Denoting by ¢(%) the local source intensity (per unit length) at a station £, where the area is 4,
we may write, as a first order approximation:

S = —2.U.F'® (—b<Z<B)... .. .. (26

This formula is based on the assumption that the resultant velocity of the flow, both outside
and inside the body, differs little from U in direction and magnitude. The flux across any cross-
section is then approximately U4, and its infinitesimal increment UdA must be supplied by the
output ¢d% of the infinitesimal segment d% of the source line.

We shall determine the two components v, and v, ot the velocity induced by the source line
at a point (x, #) of the body surface. An infinitesimal element of length 4% induces a velocity:
gle) .dx U F'(%).dx
4zRE T T 4 R? ’
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where _
S R N X))
The 7- and x-components of év are:

/ ;/— —~
dv, — cos 0 . o9 — — O TEH) . dz

4 R3 ) (2.9)
dv, = — sin 0 . éy = E—T/ z— %) RZZ (%) . d , (2.10)
and the integral components:
U (%) . dx
= J {x_x _{_1/2}3/2, . .. . P .. .. (2.11)
X — % (%) . d%

”~4fb{x_x.+mm- O X )

Let us introduce an auxiliary variable: '
p=%—=x (thusdp =dz), .. .. .. .. .- T V2 B )

and a sequence of definite integrals:

b—x pkdp '
a:jwﬂ@hwmﬂ (B=0,1,2,8..). .. .. .. .. (214

By applying the theorem of mean value, and taking into account (2. 4) the formula (2.11) may
be written : .

v, b= yF'(x + p).d )
U__lf bt) (1(52%;7%233/2?:“‘%7’(x).7’210—-%1’K.Il, - .. (2.15)

where K denotes a certain mean value of F”(x), smaller than the upper bound of | F"(x)| if such
a bound exists. '

To transform (2.12), we shall write, by Taylor’s expansion:
. ) k41
F'(%) == F'(x 4- p) = F'(x) + pF"(x) + z (kyi— 01 F*2(x) . .. (2.16)

the X% denoting a finite sum if F(x) is a. polynomial, or an infinite series in all other cases.
‘Substrtutmg (2 13) and (2.16) inlo (2.12), we obtain:

C=1FW.L+3}FW. L+ > Cg:%;%%% Towar oo ... (207)

We now need explicit formulae for the integrals (2.14). The first three of them are easily found
as follows:

[ = i benee Pl = = A @180
[ = = G » hene 1= G A 218
[tihgn = = rtomm + 1+ (3 + ),

hence If:—wu+h%g;i§iﬁ%itglg, (2.18)
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or, expanding in powers of #*:

. 1,262 -‘2 ‘
7210_—_2—(—152—52“—)3 ..... e (209))

2% *2(30* -+ %7) -
Il_ pE— 42 j‘ (bz_xz);; ..... .. .. .. .. .. (2191)

2 2\1/2 2(7,2 2
12:2(1n2(b—/)—_1)+§7(—§f§;73. (219

All subsequent integrals I,,,, for > 1, may be obtained by applying the obvious recurrence
formula : ' '

- pk+2 dﬁ _ Pk+1 k + 1 ) Pk d?
J(Zb2+72)3/2 - k(p2—{—7’2)1/2 — A 7/J(1b2+7’2)3/2 , .. ‘ .. . - N (2.20)
whence :
1 (b — x)FHt (— b — %)t E+1
Ik-};z =k {((b - x)z + 7,2)1/2 - ((b + x)z & 7,2)1/2] - E 4 Ik ) .. <. (2-21)
or expanding again:
b — x)* — b — x)* 2
I, = 8= +k( 2 7 [(b — ) (— b — ) 2k 4 1)1,,} . (2.22)

Let us consider (2.15). The product #*I, tending to 2 with decreasing 7, the first term is small
of the order #, while the second one is small of the order #*. Therefore, neglecting small terms
of the order ¥° and higher, we obtain:

U = — 78, e e e @23

and this shows that the boundary conditions on the body surface are satisfied, to this order
of accuracy.

The component v, on the surface should now be calculated from (2.17). This would be long
and troublesome, if exact values of -the integrals I,, I, etc., were to be computed; also, the
accuracy would be illusory, as the boundary conditions are only approximately satisfied. In
the two-dimensional problem, v, is simply calculated on the x axis instead of on the wing surface,
and it is shown that the error thus committed is small of the 2nd order. A similar simplification
may be attempted in our problem, which means that the exact values of the integrals I,, I,, etc.,
would be replaced by their respective values on the » axis (putting » = 0). It is seen that this -
can be done with all integrals except I,, the latter becoming logarithmically infinite* for » = 0,
as shown by (2.19;). Even I,, however, may be simplified, by rejecting in (2.19,) all terms except
the first one. Introducing the simplified expressions for all integrals in (2.17), we obtain:

) F**2(x) (b — x)* + (—b— %)
bz‘_xz‘l_F(x)—'Z(k-{-l)! 2k }

) (2.24)

The first term is small of the order #*In+#, all subsequent ones small of the order #*. The
neglected terms are small of the order ¢*In #, or #, or higher.

U, ” 2(6% — M 1 [ xF'(x
—ﬁz%F(x).ln—~——7—————Q[ )

* Tt is due to this term only that the total v, becomes infinite on the axis.
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. The formula (2.24) is suggested as a simple means of calculating v,, especially if F (x) is a
finite polynomial of any degree, because then the second term (in square bracket) becomes a
simple algebraic function. This may be considered to cover all meridian line shapes which have
a practical meaning, as every such shape can be represented by a polynomial F(x) with a great
accuracy, whether the nose or tail end are rounded, pointed or cusped.  Section 3 contains
explicit formulae for several fundamental classes of meridian lines, and Section 4 a number of
particular examples.

The formula (2.24) is a counterpart of similar (simpler) formulae relating to two-dimensional
symmetrical wing profiles (see, e.g., R. & M. 2713" form. 1.8 and I.14). The main difference
is as follows. The two-dimensional formula contains only terms of Ist order in thickness
ratio 9, and therefore the incremental velocities are simply proportional to#. One computation
is sufficient for all thickness ratios, the supervelocity diagrams for varying ¢ are similar curves,
and hence, for instance, the position of maximum supervelocity is independent of #. In the present
case, the formula contains one term of the order 9% In ¢, and others of the order °. There is only
an infinitesimal difference between two orders of smallness, and clearly terms of both orders
must be kept, but v, is not simply proportional to #* and must be calculated separately for each
thickness ratio. The diagrams will not be similar curves, and the position of maximum super-
velocity will depend on 9.

It is also seen that the supervelocities on a, body of revolution are generally smaller than those
on a profile of the same thickness ratio in two-dimensional flow. However, they are not
negligible except for very low thickness ratios.

In two dimensions, both supervelocity components v, and v, are small of the same order (8);
hence the resultant velocity:

(= U+ o) +02)"

may be taken as (— U - v,), accurate to the order #, and the contribution of v, may be neglected.
It has been pointed out by Lighthill (R. & M. 2003°), with reference to supersonic flow, that the
contribution of v, must not be neglected in the case of bodies of revolution, and this applies also
in our present problem. The resultant velocity is (Fig. 2):

1/2 2 2\ 1/2 .
V=((= U+wr+0) :U<1~2%+%2+%5> ... (225)

and it is seen that the second and fourth terms under the root sign are small of comparable order
(9" In ¥ and #*, respectively), while the third one is small of higher order (#*In*#) and can be
neglected. We then get, to the order of #*In ¢ and ¢*: :

V=ZJ<1—~%+ZU_(’]:>, L (29
whence :

AV V—-U v, v,?

7:%7_:_?_{—2_(75”.' . .. .. .. .. .. (2.27)

and 4V will be called the approximate resultant supervelocity. The first term in (2.27) is normally
more important, but the second one may influence the result in a not inconsiderable way, as
will be shown in the examples. It will be convenient to represent this second term as follows.
From (2.23):

v’Z:%{r’(x) L L (228)




and, taking into account (2.2) and 2.4) 3

v, _ {F’(x)}z_ 2.99
The final conclusion is that the supervelocity ratio 47/U must be calculated from (2.27), where
the first term is supplied by (2.24) and the second one by (2.29).

It is interesting to compare the new method with that of Young and Owen (R. & M. 20718).
Their procedure was based on the same system of sources and sinks but, to avoid the infinite
values on the axis, they calculated v, on the surface of the ellipsoid or revolution:

Yo = BB — 2

of the same thickness ratio as the given body. They assumed that the error thus committed
would be small. It will be seen by inspecting our formulae (2.17-2.24) that the errors in most
terms are of higher orders and negligible (as in our method), but the first term in (2.24) is
exceptional. Replacing the true # by 7, in this term means an error:

+F"(x) . Invjry,

which is of the order #2, thus not negligible. For an ellipsoid, F"(x) is a constant, equal to
(— 29%). Even supposing that, for any other body, F”(x) does not exceed this value (which it
often may), we should estimate the error as

P Inrfr, .

This may be very small when the body differs little from an ellipsoid, but may become significant
in other cases. For instance, if the ratio #/#, reaches the value 2 at any point in the meridian
line, the error there may become 0-699% or perhaps more. The errors are often smaller than
this, of course, and most results of R. & M. 2071%, especially the maximum values of supervelocities,
do not deviate appreciably. The present method, however, seems to ensure better accuracy,
is more rapid, and gives explicit formulae in each case, as will be shown in the following sections. -

3. Detailed Formulae for Particular Classes of Bodies of Revolution.—3.1. General (bodies with
rounded nose and tail end, e.g., Figs. 3, 10, 13).—Assuming that F(x) is a polynomial of the 8th
degree or lower, and introducing non-dimensional co-ordinates:

&= x/b, p=7r/b, .. ce . .. (8.1.1)
we may write the equation of the meridian line as follows:
p = kO(Ay + A& + A8 ...+ A&, L. .. . . .. (3?1.2)
where : "
B = 1 (3.1.3)

(AO + Aym - Am® + ...+ A8m8)1/z ’

m denoting fhe value of &, betWeen (— 1) and (+ 1), at which p reaches its maximum. The
function F(x) then becomes: : ‘ '

. , ‘
F(x) == k%% > A,&", . .. . . . .. . .. (3.1.4)
n=0 .
and we obtain from (2.24), after an elémehtary but loné transformation :
v, 1. 2(1— & & oan — 1) woz 1 8 . -
N In p . z ——5 A,em72 4 - EO:KnE ;o (3.1.5)
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where the coefficients K, are given by the following table:

7 K,

0 —4s +24, +34s

1| -4, —34, +54; +34,

2 224, +54,

3 —52d, +544,

4 1554, +74,

5 LLY —11804,

6 1254, —tL3 4,
A 9594

8 5834,

The contribution of the v, component, after (2.29), becomes:

20" U%%?z o

(ZnAns" 1) : SZjA,LE".

(3.1.6)

The above results may be represented in a more convenient form. The function F (x) must
become 0 at the nose and at the tail end, and hence it must contain (1 — £) and (1 + &) as factors.
If both occur only once as factors of F (%), the body has a rounded nose and rounded tail end.

We may then write:

po= k{(1 — &%)(By + Bi& + B,&* + Byt® 4 By&* 4 By&® + Byef)lre,

and
F(x) = k*%%(1

We have then:

Ao - Bo; Al == Bl) Az - Bz “Bo, As = B:s - Bl; A4 - B4 - Bz;

Ay = By — By, 4y = By — By, Ay = — B;, Ay = — B,,
and, substituting this in (8.1.5) and (8.1.6), we obtain:
vx (1 _ 5 )1/2 G . 8 .,
- U—W - ln—_ nZO Pns - §2 'i ; Kné: J‘

OUZkzﬁz (

Z B,&".

Rﬁ”) L 8(1 — £9)

z Bt

L.

J

(3.1.7)

(3.1.8)

(3:1.9)

(3.1.10)

(3.1.11)



the coefficients K,, P,, R, being tabulated below:

7 K, ’ P, R,

o | B 9B, +1B, LB, B, — B, B,

1 4B, —7B, 4B, 3B, — By | 2(B,— B,
9 128, _s3B, 413B, | 6(B,—By) | 3(B,— By
3 —3B, 412B, —343B, 10(B, — B | 4(B, — By
4 —9B, 4B, _133B, | 15(B,— By | 5(B; — By
5 55B, 4891B, 21B, 6(B; — By)
6 _135B, 42337, | 28B, —7B,

7 —850B, — _8B,

8 .3 ? 3B6 L -

These results are quite general and may be always used, but they are really convenient only if
both the nose and the tail end are rounded. If either of them is pointed or cusped, one of the
binomials (1 — &) or (1 - &) occurs twice, three times, etc., as a factor of F(x). The formulae
may then be simplified, and the sunplel results are given below for all cases which are likely
to have a practical meaning.

3.2. Bodies with Rounded Nose and Pointed Tail End (e.g., Figs. 7, 8, 12, 14).—The equation
of the meridian line:

. p=kO(1 4 E){(1 — &)(Dy + D& + Duf® + Dyt® + Dy + D&, ..o (8.2.0)
- F(x) = B*9%0%(1 + &)*(1 -- &) . 2 D& . . . . .. .. (822
The contributions of the axial and radial supervelocity components are given by :

. UZ’;ﬁz — o 2L — 26 P — 1 S K, .. .. .. .. (323)
p — &%
e (z S, : 8(1 — &) Z D&, L B2
the coefficients being as follows:

n - K, p, S,

0 D, —2D, —2D, +iD, +iD, +&D,| Dy—D,—D, D, 4D,

1 3D, 46D, —5D, —22D, 34D, +3D;| 3(Dy+D,—D,—Dy) | —3D, +D;+2D,

2 | —8D, 46D, +17D, —3ID, —8:D, +2D,| 6(D;+D,—Dy—D,) —4D,+ D,+3D,

3 — 9D, +28D, +298D, —31D, —88D, | 10(Dy+D;—D,—Dy) —5D, +Dy+4D,

4 — 55D, +4558D; 121D, —387D, | 15(Dy+D,—D,) —6D, +D,+5D;

5 —128D, +181D, +£88D; | 21(D,+Dy) . —7D, +D;,

6 —888D, +-4§16-b5 28D, —SD5

7 — 383D, — — |




3.3. Bodies with Pointed Nose and Tail End (e.g., Figs. 4, 11).—

= k(1 — E(E, + F& + E,&* + E 8 | E&)* . (3.3.1)
F(x) = %1 E E,& (3.3.2)
Uy 2(1 )1/2 " & " sp
—W:mf ng ZKnE (3.3.3)
ST - (2 S./e) ¢ 8 Z E& . (3.3.4)
% - Kn” Pn S“,
0 3E, —9E, +1E, 9F,—E, E,
1 11E, _sAF, 3(2E,—E,) AR, 2B,
o | —9L, 15LE, —17E, | —6(E,—2E,+E,) —5E, 1 3E,
3 Ty 1238, —10(E,—2E,) —6E, 4,
4 135, +138E, | —15(E,—2E,) —7E,
5 —a59F, —921E, —8E,
6 —sssp, | —98E, —
3.4. Bodies with Rounded Nose and Cusped Tail End (e.g., I zg 9).—
p ==kl + &){(1 — E(H, + H.& + H,&* + Hy£® 4 H P2 (3.4.1)
F(w) = B9 + &)1 — &) EH & (3.4.2)
B, 2(1 - 52)1/2 5 . 1 7 o
—-Wr:ln———p——-.(l f).z P, —1—:‘?20: K, & . (3.4.3)
2 2 5 9 4
91J2E292 = (1 “i‘ 5) . (Zo T;L§"> — 5) 20 H,LE” (_3.4.4)
n Knl Pnl Tn
0 | —H, —4H, —{H, +3iH, +3H, —2H,—H, 2H,+H,
1 OH, +H, —4H, —21H, +IH, | 6H,+2H,—5H,~3H, —4H,10H, 1 2H, ,
2 3H, +23H, +i7H, —98H, —3LH, 10H,+5H,—9H, —6H. —5H,{-2H,--3H,
3 | —9H, -LiH, +285H, -AsH, —125H, 15H,-9H,—14H, —GH, 1 2H,+4H,
4 _ssH, —83H, 73H, +i3iH, 91 H,+14H, —7H,+2H,
5 —Agsf, —29if, 1089f] 98H, —8H,
6 =y —APH, — —
7 —388f], — —
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3.5. Bodies with Pointed Nose and Cusped Tail End.—-

p = k(1 — (1 4 &)(Lo 4 Li& + Ly + L&)z |, (3.5.1)
3
F(x) = k%31 — &) £ . > L& (3.5.2)
. 0
Ve 2(1 — 52 /2 . d ’ S "
—ﬁZIHL-——)—.l—{—S)anE”—ZKHS" (3.5.3)
Uk* 5
vrz /4 Q
o = (1 + ¢) (Z S’e) 8L (3.5.4)
% Kﬂ” Pn, Sl;ll
0 3L, —HLi+Ly) +ils | 2L, —L; —L; Lo+Ly
1 W(Ly+Ly) —81(L,+Ly) 4L, +7L, —9L, —8L, |—5L, 4L, +2L,
2 | —or, +SA(L,+L,) —17L, |—10L, +-5L,+141, —3L, —6L, +L,+3L,
3 —55(Ly--L4) +283(L,+-L,) —15L, +6L,+23L, —7L,+ L,
4 —125(L L) SREEY N —921L, +7L, —8L,
5 — % (L +Ls) —28L, -
6 —348], — —
3.6. Bodies with Cusped Nose and Tail End (e.g., Figs. 5, 6).—-
p = k(1 — (1 — &) (M, + M.& + Mg} (3.6.1)
Flx) = o1 — £2)° . Z M, (3.6.2)
Uy 2(1 — ¢ )1/2 ”en S ” |
“OEe=InT (1 —8) 2 P& — > K€, (3.6.3)
2 2
v 2 W en . n
g = (1 5).(20 S, 5) .SZOMnf (3.6.4)
% K“ll Pn ” S"I 124
0 2AM, —33M, 3M, —M, M,
1 M, 9M, —8M, L9M,
2 | —sah, +85M, | —15M, +17M, —7M,
3 —as1)7, —21M, —8M,
4 125 M, —£3L)M, —28M, -
5 925 Q_Ml o .
6 s3]/, — —
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4. Examples.—4.1. General Remarks.—The purpose of the twelve examples given below is,
first of all, to exhibit the effects of fundamental geometric characteristics on the velocity
distribution. It was not intended to produce shapes for immediate practical application, and
only four bodies considered (shown in Figs. 7, 8, 12 and 14) may pretend to resemble those used
in design. It may be seen, however, that the modest analytical means utilized in this report
are amply sufficient for representing any required shape and for determining quickly the
corresponding velocity distribution. ‘

The accuracy of the method has been tested on the first example, that of ellipsoids of revolution,
for which a simple exact solution exists. It appears (Iig. 16) that the accuracy is very satisfactory
for small thickness ratios (up to @ = 0-16, say) but it deteriorates gradually for further
increasing 9 : e.g., the error for ¢ == 0-28 is quite appreciable (see Fig. 17). Nevertheless, the
diagrams of velocity distribution in all examples have been determined up to ¢ = 0-28 (for
seven different values of thickness ratio in each case). It is believed that, in spite of poorer
accuracy at higher values of ¢, the diagrams should be at least qualitatively correct, and instruc-
tive as to the general trend of changes.

4.2. Elongated Ellipsoids of Revolution (Figs. 3, 16, 17).—The equation of the meridian line is:

p =91 - 72 .. .. . o .. .. . Lo (4.2.0)
which is a particular case of (3.1.7), with:
k= B,=1; Bi=By,=....=0. ce . o (4.2.2)
The formulae (3.1.10) and (3.1.11) give:
v, 2 1N ' ,
——7—(7:192<1n5~i~j§—2>, .. .- .. .. .. .. . (4.2.3)
2,7 A .

The graphs are given in Figs. 3 and 3a. It is seen that the contribution of radial velocity com-
ponents is of little importance in this case and, of course, the effect on the maximum super-
velocity ratio is nil. The latter occurs at & = 0 and amounts to:

) |
6_—_.(AV/U)maX:WOnﬁ——l). e oL (4a25)

The exact formula for ¢ in this case is derived in the Appendix, and the exact and appropriate
numerical results compared in Figs. 16 and 17.

4.3. Simple Symmetrical Bodies with Pointed Nose and Tail End (parabolic meridian line;
Fig. 4).—-The equation of the meridian line is:

p=29(1—¢&, .. . . . . . . . .. (4.38.0)
which is a particular case of (3.3.1), with: A i
k== Ey=1; ' E,=E,=...=0. . .. e .. (4382

The formulae (3.3.3) and (3.3.4) yield:

Ve __ g2(1 _ 9e2 2 —3): 433
— 35)(21110(}_52)1/2 3); (4.3.3)
0,2 ,

o 9% o (484
oU : | : 4.54)
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The graphs (Figs. 4 and 4a) show that the con tribution of v, 1s more apprec1ab1e The maximum
supervelocities still occur at § = 0 for small and moderate thickness ratios but, at # = 0-28, a
small concavity makes appearance on the curve of Fig. 4a. If 4 is not large, the maximum
supervelocity ratio is given by:

a::w(2m§—4g. L (45&

This is appreciably more than (4.2.5), especially for very small values of #, but not for ¢ = 0-28.

44. Simple Symmetrical Bodzes with Cusped Nose-and Tail End (Frg. 5).—The ordinary
(semi-cubic) cusps are obtained by putting:

p =81 — &3, .. . . . . .. . . o (4.4.0)
which is a particular case of (3.6.1), with:
k=M,=1; M, =M,=0. . . . .. .. (44.2)
The formulae (8.6.3) and (3.6.4) yield:
vx 2 2 2
—F= 19’2[3(1 — &)1 — 58%) lnm — (21 — 188&* 4 12554)] .. (4.4.3)
2 9 '
%ﬁ—imﬂl~yy O ¢ )

The graphs are given in Figs. 5 and 5a. It is seen that the contribution of v, is important,
especially for larger values of ¢#. If this contribution were neglected, we should obtain the
paradoxical result represented by the curves of (— v,/U) in Fig. 5, where the maximum super-
velocity seems to increase with ¢ only up to about ¢ = 0-21, and to decrease later with further
increasing thickness ratio. The Fig. 5a shows that, for large values of #, the maximum super-
velocities occur in front of and behind the position of maximum thickness, while there is a
considerable slowing down of the flow at the thickest central part of the body. Such a behaviour
should be expected in this case. The true maximum supervelocity always increases with #.
It is clear that the shape of Fig. 5b is disadvantageous at high . '

If # is not large (up to about 0-20), the maximum supervelocity ratio is cbtained by putting
& =0 1in (4.4.8), and we have: ‘

2 21 | |
5=W@m5—1 R F

for higher values of #, no simple expression for é can be found.

It may be noticed that, contrary to the two previous examples, the supervelocity does not
become (— ) at & = 4 1, but remains finite negative: :

( l_il"”_QW L o (4.4.6)

This was to be expected, as a cusp is not a stagnation point. The approximate method applies
at the cusp, while it faﬂs at a rounded or pointed nose.

4.5. Suvmple Symmetrical Bodies with Strongly Cusped Nose and Tail End (Fig. 6).—We obtam
stronger cusps by raising the power of (1 — &%) in the equation of meridian line once more, 7.e.,

by putting :
p =01 —&)2. .. .. .. . .. .. . . .. (45.1)
13



This is again a particular case of (3.6.1), with:
k=DM,=1; M, =0; My=—1. .. .. .. . .. (4.5.2)
We get from (3.6.3) and (3.6.4):

v, PR 2 23, 343
—jrzﬁPu—g)am%)matjﬁm—(g—ﬁﬁh+m%h—5€ﬂ;m5&
wz 252 2

577 = 89%%(1 — ). O O )

The graphs will be found in Figs. 6 and 6a. They are similar to the previous ones, with even
more exaggerated features, The maximum supervelocity occurs at & = 0 only when ¢ does not
exceed about 0-16, and only then 6 is represented by the simple formula:

2 23 ' ’
a:ﬂ(4m5~§-... oL (455)
The negative supervelocity ratio at both cusps is now :
Qﬁfzﬂnn_ﬁa... e .. 458

4.6. Simple Bodies with Rounded Nose and Pointed Tail End (Figs. 7, 8).—A family of such
bodies may be defined, e.g., by the following equation of the meridian line:

p = kO(L + &)1 4 2&)(1 — &)V2, .. .. .. .. . .. (4.8.1)
4 being an arbitrary parameter which permits to vary the position of maximum thickness.
Denoting by # the value of ¢ at which p becomes maximum, we find easily :
3m — 1

and the distance of the thickest cross-section from the nose, expressed as percentage of the
length, will be:

P =080(1 —m) .. .. . .. . .. . . .. (4.6.38)
The coefficient % will be found from the formula:
/R = (1 4 m)* (1 + Am)* (1 — m) . . . .. .. . .. (4.8.4)
A few numerical values are given in the following table:
¢
(per cent) " A k2 k
20 0-6 1 0-38147 0-61763
25 0-5 0-4 0-61728 0-78567
30 0-4 0-125 0-77128 0-87823
331 1 0 0-84375 0-91856
35 0-3 —0-05405 0-87341 - (-93456
40 0-2 —0-2 0-94190 0-97052
45 0-1 —0-34146 0-98435 0-99214
50 0 —0-5 1 1

The formula (4.6.1) is a particular case of (3.2.1), with:
Dy =1; D, = 24; D, = i%; Dy=Dy,=....=0; .. .. (4.6.5)
14




hence we get from (3.2.3) and (3.2.4):

’ 2 , 2 2 2 2
— g =| (1—20—2) +8(1+ 20—z + 6(24 + 28+ 102 | . 5 1 7
1 i £’ [(1 — 42 — 22%) 4 (8 + 124 — 52%)¢ — (8 — 122 — 172%)¢*
(s =Fe D] L (468
v, [(1421) — (83— A)E — 52&4°
oU2k29e 8(1 — §) < e .- .. .. . - (4.6.7)

Two examples of this family have been considered:—
(a) 2 =0, jﬁ = 831 per cent.—In this case the formulae become particularly simple:

, 2 143 — 352] . |
L 9t | (143 » _ i .. (46
[ = 08437 [( + 30 In o sasT T g T—¢ I’ (4.68)
02 (1 — 3¢)? |
2U2 - O 10547 19 ﬁ— . .. .. .. . .« .. . (4.6.9)

The graphs are given in Figs. 7 and 7a. The most interesting feature is the location of maximum
supervelocity. It is seen that it varies considerably with thickness ratio. When the latter is
quite small, the maximum supervelocity occurs far in front of the thickest section (at about
15 per cent of the length), but it moves backwards, up to nearly 40 per cent, when ¢ increases

to 0-28.

(b) 4 = — 0-2; p = 40 per cent.—Here we have:
2
— % — 094195 [(1-36 +1-68¢ — 2166 4 0-48%) . In (g — 625 (T F 7
172 4 048 — 4728 4 3-97338° — 0- 73%35} 46.10)
Zd S . s
b 0-11778%0-6 — 3-2¢ + &2 ‘
= . R /. S § )

The graphs (Figs. 8 and 8a) are similar to the previous ones, but the maximum supervelocities
are somewhat smaller (not appreciably exceeding those for elhpsmds Fig. 3a), and their location
varies only very little with thickness ratio.

4.7. Simple Bodies with Rounded Nose and Cusped Tail End (Iig. 9).—Let us consider the
simplest meridian line of the type required, s.e., put in (3.4.1):

H,=1; H =H,=....=0; kR=1. o .- o .o (47.0)
The equation of the meridian line is then:
p = Ro(1 + &)(1 — )2, N € W &)
and the abscissa corresponding to the maximum ordinate is easily found: '
m = 0-5, whence p = 25 per cent. .. . .. .. . .. (47.3)
The coefficient & is:
B — 1 — 0-76980 , and % = 0-59259 . L (474

(1 + m)(1 — m?)*/?
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The formulae for two supervelocity components are obtained from (3.4.3) and (3.4.4):

U, I 2 1 — 9¢ — 3£ + 953} i
— = == 0-592599* | 6 1 .. 7.
U 059259 L 1+ 4) n0-7698?9(1—}—§) T 1—¢ ’ (4.7.5)
v 0-206830°%(1 4 &)(1 — 2¢)*
208 1 —¢ '
The graphs are given in Figs. 9 and 9a. The contribution of v, is rather significant in this case.
The effect of the cusp, as compared with the pointed tail end (Figs. 7a and 8a), is to produce a

wide region of considerable negative supervelocities in the rear of the body, and to increase the
peak supervelocity appreciably.

(4.7.6)

4.8. Nearly Cylindrical Symmetrical Bodies with Rounded Nose and Tail End.—A simple
example of such bodies (Fig. 10b) is obtained by putting:

p =91 — g2 =o{(1 — &)(1 + &P, .. .. . . .. (4.87)
This is a particular case of (3.1.7), with:
B=1; B,=B;,=1; By=DB; = By=....=0. . .. (4.8.2)
The formulae (3.1.10) and (8.1.11) give:
v, 2 1 — 128 + 954]
— Zx 92| Ge? ; .. . . .. 8.
vyz _ 2928
R T (4.8.4)

The Figs.. 10 and 10a show the supervelocity distribution. The curves are very different from
all the previous ones. The maxima occur near the nose and tail end, and there is a considerable
slowing down of the flow near the centre, especially for small thickness ratios. For larger 4,
the concavity becomes less conspicuous and finally disappears so that, for instance, at ¢ = 0-32,
the maximum occurs at & + 0.

There is a strikingly simple formula for the supervelocity at ¢ = 0: :
(AV|U)ezo =9, .. . .. - .- . . . .. (4.8.5)

but the practical meaning of this formula is small. The true maximum may be several times
greater than this. Only for large ¢ (from ¢ = 0-28 upwards, say) may (4.8.5) be considered as
an approximate maximum, but we cannot expect a good accuracy for such high thickness ratios.

4.9. Nearly Cylindvical Symmetrical Bodies with Pointed Nose and Tail End (Fig. 11).—The
equations of meridian lines for such bodies may be obtained irom (3.3.1) by choosing
the coefficients E, in such a way that as many derivatives of (3.3.1) as possible become = 0
at & = 0. This means that a certain (odd) number of coefficients S,” (in sub-section 3.3) must
be = 0. The simplest case is obtained by putting:

k=1, E,=1;, E,=2; E=E=0. .. .. S (49.0)

The equation of the meridian line then becomes:

p == (1 — £3(1 -+ 2&)7/ . . (4.9.2)
(see Fig. 11b), and the formulae (3.3.3) and (3.3.4) yield:
Uy ge 2 a 2 3 . 2 1_25 1 :l
ﬁ~"0ﬁm§ :mgnnﬁu+f£_2ﬁuf+<ﬁ 426 + = & 493
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20 14 28
The graphs are given in Figs. 11 and 1la, and are instructive. For small ¢’s, the velocity
distribution does not differ much from that in the previous examples, there being again concavities
in the curves, due to the quasi-cylindrical part. For medium values of ¢ the concavity disappears,
and the maximum A4V occurs at § = 0. For still higher values of thickness ratio, the curves
become very irregular, with additional sharp maxima and deep narrow concavities in the front
and in the rear (due to the blunt pointed tips).

v,? 1892&¢ N . . .. .. .. .. .. .. (494)

At & = 0, we have again an extremely simple formula for the supervelocity:
(AV U)oy = 59, .. .. e .. .. . .. .. (4.9.5)

and this is, approximately, the maximum supervelocity ratio for large ¢’s (upwards of 0-16,
say), but not for small 9’s.

4.10. Nearly Cylindrical Bodies with Rounded Nose and Pointed Tail End (Fig. 12).— This is
an important case, because shapes of this kind are often used in design. The equation of the
meridian line must be a special case of (3.2.1). Suppose that the maximum ordinate corresponds
to & = m. We have to fulfil the requirement that, at £ = m, at least three (or possibly 5, 7, etc.)
derivatives of (3.2.2) become equal to 0. The simplest solution of this kind can be obtained by
keeping only four coefficients D,, D,, D,, D, different from zero, thus:

p = 91 + E){(1 — &)(Dy + Dif + Dyt® + Dy, S ... (4100)
whence: : .
%%=ﬂ+£—?~ﬂWHJM+Df+mﬂl oL (4102

It may be proved* that, if the coefficients D,, D,, D,, D; are:
Dy =14 m — 4m® — 4m® 4 8m* + 15m® — 20m°, )
D, = —1—m+ 4m* 4+ 16m® — 39m* - 45m° ,

Dy = 2 4 2m — 26m® 4 34m® — 36m* h o - (4103)
Dy = — 2+ 10m — 10m® + 10w,
then the first derivative of (4.10.2) becomes:
%%:AG+QW—HWL—LQ, L 4104
where :
- Jo=38 — 9m + 15m* — 5m®; Ji=3(1 — dm + 5m® — 5m?) , .. (4.10.5)

so that F'(mb) = 0, and also F"(mb) = 0 and F”(mb) = 0. The geometrical conditions are
thus satisfied. The coefficient % is found easily:

/B = (1 4+ m)® (1 — m)(Dy, + Dy + Dyn* + Dgn®) , . . .. (4.10.8)
or better: ’
1k = (1 — #®)* {1 + m}'/? . . . .. V. . .. (4.10.7)
The formula (3.2.3) becomes:
—_ L = —_ 2 1 2 2(1 - 52)1/2 . 1 s ! En
g 2m — &) (Qy - 016 + 0% . In - T—: EO: K, &, .. (4.10.8)

* The algebraical work required is rather long but does not present any fundamental difficulties.
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where : : ‘
Qo =9 — 27m + 39m* — 15m* — 10m*, )

01 = — 10(3m — 3m® - Tm® — 3m?) | } L (4109)
Q.= — 15(1 — Sm  Sm* — 5m®), - I
and : ‘
Ky = — 1-5 4 1-5m + 37-5m* — 101-5m° + 153m* — 75m° — 20m®,

K,’=1-5—855m -+ 214 -5m* — 158-5m® — 45m* 4+ 316m® — 60m?® ,
K," = 42 — 60m — 321m? - 601m® — 855m* + 225m° + 60m° ,
K, = — 42 4 376m — 627m* + 521-66 . . m® + 15m* — 405m°
K, = — 62-5 + 92-5m | 347-5m? — 494-166 . . m* + 660m* , l
K, = 62-5(1 — 5m + 5m* — &5m®) .

The formula (8.2.1) yields:

o 20m — &) (Jo — L,&)*
ST~ (1= 8)(Dy & Dif + Dyf + Do) .. .. . .. .. (4.10.11)

One particular case has been studied in detail, corresponding to the value:

m =02 (i.e.,p = 40 per cent). . e . . .. (4.10.12)
In this case we have:

k= 0-990528; £*= 0-981146;

]

A4

.. (4.10:10)

I

Dy = 1-01632; D, = — 0-96; D,=1-5744; D,= — 0-32;

Qo =5-024; Q,=5-312; Q= — 2-4; A (4.10.13)
K, = — 0-20248; K, = — 8-26304; K, = 20-67584; K, — 12-1873;

K, = —32:9973; K, =10; J,=176; J, —0-48. J

The meridian line is traced in Fig. 12b, and the velocity distribution curves in Figs. 12 and 12a.
It is seen that the quasi-cylindrical part again produces concavities in the curves when ¢ is small.
For larger ¢, these concavities disappear. Another concavity appears then in the rear, but it is
much milder than in Fig. 11a, the pointed tip being less blunt in this case.

4.11. Symmetrical Bodies with Central Waist, Rounded Nose and Tail End (Fig. 13).—It has
been suggested®® that a wing-fuselage junction could be designed to advantage by shaping the
fuselage as a body with a waist located so as to coincide with the region of greatest supervelocities
of the Toot region of a swept-back wing, so that they would be compensated by the reduced (or -
even negative) supervelocities caused by the waist. The problem is complicated by the mutual
interference of the wing and body. The first step for a solution is obviously to examine the
velocity distribution over ¢ waisted * bodies taken alone, and one of the simplest examples is the
symmetrical body of Fig. 13b which may be represented by the equation of the meridian line:

p = ko(1 — &2 (1 4- »&%), .. . . .. . .. .. (411.0)
this being a particular case of (3.1.7). We have then: |
By=1; By=2v; B,=1+";, Bi=By=B,=B;=0. .. .o (4.11.2)
The maximum p will occur at & = 4 s, and it is easily found that:. '
m={(2v — 1)/8»}'*, or » = 1/(2—3m*) . .. .. ce e .. (4.11.3)

The value p.., must be equal to 4, whence:
Ve = (1 — m?)" (1 4 vm®) = 3(1 + »){(1 + v) [y} = 21 — m®)**(2 — Bm?) (4.11.4)
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and, the value p, at the waist (for & = 0) being equal to %9, the coefficient % is simply the
“ constriction ratio’ p,/pmax- : ~ : :

The two contributions to the supervelocity are obtained from the formulae (3.1.10) and (3.1.11),
by using the table following them and the expressions (4.11.2). We get:

_ Uy _ . o 2\ £2 264 _2__
o _.{(1 %) & (120 — 6s2)£* -+ 150% ].h1kﬁ(1%_w§3
. 1 . 1 1 2 ___64 2\e2
T:—EZ{<1 4v—1—1v>—|—<24v §V>é_:
191 ;1o Ne 125 ). | 4115
| —}—<4 Y 181))5 wa},.. .. .. .. .. .. . .. ()
vt 82y —1 -3 L (4118)
AP 31 — &

The numerical computation has been done for one particular case only, z.e., v = 1-4, so that:
m = (3/7)'/* = 0-65465; 1/k = 16/4/175 = 1-20949 ,

constriction ratio Lo . .. (4.11.7)
k= 0-82680; R* = 175/256 = 0-68359 , J, '

and we have:

— %= 0 [(1:8 — 5-04¢" — 20-4¢) o P 12D
. . 9. 2 __ . 4 . 6 C
L4 2msb§ﬁs+m%ﬂb_ A %5 § )
- | ,
ﬁpzﬁwymg_zmwafgy R 3 § )

The graphs are given in Figs. 13 and 13a, and they exhibit some interesting features. When the
thickness ratio is small, then the maximum supervelocities are located very near to the nose
and tail end, well outboard of the positions of maximum thickness, but they move considerably
inboard (and beyond maximum thickness) with increasing #. Owing to the strong constriction
in the waist, the supervelocities fall deeply towards the centre section where they become
approximately nil, or even slightly negative at medium thickness ratios. This is paid for,
however, by the serious penalty of, comparatively, very high maximum supervelocities, much
higher than in Fig. 8 or Fig. 10. This unpleasant fact is due to the fully rounded end parts of the
body which resemble halves of a much thicker body. The feature could be avoided by extending
the end parts much further outboard, but this would mean a considerable reduction of thickness
ratio in any given case, 7.e., an excessive length for a given maximum diameter. If considerable
negative supervelocities at the waist centre were aimed at, an even stronger constriction would
be needed, but then the maximum supervelocities would Become even higher, unless a further
extension of the end parts were applied. It is also doubtful whether a deep constriction would
be acceptable for constructional reasons, so it is seen that there are serious difficulties to overcome
in this sort of design. The problem may be further studied by adding more terms in (4.11.1).

4.12. Bodies with Rounded Nose, Pointed Tail End, and a Shallow Waist (Fig. 14).—The
previous example was chosen in order to exhibit the aerodynamic properties of a deep waist in
a simple and characteristic case. The shape .of Fig. 13b, however, is far from suitable for.a
fuselage. In a real design, there will never be a fore-and-aft symmetry, and the tail end will be
pointed. Such shapes may, of course, also be represented by suitable. algebraic equations,. but
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the calculations become more complicated. Only one, comparatively simple, case will be analysed
here, as illustrated by Fig. 14b. The two maximum diameters of the body are assumed equal,
one of them located at mid-axis, and the other one in the front, at & = . Only a shallow waist
can then be obtained in between, if a simple function is to be used, and excessive local curvature

avoided. A suitable equation of the meridian line will be a particular case of (3.2.1), and may be
written thus:

p="=0(1 + E(1 — &)1 — & + D,&* + D)1/, .. . . .o (4120)
which corresponds to the assumption:
k=1, Dy=1, D,=—1, D,=D;=0, .. . .. .o (4.12.2)

while two parameters D, and D, can still be chosen freely. The form of (4.12.1) ensures that
p becomes maximum at & = O (provided D, < 2). Assuming now that the second maximum
is at &§ = m, and is equal to the first one, we obtain, after some calculation :
D:2+2m—7m2——m3+2m4_ D:—2—|—4m+m2—m3
: (1 4 m)(1 — m?)? ’ o (1 + m)(1 — m?)?
The abscissa £, corresponding to p, (minimum at the waist) will then be the smaller root of the
equation :
3(2 —4dm —m® + m’)E, — (6 — 3m — 6m® + m® + 2mh)E, + (Bm — Bm® - 2mY) =0, (4.12.4)

and will be found to be only slightly greater than 3 ; the minimum radius p, will be determined
by substituting ¢, into (4.12.1). '

(4.12.3)

The two contributions to the velocity will be found from (3.2.3) and (3.2.4); where the co-
efficients should be calculated from the table following those formula, under assumptions

(4.12.2) and (4.12.3).
The numerical computation has been performed for one case m = 0-6, so that:
_ 565 425
2 — 51_2 ) D3 - 5—12 b
and we obtain a very weak constriction ratio:
pof® = 0-986 .

D6, =0-822, .. .. .. .. .. (4125)

The final formulae for the supervelocity contributions become:
v, 4-59 — 29-7& — 22-32£* 4 99¢&° + 63-75¢&4 2(1 — gyre

In

 Ust 512 P
2-049 — 29-769¢ + 5-538&% 4+ 987428 — 194758 — 53-1255 (4.12.7)
- 2-048 (1 — &) ’ o
v _ 22562 (0-6 — &)? (0-53 — 1:31& — 0-85¢)° L (4128)

2U%* ~ 102-4 (1 — £)(0-512 — 0-512F 1 0-565&° - 0-4258°) °

The graphs are given in Figs. 14 and 14a. It is seen that the maximum supervelocities are
generally even greater than in the previous case (Fig. 13a), not to mention the comparable cases
shown in Figs. 7a and 12a. At the same time, the effect of the shallow waist is much smaller
than in the previous case, the reduced supervelocities in the waist region being always positive
and not inconsiderable. A striking feature is that the region of smallest supervelocities travels
fast backwards with increasing thickness ratio, up to far behind the waist. The problem merits
further examination, and may be studied by varying the numerical values of coefficients in
(4.12.1), or possibly adding more terms.
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5. Practical Conclusions.--Although the material assembled in the previous section and
illustrated by Figs. 3 to 14 does not pretend to exhaust all geometric and aerodynamic possibilities,
several general conclusmns may be drawn from the examination and companson of the results
so far obtained :—

(a) The most striking feature ot the diagrams is the wide dsversity of the supervelocity diagrams.
All bodies considered are more or less  streamlined ’, and yet the diagrams. differ considerably
from each other. In many cases, an apparently smooth meridian curve leads to a definitely
disadvantageous velocity distribution. This shows that the ‘ designer’s eye’ may not suffice
for avoiding aerodynamically faulty design, and that a preliminary investigation of each projected
body by means of the method suggested may prevent faults and help to obtain better results.
The application of the method requires a representation of the meridian line by an algebraic
equation, but this is always to be recommended and, apart from a little elementary algebraic
work, does not mean any limitation in practice.

(b) The above conclusion is reinforced when we consider the effect of thickness. It has been
mentioned already in the Introduction and section 2 that the velocity curves for different values
of 4 are generally not similar. Now, the examples show that they may change with ¢ in quite
an unexpected way (Figs. 4, 5, 6, 10, 11, 13). The number-of maxima and their location may be
altered, and a profile, excellent at small #, may become bad at large ¢ (Fig. §5); or vice versa
(Fig. 12) It is no longer possible, as in wing theory, to scale up the velocity distribution in any
simple manner with thickness ratio.

(c) The contribution of v,, neglected heretofore by all approximate methods, is seen to be quite
important not only theoretically but, in many cases, in a very tangible way. In some examples
(Figs. 4, 7 to 9, 10, 12, 13) the effect is only quantitative, e.g., widening the region of positive
supervelocities without affecting the general course of curves or changing their maxima appreci-
ably; but, in some other cases, the contribution of v, alters the picture beyond recognition,
e.g., moving the position of maximum supervelocity or even revealing new and higher maxima
(Figs. 5 and 5a, 6 and 6a, 11 and 1la, 14 and 14a). This contribution should therefore not be
neglected.

(d) The number, positions and values of the supervelocity maxima, important both from the
point of view of critical Mach numbers and of the behaviour of the boundary layer, is affected
by both the shape of meridian line and the thickness ratio. The maximum supervelocity ratio
8 for a given ¢ varies in a wide range, and this variation is best exhibited in the comparative
diagram of Fig. 15, where 6 is plotted against ¢ for all twelve shapes examined. The curves often -
cross each other. The maxima not seldom occur far from the points of maximum thickness, and
may be located in front of or behind them, often depending on #. For some cases, as those of
Figs. 4, 5, 6, 10, additional broken lines in Fig. 15 show the local munima actually occurring at
maximum thickness points, as against the maxima which are located elsewhere. It may be
mentioned that the ellipsoids of revolution present the lowest maxima at all thickness ratios, and
this shape seems to be most advantageous from this point of view (although usually inapplicable
because of other considerations), similarly as the ellipse in two dimensions. It is advisable to
try to use shapes for which the maxima exceed only slightly those of ellipsoids, especially for
high subsonic operation. It is generally required in addition, both for low and high speed, that
there should be only a single velocity peak, as far back as possible, followed by low adverse slope.

(e) The effect of shaping the nose and tail end is, of course, considerable. This may be studied
in all examples, but some of them (Figs. 4 to 6, 9 to 11) have been presented mainly with the
purpose of exhibiting these effects. It is seen that cusps, in spite of their apparent advantage
of being not stagnation points and therefore seemingly ‘ very streamlined ’, do not produce any
advantage. They do not contribute even to reducing the adverse slope of velocity curves, while
causing unwanted reversed peaks at the very ends (Figs. 5, 6, 9) and often, especially at high ¥,
they result in high (sometimes split) maxima (Figs. 5 and 6). This may be explained by the fact
that the air, having encountered little impediment initially, must then break through past the
rapidly increasing thickness. At high ¢, the region of maximum thickness is comparatively
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sheltered, and thus exhibits the unexpected ‘semi-stagnation’. The cusps are, of course,
undesirable for constructional reasons, but they may be considered as extreme representatives
of regions of strong curvature which, accordingly, should also be avoided. As to the rounded
and pointed extremities, they do not produce widely different effects for otherwise smooth profiles
(Figs. 3, 4, 7, 8), the former being normally recommended for noses, the latter for tail ends. The
Ppointed tail end may, however, cause considerable additional peaks when combined with nearly
-cylindrical middle-bodies of large thickness ratios (Figs. 10, 11, 12).

(f) A particular interest should be attached to nearly cylindrical bodies (Figs. 10, 11, 12).
They are often used because of attractive constructional features. Qur Figures show, however,
that their velocity curves are not quite satisfactory. At small or moderate ¢, they show definite
‘ semi-stagnation ’ regions in their cylindrical parts, with undulating course; those vanish,
curiously, at high ¢, but reappear more threateningly near the pointed extremities (Figs. 11, 12).
A particular warning should be given against strictly cylindrical shape with affixed rounded or
pointed ends, because, as known, the discontinuities of curvature cause particularly bad velocity
curves, with vertical inflexion tangents.

(g) As mentioned in connection with examples 4.11 and 4.12 (Figs. 13, 14), the semi-stagnation
in middle parts may be sought on purpose, by introducing central or eccentric waists, aiming
at an advantageous solution of the wing junction. The aim of reducing supervelocities locally
may thus be attained, with no theoretical limits, at the cost, however, of considerable rise in
- maximum supervelocities elsewhere. The problem is complicated and requires a very careful
and difficult investigation, if critical Mach numbers are to be appreciably reduced without causing -
troubles with boundary layer and local burbles.

(b) The new method will find a wide scope when applied to compressible subsonic flow past
bodies of revolution. This subtle problem has caused a good deal of controversies (R. & M.
19097 and 2624', and Ref. 14), but at present may be regarded as solved by the generalized three-
dimensional simalarity law in its specific form for axially symmetrical flow. According to this;
the compressible flow at Mach number M past a given body (thickness ratio #) may be obtained
from the incompressible flow past an ‘ analogous * body of a smaller thickness ratio #(1 — M2/
by increasing the induced axial velocity components (v,) in the ratio 1/(1 — M?), and the radial
ones (v,) in the ratio 1/(1 — M??2. A fortunate coincidence is that the latter’s contribution to
AV is proportional to v,°, hence increases in the same proportion as v, and therefore the
resulting velocity curves all belong to the same families of ‘incompressible’ curves as calculated
- in our examples. The critical Mach numbers may thus be calculated simply on the general
- lines of Ref. 15, but it is not proposed to enlarge on the subject here.
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- LIST OF SYMBOLS -

Area of the cross-section of a body of revolution
Coefficients, see (8.1.2)

Coefficients, see (3.1.7)

Half-length of the body of revolution
Coefficients, see (3.2.1)

Constant, see (A.5)

Coefficients, see (3.3.1)

Eccentricity of an ellipsoid of revolution

" Function of x expressing 7%, see (2.2)

Coefficients, see (3.4.1)

" Definite integrals, see (2.14)

Portmanteau symbols, see (4.10.5)
Coefficients, see (3.1.5)
Coefficients, see (3.2.3) and (3.4.3)
Coefficients, see (3.8.3), (3.5.3.) and (3.6.3)
Coefficient, see (3.1.2)
Coefficients, see (3.5.1)
Coefficients, see (3.6.1)
Value of & at which » becomes maximum
Constant, see (A.19)
Index, see (3.1.4)
Coefficients, see (3.1.10)
Coefficients, see (3.4.3)
Coefficients, see (3.6.3)
Auxiliary variable, see (2.13)
Coefficients, see (4.10.9)
Local source intensity per unit length
Distance, see Fig. 1 ‘
Coefficients, see (3.1.11)
Radial co-ordinate of a point on the body surface
7 for an ellipsoid of revolution
Coefficients, see (3.2.4)
Coefficients, see (3.3.4)
Coefficients, see (3.5.4)
Coefficients, see (3.6.4)
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LIST OF SYMBOLS—continued
Coefficients, see (3.4.4)

Undisturbed velocity of the air flow

Resultant velocity

Induced velocity

Radial component of v

Axial component of v

Axial co-ordinate of a point on the body surface, positive forwards
Axial co-ordinate of a source element on the axis
Angle of slope of a tangent to an ellipsoid
Maximum supervelocity ratio, see (4.2.5)
Curvilinear co-ordinate, see (A.2)

Value of ¢ on the surface of an ellipsoid

Angle, see Fig. 1

Thickness ratio

Parameter, see (4.6.1)

Curvilinear co-ordinate, see (A.2)

Parameter, see (4.11.1)

Non-dimensional axial co-ordinate
Non-dimensional radial co-ordinate

Minimum value of p at the waist

Velocity potential, see (A.4)
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APPENDIX
Estimate of Accuracy of the Method for Ellipsoids of Revolution

It has been proved in section 2 that, when using our method for thin bodies of revolution, the
boundary conditions on the surface are satisfied with only small errors of the order #* on the
local slope which is itself small of the order #; also, that the velocity v,, itself small of the order
92 In ® and 92, is determined with errors of the order #*In ¢ and ¢*. This seems quite satisfactory.
It is desirable, however, to compare numerically the approximate solution with an exact one,
at least for one particular shape of not very small thickness ratio, to see how far they agree and
what numerical differences take place. A specimen body with rounded nose would be particularly
suitable, because then F"{x) has no upper bound within the range (— & < x < ), and therefore
treating its mean value K (in formula 2.15) as small of the order 4* may seem doubttul.

Only very few exact solutions have been obtained by potential theory for bodies of revolution
with meridian lines expressible by simple algebraical functions. A comparatively easy case is
that of elongated ellipsoids of revolution, and its exact solution, due to Heine, and considered
by H. Lamb?, is used below to deduce convenient formulae for velocity distribution.

The semi-axes of the ellipsoid being b and #6 (Fig. 8b), and the distance OF (from the centre
to a focus) being denoted by be, where -

eccentricity e = (1 — %), whence ¢ = (1 — &)*%, .. . . (Al)

auxiliary curvilinear co-ordinates ¢ and y are introduced, connected with the cylindrical ones
x and 7 by the relationships

x == beCy ,
C=1L0<pu<l) » . .. .- (A.2)
,},2 — 6262(@2 . 1)(1 _— [u2)

2

© = const. are hyperboloids of two sheets, of semi-axes beu and be(1 — p*)*/%.  The given ellipsoid
corresponds to ¢ = ¢,, where: ‘ ‘

ty=1e. .. .. P 0: %))

The loci ¢ == const. are elongated ellipsoids, of semi-axes el and be((® — 1)'/*; while those

The velocity field produced by the motion of the ellipsoid with a uniform velocity U in the direction ‘
of the positive x axis is then (see Ref. 1, page 132, form. 4):

Ube . g+ 1
(I):——-—E—ILL<C1HC_1—~2>, . . - N . (A4)
Vvhe:ge the constant £ is:
2, Lo+1 2% 14
E:C(,Zwlﬁlnco—lml—ﬁ_lnl—e' (A.5)

The velocity components v, and v, at an arbitrary point in space are obtained by differentiating
(A.4) partially with respect to x and 7:

e Ube 41 2 N 1 a,q 3
A T_[”Onc—l_c?‘—l 55—}_<51n:—1 2)57’ |
o0 Ube ¢ +-1 2c \ 3¢ &1 du f (8.6)
_ == el - - ‘——‘-———2 - .
A i [MOnC—l Ep— aﬁF(“nc_-l )ayl J
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The partial derivatives of ¢ and ;¢ with respect to » and » are determined by differentiating the
system (A.2) partially, while considering first » and then x as constants:

G /.L(Cg — 1) ' i &(1 — u®) . w
ax bG(CZ ~—:;;§5 ! 8x be(Cz — u?) |
3} A b . .. (A.7)
oL ot o wo__
or 52‘82({,‘2 . [L‘z) ’ ayr T bzez(é«z . ,LLz) . J
Introducing (A.7).into (A.6) and simplifying, we get:
Uy (+1 2 b
—E.(—f:lné‘—l—&’“,“w l (AS)
Lo % <1—p&2>1"2 !} .. . . . .. .
U™~ ¢2 — pENEE — 1 ’ j

The velocity components on the surface of the given ellipsoid (corresponding to ‘ induced velocity
components ’ of section 2) are now-found by substituting :

{=1¢to=1e, .. . .. . . e . (A.9)
and hence from the first of equations (A.2):
w=x/b=2¢, .. o . .. . .. .. (A.10)
whereupon (A.8) yield: B
v, 1 1+e. 2e :
—pmpor ), e e (A1)

v, 2e%¢(1 — EH° : : .
U EA— ([ — ¢8) .. .. . . . .. (A12)
When considering a steady flow of the air, with velocity (— U) at infinity, past the fixed ellipsoid,

v, remains as given by (A.12), while the axial component becomes (— U 4- v,), expressed according
to (A.11) and (A.5):

— U 4w, 2641 — &%)
T =T EI =& — &) . . . o .. (A.13)
The resultant velocity ¥ and its angle o with the x axis will now be given by :
14 . {(— U —I— 'Ux)z -+ 7),,2}1/2 o 26° ( 1 — 52 172 . (A 14)
U U TE1l -\ =/ Y '
and ’
v, (1 —ey)'® . & i3
tana:m:——wz;——(liﬁ 52)1/2. .« .. .. (A.15)

The latter formula shows that the boundary conditions ave exactly satisfied, and the former leads |
to the exact supervelocity ratio .

av._ V-t _ 22 1”?)W—1 ... .. (Axs)
U U T EI= A\ = eE

In Fig. 16, the graphs of (A.11) and (A.16) are traced as full curves, with £ given by (A.5), for
the thickness ratio # = 0-16 and corresponding ¢ = 0-987117. The approximate curves from
Figs. 3 and 3a, as calculated before from (4.2.3) and (4.2.4) are also shown (broken lines), and it

is seen that the agreement is very satistactory, in view of the large scale of ordinates. It may be
27
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noticed that, at the nose (¢ = 1), the formula (A.11) gives v,/U = 1, while (4.2.3) would lead
to v,/U = oo, but this discrepancy must always occur at stagnation pomts and 1s practically
ummportant The point where v, = 0 is obtained from (A.11) at

11 26 1/2
('E)”"z":?(_lni*"i)’ . . . .. . .. (A7)
and from (4.2.3)
1 ~ 172
(f)vxoi<1_—2 R 7 W T
lnq—9

the two values in the given case being 0-790 and 0-777, respectively (Fig. 186, left-hand side).
The point of zero vesultant supervelocity (AV = 0) is similarly obtained from (A.16):.

N2 . 1 1/2 N 253
(&) 0 = (N2 __22) , where N = = (A.19)
and approximately, from (4.2.3) and (4.2.4) combined :
21n 2/8 — 2\'7° :
2In 2/ — 1/ (A.20)
and the numerical values in the given case are 0-879 and 0-868 (Fig. 16, right-hand side).
The exact maximum supervelocity vatio from (A.11) or (A.16) is
1 1+fe 9
i a4V —e
6_( U max < >max_— 1 1—'|_3’ o o o (A.Zl)
1— 1—e

becoming 0 for e — 1, and 1/2 for ¢ — O (sphere), see Ref. 14, while the approximate expression
has been found as (4.2.5). For ¢ = 0-18 the two values are 0-0425 and 0-0391, respectively.
In Fig. 17, two curves represent ¢ for varying ¢, from (A.21) and (4.2.5) respectlvely It is seen
that the agreement is generally satisfactory, but it deteriorates with increasing @, as it had to be
expected. In practice the method will hardly be used for ¢ exceeding 0-2, but even for thicker
bodies the approximate velocity distribution should be at least qualitatively correct although
numerically less accurate. The approximate numerical values will normally under-estimate
the supervelocity slightly.
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Fic. 1. Infinitesimal velocity components induced on the body surface by a
source element.
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Fi1c. 2. Resultant induced velocities on the body surface.

29

D2



08

T v % Hip |
it T I e
Bl S0} ]!
S oo oet L'I,:' ]
;I I“\\\ LT ¥ .02 OEO\[\,I\“” —
i i o164 ]
H\l\ Pl e, o vz L] 'l' p/
| v y . ¥
L ////~§\\@l\\ Qf%w g ,% : 1\
Vil TR
‘1 ‘\ \\ \\\\‘ \ o ) /77;/\/,\/ % 23 0
\ = —"
l\\\\\\\/ / n \// //I'
i\ \\ \\\\ j/ /ﬂ»——“%\x(/ /) / | 002 ,
I VAN : / /
B N ,\ 008 f v, / y
PN 008 /
LA &( 7/és //l )
g \\\ SN 004 22 4 'j 004
st nreE T

=006

)
%
——

@

o
i (=]
/?
3

|

il ==

_/
——
H

i -

el

- l -G08
FIG3 : FI6. 3b

1o Ve TR

FiGs. 3, 8a and 3b. Induced velocity components and resultant supervelocities for elongated ellipsoids of revolution.




1€

i
oo
| s
\\ \\ / @; )
\\ \ / P B \
s \ 006 ole
\\\ \ \\ / . /ﬂ\\
\ \ * (13
\\ \\ Y //ﬂ / / \\
\ T2 208
\ \\ \\ \\ é /
\\ \\ \\\ 004 / A % \
L\ L~ g Y
. )/ 0 0 -0
\\\ \\ ) \ % / %\
~— \\\ }ig : 002
0
. 008 .

[

/

1 | : ——

FiG.4 ' FIG4b P (&)

|
(]
»
o

~006

\§§ JyARNBRRR!

Figs. 4, 4a and 4b. Induced velocity components and resultant supervelocities for simple symmetrical bodies Wlth
pointed nose and tail end (parabolic meridian).



|\

%;ja«z

Ol
O\

N\

~o

005
o]

-006

FIG.5 0

FIG.5b

\
\ N

002 4—

-0

-0-06

~0:08

\\\ \\vj
- e
I e - - S/

o

£

0
o343
N
Q20
RN
03]
TN
Qg
———
008
Q-04

FIG.5

32

Induced velocity components and supervelocities for simple symmetrical bodies with cusped nose
: and tail end.

Figs. 5, 5a and 5b.




ge

&

TV
U af
ol
010 s
L. L T8
/1N /N
[\ " /A
// \ 008 / \
L o]\
./ / \\‘ \\ 206 / // \\ \.
I/ ; oao\ / AL
R
/ /// \\/\ /004 LaAVAY; \// AN\
J oos AN
i / "QIG\\ \\\\
- 02028 X \
&/ﬁ/ /’_ EO W;\{% _&OB\ Q\
¢ (W 25 L N
+ 0 -
S /

K
\

-004

/I

FIG.6

02

T

010

——
—

LZ/ —

008

AN

%QE_\

=002

NN
v
\/

FIG.6b

P=1?<|—fj)a

Fics. 6, 6a and 6b. Induced velocity components and resultant supervelocities for simple symmetrical bodies with

strongly cusped nose and tail end.



Ve

~

__/
-
=
[
\ T

d
—
o Lt
=
JA
N

[N L7 =

/.
—

@
kN

AN

S

\\

2

2

N2

/
A
AR eV

N eNo N
/ I\é\\% YN

[=]

-004-

_\_
P—_—_— ]
|

~

;/ T
(A INEEAN —d ]

I M —

-0 - — P-%E I 03
FIG.7 FIG. 7b Z ()

Fi1gs.7,7a and 7b.  Induced.velocity components and resultant supervelocities for simplest bodies with rounded nose
and pointed tail end, maximum thickness at 33} per cent.




se

X

v
o
F=oes 06
0-24 \
% ~J\
Q20 -\
GRS,
T =T e <
¢ N / | ot_|
‘ 5. 1 -0-26/ / nd
| |

~
~
e
U4
~
[~
=2

I
AN

k

/ s
Ve V4

—

I/ /

|
’0'_I§__ - 02 ¢-04
”‘.\ \\\\ | e \\ /| / /} : -
NRYY/g 004 77 10 0 40

\\\\\\ N \// a4 \

s e SN - |

\\ N | 004.| > f/ ’:@L . \\\

; T “@’f;ﬁ;& —+— o0t
IR \
- N

e
e

Fics, 8, 8a and 8b.

/ ,

[ A\ I

// ) \ | sl P
I N

Induced velocity components and resultant supervelocities for simple bodies with rounded nose
and pointed tail end, maximum thickness at 40 per cent. :



9¢

!
|
| J-008
|
3

010
24
T gt KM o
L e S
Qe
“‘li'\H‘lH Je028 o0 I
| I
\ | | 5

A i
[
i
|
/
/

/

0:06

0:04

& 002

=1
X - /
o —

M/

|
|
e
W L Loos
\I \\\ \lﬁm\’ ; K -0
| | '

\S=7
=

\ | \\\ N ' \—y/
: \ £ N ‘

B

(

// FIG. ,
q p k= 0-76%80
R -+ ¥/ S

FIG.9 FIG.9b Peed (o) E

Fics. 9, 9a and 9b. Induced velocity components and resultant supervelocities for simple bodies with rounded nose
and cusped tail end, maximum thickness at 25 per cent. ’



L8

08

TEN

T I ¥-092
02
el ]l

020
\ 06

2

\\

2‘
(=]
J <
H
2o
s Bl%
&
=

Q08 028

=N

=

T T TN
H | o4 / ol
{h I N N I § 002 P
Tt e e i LN T
\ \\ | \\\\\ ™ d ji ¢ T oo
|'\\'\ \\\ o0F o 'il/l 0 5 T
. | |
) /\\ "~ W/\ i
W \\\'/y /
g ; S5 \::—Pﬁ’ ‘4 & o0

FiG.I0o

i Y S —
I

FIGIO FIGIOb P g

&
g
=)
1
—
— ]
BE—;
]

bt
-
——
e

Figs. 10, 10a and 10b. Induced velocity components and resultant supervelocities for nearly cylindrical symmetrical
bodies with rounded nose and tail end.
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Induced velocity components and resultant supervelocities for nearly cylindrical bodies with
pointed nose and tail end.
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Fics. 12, 12a and 12b. Induced velocity components and resultant supervelocities for nearly cylindrical bodies with
rounded nose and. pointed tail end, maximum thickness at 40 per cent.
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