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Summary.--A new method of determining vdocity distribution on slender bodies of revolution in axial flow is 
expounded, analogous to the linear perturbation method widely used for slender symmetrical profiles in two dimensions. 
The proposed method leads to simple approximate formulae for velocity distribution on a body, once the equation of the 
meridian line is given, either in the form of a polynomial, or a square root of one. The new method avoids many 
inconveniences of the older procedures, and is much more rapid. Although theoretically applicable to bodies of small 
thickness only, it works with satisfactory accuracy up to quite considerable thickness ratios. It  has been further 
improved by taking into account not only axial but also radial velocity components, following a suggestion of Lighthill's 
supersonic theory. It  may be easily applied to compressible subsonic flow. 

The method has been used for computing velocity distributions on twelve different bodies, of seven different thickness 
ratios (0.04-0-28) each, so as to exhibit the most characteristic features in typical cases, and especially to show some 
unexpected effects of thickness changes. Several practical conclusions have been derived from the examination and 
comparison of these results. 

The method may find useful applications in the design of fuselages, nacellesand wing junctions, and especially in 
determining critical Much numbers for such bodies. 

1. In t roduc t ion . - -Ax ia l  potential flow past bodies of revolution has been the subject of several 
rigorous investigations in theoretical hydrodynamics, and much of this work has been sum- 
marized in Chapter V of Lamb's Hydrodynamics 1. The existing rigorous solutions are not 
numerous and apply rather to some particular geometrical shapes, while it is very difficult to 
find such solutions, giving velocity potential and velocity distributions for arbitrarily chosen 
meridian lines. The inverse problem, i.e., designing meridian lines for assumed velocity distribu- 
tions, is even less tractable on the lines of the exact theory. Hence, there have been several 
a t tempts  to work out simpler methods applicable to elongated bodies suitable for airships or 
aircraft fuselages and nacelles. These methods usually followed Rankine's idea of distributing 
point sources and sinks along the axis (Ref. 1, Art. 97). Systems of isolated sources and semi- 
continuous or continuous source distributions were all tried TM, and shapes of more or less the 
required form could be obtained, and the velocities calculated, in a rather cumbrous way. An 
extremely elaborate method, based on sources and sinks in special curvilinear co-ordinates, with 
rigorous solutions by infinite series for arbitrarily assumed shapes, was worked out by Kaplan 5. 
This is highly accurate but so troublesome to apply tha t  it may be only seldom used, e.g., as 
a dependable check for simpler approximate methods. 

* R.A.E. Report Aero. 2389, received 3rd February, 1951. 
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For tile analog0us two-dimensional problem of symmetrical profiles at zero incidence, though 
admitting a comparatively easy solutiori by conformal transformation, a strikingly simple 
approximate method has been introduced by Squire 6 and others. This applies to profiles of 
small thickness ratio v~ and is based on continuous distribution of (linear) Sources and sinks 
along the chord, with three simplifying assumptions: (a) the local strength of the source 
distribution is taken to be proportional to the local slope of the profile contour ; (b) the velocity 
component v~ parallel to the chord, induced by the source system, is calculated not along the 
contour but along the chord; (c) the component v~ perpendicular to the chord is neglected. 
The procedure gives finite values, small of the order v~, of the induced velocities everywhere, 
except at stagnation points, and it is easily proved that  errors are small of the Order v ~". This  
method is a particular case of the much more general ' linear perturbation theory ', as worked 
out by Goldstein and Young (R. & M. 1909~). I t  has found application also in three-dimensional 
problems, expecially for swept-back wings at zero incidence (R. & M. 2713~t). 

An idea suggests itself, to t ry  a similar method for thin bodies of revolution, the local strength 
of source distribution along the axis having to be assumed this time as proportional to tile local 
rate of increase of the cross-section area. However, one fundamental difficulty arises, in tha t  
the axial velocity component v~, induced by such a source system, becomes logari thmical ly 
infinite on the axis itself. This makes it impossible to introduce the simplifying assumption (b) 
as above. Young and Owen tried to overcome this difficulty by calculating v~, instead of on the 
given surface, on that  of an ellipsoid of revolution of the same length and thickness ratio, and 
this led to their simplified theory (R. & M. 20718), as applied to development of high-speed or 
low-drag shapes (R. & 5~. 22041°). This theory is neither a true analogue of the two-dimensional 
linear method, nor so simple as that  one (though much simpler than Kaplan's solution) ; it leaves 
some doubts as to the order of magnitude of v, and of the errors involved, and also as to the 
effect of varying thickness ratio. Its merit is that  it can be worked both for the direct and the 
inverse problem. 

I t  is shown in this report tha t  the difficulty mentioned above can be overcome in quite a 
different way. The integral for vx, which becomes logarithmically infinite on the axis, may be 
transformed so that  only one simple term infinite on the axis remains, while the rest of the 
integral may be calculated on the axis, with all resulting simplifications. It  appears tha t  the 
total  vx induced consists of two terms, one being small of the order ~." in ~ and the other one of 
the order v ~2. Both must be taken into account, and the errors committed are of the order 
~.~ In O., 0 ,4, and higher. One important conclusion is that  the velocity distribution varies with 
~. not in proportion to any function of ~, and that  indeed the law of distribution itself may be 
modified considerably owing to a change in thickness ratio so that,  e.g., the position of maximum 
supervelocity may be shifted, or even the number of maxima altered. This is very different 
from what happens in two dimensions where supervelocities are simply proportional to ~., in 
first approximation. Tile inference bears upon the effects of compressibility (see R. & 1~{. 262412 
and Ref. 14). The comparison of the new method with that  of Young and Owen shows that  
the latter is not free from errors of the order 4~. 

The analytical procedure suggested leads to an entirely new method of calculation (section 2) 
reposing on the formula (2.24) for vx. I t  is further improved (following Lighthill 's (R. & I~L 20039) 
suggestion in connection with supersonic theory) by  introducing the radial component v~ ; this, 
being itself small of the order 0, involves a contribution of the order 0" to the resultant super- 
velocity (formulae 2.27 and 2.29). Tile method is particularly suitable when the meridian line 
is expressed by an algebraic equation, especially in the form of a polynomial, or a square root 
of a polynomial (so that  the square of the ordinate is, in both cases, expressed by a polynomial 
in terms of the abscissa). Such an equation suffices to cover practically all shapes likely to be of 
interest, including those with rounded, pointed, and cusped noses and tail ends. Explicit 
formulae, involving a large number of arbitrary coefficients, and specified for particular classes 
of bodies, are giver) in section 3. This is followed by a number of examples in section 4, 
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illustrated by Figs. 3 to 15, including some characteristic geometrical shapes and some suitable 
for fuselages and nacelles. Velocity diagrams have been computed, showing the contributions 
of v, and v, separately and the resultant supervelocity ratio A V/U, for seven different thickness 
ratios. (0.04-0.28) in each case. The results are discussed, leading to several practical conclusions, 
m section 5. An Appendix deals with the question of inaccuracies caused by larger thickness 
ratio, by comparing exact and approximate solutions for ellipsoids of revolution. 

The new method is not directly applicable for solving the inverse problem, i.e., designing 
shapes for assumed velocity distributions. This, however, should lose some of its importance, 
for the following reasons. First of all, the new method is so rapid and simple that  a great nmnber 
of shapes may be examined easily with little outlay of time and efforL and then shapes may be 
chosen to suit any realizable velocity distributions. Further, the designer has to adapt the shape 
to so many  constructional and technological requirements, that  the main question for him is to 
find out whether an otherwise convenient shape will have a reasonably advantageous velocity 
distribution, and what changes are needed to improve this distribution if necessary. For such 
purposes, the proposed method should be particularly suited. 

Acknowledgements are due to R. P. Purkiss and A. R. Beauchamp for their help in computa 7 
tional work and in preparing the illustrations. 

2. Fundame~#als of the Method.--Let us consider an arbitrary body of revolution (Fig. 1), the 
equation of whose meridian line is" 

= ~(~) ( -  b < ~  < b/ . . . . . . . . . . . . .  (2 .1)  

I t  will be convement to introduce the function" 
F ( ~ )  ~,~, . . . . . . . . . . . . . . . . . . . .  (2 .2 )  

so tha t  the area A of a cross-section at a station x will be" 
A = ~ .  F ( x j  . . . . . . . . . . . . . . . . . . . .  (2 .a)  

The first derivative of (2.2) is" 
F ' ( x ~  = 2 r .  r ' ( x )  . . . . . . . . . . . . . . . . . . .  (2.4) 

Suppose now that  the body is thin, i.e., tha t  its thickness ratio" 
~ = r ma . , / b  . . . . . . . . . . . . . . . . . .  ( 9 , . 5 )  

may be considered a.s small. Then r(x) and its derivatives are small of the order O, while F(x) 
and its derivatives are small of the order 0 5. 

We consider the flow of an ideal incompressible fluid, with undisturbed velocity U paral]el 
to the x axis and directed against it. In order to determine' the velocity distribution on the 
body surface, we assume tentat ively tha t  the disturbance due to the presence of the body is 
equivalent to that  produced by a continuous distribution of sources and sinks along the axis. 
Denoting by q(~) the local source intensity (per unit length) at a station 2, where the area is ./i, 
we may write, as a first order approximation" 

d2i  
q(~) = .--  u d ~  - -  ~ .  u .  F ' ( ~ )  ( -  b < ~ < b) . . . . . . .  (2 .~)  

This formula is based on the assumption tha t  the resultant velocity of the flow, both outside 
and inside the body, differs little from U in direction and magnitude. The flux across any cross- 
section is then approximately U/i, and its infinitesimal increment Udfi~ must be supplied by the 
output  qd2 of the infinitesimal segment dE of the source line. 

We shall determine the two components v~ and v, oi the velocity induced by the source line 
at a point (x, r) of the body surface. An infinitesimal element of length dE induces a velocity" 

~ v  = q ( c ~ ) ,  d E  _ U F ' ( Y . ) .  d-~ ( 2 . 7 )  

4 ~ R  ~ - -  _ ~ -  • R ~ , . . . . . . . . . . . .  
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w h e r e  

R ~ = (;¢ - -  x)~ + r ~ . . . . . . . . . . . . . . .  

T h e  r- a n d  x - c o m p o n e n t s  of dv a re :  

U r F ' ( 2 ) ,  d2 
d G - - c o s O . d v  . . . .  

4 R ~ . . . . . . . . . . .  

v (~ - x ) .  F ' ( e ) .  d~ 
d v ~ =  - - s i n 0 . d v _  

4 R ~ ' " . . . .  " "" 

a n d  t he  i n t e g r a l  c o m p o n e n t s  : 

U C ~ r .  F ' ( ~ ) .  d~ 
v, = 4 J-~ {(~ - -  ~ ~¢ ~}~-  . . . . . . . . . . .  

u ;~ (~ - -  x ) .  2 ; ' (~ ) .  d~ 
v~ - 4 J-~ {(~ - x) '  + ~'}'/ '  . . . . . . . . . .  

L e t  us  i n t r o d u c e  an  a n x i l i a r y  v a r i a b l e :  
p = 2 - - x  ( t h u s d p = d 2 )  . . . . . . . . . . . . .  

a n d  a s e q u e n c e  of def in i te  in tegra l s  : 

(2.8) 

(2.9) 

(2.~0) 

. .  (2.11) 

. .  (2.12) 

. .  (2.13) 

i~-~ P~),/, (k - - o ,  1, 2, 3 , . . )  . . . . . . . . .  (2.14) 
dO 

I,~ = -/b+,l (p2 + 

B y  a p p l y i n g  t h e  t h e o r e m  of m e a n  value ,  a n d  t a k i n g  in to  a c c o u n t  (2.4), t h e  f o r m u l a  (2.11) m a y  
be  w r i t t e n "  

~,~ f°-~ rF'(x + p ) . @  ~ r'(x).r~Io ¼ rK 5 .. (2.15) U - -  - -  1 - - (b+,;)  ~ 2  7 -  r 2 )  81~ = - -  -~ - -  " ' "" 

w h e r e  K d e n o t e s  a ce r t a in  m e a n  v a l u e  of F"(x), smal le r  t h a n  t h e  u p p e r  b o u n d  of I F"(x) ] if such  
a b o u n d  exists .  

To  t r a n s f o r m  (2.12), we  shal l  wri te ,  b y  T a y l o r ' s  e x p a n s i o n :  

2;'(2) = F ' ( x  + p) = F ' (x )  + p F " ( x )  + ~ ,  p + l  ~=, (k 7- 1)! F~+ffx) . . . . .  (2.16) 

t h e  Y, d e n o t i n g  a f ini te  s u m  if F(x) is a, p o l y n o m i a l ,  or an  inf in i te  s e r i e s . i n  all o t h e r  cases. 
S u b s t i t u t i n g  (2.13) a n d  (2.16) i n to  (2.12), we  o b t a i n :  

~" ~ F'(x) ~ + ~ F"(x) z2 + ~ Z (k + 1), L+~ U -  ~ . . . . . . . . .  (2.17) 
k = l  

W e  n o w  n e e d  expl ic i t  f o r m u l a e  for t he  in t eg ra l s  (2.14). T h e  first  t h r e e  of t h e m  are easi ly  f o u n d  
as fol lows : 

f dPr~)~/~ p b - -  x b + x 
(p~ + --  r~(p~ + r~)i/2 , h ence  r~Io -.- ((b - -  x) ~ + r~) ~/~ + ((b + x) ~ + r~) ~/~ ' (2.180) 

(p~ q_ (p~ + r~)~/~ , hence  I~ = ((b + x) ~ + r~) ~/-~ - -  ((b - -  x) ~ + r~) ~/~ ' (2.18~) 

f p~dp _ P r~)~. 4- In  (p  + (p~ + r~)" ~) (p~ q- r~) ~- (p '  + . 

h e n c e  G = - -  r~Io + In ((b - -  x) 2 + r2) ~/2 - /  (b - -  x) 
((b + x) ~ + r~)~/'~ - (b + x) ' (2.18~) 
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or, expanding  in powers of r~: 

r=(b = + x =) 
r = I o = 2 - -  (b =_x=)~ . . . . .  2.19o) 

2x ; r=x(3W + x ~) 
I 1 = - -  b 2 _ x  2 (b ~ _ x 2 ) 3  

2.19~) 

I s  2 
r 2 (b= - x=) = 

. . .  (2.19=) 

All subsequent  integrals I~+=, for k ~> 1, m a y  be obta ined b y  applying the obvious recurrence 
formula : 

f p~+=@ pk+l k +  1 rSl pkdp (2.20) 
(p= + r=)=/= = k(p= + #) i /= - .  k J ( p ~  T ? a )  =/= ' ' . . . . . . . . .  

whence : 

1 { (b - x) ~÷1 ( -  b_- x)~+~ 1 k + 1 
Ik_~= - -  k ((b - -  x) ~ + rS) 1/2 - -  ((b + x) ~ + rS)~/=J - -  k 

or expanding again:  

L+~ (b - -  x ?  + ( - -  b - -  x) ~ r= I 
= k 2k (b - ~)~-= + ( -  b - 

- -  r ~ / ~ ,  . .  . .  ( 2 . 2 1 )  

x) ~-2 + 2(k + 1)I~ 1 . (2.22) 

Let us consider (2.15). The product  r=Io t ending  to 2 wi th  decreasing r, the  first term is small  
of the  order v~, while the  second one is small of the order ~3. Therefore, neglecting small  terms 
of the  order ~8 and higher, we obta in :  

v , / U  = - r ' ( x ) ,  . . . . . . . . . . . . . . . . . .  (2.23) 

and this  shows tha t  the boundary  conditions on the body suriace are satisfied, to this order 
of accuracy. 

The component  v, on the surface should now be calculated from (2.17). This would be long 
and troublesome, if exact  values of t h e  integrals I1, I=, etc., were to be computed;  also, the  
accuracy would be illusory, as the  boundary  conditions are only approximate ly  satisfied. In  
the  two-dimensional  problem, vx is s imply calculated on the x axis instead of on the wing surface, 
a n d  it is shown tha t  the  error thus commit ted  is small of the  2nd order. A similar simplification 
m a y  be a t t empted  in our problem, which means t ha t  the  exact values of the integrals I1, I=, etc., 
would be replaced by  their  respective values on the x axis (putt ing r = 0). I t  is seen tha t  this  
can be done wi th  all integrals  except I~, the  la t te r  becoming logar i thmical ly  infinite* for r = 0, 
as shown by  (2.19~). Even  I=, however, m a y  be simplified, by  rejecting in (2.19~) all terms except 
the  first one. In t roducing the simplified expressions for all integrals in (2.17), we obtain : 

v= _ ½F"(x) in 2(b~-- x~)l/~ ! ~ xF'(x)o F~+~(x) (b -- x) k + (-- b -- x)~ 1 
g • r 2 Lb ~ - -  x" + F " ( x )  - -  ~ (k + 1)! 2k " 

. . . . . . . .  (2.24) 

The first te rm is small  of the  order v ~2 in v~, all subsequent  ones small  of the  order v ~=. The 
neglected terms are small of the  order 0 4 In ~, or #4, or higher. 

* I t  i.s due to th is  t e rm only tha t  the  to ta l  v= becomes infinite on the axis. 
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The formula (2.24) is suggested as a simple means of calculating v,, especially if F(x) is a 
finite polynomial  of any degree, because then the  second term (in square bracket) becomes a 
simple algebraic function. This may  be considered to cover all meridian line shapes which have 
a practical meaning, as every such shape can be represented by a polynomial  F(x) with a great  
accuracy, whether  the  nose or tail end are rounded, pointed or cusped. Section 3 contains 
explicit formulae for several fundamenta l  classes of meridian lines, and Section 4 a number  of 
part icular  examples. 

The formula (2.24) is a counterpart  of similar (simpler) formulae relating to two-dimensional  
symmetr ica l  wing profiles (see, e.g., R. & M. 2713 u, form. !.8 and 1.14). The main difference 
is as follows. The two-dimensional  formula contains only terms of 1st order in thickness 
ratio ~, and therefore the incremental  velocities are simply proport ional  to v% One computa t ion  
is sufficient for all thickness ratios, the supervelocity diagrams for varying v~ are similar curves, 
and hence, for instance, the  position of m a x i m u m  supervelocity is independent  of #. In  the  present 
case, the  formula contains one term of the order v ~ In v~, and others of the  order v ~. There is only 
an infinitesimal difference between two orders of smallness, and clearly terms of both  orders 
must  be kept, but  v, is not  s imply proport ional  to ~ and must  be calculated separately for each 
thickness ratio. The diagrams will not  be similar curves, and the position of m a x i m u m  super- 
velocity will depend on ~. 

I t  is also seen tha t  the supervelocities on a body of revolution are generally smaller than  those 
on a profile of the  s a m e  thickness ratio in two-dimensional  flow. However,  they.  are not  
negligible except for very low thickness ratios. 

In  two dimensions, both  supervelocity components  v, and v~ are small of the same order (#) ; 
hence the  resul tant  velocity" 

( ( - -  U + v~)" + v~) 1/2 

may  be taken  as (--  U + v,), accurate to ~he order ~9, and the contr ibut ion of v, may  be neglected. 
I t  has been pointed out by Lighthill  (R. & ~ .  2003"), with reference to supersonic flow, tha t  the  
contr ibut ion of v,. must  not  be neglected in the  case of bodies of revolution, and this applies also 
in our present  problem. The resul tant  veloci ty is (Fig. 2)" 

V = ( - -  U + v,) ~ + v,?) ~/~ = U 1 - -  2 ~r -l- U~  + ~-~j . . . . .  (2 .25)  

and it is seen tha t  the second and fourth terms under  the root sign are small of comparable order 
(O ~ In # and #~, respectively), while the thi rd  one is small of higher order (v ~ In" ~) and can be 
neglected, ~re then get, to the order of #" in # and ~": 

whence" 

V = U 1 U ~- (2.26) 2U~/ . . . . . . . . . . . . . . .  

A ;7 V --  U v, z,~ ~ 
U -- g --  U ~- 2U 2 . . . . . . . . . . . . . . .  (2.27) 

and AV will be called the  approximate  resul tant  supervelocity. The first term in (2.27) is normal ly  
more impor tant ,  but  the second one may  influence the result in a not  inconsiderable way, as 
will be shown in the  examples. It  will be convenient  to represent this second term as follows. 
From (2.23)" 

v)  _ 1 Ir,(x)}~ 
2U ~ ~ . . . . . . . . . . . . . . . . . . . .  (2.28) 
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and, taking into account (2.2) and 2.4)" 

v~ 2 __ { F ' ( x ) } ~ .  . . . . . . . . . . . . . . . . . .  (2.29) 
2 u  ~ 8F(x) 

The final conclusion is tha t  the  supervelocity ratio A V / U  must  be calculated from (2.27), where 
the  first t e rm is supplied by (2.24) and the second one by (2.29). 

I t  is interest ing to compare the  new me thod  with tha t  of Young and Owen (R. & M. 207P). 
Their  procedure was based on the  same system of sources and sinks but, to avoid the infinite 
values on the  axis, they  calculated v, on the surface of the  ellipsoid or revolution" 

= - x 2 )  

of the  same thickness ratio as the  given body. They  assumed tha t  the  error thus commi t ted  
would be small. I t  will be seen by  inspecting our formulae (2.1.7-2.24) tha t  the errors in most  
terms are of higher orders and negligible (as in our method),  but  the  first t e rm in (2.24) is 
exceptional. Replacing the  true r by r,~ in this te rm means an error:: 

1-F"(x) lnr/r~ 
2 " 

which is of the  order v ~, thus not  negligible. For  an ellipsoid, F"(x)  is a constant,  equal to 
(--  20~). Even  supposing that ,  for any other body, F"(x)  does not  exceed this value (which it 
often may), we should est imate the  error as 

,~ In r/rol . 

This may  be very small when the  body differs lit t le from an ellipsoid, but  may  become significant 
iri other  cases. For instance, if the  ratio r/rol reaches the  value 2 at any point  in the  meridian 
line, the  error there m a y  become 0.69# ~, or perhaps more. The errors are often smaller than  
this, of course, and most  results of R. & 3/[. 207V, especially the  m a x i m u m  values of supervelocities, 
do not  deviate appreciably. The present  method,  however, seems to ensure bet ter  accuracy, 
is more rapid, and gives explicit formulae in each case, as will be shown in the following sections. 

3. Detai led  F o r m u l a e  f o r  Par t i cu lar  Classes o f  Bodies  o f  R e v o l u t i o n . - - &  1. General (bodies wi th  
rounded  nose a~d  tail end, e.g., Figs .  3, i0, 13) .--Assuming tha t  F(x )  is a polynomial  of the 8th 
degree or lower, and introducing non-dimensional  co-ordinates" 

• ~ = x / b ,  p = r / b ,  . . . . . . . . . .  (3 .1 .1 )  

we may write the  equat ion of the  meridian line as follows" 

p = kO(Ao +. A , ~  + A 2 ,  2 -'> . . .  - / A s $ ~ )  ~/~, • . . . . . . . . .  (3.1.2) 
~A 

k = 1 (3.1.3) . . . . . . . . .  , 

(Ao + A i m  -~- A d ~  2 + . . .  + AsmS) ~/~ ' 

m denot ing the value of $, between (-- 1) and (-1- 1), at which p reaches its maximum.  The 
function F(x )  then  becomes" 

8 

F ( x )  - -  . . . . . . . . . . . . . . . .  ( 3 . 1 . 4 )  
~ 4 = 0  

and we obtain from (2.24), after an e lementary  but  long transformation" 

v ~  In 2(1 - -  ~:~)1/2 ~ ,  n ( ~ -  1) ~-2 1 ~ o  s h" ~"~ (3 .1 .5 )  
--  - -  . A ~  - -L- 1 ~2" - -~  ' "~ '" 

" Ut&9 = P 2 2 - -  

where • 



where  the coefficients K .  are given by  the following table" 

2 - -A  2 + A a  + ~ A ,  + ~ A  s 0 

1 

2 

3 

4 

5 

6 

7 '  

8 

--½Az - -~A a -+-~A 5 +~A~ 

--12A 4 + ~ - A  6 +{-A s 

3A 3 - -% °-A 5 + ~  t-A 7 

9A 4 - -  -*- ~-~'~ A G + 7 A s  

z~,gS_xet 5 _ _  ii~9 

*~sA G - - ~ l a A  . - -~-"  8 

;~ 4 ,'3 A - -g-~  8 

The cont r ibut ion  of the v, component ,  after (2.29), becomes" 

V r2 ~l~ n-- i 

2u~k~2 - A,,~ • s Z A,,~- . . . . . . . . . . . . .  (a .~.~)  
0 

x 

The above results  m a y  be represented in a more  convenient  form. The funct ion F(x) mus t  
become 0 at the nose and a{ the  tail  end, and  hence it mus t  contain (1 --  ~) and (1 + $) as factors. 
If both  occur only once as factors of F(x), the  body  has a rounded nose and rounded tail end. 
We m a y  *hen wr i te :  

and 

r ---- kv~{(1 --  ~2)(Bo -1-- B~: + B=6:2 + Ba~ a -l- B4~ 4 -I- Bs~ 5 -+- B 6 ~ 6 ) }  1 / 2 ,  ( a . l . 7 )  

6 

F ( , )  - -  ~,2e~b=(1 - ~ ) .  ~ B,~, ,, . . . . . . . . . . . . . . .  (3 .~ . s )  
0 

We have then :  

A0----Bo, A I =  B1, A = =  B ~ - - B 0 ,  Aa---- B a - - B 1 ,  A s =  B 4 - - B = ,  ] 

A5 -= B 5  - -  B ~ ,  A .  = B e  - -  B4, A7 = --  Bs, A8 . . . .  B s ,  I "" 

and, subst i tu t ing this in (3.1.5) and (3.1.6), we obtain" 

(3~1.9) 

v, (1 --  ~)~/~ * 1 
- -  I n  " " ~ ]  P " ~ "  1 - -  ~=" ~ '  K j:", . . . . . . . .  ( 3 . 1 . 1 0 )  Uk~O, = P n = o - 7 - -  

0 
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the  coefficients K , ,  P , ,  R ,  being tabu la ted  below" 

0 

1 

2 

3 

4 

5 

6 

7 

8 

K .  

Bo --2B~ +}B~ + ~ B ~  

4Bx - - 7 B  a +}B~ 

1 7  12B~ --~AB~ + i ~ B ~  

7 9  - - 3 B  1 + ~ - B  a - -  -a#~B s 

4=607 

---~-~B~ +-~@~- ~-B~ 

-- -~%~-B~ 

_ _ 3 g : 3  B 
5 6 

P,, 

~0 - -  B2 

3(B1 - -  Ba) 

10(B a - -  B~) 

15(B~ - -  Bo) 

21B~ 

28Ba 

__L 

R.  

B 1 

2(Bz - -  B0) 

3(B a - -  B1) 

4(Ba - -  Bz) 

5(B~ -- Ba) 

6(B~ - -  B~) 

--7B5 

- -8Ba  

These results are qui te  general  and m a y  be always used, bu t  t hey  are really convenient  only if 
both  the nose and the tail  end are rounded.  If ei ther of t hem is pointed or cusped, one of the  
binomials  (1 --  ~) or (1 + ~) occurs twice ,  three  times, etc., as a factor  of F(x). The formulae 
m a y  then  be sim'plified, and the  simpler results are given below for all cases which are likely 
to have  a pract ical  meaning.  

3.2. Bodies with Rounded Nose and Pointed Tail End (e.g., Figs. 7, 8, 12, 14).---The equat ion  
of the mer id ian  line" 

p = hv~(1 -{- ~){(1 - -  ~) (Do + DI~: -+- D2~ ~ + Da~ a + D4~ ~ + D5~5)} ~/2, . .  (3 .2 .1)  
and s 

F(x) = k'~e"b=(1 + ~)=(1 --  $).  ~ ' ,  D,,~". . . . . . . . . . .  (3.2.2) 
0 

The contr ibut ions  of the  axial  and radial  superveloci ty  components  are given by" 

v, 2(1 - 7 ' .  -P K (3.2.3) U k ~ , - - l n  " "° =- 1 - - ~  ~ ~ ' " . . . . . . .  P o 

2Uak,O~-- S.U' • 8(1 - - e ) .  ~ ' .  D,#',  . . . . . . . . . .  (3.2.4) 
0 

the  coefficients being as follows" 

n K~' P,~ S,, 

0 

1 

2 

3 

4 

5 

6 

7 

D O --2D~ - - 2 D  2 + ~ D  a +-~D a + ~ v D  s 

3D o + 6 D  1 --5Do. - - : ~ D  a +½D a + ~ D  5 

- - 3 D  o +6D1 +17D2 ---I~-~D 8 ---~-D 4 + ~ D  5 

- - 9 D  1 +~S-D 2 +~.-9-D a - -~ZD 4 --SS-D s 

+* ~ ~ D +~-D~ --~-1)5 ---~-D2 -r~-- 3 

--q-~-Da + ~ D 4  + ~ D5 

--~-~-D~ 

Do--D1--D 2 

3(Do+D1--D~--D~) 

6(DI +D2--Da--D4) 

IO(D=+Da--D~--Ds) 

15(Dsq-D4--D6 ) 

21 (D4-t-Ds) 

28D~ 

Do +D1 

- - 3 D  o -t-DI-t-2D ~ 

--4D1+ D2+3Da 

--5D 2 q-Ds+4D a 

--6D a -t-D~+5D 5 

--7D~.-t-D 5 

--8D s 
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3.3. Bodies with Pointed Nose and Tai l  End (e.g., Figs. 4, 11).-- 
= ko~(~ - -  ~)(Eo + E ~  + E~# + E ~  ~ + Eo#)~/~ . .  

4 

F(~) = ~o~w(~ - # ) ; .  2 ~  E , , r '  . . . . . . . .  
0 

v~ 2(1 - -  ~)~/~ ~ 
u r ~ -  111 • ~ P , s " -  ~ . .  ~ o " ~ "  . .  . .  

.o o o 

v, (¢ ; 
2U~k@~--  S.'~" " 8  ~ .  E , ,~ "  . . . . . . . .  

0 

(3.3.~) 

(3.3.2) 

(3.3.s) 

(3.3.4) 

K "  

l 3E o --~-Ez +yEa 

11 E~ -- -'~-E ~ 

--9E o + =~E.) -- 17E~ 

T - - g - - 3  

153 - -±~E~ + - - : ~  

--:'~'-E~ 

_ _ 3 4 3  E 
~ - -  4 

P~ 

2Eo--E ~ 

3(2E~--E~) 

--6( Eo-- 2E~ + E a) 

- -  1 0  ( E ~ - -  2 E ~ )  

-- 15(E~--2E~) 

--21E a 

--2SEa 

--4E o 

El 

--5El 

+2E~ 

-~-3E~ 

--6E,,. +4Ea 

' - - - 7 E ~  

--SE~ 

3.4. Bodies with Rounded Nose and Cusped Tail End (e.g., Fig. 9) . - -  : 

- ~ ( ~  + ~){(1 - #) (Ho + H ~  + H ~  ~ - t - / -&# + H g ' ) }  ~/~ . .  
4 

F ( ~ )  = ~w,~b~(~ + ~)~(1 - ~ ) . . ~ ,  H , ~ "  . . . . . . . . . .  
0 

Uk,~@~-- In  . (1 + Q .  ~ .  P,,'~" ~ ,  K, , '~"  . . . . . .  
' P o t - - ~  o 

vT - -  (1 ~--~) T,,~:*' • 8(1 -- ~) ~ ]  H,,~" . . . . . . . . .  
2 U~k~ ~ " o 

n K j  P,,' T,~ 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

1 - - H  o - -4H 1 --~-H~ +½H~ +~-H~ 

9Ho +H1 --~-H2 --~-H~ +~H~ 

3Ho +23H1 +kTH2 --~-H3 ---½all4 

1 --9Ho +~H1 +~.'~H2 + ~ H 3  ---*-~H4 

6 5  1 3 1  --~,~-H1 ~ H  2 +73H a +-~--H~ 

1 0 9 9  

_ _ 3 ¢ 3  H 
--o T - -  4 

- -2H1--H ~ 

6H o +2H1--  5H~--3H 3 

lOHl +5H2--9H ~ --6Ha 

15Ho +9H~-- 14H 4 

21H3-[-14H 4 

28H~ 

2Ho + H1 

--4Ho + 2H1-]-2H ~ 

- -5H 1-[-2H~-l--3H 3 

--6H2-i-2H3 +4H 4 

--7Ha-+-2H, t 

- - 8 H  4 
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3.5. Bodies with Pointed Nose a~d Cu@ed Tail  E n d . - -  

- -  k~(~ - ~){ (1  + ~)(Lo + Z ~  + Z ~  ~ + L~3)}~/~ . . . . . . . .  

3 

F ( x )  --= k~O=b=(1 - -  Q=(1 + # ) " .  ~ . .  L , ,¢ '  . . . . . . . . . . . .  
0 

Uk~v~-- In . (1 + $) ~ ,  P . '$~  - -  ~ ,  K,,"#" . . . . . . . .  
t ° o o 

0 

K,," P,,' S,]" 

3Lo +{La  

(3.5.1) 

(3.5.2) 

(3.5.3) 

(3.5.4) 

0 

1 

2 

3 

4 

5 

6 

--~(LI+L~) 

11 (Lo +L1) - - ~  (z.~ +L~) 

- -9L o + ~ ( L 1  +L2) - -  17L a 

L~.X~--(I. o +L~) + ~ .  ~(L2 +Z~) 

__ 1 ~ .~ ~L + L  ~ + : ~ - ~ - L  a --~--\ i 21 

_ _  3 d: 3~.  
- - ~ - -  ~3 

2L o - - L  1 --L2 

4Lo + 7 L i  - -2L 2 - -3L a 

--IOL o + S L i + 1 4 L  2 - -3L s 

- -15L i +6L2 +23L  3 

--21L~. + TL  3 

--28La 

Lo + L i  

- -SL o + L i  +2Lo " 

- -6L  i +L~ +3L.: 

- - 7 L 2 +  L~ 

--SL~ 

3.6. Bodies with Cu@ed Nose and Tail  End  (e.g., Figs. 5, 6).--- 

p = kO(1 - -  ~2){(1 - -  $2)(Mo + M ~  + M2~)}  ~/2 . . . . . .  
2 

F(~)  = k~'b~(1 - -  ~ y .  ~ ,  M.~" . . . . . . . . . . . .  

0 

v,~ 2(1 -- ~)1/~ 4 G 
Uk, .O,=-  i n  (1 - -  ~=). Z P,,"ey" - -  Z K,,"~,, . . . . . .  

P o o 

v"2 - - ( 1  - -  ~~) S , " $ "  • 8 ~ ,  M, ,~"  
2 V2k% ~ " o . . . . . . . .  

.. (3.6.1) 

.. 3.6.2) 

.. 3.6.3) 

.. (3.6.4) 

K,," P,," S , , ,  

m 2 9  ~-Mo i~M2 

~5-M i 

--5~-Mo + ~ M ~  

~ 5 Mo --  ~-~-~-M~ 

-~aM~ 

3 ~ 3 M  2 

3Mo - - M  2 

9Mi  

- - 1 5 M  o -{-17M 2 

- - 2 1 M  1 

- - 2 8 M  2 

--6Mo 

M i  

- - 7 M r  

--8M~ 

+2M2 
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4. Examples.--4.1. General Remarks.---The purpose of the  twelve examples given below is, 
first of all, to exhibit  the  effects of fundamenta l  geometric characteristics on the  velocity 
distribution. I t  was not  in tended to produce shapes for immedia te  practical application, and 
only four bodies considered (shown in Figs. 7, 8, 12 and. 14) may  pre tend  to resemble those used 
in design. I t  ma y  be seen, however,  tha t  the  modest  analytical  means utilized in this report  
are amply sufficient for representing any required shape and for determining q.uickly the  
corresponding velocity distribution. 

The accuracy of the  me thod  has been tes ted on the  first example, tha t  of ellipsoids of revolution, 
for wtiich a simple exact solution exists. I t  appears (Fig. 16) tha t  the accuracy is very satisfactory 
for small thickness ratios (up to , 9 - :  0.16, say) but  it deteriorates gradually for fur ther  
increasing *9 : e.g., the  error for O = 0.28 is quite appreciable (see Fig. 17). Nevertheless, the  
diagrams of v e l o c i t y  distr ibution in all examples have been determined up to 0 = 0.28 (for 
seven different values of thickness ratio in each case). I t  is believed tha t ,  in spite of poorer 
accuracy at higher values of  *9, the  diagrams should be at least quali tat ively correct, and instruc- 
t ive as to the  general t rend of changes. 

4.2. Elongated Ellipsoids of Revolution 

p = .9(1 - -  P ) ' / ~  . . . . . . . . . . .  

which is a part icular  case of (3.1.7), with : 

k = = B o =  1; B I =  B ~ = : . . . .  = 0 .  

The formulae (3.1.10) and (3.1.11) give: 

vx .9~ ( ln  2 1 ~ ) ;  
U - -  .9 1 - -  " . . . . .  

(Figs. 3, 16, 17).---The equat ion of the meridian line is: 

. . . . . . . .  (4.2.1) 

. . . . . . . .  (4.2.2) 

. . . . . . . .  (4.2.3) 

v )  *92 ~2 
2 U  2 -  2 1 - - ~  . . . . . . . . . . . . . . . . . . .  (4.2.4) 

The graphs are given in Figs. 3 and 3a. I t  is seen tha t  the  contr ibut ion of radial velocity com- 
ponents  is of lit t le impor tance  in this case and, of course, the  effect on the max im u m super-  
velocity ratio is nil. The la t ter  occurs at ~ --- 0 and amounts  to:  

= (A V/U) . . . .  = .9= In $ - -  1 . . . . . . . . . . . . .  (4.2.5) 

The exact formula for a in this case is derived in the  Appendix,  and the exact and appropriate  
numerical  results compared in Figs. 16 and 17. 

4.3. Simple @,mmetrical Bodies with Pointed Nose and Tail End (parabolic meridia~z line; 
Fig. 4) . - -The  equat ion of the meridian line is: 

p = * 9 ( 1 - P ) ,  . . . . . . . . . . . . . . . . . .  ( 4 . 3 . 1 )  

which is a part icular  case of (3.3.1), wi th :  

k ---- Eo := 1; E, = E,  --= . . .  = 0 . . . . . . . . .  (4.3.2) 

The formulae 

7; x 

U 

v, = 
2U ~ 

(3.3.3) and (3.3.4) yield:  

2 - - ~ 2 ( 1 - - 3 ~  2)(21n ( l __ ~ )~ /~ - -3 )  ; 

- -  2 ~ 2 ~  , 

. . . . . . . .  (4.3.3) 

. . . . . . . .  (4.3.4) 
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The graphs (Figs. 4 and 4a) show tha t  the contr ibut ion of v, is more appreciable. The m a x i m u m  
supervelocities still occur at  ~ - 0 for small and modera te  thickness ratios but, at 4 =-- 0.28, a 
small concavi ty  makes appearance on the curve of Fig. 4a. If 0 is not  large, the  m a x i m u m  
supervelocity ratio is given by :  

( 2 3 )  . . . . . . . . . . . . . . . . .  ( 4 . 3 . s )  = :  ~ \ 2  I n  ~ - -  

T h i s  is appreciably more  than  (4.2.5), especially for very  small values of #, but  not  for 4 ---- 0.28. 

4.41 Simple Symmetrical Bodies with Cu@ed Nose and Tail End (Fig. 
(semi-cubic) cusps are obta ined by  pu t t ing :  

p = e , ( 1  - . . . . . . .  

which is a part icular  case of (3.6.1), wi th :  

k = M o = l ;  M ~ = M 2 = 0 .  

The formulae (3.6.3) and (3.6.4) yield: 

v. I U - -  4~ 3(1 - -  ~2)(1 --  5~ =) In 

v ?  _ 9 _ 

2 U  2 2 " " " 

5) . - -The  ordinary 

. . . .  ( 4 . 4 . 1 )  

. .  (4.4.2) 

2 H 

4(1 --  ~2) - - ~ ( 2 1 -  138~2 + 125#')J ., . .  (4.4.3) 

. . . . . . . . . . . . . .  (4.4.4) 

The graphs are given in Figs. 5 and 5a. I t  is seen tha t  the  contr ibut ion of v, is impor tant ,  
especially for larger values of 4. If this contr ibut ion were neglected, we should obtain the  
paradoxical  result represented by the curves of (--  v,/U) in Fig. 5, where the  m a x i m u m  super- 
velocity seems to increase with 4 only up to about  4 = 0.21, and to decrease later with further  
increasing thickness ratio. The Fig. 53 shows that ,  for large values of ~, the  m a x i m u m  super- 
velocities occur Jn front of and behind the  position of m a x i m u m  thickness, while there is a 
considerable slowing down of the  flow at  the  thickest  central  part  of the  body. Such a behaviour  
should be expected in this case. The true m a x i m u m  supervelocity always increases with 4. 
I t  is clear tha t  the  shape of Fig. 5b is disadvantageous at high #. 

If 4 is not  large (UP to about  0.20), the  m a x i m u m  supervelocity ratio is obta ined by pu t t ing  
----. 0 in (4.4.3), and we have:  

~ = 4 2  31n 4 - ; . . . . . . .  

for higher values of 4, no simple expression for ~ can be found. 

I t  may  be noticed that ,  contrary to the  two previous examples, the  supervelocity does not  
become (-- co) at  ~ = -4:. 1, but  remains finite negat ive:  

: \ AV" 
~ - U - ) ~ =  ± ,  = - -  2"2 

This was to be expected, as a cusp is not  a s tagnat ion point. 
at  the cusp, while it fails at  a rounded or pointed nose. 

. . . . . . . .  4.4.6) 

The approximate  me thod  applies 

4.5. Simple Symmetrical Bodies with Strongly Cusped Nose and Tail E~d (Fig. 6) . - -We obtain 
stronger cusps by  raising the  power o f  (1 --  ~2) in the equat ion of meridian line once more, i.e., 
by put t ing :  

p = 4 ( 1  - -  82)~ . . . . . . . . . . . . . . . . . . .  ( 4 . 5 . 1 )  
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This is again a particular case of (3.6.1), with" 

k ---- M 0  --=- 1 ;  M 1  = 0 ;  M 2  - -  

W e  get from (3.6.3) and (3.6.4)" 

Vx 
[4(1 -- ~2)~ (1  ~ 2  

U - -  
o 

V r" 
2 u  2 _ 

- - -  1 . . . . . . . . . . .  (4.5.2) 

• 7~ ~) In ~(1 --  ~2)~/~ k 3 --  77~  + 139#~ 343 _ -5-  $6 ; (4.5.3) 

. . . . . . . . . . . . . . . .  (4.5.4) 

The graphs will be found in Figs. 6 and 6a. They are similar to the  previous ones, with even 
more exaggerated features. The m a x i m u m  supervelocity occurs at ~ --: 0 only when ~ does not  
exceed about  0- 16, and only then  ~ is represented by the  simple formula" 

( ~ - - - - ' 0 2  41n~ -- . . . . . . .  

The negat ive supervelocity ratio at both cusps is now" 

(AV) _ 1642 
U -  ~ = ~  15 . . . . . . .  

. . . .  (4.5.5) 

. . . .  (4.5.6) 

4.6. S imp le  Bodies  wi th  Rounded  Nose  and Poin ted  Ta i l  E n d  (Figs.  7, 8) . - -A family of such 
bodies may  be defined, e.g., by the  following equat ion of the  meridian line" 

p - k ~ ( 1  + #)(1 -}- 2~)(1 --  #)~/~ . . . . . . . . . . . . .  (4.6.i) 

2 being an arbitrary parameter  which permits  to vary  the position of m a x i m u m  thickness. 
Denot ing by  m the  value of ~ at which p becomes maximum,  we find easily • 

3 m - -  1 
=: 2 + m - -  5 m  ~ . . . . . . . . . . . . . . . .  (4.6.2) 

and the distance of the  thickest  cross-section from the nose, expressed as percentage of the 
length, will be" 

p --= 5 0 ( 1 -  m) . . . . . . . . . . . . . . . . . .  (4.6.3) 

The coefficient k will be found from the  formula:  

2 = :  (1 + (1 + (1 - 

A few numerical  values are given in the following table:  

P 
(per cent) 

20 
25 
30 
33~- 
35 
40 
45 
5O 

0 .6  
0-5  
0-4  

1 
3 

0-3  
0"2 
0"1 
0 

1 
0 ' 4  
O" 125 
0 

- - 0 '  05405 
- -0"2  
--0"34146 
- - 0 " 5  

k 2 

0.38147 
0"61728 
0-77128 
0-84375 
0-87341 
0.94190 
0.98435 
1 

. . . . . .  (4.6.4) 

k 

0"61763 
0"78567 
0"87823 
0"91856 
0-93456 
0"97052 
0"99214 
1 

The formula (4.6.1) is a particular case of (3.2.1), with" 

Do --  1; D1 = 2~; D2 = ~ ;  D3 == D~ = . . . . .  0; 

14 
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h e n c e  we ge t  f r o m  (3.2.3) and  (3.2.4)" 

v~ _ ( 1 _ 2 x _ z 2 ) + 3 0 + 2 x _ ~ 2 ) ~ + 6 ( 2 a + z ~ ) ~ . + l o x 2 ~  l ~ o ( l + x e ) ( l + ~ ? / ~  Uh%~ 

- 1 - ~ (~ - 4 z  - 2 z  2) + (3  + 1 2 z  - 5 ~ 2 ) ~  - (3  - 12~. - 1 7 ~ : ) ~ "  

3 ~'~ . . . . . . . . . . . . .  

(4.6.6) 

v~ 2 = [(1 4.- 2~) - -  (3 - -  a)# - -  5Z~2] 2 . . . . . . . . . . . .  (4.6.7) 
2UWO 2 8(1 - -  ~) 

T w o  e x a m p l e s  of th is  f a m i l y  h a v e  been  cons ide red  : 

(a) Z - -  0, p -= 33½ per ceT~t.--In th i s  case t h e  f o r m u l a e  b e c o m e  p a r t i c u l a r l y  s imple  : 

I 2 + ~))~/~ 1 4.-13~_-- 3~2]., (4.6.8) v~ _ 0 .8437502 (1 + - 3 ~ ) l n 0 ( 0 . 8 4 3 7 5 (  i - -  . .  U 

~ , /  (1 - -  3~) 2 
2 U  ~ - -  0.  10547 0 .~ (4.6.9) 1 - - ~  . . . . . . . . . . . . . .  

T h e  g r a p h s  are g iven  in Figs.  7 a n d  7a. T h e  m o s t  i n t e r e s t i n g  f e a t u r e  is t he  l o c a t i o n  of m a x i m u m  
snpe rve loc i t y .  I t  is  seen  t h a t  i t  va r ies  c o n s i d e r a b l y  w i t h  t h i c k n e s s  ra t io .  W h e n  t h e  l a t t e r  is 
q u i t e  smal l ,  t h e  m a x i m u m  s u p e r v e l o c i t y  occurs  far  in  f r on t  of t h e  t h i c k e s t  s ec t ion  (at a b o u t  
15 p e r  cen t  of t h e  l eng th ) ,  b u t  i t  m o v e s  b a c k w a r d s ,  u p  to  n e a r l y  40 pe r  cent ,  w h e n  0 increases  
to  0 .28 .  

(b) ~. --= - -  0 . 2 ;  ib = 40 per ce~,t.---Here we h a v e :  

v, I 2 U - -  0"941902 (1 .36  4- 1 .68~ - -  2 .1652 4 . - 0 . 4 ~ ) . l n  0-970520(1  - -  0-2~)(1 -t- ~)~/2 

1 .72  + 0-4~ - -  4 .72~  ~ + 3 .9733~  a - -  0 .7333~  ~] . (4.6.10) 
1 - - #  

v~ ~ _.  0.  11770~(0.6 - -  3-2~ + ~ 2 ) ~  . . . . . . . . . . . .  (4.6.11) 
2 U  2 1 - -  ~e 

T h e  g r a p h s  (Figs. 8 a n d  8a) are s imi la r  to  t h e  p r e v i o u s  ones,  b u t  t h e  m a x i m u m  supe rve loc i t i e s  
are s o m e w h a t  smal le r  (not  a p p r e c i a b l y  exceed ing  those  for  el l ipsoids,  Fig.  3a), a n d  t he i r  l o c a t i o n  
var ies  o n l y  v e r y  l i t t Ie  w i t h  t h i c k n e s s  ra t io .  

4.7: Simple Bodies with Ro~tnded Nose a~¢d C~tsped TaiZ End (Fig. 9 ) . - - L e t  us  cons ide r  t h e  
s i m p l e s t  m e r i d i a n  l ine of t h e  t y p e  r equ i r ed ,  i.e., p u t  in  (3.4.1): 

Ho = 1; H1 = H2 . . . . . .  0; k = 1 . . . . . . . . .  (4.7.1) 
Ttie e q u a t i o n  of t h e  m e r i d i a n  l ine is t h e n :  

p = k0(1 + ~)(1 - -  ~2)1/2, . . . . . . . . . . . . . .  (4.7.2) 

a n d  t h e  abscissa  c o r r e s p o n d i n g  to  t he  m a x i m u m  o r d i n a t e  is eas i ly  f o u n d :  

m = 0 . 5 ,  w h e n c e  p = 25 pe r  cen t  . . . . . . . . . . . . .  (4.7.3) 

T h e  coeff icient  k is:  

h = 1 = 0 . 7 6 9 8 0 ,  a n d  k ~ - -  0 . 5 9 2 5 9  . . . . .  (4.7.4) 
(1 + ~ ) ( 1  - m2)  1/2 
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The formulae for two superveloci ty  components  are obta ined from (3.4.3) and (3.4.4): 

i 2 1 - -  9~ - -  3~2 -¢-- 9~31 gV" __ 0.59259a~ 6~(1 + ~) in 0.7698#(1 + ~) + 1 - - ,  ; . .  (4.7.5) 

v~ ~ _ 0 .2963~(1  + ~)(1 --  2~) ~ . . . . . .  (4.7.6) 
2U ~ --  1 -- ~ . . . . . .  

The graphs are given in Figs. 9 and 9a. The cont r ibut ion  of v~ is ra ther  significant in this case. 
The effect of the  cusp, as compared  wi th  the  pointed tail  end (Figs. 7a and  8a), is to produce a 
wide region of considerable negat ive  supervelocities in the rear  of the body, and to increase the 
peak superveloci ty  appreciably.  

4.8. Nearly Cylindrical Symmetrical Bodies with Rounded Nose and Tail End.--A simple 
example  of such bodies (Fig. 10b) is obta ined by  pu t t ing :  

p = ~(1 --  ~)1/2 = 0{(1 --  ~)(1 + ~2)},/2 . . . . . . . . . . .  (4.8.1) 

This is a par t icular  case of (3.t.7), wi th :  

k =  1; B o = B ~ =  1; B I ' = B a  = B4 . . . . .  - - 0  . . . . .  (4.8.2) 

The  formulae (3.1.10) and  (3.1.11) give:  

v~ __ ~2 I 6 ~ l n  2 1 - -  12~ 2 + 9 ~ ] .  . .  . .  (4.8.3) 
u - + 1 - ' " " 

W ~ -- 2#~° - (4.8.4) 
2U ~ --  1 --  ~ . . . . . . . . . . . . . . . . . . .  

The F igs .  10 and 10a show the  superveloci ty distr ibution.  The curves are very  different from 
all the  previous ones. The  m a x i m a  occur near  the nose and tail end, and there  is a considerable 
slowing down of the flow near  the  centre,  especially for small thickness ratios. For  larger v~, 
the  concavi ty  becomes less conspicuous and  finally disappears so that ,  for instance, at ~. = 0.32,  
the  m a x i m u m  occurs at ~ + 0. 

There is a s t r ikingly simple formula  for the superveloci ty  at  ~ -- 0:  

(AV/U),=o = ~ 2 ,  . . . . . . . . . . . . . . . . . .  (4.8.5) 

bu t  the  pract ical  meaning  of this formula i s  small. The t rue  m a x i m u m  m a y  be several t imes 
greater  t han  this. Only for large ~ (from ~ = 0 .28  upwards,  say) m a y  (4.8.5) be considered as 
an approximate  max imum,  bu t  we cannot  expect  a good accuracy for such high thickness ratios. 

k 

The equation 

P 

(see Fig. l lb ) ,  

V. 

U 

4.9. Nearly Cylindrical Symmetrical Bodies With Pointed Nose and Tail End (Fig. l l ) . - - T h e  
equat ions of mer id ian  lines for such bodies m a y  be obta ined from (3.3.1) by  choosing 
the coefficients E ,  in such a way  tha t  as m a n y  derivat ives of (3.3.1) as possible become = 0 
at # --  0. This means  tha t  a certain (odd) number  of coefficients S , '  (in sub-section 3.3) mus t  
be -= 0. The simplest case is obta ined by  pu t t ing :  

--  1; E 0 =  1; E ~ = 2 ;  E I = - E 3 - - 0  . . . . . . .  (4.9.1) 

of the mer id ian  line then  becomes:  

--- ~(1 - -  ~ ) ( i  + 2~) 2~/2 

and the  formulae (3.3.3) and (3.3.4) yield:  

- -  ~I (18~2  - -  30~ ~) in 2 
+ 

+ ~ - -  4 2 ~ 2 +  - ~  ~ ; 

. .  (4.9.2) 

. .  (4.9.3) 
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v , ' _ _  1 8 ~  ~ (4.9.4) 
2 U  2 - -  1 + 2 ~  ~ . . . . . . . . . . . . . . . . . . .  

The  graphs  are given in Figs. 11 and  l l a ,  and  are ins t ruct ive .  For  smal l  va's, t he  ve loc i ty  
d i s t r ibu t ion  does no t  differ m u c h  f rom t h a t  in the  previous  examples ,  the re  being again  concavi t ies  
in t he  curves,  due  to  the  quasi-cyl indr ical  par t .  For  m e d i u m  values  of ~ the  concav i ty  disappears ,  
and  the  m a x i m u m  A V occurs a t  # = 0. Fo r  still h igher  values  of th ickness  ratio,  t he  curves  
become  ve ry  irregular,  w i th  add i t iona l  sharp  m a x i m a  and  deep na r row concavi t ies  in the  f ront  
a n d  in the  rear  (due to t he  b lun t  po in ted  tips). 

At  # = 0, we have  again  an ex t r eme ly  s imple fo rmula  for the  superve loc i ty  : 

0 2 . . . . . . . . .  (4.9.5) ( ~  V l U ) ~ = o  - -  ~ , . . . . . . . . .  

and  this  is, app rox ima te ly ,  the  m a x i m u m  superve loc i ty  rat io  for large ~'s (upwards  of 0-16,  
say),  b u t  no t  for small  ~'s. 

4.10. Nearly Cylindrical Bodies with Rounded Nose and Pointed Tail End (Fig. 12) . - -This  is 
all i m p o r t a n t  case, because  shapes  of this  k ind  are of ten  used in design. The  equa t ion  of the  
mer id i an  line m u s t  be a special  ease of (3.2.1). Suppose  t h a t  the  m a x i m u m  ord ina te  cor responds  
to ~ --  m. We have  to fulfil t he  r equ i r em en t  tha t ,  at  ~ ---- m, at  least  th ree  (or possibly  5, 7, etc.) 
de r iva t ives  of (3.2.2) become equal  to 0. The  s imples t  so lu t ion  of this  k ind  can be ob ta ined  by  
keep ing  on ly  four  coefficients Do, D~, D2, D3 different  f rom zero, t h u s :  

p = ko(1 + ~){(1 - ~)(Do + D~e + D . ~  2 + D~e~} */2 , 
whence : 

F(x) _ (I + ~ -- ~- ~')(Do + D~ + D~ ~ + D~ ~) 
k ~ 2 b ~  , • 

I t  m a y  be proved* tha t ,  if the  coefficients Do, DI, D~, D3 are:  

D o  = 1 -+- m --  4m ~ --  4m ~ + 3m 4 + 15m 5 - -  2 0 ~ . n  6 , 

D ~ : - -  1 - - m + 4 m ' +  16m 3 - 3 9 m  4 + 4 5 m  5, 

D2 = 2 + 2m --  26m ~ -[- 34m 3 --  36m ~ , 
D3 ---=- --  2 + 10m --  10m 2 + 10m 3 , 

t h e n  the  first de r iva t ive  of (4.10.2) becomes :  

F'(~)  = 4(1 + ~)(~ - -  ~)~ (10 - l ~ )  
k2~2b 

where" 

1 

. .  (4 .10 .1)  

. .  (4 .10 .2)  

. .  (4.10.3) 

. .  (4.10.4) 

J o - - 3 - 9 m +  15m 2 - 5 m 3 ;  f z = 3 ( 1 - - 5 m + 5 m  2 - 5 m  8), . .  (4.10.5) 

so t h a t  F'(mb)=: 0, and  also F"(mb) - - 0  and  F~1(mb)= 0. The  geomet r ica l  condi t ions  are 
t h u s  satisfied. The  coefficient k is found  easily:  

1/k ~ = (1 + m)'~ (1 - m)(D0 + Dlr~ + D . ~  ~ + D . m ' ) ,  
or be t t e r  : 

1 / k - - ( 1  - .¢-)' {1 + ..}'/' . . . . . . . .  

The  fo rmula  (3.2.3) becomes :  

v~ --  2(m --  ~)2 (Q0 + QI~ + Q2~ ~) • in 2(1 - ~2)~/2 _ 
Uk~O '2 p 

1 5 

1 _ ~  ~o K,'~ '', 

. .  ( 4 . 1 0 . 6 )  

. .  (4.10.7) 

. .  (4 .10 . s )  

* The algebraical work required is rather long but does not present any fundamental difficulties. 
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where  : 
Q 0 = 9 - 2 7 m + 3 9 m  ~ -  15m ~ -  10m 4, ") 

/ 

Q ~ =  - 1 0 ( 3 m - 3 m  2 - [ - 7 m  3 - 3 m  4), ~ . . . . . . . . . .  (4.10.9) 

Q ~ =  - -  1 5 ( 1 - 5 m - ] - 5 m  ~ - 5 m  ~), _J 
/ 

a n d  
Ko' = - -  1 .5  -]- 1 . 5 m  -~- 3 7 - 5 m  ~ - -  1 0 1 . 5 m  a + 153m 4 - -  75m ~ - -  20m" ,  "~ 

K~' = 1 .5  - -  8 5 . 5 m  + 2 1 4 . 5 m  2 - -  1 5 8 . 5 m  a - -  45m ~ + 315m 5 - -  60m G , 

K ' 42 60m --  321m ~ + 601m 3 - -  855m ~ @ 225m ~ -}- 60n¢ 
(4.10:10) 

K3' ---- - -  42 @ 376m 627m ~ -[- 5 2 1 . 6 6  . . m 3 @ 15m 4 - -  405m 5 , "" 

K 4 '  : - -  6 2 . 5  + 9 2 . 5 m  + 3 4 7 . 5 m "  - -  494.  1 6 6 . .  m a 4- 6 6 0 ¢ # ,  

Ks '  = 62 .5 (1  =- 5m + 5m 2 -= 5m ~) . j 

T h e  f o r m u l a  (3.2.1) yields"  

~ 2 ( , ~ -  ~)~ ( J o -  L~)  ~ . .  (4.1o.11) 
2 u ~ k ~ o  ~ - (1 - ~)(Do + D ~  + D ~  + D ~  ~) . . . . . . . . .  

One p a r t i c u l a r  case has  been  s t u d i e d  in deta i l ,  c o r r e s p o n d i n g  to  t h e  v a l u e :  

m - -  0 . 2  (i.e., p =  40 pe r  cent)  . . . . . . . . . . . . .  (4.10.12) 

I n  this  case we  have"  

k = 0 . 9 9 0 5 2 8 ;  k ~ = 0 . 9 8 1 1 4 6 ;  
D o =  1 . 0 1 6 3 2 ;  D ~ = - - 0 . 9 6 ;  D ~ - -  1. 5744;  D 3 = - - 0 " 3 2 ;  
Q ~ = 5 . 0 2 4 ;  Q ~ - - 5 . 3 1 2 ;  Q ~ = - 2 . 4 ;  , .(4.10.13) 

Ko ----0"29248; K~'------8.26304; K~ ----20.67584; K3'--12"1873; 
K~'=--32.9973; K~'= I0; Jo= 1.76; Ji=0.48. 

T h e  m e r i d i a n  l ine is t r a c e d  in Fig.  12b, a n d  t h e  v e l o c i t y  d i s t r i b u t i o n  cu rves  in  Figs.  12 a n d  12a. 
I t  is seen t h a t  t i le  quas i - cy l ind r i ca l  p a r t  aga in  p r o d u c e s  concav i t i e s  in  t h e  curves  w h e n  v~ is smal l .  
F o r  l a rger  ~, t he se  concav i t i e s  d i sappea r .  A n o t h e r  c o n c a v i t y  appea r s  t h e n  in t he  rear ,  b u t  i t  is 
m u c h  m i l d e r  t h a n  in Fig.  1 la ,  t h e  p o i n t e d  t ip  be ing  less b l u n t  in  th is  case. 

4.11. Symmetrical Bodies with Central Waist, Rounded Nose and Tail E~d (Fig. 1 3 ) . - - I t  has  
b e e n  s u g g e s t e d  13 t h a t  a wing- fuse lage  j u n c t i o n  cou ld  be  d e s i g n e d  to  a d v a n t a g e  b y  s h a p i n g  t h e  
fuse lage  as a b o d y  w i t h  a wa i s t  l oca t ed  so as to  co inc ide  w i t h  t h e  reg ion  of g r ea t e s t  supe rve loc i t i e s  
of t h e  roo t  r eg ion  of a s w e p t - b a c k  wing,  so t h a t  t h e y  w o u l d  be  c o m p e n s a t e d  b y  t h e  r e d u c e d  (or .  
e v e n  nega t ive )  supe rve loc i t i e s  c a u s e d  b y  t h e  wais t .  T h e  p r o b l e m  is c o m p l i c a t e d  b y  t h e  m u t u a l  
i n t e r f e r ence  of t h e  wing  a n d  body .  T h e  first  s t ep  for a so lu t i on  is o b v i o u s l y  to  e x a m i n e  t h e  
ve loc i t y  d i s t r i b u t i o n  ove r  ' w a i s t e d  ' bod ies  t a k e n  alone,  and  one  of t h e  s imp les t  e x a m p l e s  is t h e  
s y m m e t r i c a l  b o d y  of Fig.  13b w h i c h  m a y  be  r e p r e s e n t e d  b y  t h e  e q u a t i o n  of t h e  m e r i d i a n  l ine :  

p = ko(1 - ~)1/ ,  (1 + ~ ) ,  . . . . . . . . . . . . . .  (4.11.1) 

th i s  be ing  a p a r t i c u l a r  case of (3.1.7). We  h a v e  t h e n '  

B o =  1; B ~ = 2 v ;  B 4 =  ~ ;  B I = B a =  B s = :  B 6 - ~ 0  . . . .  . . .  (4.11.2) 

T h e  m a x i m u m  p will  occur  a t  ~ = +__- m, a n d  it  is eas i ly  f o u n d  t h a t "  

m = { ( 2 v - -  1 ) / 3 @ / 2  , or ~ = 1 / ( 2 - - 3 m  =) . . . . . . . . . . . .  (4 .11.3)  

T h e  v a l u e  Pma~ m u s t  be  e q u a l  to  ~, whence"  

1/k - - (1  - -  m~)1/=(1 4 - v m  ~) = ~(1 -}- ~){(1 -]- ~)/3,}*/~ = 2(1 - -  m~)3/~/(2-- am=),  (4.11.4) 

18 



and, the  value p~ at  the  waist  (for $ = 0) being equal to kO, 
' constr ict ion ratio ' P~/P~ax. 

the  coefficient k is s imply the  

The two contr ibut ions to the  superveloci ty are obtained from the formulae (3.1.10) and 3.1.11), 
by  using the  table  following them and the expressions (4.11.2). We get : 

V~ -- ( 1 - - 2 ~ )  + (12~--6v~)5 ~ +  15~54 . i n k 0 ( 1  + v52) Uk20 ~ 

1 1 (24v 64 

+ ,4/191 ' . . . . . . . . . . . . . . .  

v, ~ _. 52(2v - - 1  -- 3v52) ~ (4.11.6) 
2U~k~O ~ 2(1 --  5 ~) . . . . . . . . . . . . . . . .  

The numerical  computa t ion  has been done for one par t icular  case only, i.e., ~ = 1.4, so t h a t :  

m - ( 3 / 7 ) 1 / ~  = 0.65465;  1 / k - :  16/~,/175 = 1 .20949,  "] 

constriction ratio f-I- . . . . . .  (4.11.7i 

k = 0" 82680 ; k a = 175/256 ---- 0" 68359,  

and we have :  

V~u --  k%a~ I (1"8 -- 5.0452 --  29.45 ~) . in kO(1 +21.452 ) 

4.11 --  2.735 ~ --  68. 395 ~ -t- 61.25561 . + 1 - -  5 ~ _ , . . . . . . . . . .  ( 4 . 1 1 . 8 )  

v'~ --  2k~v~25~ ( 0 . 9 -  2.15~)~/(1 --  5 ~) . . . . . . . . . . . . .  (4.11.9) 
2U 2 

The graphs are given in Figs. 13 and 13a, and they  exhibi t  some interest ing features. When  the  
thickness ratio is small, then  the m a x i m u m  supervelocities are located very  near to the  nose 
and tail  end, well outboard of the  positions of m a x i m u m  thicknessl but  they  move considerably 
inboard (and beyond  m a x i m u m  thickness) wi th  increasing v% Owing to the  s trong constrict ion 
in the  waist,  the  supervelocities fall deeply towards the  centre section where they  become 
approximate ly  nil, or even s l ight ly  negat ive  at medium thickness ratios. This is paid for, 
however, by  the serious pena l ty  of, comparat ively,  very  high max imum supervelocities, much  
higher  than  in Fig. 3 or Fig. 10. This unpleasant  fact is due to the  fully rounded end parts  of the  
body  which resemble halves of a much thicker  body. The feature could be avoided by  extending 
the  end par ts  much fur ther  outboard,  but  this  would mean  a considerable reduction of thickness 
rat io in a n y  given case, i.e., an excessive length  for a given m a x i m u m  diameter.  If considerable 
negat ive  supervelocities at the  waist  centre were aimed at, an even stronger constrict ion would 
be needed, but  then  the m a x i m u m  supervelocities would become even higher, unless a fur ther  
extension of the end par ts  were applied. I t  i s  also doubtful  whether  a deep constrict ion would 
be acceptable for construct ional  reasons, so it is seen tha t  there  are serious difficulties to overcome 
in this  sort of design. The problem m a y  be fur ther  s tudied by  adding more terms in (4.11.1). 

4.12. Bodies with Rou~zded Nose, Poi~#ed Tail E~d, and a Shallow Waist (Fig. 14).--The 
previous example was chosen in order to exhibi t  the  aerodynamic  properties of a deep waist  in 
a simple and characterist ic  case. The shape of  Fig. 13b, however, is far from suitable f o r  a 
fuselage. In  a real design, there will never be  a fore-and-aft  symmet ry ,  and the tai i  end will be 
pointed. Such shapes may,  of course, also be represented b y  su i t ab l e  algebraic equa t ions ,  but  
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the  calculat ions  become more  compl ica ted .  Only  one, compa ra t i ve ly  simple,  case will be ana lysed  
here, as i l lus t ra ted  by  Fig. 14b. The  two m a x i m u m  d iamete r s  of t he  b o d y  are a s sumed  equal,  
one of t h e m  loca ted  at  mid-axis ,  and  t he  o ther  one in t he  front ,  a t  ~ ---- m. Only a shal low waist  
can t h e n  be ob ta ined  in be tween,  if a s imple  func t ion  is to be used,  and  excessive local cu rva t u r e  
avoided.  A sui table  equa t ion  of the  mer id i an  line will be a pa r t i cu la r  case of (3.2.1), and  m a y  be 
wr i t t en  t hus  : 

p --= 0(1 q- $){(1 --  $)(1 --  $ -b- D=$ = q- Da~8)} 1/2 . . . . . . . . .  (4.12.1) 

which  corresponds  to  t he  a s s u m p t i o n :  

k -  1 ,  D 0 = l ,  D I = - - I ,  D ~ = D ~ - - - O  . . . . . . . . .  (4.12.2) 

while two p a r a m e t e r s  D2 and  Da can still be chosen freely. The  form of (4.12.1) ensures t h a t  
p becomes  m a x i m u m  at $ ---- 0 (provided D~ < 2). Assuming  now t h a t  t he  second m a x i m u m  
is a t  $ ---- m, and  is equal  to t he  first one, we obtain,  af ter  some ca lcula t ion:  

D 2 -  2 ~ - 2 m - - 7 m  ~ - m  3 ~ - 2 m  ~ . D a =  - - 2 ~ 4 m - t - m  ~ - m  a 
- -  (1 q- m)(1 --  m~) = ' (1 + m)(1 --  m2) 2 . .  (4.12.3) 

The  abscissa ~ cor responding  to p~, ( m i n i m u m  at t he  waist) will t h e n  be the  smal ler  root  of t he  
equa t ion :  

3(2 --  4m --  m ~ -~-m~)~ ~ --  (6 --  3m --  6m ~ + m 3 + 2m~)~ + (3m --  3m ~ + 2m ~) = 0 ,  (4.12.4) 

and  will be found  to be only  s l ight ly  grea te r  t h a n  ½m ; the  m i n i m u m  radius  p .  will be d e t e r m i n e d  
b y  subs t i t u t i ng  }.  in to  (4.12.1). 

The  two con t r ibu t ions  to  the  ve loc i ty  will be found f rom (3.2.3) and  (3.2.4); where  the  co- 
efficients should  be ca lcula ted  f rom the  table  following those  formula,  unde r  a s sumpt ions  
(4.12.2) a nd  (4.12.3). 

The  numer ica l  c o m p u t a t i o n  has been pe r fo rmed  for one case m = 0 . 6 ,  so t h a t :  

D ~ - -  565 D s - -  425 ~ - " - 0 " 3 2 2  
5 1 2 '  5 1 2 '  ' " . . . . . . .  

. .  (4.12.5) 

and  we ob ta in  a ve ry  weak  cons t r ic t ion  ra t io :  

p~/~ ~ 0- 986 .  

The  final fo rmulae  for the  superve loc i ty  con t r ibu t ions  become :  

vx __ 4 .59  --  29.7~ --  22.32~ 2 + 99~ 3 -t- 63"75~ 4 . In 2(1 --  ~)1/2 
Uv ~2 5 .12  p 

_ 2 . 0 4 9 -  2 9 . 7 6 9 ,  + 5.538~ 2 + 98.742~ 3 -  19.475~ ~ -  53.125~ ~ . . .  (4.12.7) 
2 . 0 4 s  (1 - 

v~ 2 _ 225~ 2 (0 .6  --  ~)~ (0.53 --  1,31~ --  0.85~'~) ~ . . . .  (4.12.8) 
2 U ~  '~ 102.4 (1 --  ~)(0.512 --  0 .512~ q- 0 .565~ 2 -~- 0-425~ 3) " 

The  graphs  are given in Figs. 14 and  14a. I t  is seen t h a t  t he  m a x i m u m  superveloci t ies  are 
general ly  even grea te r  t h a n  in the  previous  case (Fig. 13a), no t  to  m e n t i o n  t he  comparab le  cases 
shown in Figs. 7a and  12a. At  the  same  t ime,  t he  effect of t he  shal low waist  is m u c h  smal ler  
t h a n  in the  previous  case, t he  r educed  superveloci t ies  in the  wais t  region being a lways  pos i t ive  
a nd  no t  inconsiderable .  A s t r ik ing fea ture  is t h a t  t he  region of smal les t  superveloci t ies  t ravels  
fast  ba ckwards  w i th  increasing th ickness  ratio,  up  to far beh ind  the  waist .  The  p rob l em  mer i t s  
fu r the r  examina t ion ,  and  m a y  be s tud ied  b y  va ry ing  the  numer ica l  values of coefficients in 
(4.12.1), or poss ibly  add ing  more  terms.  
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5. Practical Conclusions.--Although the material assembled in the previous section and 
illustrated by Figs. 3 to 14 does not pretend to exhaust all geometric and aerodynamic possibilities, 
several general conclusions may be drawn from the examination and comparison of the results 
so far obtained : - -  

(a) The most striking feature oi the diagrams is the wide diversity of the supervelocity diagrams. 
All bodies considered are more or less ' streamlined ', and yet the diagrams differ considerably 
from each other. In many cases, an apparently smooth meridian curve leads to a definitely 
disadvantageous velocity distribution. This shows tha t  the 'designer's eye '  may not suffice 
for avoiding aerodynamically faulty design, and that  a preliminary investigation of each pro] ected 
body by means of the method suggested may prevent faults and help to obtain better results. 
The application of the method requires a representation of the meridian line by an algebraic 
equation, but this is always to be recommended and, apart from a little elementary algebraic 
work, does not mean any limitation in practice. 

(b) The above conclusion is reinforced when we consider the effect of thickness. It  has been 
mentioned already in the Introduction and section 2 that  the velocity curves for different values 
of ~ are generally not similar. Now, tile examples show that  they may change with ~ in quite 
an unexpected way (Figs. 4, 5, 6, 10, 11, 13). The numberof  maxima and their location, may be 
altered, and a profile, excellent at small ~, may become bad at large a (Fig. 5) ; or wce versa 
(Fig. 12). It  is no longer possible, as in wing theory, to scale up the velocity distribution in any 
simple manner with thickness ratio. 

(e) The co~#ribution of v~, neglected heretofore by all approximate methods, is seen to be quite 
important  not only theoretically but, in many cases, in a very tangible way. In some examples 
(Figs. 4, 7 to 9, 10, 12, 13) the effect is only quantitative, e.g., widening the region of positive 
supervelocities without affecting the general course of curves or changing their maxima appreci- 
ably; but, in some other cases, the contribution of v~ alters the picture beyond recognition, 
e.g., moving the position of maximum supervelocity or even revealing new and higher maxima 
(Figs. 5 and 5a, 6 and 6a, 11 and l la ,  14 and 14a). This contribution should therefore not be 
neglected. 

(d) The number, positions and values of the supervelocity maxima, important  both from the 
point of view of critical Maeh numbers and of the behaviour ot the boundary layer, is affected 
by both the shape of meridian line and the thickness ratio. The maximum supervelocity ratio 

for a given # varies in a wide range, and this variation is best exhibited in the comparative 
diagram, of Fig. 15, where ~ is plotted against ~ for all twelve shapes examined. The curves often 
cross each other. The maxima not seldom occur far from the points of maximum thickness, and 
may be located in front of or behind them, Often depending on #. For some cases, as those of 
Figs. 4, 5, 6, 10, additional broken lines in Fig. 15 show the local minima actually occurring at 
maximum thickness points, as against the maxima which are located elsewhere. It  may be 
mentioned that  the ellipsoids of revolution present the lowest maxima at all thickness ratios, and 
this shape seems to be most advantageous from this point of view (although usually inapplicable 
because of other considerations), similarly as the ellipse in two dimensions. It  is advisable to 
t ry  to use shapes ior which the maxima exceed only slightly those of ellipsoids, especially for 
high subsonic operation. It  is generally required in addition, both for low and high speed, that  
there should be only a single velocity peak, as far back as possible, followed by low adverse slope. 

(e) The effect of shaping the nose and tail end is, of course, considerable. This may be studied 
in all examples, but some of them (Figs. 4 to 6, 9 to 11) have been presented mainly with the 
purpose of exhibiting these effects. I t  is seen that  cusps, in spite of their apparent advantage 
of being ~zot stagnation points a~d therefore seemingly ' very streamlined ', do not produce any 
advantage. They do not contribute even to reducing the adverse slope of velocity curves, while 
causing unwanted reversed peaks at the very ends (Figs. 5, 6, 9) and often, especially at high #, 
they result in high (sometimes split) maxima (Figs. 5 and 6). This may be explained by the fact 
that  the air, having encountered little impediment initially, must then break through past the 
rapidly increasing thickness. At high #, the region of maximum thickness is comparatively 
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sheltered, and thus exhibits the unexpected 'semi-stagnation '. The cusps are, of course, 
undesirable for constructional reasons, ,.but they may be considered as extreme representatives 
of regions of strong curvature which, accordingly, should also be avoided. As to the rounded 
and pointed extremities, they do not produce widely different effects for otherwise smooth profiles 
(Figs. 3, 4, 7, 8), the former being normally recommended for noses, the latter for tail ends. The 
pointed tail end may, however, cause considerable additional peaks when combined with nearly 
cylindrical middle-bodies of large thickness ratios (Figs. 10, 11, 12). 

(f) A particular interest should be attached to nearly cyli~.drical bodies (Figs. 10, 11, 12). 
They are often used because of attractive constructional features. Our Figures show, however, 
that  their velocity curves are not quite satisfactory. At small or moderate ~, they show definite 
' semi-s tagnat ion '  regions in tl0eir cylindrical parts, with undulating course; those vanish, 
curiously, at high ~, but reappear more threateningly near the pointed extremities (Figs. 11, 12). 
A particular warning should be given against strictly cylindrical shape with affixed rounded or 
pointed ends, because, as known, the discontinuities of curvature cause particularly bad velocity 
curves, with vertical inflexion tangents. 

(g) As mentioned in connection with examples 4.11 and 4.12 (Figs. 13, 14), the semi-stagnation 
in middle parts may be sought on purpose, by introducing central or eccentric waists, aiming 
at an advantageous solution of the wing junction. The aim of reducing supervelocities locally 
may thus be attained, with no theoretical limits, at the cost, however, of considerable rise in 
maximum supervelocities elsewhere. The problem is complicated and requires a very careful 
and difficult investigation, if critical Mach numbers are to be appreciably reduced without causing 
troubles with boundary layer and local burbles. 

(h) The new method will find a wide scope when applied to compressible subsonic flow past 
bodies of revolution. This subtle problem has caused a good deal of controversies (R. & M. 
19097 and 262412, and Ref. 14), but at present may be regarded as solved by the generalized three- 
dimensional similarity law in its specific form for axially symmetrical flow. According to this; 
tile compressible flow at Mach number M past a given body (thickness ratio ~) may be obtained 
from the incompressible flow past an ' analogous ' body of a smaller thickness ratio #(1 -- M2) ~/~ 
by increasing the induced axial velocity components (v~)in the ratio 1/(1 -- M2), and the radial 
ones (v~) in the ratio 1/(1 -- M~) ~/~. A fortunate coincidence is that  the latter's contribution to 

V is proportional to v~ ", hence increases in the same proportion as v,, and therefore the 
.resulting velocity curves all belong to the same families of ' incompressible'  curves as calculated 
m our examples. The critical Mach numbers may thus be calculated simply on the general 
lines of Ref. 15, but it is not proposed to enlarge on the subject here. 
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Constant, see (A.5) 
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Velocity potential, see (A.4) 
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A P P E N D I X  

Estimate of Accuracy of the Method for Ell@soids of Revolution 

I t  has been proved in section 2 that ,  when using our method for thin bodies of revolution, the 
boundary conditions on the surface are satisfied with only small errors of the order 4~ on the 
local slope which is itself small of the order 4; also, that  the velocity v,, itself small of the order 
0.~ In 4 and #~, is determined with errors of the order v ~* in 4 and ~*. This seems quite satisfactory. 
I t  is desirable, however, to compare numerically the approximate solution with an exact one, 
at least tot one particular shape of not very small thickness ratio, to see how far they agree and 
what numerical differences take place. A specimen body with rounded nose would be particularly 
suitable, because then F"(x) has no upper bound within the range (-- b ~ x ~< b), and therefore 
treating its mean value K (in formula 2.15) as small of the order v ~ may seem doubt±ul. 

Only very few exact solutions have been obtained by potential theory for bodies of revolution 
with meridian lines expressible by simple algebraical functions. A comparatively easy case is 
that  of elongated ellipsoids of revolution, and its exact solution, due to Heine, and considered 
by H. Lamb ~, is used below to deduce convenient formulae for velocity distribution. 

The semi-axes of the ellipsoid being b and v% (Fig. 3b), and the distance OF (from the centre 
to a focus) being denoted by be, where 

eccentricity e = (1 -- 4~/~, , whence # = (1 -- e~) ~/2 , . . . . . .  (A.1) 

auxiliary curvilinear co-ordinates ~ and t~ are introduced, connected with the cylindrical ones 
x and r by the relationships 

X be¢# 
"X  

( ~  1 , 0 ~ < ~ < 1 )  ~. . . . .  (A.2) 
r - =  - -  1 ) ( 1  - 9 

The loci ~ ---const. are elongated ellipsoids, of semi-axes be¢ and be(C a -- 1)t/2; while those 
t, = const, are hyperboloids of two sheets, of semi-axes be¢ and be(1 -- ~"~)~/~. The given ellipsoid 
corresponds to ¢ = G, where: 

1 / e  . . . . . . . . . . . . . . . . . . .  ( A . 3 )  

The velocity field produced by the motion of the ellipsoid with a uniform velocity U in the direction 
of the positive x axis is then (see Ref. 1, page 132, form. 4)" 

Ube i, ( ¢ ln ¢ + 1  ) (I) . . . .  ~ ~ . ~  2 , . . . . . . . . . .  ( A . 4 )  

where the constant E is: 

2G ~o, + 1 2e 1 + e (A.5) 
E = ~ . o ~ _  1 - - 1 n ~ o ~ -  1 - - e  2 l n l - _ _ e  . . . . . . .  

The velocity components v~ and vr at an arbitrary point in @ace are obtained by differentiating 
(A.4) partially with respect to x and r : 

ubel ( ¢+1  
v~-- ~x E /, l n ¢ _  1 - 

2~ 0~ @ In ~ + 1 
-- g) ¢ - - 1  , Vr - -  

8~ 
0r 

Ube I~ (ln ¢. + 1  
E ¢ - - 1  
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The part ial  derivatives of g and # with respect to x and r are de termined by  differentiating the  
system (A.2) partially, wMle considering first r and then  x as constants" 

In t roducing (A.7) 

a¢ !,(~ -~- 1) ~,. ~-(1 -,,,.~) "1 
a.~ - b e ( ¢  ~ - , , , , = )  , a . ,  b e ( ¢  = - t~ ~) ' I 

k 
a ¢ _. re . at~.. r,~ I 
~ r  - -  b '~e~(¢  "~ - -  9 )  ' ~ r  - -  b ~ e ~ ( ¢  2 - .  #~) " _J 

.into (A.6) and simplifying, we get" 

. . . .  (A.7) 

- - E p = l n ¢  _ 1 ~ ¢  ~--,. .~'  I 
(A.8) 

The velocity components  on the surface o f  the g iven  el l ipsoid (corresponding to ' induced velocity 
components  ' of section 2) are now,found by  subst i tut ing:  

~" = ¢0 = l / e ,  .. 

and hence from the  first of equat ions (A.2) • 

,,, = xlb = ~ , . .  

whereupon (A.8) yield" 

v. 1 (  l q - e .  

. . . . . . . .  (A.9) 

. . . . . . . . . . . . . .  (A.10) 

2e (A. 1 1) 
1 - 7  P ~ 9 '  " . . . . . . . . . . .  

v,. %'~(1 - - ~ ' ) ' / '  (A.12) 

W h e n  considering a s teady flow" of the  air, with velocity (-- U) at infinity, past  the  fixed ellipsoid, 
v, remains as given by  (A. 12), while the  axial component  becomes (-- U -+- v~), expressed according 
to (A.11) and (A.5) : 

- v + v ,  2e ' (1  - ~') ( A . m )  
u - E ( 1 -  ~')(1 - ~'~') . . . . . . . . . . . . .  

The resultant  velocity V and its angle c~ with the  x axis will now be given b y :  

V {(=- U q- v,) ~ if- v,,~} ~/~ 2e 3 ( 1 - ~  "]~/~ .. (A.14) 
U - -  U - - - E ( 1 - - e  ~ ) \ 1  - -  e @ ~ /  "" ' 

and 
v,. (1 - -  e ' ) ' / ' .  ; ~ (A.15) 

tan  ~ --  _ U + v~ -- (1 --  72)1/~ =-- --  -(1:-- ~2)1/2 . . . . . . .  

The la t ter  formula shows tha t  the  boundary  condi t ions are exactly satisfied, and the  former leads 
to tile exact superveloci ty  ratio • 

A V F" - -  U 2ea ( 1 . - -  ~2 ~,/2 
U - -  ~ E ( i - - e  ~ ) k l - - e ~ V  --  1 . . . . . . . .  (A.16) 

In  Fig. t6, the  graphs of (A.11) and (A.16) are t raced as-full curves, wi th  E g i v e n b y  (A.5), for 
the  thickness ratio 0 = 0 .16 and corresponding e = 0.987117. The approximate  curves from 
Figs. 3 and 3a, as calculated before from (4.2.3) and (4.2.4) are also shown (broken lines), and it 
is seen tha t  the  agreement  is very satistaetory, m view of the  large scale of ordinates. I t  m a y  be 
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noticed that ,  at  tile nose (¢ = 1), the formula (A.11) gives v,/U = 1, while (4.2.3) would lead 
to vx/U = co, but  this discrepancy must  always occur at s tagnat ion points and is pract ical ly  
unimpor tant .  The point where vx = 0 is obtained from (A.11) at 

( 2e ~) 1/~ 
(¢),, =0 -- le 1 I n  ~ / i - - +  e , . . . . . . . . . . . .  ( A . 1 7 )  

and from (4.2.3): 

I , . .  . .  . . . . . . . . . .  (A.I8) 

the two values in the given case being 0-790 and 0.777, respectively (Fig. 16, left-hand side). 
The point of zero resultant supervelocity (A V = 0) is similarly obtained from (A. 16): 

( N ~ -  1~ ~/~ 2e~ . . . .  (A.19) 
(~)~v=0= N2 e~ / , where N - - E ( I _ e 2 )  ' "" "" 

and approximately ,  from (4.2.3) and (4.2.4) combined:  

~ (2 In 2/~' --  21)1/~ 
( ¢ ) ~ , v = o  - -  2 I n  2 / 0  - -  , . . . . . . . . . . . . . .  ( A . 2 0 )  

and the numerical  values in the  given case are 0.879 and 0.868 (Fig. 16, r ight-hand side). 

The exact maximum supervelocity ratio from (A.11) or (A.16) is: 

l + e  

- -  = = . . . . . .  ( A . 2 1 )  
= U m~ -U- m~ 2e 1 + e '  

1 - -  e ~  - -  l n l  - -  e 

becoming 0 for e - +  1, and 1/2 for e ~ 0 (sphere), see Ref. 14, while the approximate  expression 
has been found as (4.2.5). For ~ = 0 .16 the two values are 0.0425 and 0.0391, respectively. 
In  Fig. 17, two curves represent ~ for varying ~, from (A.21) and (4.2.5) respectively. I t  is seen 
tha t  the agreement is generally satisfactory, but  it deteriorates with increasing v~, as it had to be 
expected. In  practice the method  will hard ly  be used for 0 exceeding 0.2, but  even for th icker  
bodies the approximate  velocity distr ibution should be at least qual i ta t ive ly  correct a l though 
numerical ly  less accurate. The approximate  numerical  values will normal ly  under-est imate 
the supervelocity slightly. 
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Induced velocity components and resultant supervelocities for simple bodies with rounded nose 
and pointed tail end, maximum thickness at 40 per cent. 
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