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—To present the general theory of diffusion of antisymmetrical

concentrated end loads and edge loads* into parallel stiffened panels, ncluding the theory of bending of a parallel
stiffened panel under arbitrary transverse loads. By combining the results of this paper with the results on diffusion
of symmetrical loads given in R. & M. 19695 and R. & M. 2038° or in Appendix I to this paper it is possible to analyse
the diffusion in a parallel panel under any arbitrary load or edge stress distribution.

The methods developed in this paper permit a simplification and slight generalisation of the results obtained in
R. & M. 19695 and 2038° for the symmetrical diffusion case in a parallel panel. The relevant formulae are given in

Appendix I to this report.
An alternative approach to

(8) Conclusions.—In general diffusion in paralle
as defined by Cox (R. & M. 1860%), the ratio o o
sheet, and the ratio f of total area of stringers plus effective shee
In the particular case of a parallel panel with a given distributio
only on the parameter uf, and the shear stresses on gl and B.

Tt is shown that the effect of transverse loads on the direct stresses in a parallel panel is equivalent to that of
antisymmetrical edge loads producing the same bending moment at each section. The shear stress distributions differ
by a constant value across each section. . This difference is the shear stress produced by the shear force of the transverse

10ad system assumed uniformly distributed over each cross-section.
In all loading cases as u increases the stress distribution in the panel approaches that indicated by the ordinary

engineer’s theory.

Summary.—(a) Purpose and Range of TInvestigation.

the diffusion problem in parallel panels with given boom areas is presented in Appendix II.

1 panels is determined by three parameters : the diffusion constant u/
f total area of edge members to total area of stringers plus effective
t to the product of length of panel and sheet thickness.
n of edge stress the direct stresses in the panel depend

PART I

Tutroduction

1. Nature of Problem.—In R. & M. 1969° and 2038° the stress distribution in a stiffened panel
was investigated : both the dimensions of the panel, including its taper if any, and the system of
stresses or loads applied along its edges were assumed to be symmetrical about an axis parallel
to the length of the panel. Such symmetrical loading might be realised in the top or bottom

# The term edge loads is used to describe loads which are applied to the edge members of the parallel panel and
which act parallel to its axis of symmetry.
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panel of a tapered or-parallel box of rectangular cross-section bent about an axis parallel to the
two panels. Thus in a wing this loading condition is approached in the box formed by the two
spars and the wing cover, when the wing is bent by lifting forces about its chord.

Similarly the case of antisymmetrical edge-stress distribution which is the subject of the present
report may be exemplified in the top or bottom panels of a parallel box under transverse (drag)
loads parallel to these panels or under torsion. In the latter case if the end of the box is prevented
from warping, direct stresses are induced in the panels, and the loading system applied to each
panel can be represented by a combination of fransverse loads in the plane of the panel and

antisymmetrical edge loads. The effect of antisymmetrical edge loads is investigated in Part II
of this report.

By combining the results of symmetrical and antisymmetrical edge loads and edge-stress

distributions it is possible to analyse the general diffusion case in a parallel panel with any
arbitrary edge load and edge-stress distribution.

It may be remarked that the effect of taper could easily be included by the method used for
symmetrical edge-stress distributions in R. & M. 1969°: but it appeared preferable to restrict

the present investigation to parallel panels since by so doing the main theme could be more
fully expanded.

2. Basic Assumptions.—The problems of diffusion and bending analysed in this paper are based
on the following assumptions (Cox, R. & M. 1860

(4) that the panel has a finite number of stringers,
(b) that the effective sheet area is concentrated at the lines of attachment of the stringers,

(c) that the stringers are held apart by a closely spaced system of members, which are rigid

against compression or extension but which offer no resistance to bending in the plane
of the panel. '

The method of analysis based on the above assumption is called the ¢ finite-stringer * method.
Applications of this method to symmetrical loading cases can be found in Cox, R. & M. 1860°,
Williams and others, R. & M. 20982, R. & M. 1969° and R. & M. 2038°.

Because of assumptions (6) and (c) the shear stress at any cross-section is constant between
two consecutive stringers. Furthermore assumption (c) implies that the deflection v of the panel
is uniform across the width of each cross-section. Thus the shear stress is then given by,

g, = G{(tt,_, — u,)[b + dvjdx} .. .. .. .. .. (1)

where G is the effective shear modulus, #, is the displacement of the #th stringer in the direction
of the x-axis and at the section considered and b is the stringer spacing (see Figs. 1 and 2)

The method of analysis used in this paper is a generalisation and simplification of the method
used in R. & M. 2038° and yields simple formulae for the direct stress and the shear stress for
any number 7 of stringers at any point of the panel. The particular method of analysis when
n— oo is called the ‘ stringer-sheet * method. In this the resistance of the panel to direct load is
spread uniformly across the width of the panel. In the case of concentrated end loads the
stringer-sheet method yields the anomalous result that the shear stress in the sheet adjacent to
the edge member is infinite, whereas the finite-stringer method gives always a finite shear stress
because & is finite. This anomaly of the stringer-sheet method can, however, be eliminated by
calculating the #, displacements by the stringer-sheet method and applying formula (1) for the
computation of the shear stress. In all other applications the finite-stringer and stringer-sheet
method may be assumed as being for all practical purposes identical, provided the number of

stringers exceeds five. The agreement between the two methods is particularly good when the
edge stress of the free end is zero.
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A further question which arises is the influence of lateral strains. As stated above in both the
finite-stringer and stringer-sheet method it is assumed that the stringers and edge members are
held apart by a closely spaced system of ribs (cross-members) which are rigid against compression
or extension but which offer no resistance to bending in the plane of the sheet. Actually these
transverse members are at a finite distance and are not rigid. Approximately to represent their
actual properties it is possible to extend the conception of the stringer-sheet method also to
the lateral direction. The panel is then represented by an orthotropic plate. The general theory
of diffusion in orthotropic plates will be necessarily very complicated. Only some very simple
symmetrical diffusion problems have been investigated by this method. It has been shown that
in the case of zero edge stress at the free end of the panel both the direct stresses and shear
stresses calculated by the orthotropic plate and the finite-stringer or stringer-sheet method agree
very closely. In the case of constant edge stress the agreement for the direct stresses is still
very good. For the shear stresses the analysis shows that for a reasonably great number of
stringers (say > 10) the maximum shear stresses calculated by the orthotropic plate treatment
agree quite closely with those calculated by the finite-stringer method of this paper. For
antisymmetrical diffusion problems comparison is possible with some results of the theory of
bending by transverse loads of isotropic plates (Fine, R. & M. 2648*). Again there is excellent
agreement in both the direct stresses and shear stresses with the corresponding results of the
stringer-sheet method. ‘

It is evident, however, that even the treatment by the orthotropic plate method cannot be
termed exact. A full analysis ought to include the effect of the finite spacing of both stringers
and cross-members; the effect of buckling of the sheet and the ‘ give’ of the joints; and the
effect of the bending stiffness of stringers and cross-members when deflected in the plane of the
sheet. Even if such an extensive analysis were feasible, it would be very complicated and its
applicability limited. Therefore, taking into account the excellent agreement between the
finite-stringer method of this paper and the available results of the orthotropic plate method, it
can be assumed that from the practical point of view the results of the present investigation are
sufficiently accurate.

3. Details of Present Investigation.—In Part II a general analysis of a parallel stiffened panel
with antisymmetrical edge-stress distribution is given. It is there assumed that the panel is
under the action of concentrated end loads andjor edge loads only. Thus there is no resultant
shear force at any cross-section; both constant and arbitrary antisymmetrical edge-stress
distributions are investigated. As an application of the latter the parallel panel with constant
area edge members is analysed. For this case the effect of both antisymmetrical concentrated
end loads and arbitrary antisymmetrical edge loads is considered.

In Part III the effect of arbitrary transverse loads is investigated. It is shown that the analysis
can be reduced to that of antisymmetrical edge loads treated in Part II.

In Appendix I a slight generalisation and simplification of the results of R. & M. 1969° and
2038° with respect to symmetrical edge-stress distributions in parallel panels is given. No
derivation is included as the method is exactly the same as that of Part II of this report.

A new analysis for diffusion and shear lag in parallel panels with given boom areas is presented
in Appendix IT where it is preceded by a special introduction to which the reader is referred.

A number of diagrams at the end of the report show the variation of the moment carried by
the panel and the shear stress at the edge for various numbers of stringers and values of the
diffusion parameter ul. Two different edge conditions referring to the cases of constant edge
stress and constant area edge members respectively are shown. In the latter case the stress
distribution depends also on the ratio « of total area of edge members to total area of stringers
plus effective sheet.

3
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4. NOTATION OF MAIN REPORT and APPENDIX I

Co-ordinate measured from free end of panel (see Figs. 1 and 2)
Co-ordinate measured from axis of symmetry of panel (see Figs. 1 and 2)
Length of panel

Stringer spacing

Number of stringers

(n 4+ 1)b: width of panel

Thickness of sheet

Area of one stringer plus effective sheet

Stringer sheet thickness

Area of each edge member

2B[nA : ratio of total area of edge members to total area of stringers plus effective
sheet

Moment of inertia of edge members about x-axis

Moment of inertia of stringers plus effective sheet about x-axis
Edge stress at section x

Fourier coefficients of arbitrary edge stress distribution
Concentrated end load applied to edge member

P/B: edge stress at free end of panel

Displacements of edge members parallel to x-axis

Deflection of panel at section x

Stress in sth stringer at section x Notation of stringers is in the
Displacement of sth stringer parallel to x-axis s-system of reference (see
below). In the rth system of

Shear stress in sheet between sth and :
reference substitute # for s.

(s + 1)th stringers at section %
Average stringer stress at section x
Shear stress in the sheet adjacent to edge member at section x
Moment carried by the panel at section %

Index, referring to moments, stresses and displacements given by ordinary
engineer’s theory

Direct stress in stringer-sheet at section x and ordinate y

Shear stress in stringer-sheet .

Shear force of transverse load system

Fourier coefficient of shear force diagram

Moment of external forces at section %

Loads applied to edge members and acting parallel to x-axis
4



NOTATION OF MAIN REPORT AND APPENDIX I—continued

Fourier coefficient of edge-load distribution
Magnitude of shear stress system

nin — 1
6

Positive integer varying from 1 to »

) paf, = } witfy

Ordinal of stringers, y = sb being the distance of the stringers from the x-axis
(see Figs. 1 and 2)

s=0,4+1,4+2...4+ (n— 1)/2, when = is odd

s= ,+4% +32...4 (n—1)/2 when » is even
Ordinal of stringers and positive integer varying from 1 to #»
Positive integer varying from 1 to #»
Odd integer varying from 1 to «

Young’s modulus

- Effective (secant) shear modulus of sheet

(2/w)+/ (GbE/EA)
Diffusion parameter of Cox, R. & M. 1860

) 42
,u(% -+ 1) Sin. m
Coefficients

Set of characteristic values

sinh {2s¢,}
sinh {(n + 1)¢:}
1 [cosh{ (2s - Du} 1 }
n sinh ¢, L sinh { 7+ 1)é,} (n - 1) sinh ¢, stress functions of the
anti-symmetrical
(Nas— oz = [coth {(n + 1)¢s} coth ¢, — 1] diffusion case. :
1 1

n(n -+ 1) sinh® ¢,
cosh {2s¢,}
cosh {(n -+ 1)¢;}
1 sinh {(2s + 1)¢;}

FERE, coh (1 18] Sres fonctions of th
R _ Irtanh {(n + D} siS;n case.
( ks)s (n—1)/2 — n tanh (]Sk
e R 1
sinh™* {Qﬁ%——+ 1}

In the limiting case if #— co (stringer-sheet) the stress functions are denoted by

barred letters, e.g., Gy, H,, etc. (see also formulae (62) and (146))
Constants
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PART II

Diffusion of Antisymmetrical Concentrated End and Edge Loads into Stiffened Parallel Panels.
Zevo Transverse Load

1. General Considerations.—Consider a parallel panel stiffened by # stringers at uniform spacing
b. The length of the panel is / and the width w = (n + 1)b (see Fig. 1). It is assumed that
there is a closely spaced system of cross-members infinitely stiff against compression or tension
but offering no resistance to bending in the plane of the sheet. The edge of the panel at x = [
is held straight but the edge at x = 0 is entirely free to warp in its own plane. The displacements
» in the direction of the x-axis are functions of both x and y, but the deflections » depend only
onx. Theedgestressat y = 4 w/2is — f(x) (compression) and at v = — w/2 is -+ f(x) (tension).
This antisymmetrical edge-stress distribution may be produced by an antisymmetrical system of
concentrated end loads and edge loads on the edge members (see Figs. 1 and 2), and it is assumed
for the present that there are no transverse loads acting on the panel. The influence of transverse
loads will be investigated in Part IIT of this report. It is assumed that the effective sheet is
concentrated along the lines of attachment of the stringers, so that the shear stress is constant
over that part of any particular cross-section which lies between two adjacent stringers. A is
the area of stringer cross-section plus effective sheet. G is the effective secant shear modulus
of the sheet and E the Young modulus of stringers and edge members. There is some difficulty
in the evaluation of both 4 and G. The sheet next to the one edge member is under compression
and shear, whereas the sheet next to the other edge member is under tension and shear. Thus
in the latter case both the values of the effective sheet and secant shear modulus are higher
than in the first. Furthermore, these values vary also with x. To make the analysis feasible
it is necessary to assume uniform values of 4 and G over the whole panel.  In the case of a constant
antisymmetrical edge stress it is reasonable to make the following assumptions :

(@) An average value of G may be found on the assumption that the shear stress ¢ in the
sheet adjacent to the edge member is constant along the length of the panel and
that at x = / (built-in end) the engineering theory of bending applies. Let the moment
in the panel at ¥ = /be M. It follows that

q = M|lwt

(6) An avérage value of A may be found by calculating the effective sheet on the assumption
that the edge stress in each buckled plate (sheet) is — f/2.

For other edge-stress distributions the values of 4 and G may be estimated in a similar manner.

2. The Differential Equations.—On the basis of section 1 the analysis of antisymmetrical
diffusion may be developed as follows. With the notation of Figs. 1 and 2 the shear stress ¢, in
the sheet between the 7th and (» — 1)th stringers can be written:

Uy — U

, . dv '
q;':G T—i—%ﬁ . .. .. . . .. .. (1)

The direct stress f, in the 7th stringer is,

f,:E% Y

and the condition of equilibrium of the 7th stringers is,

af,
A%C:q,_[_lt—g,t. .. .. .. .. . .. .. _(3)



Substituting formula (1) it follows that

df, Gt
d-_i; = 14.—6 { — Uy + 2%1' - M’r—i—l}

and by differentiation,

arf, Gt '
%{EZE—Ab{_ﬁ—l—I—zﬁ—f’“} . .. . . . (4)
for » = 1 to = # with the boundary conditions f, = — Jorr = — f(%).

From the condition of zero shear load at any cross-section it follows that,

quzo. .. .. .. .. .. .. (5)

By substitution of formula (1) one finds,

dv . %1L+1 — Uy %71—}-'1 — Uy

TGS e e e (59)

where %, and #,,, are the displacements in the two edge members at the corresponding cross-
section.

By differentiation of equation (5a)
d*v 2f

= T - =15

It is worth noticing that the last formula is the same as that in the engineering theory of bending,
when the edge-stress distribution is given and the transverse loads are zero. This result is a
consequence of the assumption about the cross-members. It should, however, be borne in mind
that for given edge loads, edge-stress distribution and structure of the panel the areas of the
edge members when calculated by the engineering theory of bending differ from those calculated
by the more accurate theory of this paper. For the influence of transverse loads see Part III.

Writing, # = (2/w)+/(Gbt/EA) it follows that

(P e

Hence the differential equations (4) become,

zzézfiz(%;l2{_f’"1+2fr_fy+l}' e . (@)

The boundary conditions for f, and #%, in the x-direction are,
' at x =0, f = 0 and du,j/dx = Oforr = 1 ton
at x =/, df,/dx = 0 and u, = 0 for » = 1 to .

Furthermore there is #, = #,,., = 0 at x = /. The condition df,/dx = 0 at x = [ needs to be
reconsidered, of course, when p —> 0.

It follows from (5a) that at x =/
g, =G.duldx =0. .. .. .. .. - .. . (8)

Thus in the absence of transverse loads the shear stress at the built-in end (¥ = 1) is zero in the
antisymmetrical loading case as it is also in the symmetrical loading case. The effect of
transverse loads in modifying this conclusion is discussed in Part III.
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3. Constant Antisymmetrical Edge Stress—Consider now a parallel panel the edge members
of which are so tapered that the edge stresses are constant (— f in the upper edge member and

+ f in the lower edge member, see also Fig. 1).

As in R. & M. 1969° and 2038° multiplying the #th equation by 1, and summing with respect
tor

Zl%:—z gﬂJr}:ﬁbz(%gl2{2(~A’—1+2lr_lv+1>fr+f(11‘—M)}- . (9)

Forv=1ton with 1, = 2,,, = 0.

Choosing the A’s and o’s so that ,
dyoy + (0 — DA, + 2,,, =0 .. .. .. . .. (10

and proceeding as in R. & M. 1969°, there are # characteristic values (w;)* and # corresponding
sets of solution 4,’ which satisfy equation (9).

They are,
i

. 7l . 7
(w;)* = 4 sin® o 1 1) or ‘coi =92 SmZ(%_—}—l—)

and ) (11)
i — s
S =sin

where i takes all integral values 1 to #. The following relations of R. & M. 1969° section I1.2
will be needed in subsequent analysis,

A = — Ay, and 4 — 1,7 =2 sin 7% if 2 is even
and , . _
/1?1' — }'n—l—l—-f% and /'1_1” — 17:’ ] 0 if Z. iS Odd-
Furthermore,
> =0 if 7 is even
~ r=1
and _
= 7t s
Z 1, = cot 5 1) if 4 is odd.
4. Solution of Differential Equations (9).—For each value of 7 equation (9) can now be written,
dz y=n ) n + 1 2 r=n . ) ]
W(Z af, ) = (20) Jl of =2, 1, + it — ,1,:)} .. (©)

The general solution of (9a) is found in the form
r=n FICA ’
r=1 i

where

m:,i(%+1)sin2(7”_%-l—) R ¢ 1)

and L and M are constants. Adjusting to the boundary conditions

r=n

. a =% s
ZZ,f,:()atx=0and%c(ger,>:0a’rx=y,
8



the solution of (9a) becomes,
= " cosh p;(l — x
forzeven21f=~—fcot (%+1) ———0—55—1—1%7—)}
. (13)
for i odd > 1,/f,=0.
r=1

M=n

Multiplying now each of the equations of order ¢ by > 4,° (which as shown above is zero

m=1

for ¢ even and cot #7/2(% + 1) for 7 odd) and summing the resulting # equations we get an equation
_with the right-hand side zero.

On the left-hand side we have,

SSwSy-Z{E s
as in R. & M. 1969° we have
.=n A,70,F =2ww—0 fm =v ,
- : s (14)

> (2,) =Zsm +1 “%_51 iftm=1rw

Thus the left-hand side is _g Z #, and the equation is finally

This is, of course, an obvious result, in view of the antisymmetrical loading.

To find now the stress in the 7th stringer each of the equations of system (13) is multiplied by
A, = sin mir/u 4+ 1. By summation of the resulting » equations we get an equation with the
left-hand side fi(n + 1)/2. This follows 1mmed1atelv from the relations (14). On the right-hand

side we have

ni agr [, coshp,(l — x)
-—fZCOt 2(n + ) %_[_1{ " cosh ud }

even

Thus the stress in the 7’th stringer is

27 T cosh u;(l — x)
Flf=— 533 ZCOt w1 )Sm -]—1{1_ cosh il }

ieven

Tt can be shown that,

; 1 —2
%_*_lwzv:encot _1'_ )sinnn_t/l=%—;+1 7/f0rnoddoreven.

Hence,
mir  cosh p,(l — x)

n+1—21f 77
Flf= - n+ 1 %—I—lzzcojc —[—)Sm%—]—l cosh pl -~ .. (15)

7 even




The first term on the right-hand side corresponds to the stress distribution in the panel according
to the engineering theory of bending. It is preferable for reasons of presentation to replace
the ordinal # by the ordinal s where _
s %41 — 2r

> (16)
and to renumber the stringers positively and negatively from the centre-line of the panel.
Note that 2s/(n + 1) = 2y/w and

s=0,+1,4+2 ..., j:%glfornodd
(17)
. n— 1
s=4+4% 43 ..., + 5 for » even
+ % ; ! indicates the outer stringers adjacent to the edge members.
Continuing,
774 __[ni {n—{—l ]}_ 73 7S
sin g =sin | o | g TS| | = —cosgsing
= (— 1)***sin %nj_s  for 7 even.
. 2 . . . . :
Writing f,, = — f ¢ﬂi—1 , where f,, is the stress in the sth stringer given by the engineering theory
of bending, we have,
1 1as L2 . wts cosh p,(l — x)
— = _ i/2
flfe =1 =5 2 (= D cot gy sin 7= = qh (18)

With increasing values of x (diffusion constant) f, approaches f,, .

Substituting f, = E . du,/dx, integrating and adjusting to the boundary conditions #, = 0 at
x = [, one finds, '
_ 2sf(l — ) 211 .y ) . mis  sinh p,(l — %) :
Bu, == 7 — b1 = (T U oot g gy sing T S eosh g - 0 (19)
The engineering theory of bending indicates displacements #,,
2sf (§ — %)
E%sg = —%‘_'}_“1— .

Hence,

w l .y 2} . wis  sinh u (I — x)

w,, 1— s(l — x) z% (— D7 cot 2(n + 1) SM% T 1 uilcoshud " o (21)
The symbols for the displacements # of the edge members in the s-system are w1, and

U_minye For brevity they will be denoted from now on by #, and #, respectively. They are
given by,

Eu,= f(l — x) and Euy = — f(l —x) .. .. .. .. (22
The shear stress g, in the sheet between the sth and the (s 4~ 1)th stringer is (see equation (4))
Ugyw — Uy AV
qszg{_ﬂj——jLE} L
h @ Ly —,
where dx = (n+ Db-

10



Substituting equations (19) and (22) one finds,
2
(@) v/ (EbGA) = 2=

The maximum shear stresses occur at 4 = 0 (free end) and the ratio of the hyperbolic functions
in (24) becomes tanh p,/. It is usually permissible to put tanhu,/ = 1. This yields a simple
approximate formula for the shear stresses at x = 0.

) 7 7i(2 1
(¢.1)v/ (EbtGA) :%i 7 = (— 1) cot g, cos ;E;jl)). N )

The shear stress distribution across any cross-section is symmetrical about the x-axis and has
its maximum value in the plates adjacent to the edge members.

) - wi(2s + 1) sinh us( — 2)
= (= 1) cot gr 73 €0 5T 1Y cosh g

4 even

(24)

Substituting s = (n — 1)/2 in (24) one finds for the shear stress ¢ in the sheet connected to the
edge members,

2 7] wt  sinh p;(f — x)
@IWV(EWIGA) = 57 = cot g o0 gt ) e o (29

This formula should be compared with formula (34) of R. & M. 1969° which gives the shear stress
at the edges for the symmetrical constant edge stress. In the latter case the sum has to be taken
over ¢ odd, the formula being otherwise identical.

If  is odd s = O defines the sheet adjacent to the middle stringer and the shear stress g, in this
sheet becomes,
EBICA) — 2 = 1472 cot 1) me  sinh p(l — %)
(@lf)/(EbHGA) = n+ 1 (— 1) co 2n + 1) cos 2m +1) coshpult - ¢ (27)

i even

It follows immediately that |g,| < ¢, because all the separate factors in the sum (26) are positive.
For n =9 and u/ = 2 Fig. 3 shows a typical distribution of shear stress across the sections at
%/l = 0and 0-1.

In Figs. 4, 5 and 6, (9/f)v/(Ebt/GA) is plotted against x/l for » = 5, 10 and 30 and wvarious
values of ul. These diagrams should be compared with Figs. 5,6 and 7 in R. & M. 1969° corre-
sponding to the symmetrical constant edge stress. It can be seen that the values of the maximum
shear stresses in the antisymmetrical case are approximately half those found in the symmetrical
case for the same absolute value of the edge stress.

An alternative form of the left-hand side of equation (24), etc., is

(glf)v/ (Eb|GA) = {(g/f)/(%A/zfl)}%2—_:_41 ull . .. . e .. (28)

Using this relation it is found that the maximum shear stress at x =0 does not vary rapidly
with the number of stringers, provided that the total area of section of stringers plus effective
sheet is maintained constant and # is in the practical range (say 10 to 20).

A further point of interest is the moment M which the panel carries at any particular cross-
section .

By definition,

s =+ {n—1)/2

M=— 2 SsbAf,. .. o .. . (29

s = — (n— 1)/2

11



Substituting formula (18) and taking into account that,

+ (= /2 1
/ §% = 1—2%(14, — I)(n 4+ 1)
— - 1)/2
and that,
+ (=12 7 N ) ) 1 .
—mz—:l)/zs sin nTj_S 1= ('— 1)1+¢/2% ; cot 2(%73_ 1) for all values of #n, one finds that,

M = in(n — 1)bfA — bf4 >, cot® 5 i cosh il — %)

ieven (% + 1) cosh " 1Z (30)

The first term in equation (80) corresponds to the moment M, indicated by the engineering theory
of bending.

Hence formula (30) can be written,

MM, —1— Z cot? 5 mt  coshu,(l — x) l

i even —|_ ) COSh " ll

where (31)

nin — 1)
Equation (31) satisfies the boundary conditions M = 0 at x = 0 and dM/dx =0 at x =/
(note that >, cot? 2(%—71_1—3 = ¢ n(n — 1)). With increasing values of x, M approaches M,. In

ieven

Fig. 7, M/M, is plotted against x/l for » = 10 and various values of ul*. The ratio M/M,
varies only slightly with » when n > 7.

To find the areas B(x) of constant-stress edge members under a given system of end loads
and/or edge loads consider the equilibrium condition of moments at the section x. Let the moment
of the external loads be M, which may vary with x, then

B(x) = (M — M)/wf . .. . .. . o (82)
The deflection v of the panel can be found from equations (5a) and (22), and the resulting formula
Ev = f(l — x)*|w .. . . .. . (33)

shows that the deflection is unaffected by diffusion except in so far as the edge stress f itself is
affected.

4.1. Special Case : Stringer-sheet when number of stringers is infinite—Assuming the conver-
gence of the infinite series when # —co, we have:

. N
b Int

lm p; = lim u(n + 1) sin = 7ip 2 .. . (84)

272
n— 0 n—> © 2(7’5 + 1)

] 6 7 .

* Values of the diffusion constant ul for typical aircraft structures are between 1 and 4.
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Formula (18) becomes,

Zy .o L . mwycosh {miu(l — x)/2}
M= + - zgen 1)r+es 7S~ —— ¢ winlj2)] .. .. (35
or
2 i 1 : my cosh {mip(l — x)/2}
Pt = ; 1% — s T osh {nipl|2} " - (352)

where f,, = — f(2y/w) is the direct stress indicated by the engineering theory of bending.

Formula (24) becomes,
1 iy sinh {mip (I — x)/2}

(@) (EiG]t) = —Z (= 1) 08 osh mil[2) S (38)
and the shear stress ¢ at the edge,
@y (EyGy = 5 = s — a2y o gy

7 ieven ¢ cosh {minl{2}
Note that in this case the value of ¢ — o as x— 0. This anbmaly results from making 5 — 0.

The moment M carried by the panel is given by,

1 cosh {wiu(l — x)/2}
¢ cosh {meul/2}

where M, = »%,f/6 is the moment carried by the ordinary engineer’s theory.

M/M_1—2—4z

T i even

(38)

It is interesting to note that for /— oo the series in formulae (35) and (36) can be summed.

One finds

BLlf = —;tan“l{tan <7;7y)tan (g,u%)} . . .. .. (35Db)
and
@)/ (EYGL) = - {‘— In [4 (o2 1 sine w)] Eap— } .. (360)
The shear stress g at the edge becomes,
@y EfGe) ==~ [aamn (3on) | +50s} .. . L

and g—o as x— 0.

The shear stress g, along the x-axis,
, 2 : ;
(9ol )V (Et)GL) = ~ {* In [2 cosh (guxﬂ +%ux} C e e (39)

2
The right-hand side of equation (39) reduces to — = ln 2 when x = 0.

Formula (35b) has been found very useful for quickly estimating the stress distribution in long
panels (I > 3w say).

5. Presentation of the Results of Section 4 vn Fouriey Series.—For subsequent analysis in Section 6
and other applications it is necessary to expand formulae (15) or (18) and (24) in Fourier series.
One method is to.expand first the hyperbolic functions

(1 coshul—x)) and sinh p,(J — %)

in Fourier series.
cosh w1 cosh s,/

13



The formulae for the direct stresses and shear stresses are then transformed into double series,
one finite over 7 and one Fourier infinite. Tt is now possible to sum in each case over 4. This
method has been applied in R. & M. 1969° but the derivation of the corresponding formulae by the
same means in the present problem would be rather lengthy and cumbersome. For this reason
a more direct method is applied, which, moreover, has the advantage that the A-coefficients are
avoided.

A constant edge stress f can be represented by the Fourier series,
4 =1 .k
feofZ singr,  0<x<l. L 40

kodd

This Fourier series does not converge to the value fat x = 0, but this is of no importance to the
developments of this section.

Throughout the subsequent analysis it is only necessary to consider a typical term

1. k& . . , .
f 7 Sin ng and the summation of the resulting expressions over & may be deferred until the

final stage ; a short discussion of the convergence of the series will then be given.

Consider now the general relations (7) which in the present case can be written:

2’f, (1 + 1Y
A= ( 5 ){_fr_l_|_2f¢—f,+1}for1f=lton. .. .. (7)

and the boundary conditions f=0 at x =0, (df,/dx) =0 at x =1 and fo = —f % sin ]_e;z_lx

1 . kax
and f,.,= +f 7 Sin 57 .

The form of these differential equations and boundary conditions suggests the following
solution,

1 . k&
f=GgsinTgr e (4D
where G,’ is a function of 7 solely. Substituting the solution (41) into (7)
k : 4 % __l_ 1 : 14 4 /
— (Y6 =w(g) (- 6 + 26 — G R
with the boundary conditions G," = — 1 and G,.,' = -+ 1. Substituting
kn 1 %

sinh ¢, = ol 1 (43)

into (42) one obtains after some elementary transformations the finite difference equations
— G, +2cosh 24, G, — G, =0 .. . . o (44)

for 7 — 1 to # and the same boundary conditions. The general solution of (44) can be written

in the form,
G,’ = D sinh ar + E cosh a7 .. (45)

where D and E are constants and « is a characteristic value. The substitution of either of the
two particular solutions of (45) into (44) conditions the unknown characteristic value « by,

cosh o = cosh 2¢, . .. .. .- .. .. . .. .. (46)

* This substitution was also used in R. & M. 20388
14



The only real solution of this equation is,

o= 2¢,. .. .. .. .. .. e .. (47
Hence (45) becomes,
G," = D sinh 26,7 + E cosh 2¢,7 . .. .. .. .. .. (45a)
Adjusting to the boundary conditions G, = — 1 and G,.,” = 4 1 one obtains,

sinh {(n + 1 — 27)¢;}
sinh {(n + 1)¢} °

The antisymmetrical character of G,” appears more clearly by referring the stringers again to the
axis of symmetry of the panel, so that

sinh {2s¢;}

G/ — — (48)

GSI: _Sinh{(%+1)¢k}: _——Gk,s e .. . .. .. (49) ‘
where s:%;—l—
and s=0,4+1,4+2,.. —l—( ) when # is odd
s = %,ff,...,i(%gl) when # is even.

The index % in the function G,, denotes the dependence on the corresponding Fourier term Z.

Hence the stress in the sth stringer, when the antisymmetrical edge-stress distribution is
1. A
+f fsin ZL;‘ , becomes

[ sinh {2s¢,} o knx f kax
fs:_l—asmh{%—}— Yo sin &+ kassm o - - .. .. (50
In the case of a constant edge-stress distribution (40), f, becomes by summation of the k-series,

4 2.1 sinh {2s¢;} . kax
fs:*—y_szoddﬁsmh{%—]- g0 2

With increasing p/

(31)

sinh {2s¢,} 2s 2y
smh{(%—i—quuk} w+1" w

and formula. (51) reduces to the stress distribution indicated by the engineering theory of bending.

The reasoning leading to equation (51) is purely formal. A verification of the solution is there-
fore necessary. This will not be given in full, the only difficult step being the proof that series (51)
can be twice differentiated for — (» — 1)/2 <<s < + (» — 1)/2. Note particularly that these
differentiations are not implied and necessary for the case s = + (% -+ 1)/2 when indeed they
are not possible. In outline one may proceed as follows: ,

differentiating formally

df, 2f 2. sinh {2s¢;} knx
dx I Sgsinh{(#n + 1 gék}
and
a*f, sinh {2s¢,} . hux

vt = lz,%ksmh{%—l— qSk}Sln 2 -
15



. k 1
Now ¢; = sinh™* {lem } and hence for large values of %, e"‘k—>£—7 %—_1]—_—1 It follows
that for large %, i.e., large ¢;, the typical terms in the above series tend to

sinh {2s¢;} ’ P 1 {2151 -+ 1}
sth {(n + Dén + exp {2[s]|— (n + )} — £ ul m)

sinh {2895,5} kn 1 {21s] -+ 1}
k sinh {(% + 1)¢k}—> + kexp {2[31_ (n+ V)}p— + & <IJZ w1

The least convergent case is when |s|= (# — 1)/2 in which case the power is — 2. Thus the
convergence of the series can be made to depend on that of

| kaex > 1 . kax
%?COS_ZT and %Esmg

which are known to be convergent. It is easy to see by a similar procedure that (51) is uniformly
convergent over the complete range.

To find the shear stresses it is necessary to calculate the displacements u,.

By integration of (51)

8! 1 sinh {2s¢;} ko
E%s—:y—z—zf}%Esmh{(wrlm}cosg. .. . .. .. (52

This expression satisfies the boundary. conditions Edujdx = f, =0 at x =0 and u, =0 at
x = 0. Fors= + (n 4+ 1)/2, ie., for the edge members, the above formula reduces to

i:]:—zcos%vﬁ:f(l—x) 3

% odd

Fu, = — Eu, :%f

which follows also directly from (40).

Substituting expressions (53) and (52) into (23) one finds

> 1 osh {(2s + 1)} 1 knx :
(@ NInA ) = 2, [Csinh {(n + D¢y} — (n + 1) sinh qs,J cos . - .. (B9

ioaa 7 sinh ¢,
For some applications it may be preferable to separate again the term (u, — u,)/(n + 1).
Formula (54) then becomes,

(q./f)/ (A Jtl) = — (“ Zf; 1) (ud)* (1 = %) + = & sirllh . ‘;‘ffllﬁ ?; j: Bﬁg cos %“ ... (54a)
For the further developments it is usetul to introduce the function N, defined by,
N, — .1 {cc.)sh {(2s + Dy} _ 1 . :l . (55)
s = g sinh ¢, L sinh {(n + 1)¢;} (n + 1) sinh ¢,
Hence
(g1} (nd[tl) = i N, cos kzilx ... .. .. .. .. .. .. (54b)

% odd

Of particular interest are the shear stresses in the plates adjacent to the edge members and
along the x-axis. The former can be found by substituting s = (n — 1)/2 into equation (54).
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The particular function N,, for s = (# — 1)/2 is important and for brevity this function will
be denoted by C, where

1 1
Ci= [coth {(# + 1)és} coth ¢, — 1] — (n 4 1) sin gy * .- . .. (56)

Then the shear stress g at the edge given by,
2 knx
(g/f)|nA[tl) = >, Cy cos 57A . .. , . . .. .. (57)
k odd

or

(@)t = = % rcoth {(n + 1)t} coth ¢ — 1] cos G (D i =y 57a)

k odd

When # is even, s = — 1/2 represents the sheet in the middle of the panel.

It can readily be seen that,

2 1 1 1 } ] ke
(q-alf) /(A ) = ;;d:‘i {n sinh ¢ [Sinh {(n + )¢} (n+ 1) sinh ¢, coSTor - - (58)
The moment M which the panel carries at a cross-section x is by definition,
+a=1)/2
M=04 2> sf.. .. . . .. . (29)
—(n—1)/2

Substituting equation (51) into (29) and taking into acccunt that
‘ o=z sinh {2s¢;}  #n(n 4+ 1)

_(“_l)lzs Sinh {2 &+ D 5 Cs .. .. .. .. (59}
where C, is defined by (56), one finds,
’ 2 S| . knx
:y—tn(%—]—l)bAf%kasmiz— . .- . . .. (60)
_12n4+12&1 . kax
or M/M“_;%———l% 7 Crsin o .. .. .. . . .. (60a)

where M, = {n(n — 1)/6}bAf is the moment carried by the panel according to the engineering
theory of bending. With increasing values of 4, M approaches M,. This follows directly from
equation (60a) because

jam—

. 1n —
Jm =357

ju—

421 . kax
and ;Zﬁsn’lw‘:l.'

k odd

It is worth noticing that the shear stress in the sheet adjacent to the edge members can also
be found from the relation,

1 dM
9= Wi dx - (61)
The deflections v can best be calculated from the equation (33).

17
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5.1. Special case : stringer-sheet, when number of stringers is infinite.—The limiting values of
the functions Gy, Ny, and C, for #— o are:

. _ . sinh{2s¢)  sinh {(2y/w)(kr/2ud)}
Bm G = lm b e T 1)gs) —  sinh {hw/2el]  — Cw
. i 1 cosh {(2s 4 1)} . 1 J
,}E}D Ny = 31_333 {n sinh ¢, [ sinh {(7 + 1)¢,} B (n -+ 1) sinh ¢, } (62)
2l [cosh {(2y/w) (ke /2u1)} ZMZJ _
= T sinh {%/2u0} Fm ] =
_ 2ul { ke } . 2/,LZ:| -
7}330 Ck: E{Coth m 73; = Ck
Hence one finds for; the direct stress £,
- 4. 1sinh {(2y/w)(ka/2uD)} . knx
| M= =7 2% sinh Gj2all ~ 2 .
I . o
= — 5= 5 Gwsin g
the shear stress ¢, ,
©, Rawx
(%/f)/(WtS/ﬂ> = Nky cos 97
% odd E
2ul < 1 cosh {(2y/w)(kn[2ul)} knx . . .. (64)
or =% 2% sinh o f2uly o
— (ud)* (1 — 2/])

The particular formulae for the shear stress at the edges and along the middle axis of the panel
are straightforward.

The moment M is given by

' 1221 o | kax
M/Me:;k%]—acksm—ﬂ .. . . .. N )
where M, = w?%,f/6 is the moment carried by the panel according to the engineering theory of
bending. For ul—w, M — M, because lim C, = 1,
pul—>w

6. Arbitrary Edge-Stress Distribution.—An é,rbitrary antisymmetrical edge-stress distribution
+ f may be represented by ,

421 haw
f=fb+;1%7€stm—21— oL (66a)
0or ; ,
421 . | kv 41 _ hax
f=r 2 phsingr =22 (i +F)sing .. .. .. (66D)

where f, is the edge stress at the free end of the edge member. When no end loads are applied
to the edge member, f, = 0. '

Owing to the fact that the Fourier expansion of a constant (in this case the expansion of f,)
cannot be differentiated term by term, the representation (66b) will be inappropriate whenever
df{dx occurs and f, # 0. In such cases form (66a) has to be used (the series in this expression
will be assumed to be differentiable). The application of this remark will appear in section 7.
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To find the stress distribution in the panel the method of section 5 can be applied immediately.
One has only to substitute the Fourier coefficient (1/)(f; +Fs) = (1/k)(F,) into derivation of
section 5 for the Fourier coefficient (1/%)(f;).

~ One obtains for, the stress f, in the sth stringer,

42,1 .k '
fs:‘—_zﬁ(fil—l_Fk)GksS]-ngg ' . te v o (67)

7T kodd

the shear stress ¢, in the sheet between the (s 4 1)th and sth stringers,

qs/(nA/ﬂ)zﬁj(fb+Fk)N,;cos%5l’f O ()

k odd

the shear stress ¢ in the sheet adjacent to the edge member,

o0

g/(nA/tl):IZ(fb+Fk)Ckcos%%9-c e (89

odd

the moment M carried by the panel,

2 ®. 1 . knx :
M:g;n(wr1)5A%E(f,,+ﬂ)cksm—27 . .. . .. (70
where G;,, N, and C, are defined by equations (49), (55) and (56).

The deflections v are given by

32 = 1 Rz
Ev :%% 73 (fo +F%) ((— 1)E=02 — sm—gl— -
L —wr 32r 1 _ ks
—fb w _nsw% kst<(—“’1)‘(k /2 — sin 9]

The areas B(x) of the edge members for a given edge-stress distribution 4 f may be found
from equation (32) noting that the condition (# — M)/f > 0 must be satisfied throughout.

6.1. Special case : Stringer-sheet, when number of stringers is infinite—In the limiting case of
stringer-sheet one has only to substituté G, N, and C, into formulae (67) to (71) for Gy, N
and C;. The functions Gy, Ny, and C, are defined by equations (62).

7. Parallel Panel with Constant-Avea Edge Members under Concentrated Antisymmetrical End
Loads.—Consider a parallel panel stiffened with # stringers. Each edge member has a constant
area B and the area of one stringer plus effective sheet is 4. Two antisymmetrical concentrated
end loads P are applied to the edge members at the free end of the panel (see Fig. 2).

The unknown antisymmetrical edge-stress distribution -+ f can be represented by formulae
(66a) and (66b) of section 6.

42,1 . kux '
\ f=fb+g;%7estm% . .. . e .. (66a)
42,1 - . kax .
or fZ;%EFkSIHT .o . . .. .. R . (66b)

where F, = f, + F, and f, = P/B.
19
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The equilibrium condition can be written in two alternative forms, namely

a :
B—d—yj:—]—gtz() .. .. . . .. .. (72a)
M + Bwf = Buwf, = Pw. . .. . .. (72b)

The first equation refers to the equilibrium condition of an element dx of the edge member.
The second equation indicates the equilibrium condition of the moments at a cross-section x.
The equivalence of the two forms appears from the fact that (@) can be obtained by differentiating
(0). Remembering the remark in section 6 one sees that while both (66a) and (68b) can be
substituted into (72b) only (66a) is appropriate for (72a).

Substituting equation (69) into (72a) one obtains
2 & krx nAd =2 Bk
7 = Fucos g+ > (fi + F)Cicos 5 = 0.

% odd

B

This equation can only be satisfied if

: C,
Fp=— = . .. . . . o . .. (78
k fb o+ Ck ( )
where :
L 2__B . total area of edge members 74
% = nAd ~—  total area of stringers plus effective sheet .t t e T ( )

and C, is defined by equation (56). Formula (72b), of course, leads to the same result. A similar

formula was derived in R. & M. 1969° for the symmetrical loading case of a parallel panel with
constant-area edge members.

 The substitution of formula (73) into the é,ppropriate formulae of section 6 yields for : the edge

stress f,

i _ il‘ = 1 Ck . knx :

fb— _—ﬁkodd k—a_}_CkSlng .. - .. .. . . (75)
the stress f, in the sth stringer,

fs 4 =1 Gks . kﬂx

| ;:—gakoddﬁﬂ—CkSII‘lg .. . SRS .. .. (76)
the shear stress ¢, in the sheet between the sth and (s 4 1)th stringers, ‘
qs[fb . = Nks @ )
%——A/ﬂ—a%a——Jer cos = N 4

the shear stress ¢ in the sheet adjacent to the edge member,

9/]% o kel Ck krx
%—A/ﬂ__o(kozm;a_'_ck COS~QZ— .. . .. . .. . (78)

the moment M in the panel,

g = 2L Sl Gk

% 77— 1 koddET—!_——Cksm»ZT .. .. .. .. .. (79)
where M’ — Z‘_‘(_”G*_l) BAY,
the deflections v, ‘
Ey = %%_Zf”“% % ot—-l}_?k((_ 1)-372 __ gin kzilx o 3 L0
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Formulae (75) and (79) are quickly convergent, but formulae (76), (77) and (78) are less satis-
factory in this respect. For computational reasons it is therefore preferable to separate once
again the contribution of the constant edge stress f, as given by the equations of section 4.

One obtains for : the stress f,,

S 2s 2 ; 27} . wis cosh u;(l — %)
= — Ty T = (Dot gy S T T osh
4 = 1 Ckas . kﬂ:x .
+7;%73mk§1n—22- . . .. .. AN . .. . (81)

the shear stress g,

mnt  sinh gl — %)
n -+ 1)  coshpud

Elfs __ul i wt(2s + 1)
il = 2 (— D) eos gy cot o

< Cy knx
"%a+ckasCOSg .. .. .. .. .. . .. (82)
the shear stress g at the edge,

glfs _ ul ) atz  sinh u;(I — %)
nAfil " n Z Ot o T 1) + 1) cosh uJ

= C;? kax

— TR — (83)
Ak G 82
the moment M carried by the panel,
M 6 nt  cosh p,(l — x)
ZW" =1- n(n — 1) i%:', cot” 2(n + 1) cosh pd
122 +131 C2 . kax
S P iy, L8 (84)
and the deflections v,
(—x2 328 1 G - . knx :
Bo—f, o ﬂg,wf,,%kam((— e _sin ). L (8))

The infinite series in (81) to (83) converge rapidly, quicker than 1/&% Series (84) is very rapidly
convergent, quicker than 1/£° '

For a constant total stringer plus effective sheet area and constant values of u! and « the
maximum shear stress at x = 0 increases with the number of stringers. This increase is small
in the practical range of # (say 10 to 20). The evaluation of (83) is not too laborious since the
finite series has already been evaluated for # = 5, 10 and 30 and various values of ul (Figs. 4, 5
and 8, see also section 7).

For a constant values of ul, « and 2s/(n 4 1) = 2y/w the value of f./f, varies only slightly
with # provided that # > 7. The same applies also to the ratio M/M".

7.1. Alternative formulae.—For certain applications it is preferable to use the ratio f/f.. instead
of f./fs

One finds readily that
2s

Jo= by T —0)Bm + Din+ 1°
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Hence

o+ {(n— 1)/3(n — D} n+ 17,
B ( DSt s RTINS

£
f se
where f,/f, is given by equation (76).

The engineering theory of bending indicates a moment M, in the panel given by

: n — 1
(TR T L

Hence

]]ié—e={°‘+{(”‘i)/3(”+l)}%, N (- )

where M/M' is given by equation (79).

For p —ow, Cy— (n — 1)/3(n + 1) and G,,— 2s/(n + 1) and therefore f,— f,, and M — M., .

The physical interpretation of the stress and moment equations of this section is facilitated
by noting that

o 1B(n 4 1)*° I,
o+ {0 =BG+ T} (B6 T+ U8+ Godne — O+ 09y L+, (O
where I; is moment of inertia of edge members (flanges) about the x-axis. .
and I, is moment of inertia of panel about x-axis.

Furthermore it follows that

. o o I
B o O (2= V7= 1} Sl sy /TR TR )
For graphical representations of ¢ it is usually preferable to apply formula, (28),
qlfs 2n 1
(qlf)V/ (EbGA) = %A/”ﬂm;l. e e (28

In Figs. 8, 9 and 10 (g/f,)4/(Ebt/GA) is plotted against x/l for » = 5, 10 and 30 and various

values of u/ and o. These diagrams should be compared with Figs. 8, 9 and 10 of R. & M. 2038°
corresponding to the symmetrical loading case. :

Fig. 11 shows the variation of

M|Buwf,= [(n — 1)/{8(n - 1)o3(M/M") . .. e e (79)
with x/l for various values of ul.and wand » = 10. At x = [ the ratio M/Buwf,

with ul if x> 1. It follows that at the built-in end the moment carried by
equal to that indicated by the engineering theory of bending.

varies only slightly
the panel is nearly

7.2. Special case : stringer-sheet, when number of stringers is infinite—In the limiting case of
stringer-sheet one has only to substitute G,,, N,,, and C, into formulae (75) to (80) for G,,, N,,,

and C,. The functions G,,, N, and C, are defined by equations (62). Itis again easy to separate
the contribution of f, by taking into account the formulae section 4.1. :

8. Parallel Panel with Constant-Area Edge Members under Avrbitrary Antisymmetyical Edge
Loads.—Consider a parallel panel stiffened with # stringers and with constant-area edge members.

Arbitrary antisymmetrical edge loads - S are applied to the edge members (see Fig. 2). Taking
22



into account that the edge stress at the free end must be zero the unknown antisymmetrical
edge-stress distribution - f can be represented by the Fourier sine series

e 1 . knx
f——Zkasm o] - N (<L)

Tk odd

The given edge-load distribution 4 S(x) can be expanded in a Fourier cosine series (see also
R. & M. 2038°%)

—qtz Skcosk2Z .. .. .. .. o e (9]

k odd

where ¢ is a parameter expressing the magnitude of the edge-load system.

’

The equilibrium condition can be written in two alternative forms, namely

d

Bé+¢=5 L e

M+BW:wf&M.,° S (22 )
0

i
By substitution of formula (90) for f, (91) for S and the appropriate part of (70) for M into
(92b) one obtains ‘

2 kax 2 knx
—n (n —}— bA% F,,Ck sin 2l Z 42 ( bB% Fysin - = ~ g(n + btl}%i Sesin 57~
Hence
nA = Sk
Fk tl o q & —l" Ck (93)

where o is given by equation (74).

Substituting equation (93) into the appropriate parts of (90) and (67) to (70) it follows that :
the edge stress 4- f,

[rA 421 S ke 4
T T harC SRy (94)
the stress f, in the sth stringer,
find 421 S, . knx \ |
i __ﬂ%kOC—I—CkaSSIH A . - . .. (95)
the shear stress ¢,,
TS Oh N os FTE 96
(_7_koddot+c 2 COS 2l .. .. - .. (96)
the shear stress ¢ at the edge,
g < Ss kux
g"_,%oc—kackCOS 5T .. . . . .. (97)
the moment M in the panel, |
M 2,1 kax
Mwwééka+ﬁcﬁm2l )
where . M" = (n 4 1)btlg
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Equation (95) fulfills the boundary conditions df/dx = 0 at x =/. For u —co the stress
distribution across the panel approaches the stress distribution given by the engineering theory
of bending. The proof is exactly the same as in section 7.1. If edge loads are applied to the
edge members up to the built-in end then (df/dx),_, = 0. If, however, the edge loads are
discontinued before the built-in end, (df/dx),_, = 0. With decreasmg %, q approaches 78

The deflections v are given by

Eomdjl) = o § > = 2 ((—pene _gn 22X 0 (99)
: : 9

8.1. Example—The physical background of the equations of the last section appears more
clearly when dealing with a particular example. As such the case of a constant antisymmetrical
edge load +- S is chosen. It can easily be shown that

4
Sp =3 (— 1)V £ odd ]
T (- - .. .- . .. (100)
and S=4gt J

The engineering theory of bending indicates a moment M, in the panel,

Sxb(n — 1)/3

M. (x) =, + {(n — 1)/3(n + 1)}° (101)
When «~» 0 formula (101) converges to the obvious result M, = Sxb(n + 1).
The direct stress f,,(x) in the sth stringer according to the engineering theory is
— 2Sx/nA 2s
Jul®) = o+ {n—18n+ 1)}n-+ 1" (102)
Substituting equations (100) and (102) into (95) it can readﬂy be found that
7 —}— 1 — 1)E~nre . kax
Sty = g Lo A {( — 1)/3(n -+ 1)) 27% 7 W Gisin 5 .. .. (108)
and
[ [foo (%) = {fi/f:. (0 } .. . . . .. . . .. . .. (104)

where f,,(}) is the stress in the sth stringer at the built-in end as indicated by the engineering
theory of bending.

The moment M (x) in the panel is

M (x) /M. () = (” & 1) [+ {(n — D80 + DN s = 5y e Cesin gy .. (105)

and

(1086)

]~

M () [M(1) = {M (%)M (D)}




8.2. Special case : stringer-sheet, when nwumber of stringers is infinite.—One obtains easily that

jqcuz;zt gg;%aik-ksi %? (107)
%%=~g}%%dik_kckysm%? oo .o (108
g—szk%ﬁgﬁ,@ycos% .. .. .- Lo .. (109)
Zf‘;”:?g;;jleajk ~ ~ksmkz—7?c (110)‘

where M" = wilg .

The direct stresses computed by either the stringer-sheet or finite-stringer method agree very
closely. There is also good agreement in the values of the shear stresses at the edge for a reason-
ably large number of stringers (say > 10). It may be preferable to use the stringer-sheet method
in all cases where edge loads only are applied to the edge members as the corresponding formulae
for £, and ¢, are somewhat simpler. :

PART III
Analysis of Parallel Panels under Avbitrary Transverse Loads

1. General Considerations.—Consider a parallel panel under any arbitrary transverse load
system (see Fig. 12). The physical assumptions underlying the analysis of this part are the same
as in Part II. The basic equations (1), (2) and (3) of Part II, section 2, are, therefore, still valid.
Hence the same applies to the differential equations (4) or (7) of the direct-stress distribution.
Furthermore the boundary conditions for £, are also identical to those in Part II, namely, f, = 0
at ¥ = 0 and (df,/dx) = 0 at x = 1. It follows that for a given antisymmetrical edge-stress
distribution and any transverse loads the direct stresses in the panel must be the same as those
calculated in Part II for zero transverse load. But if the direct stresses are the same, then so
also are the shear stresses except for an added term, which is constant across the width of the
panel. This may be demonstrated in detail as follows. '

The shear stresses are defined by equation (1) of Part II
gy — U, | AU ‘ "
qszG(“T—l—%}. .. . .. . - )]

The only difference between the analysis of this part and that given in Part II arises from the
consideration of the equilibrium of the shear stresses at a cross-section x of the panel.

Instead of equation (5) one obtains
+3im—1) ’ dv _ |
_”Zl)gsthGt‘(Ma—%b) -+ (%+ l)b%} = ——-Q(x) .. . (111)

where Q(x) is the resultant shear force of the transverse loads at the section .
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Hence ‘
—

dv é(x)

R R (112)
and c _
R (113

Tt can immediately be seen that the term in brackets of equation (113) is exactly the same as that
indicated by equations (1) and (5a) of section 2, Part II, for a panel without transverse load. The
additional term — (x)/w¢ is the shear stress due to the transverse loads and is constant over
each cross-section and may vary only with ». It follows that in case of a given antisymmetrical
edge-stress distribution the shear stresses in the panel can be found by adding the shear

— Q(x)/wt to the appropriate formulae of Part II.

At x = [, the displacements # must be zero. It follows that

av o)
%)x:l:—@ P (S £
and | (qs)x=l=—%%. L (1)

This expression is independent of s. Hence the shear stresses at the built-in end of a panel
under transverse loads are constant over the cross-section. This result is entailed by the assump-
tion of a closely spaced system of transverse members infinitely stiff against compression or
tension. '

Integrating equation (112) one obtains for the deflection v(x)

v(x):vo(x)+'Hi@(5)ds}/cwz. N § 1)

where v,(x) is the deflection of the panel for the given edge-stress distribution disregarding the
transverse loads and is found by the methods of Part II; the term

{ [a ds} / Gut

fepresents the ¢ deflection due to shear ’.

Let I be the moment of the transverse loads at a section x and M the moment carried by
the panel at x for an antisymmetrical edge stress + f. The latter moment, of course, is the
one found in Part II. The areas B(x) of the edge members are then given by

Bl) = (I — M)jwf. .. .. .. .. .. .. (117)

Formula (117) is identical with (72b). It follows that the areas of the edge members for a given
panel with a given antisymmetrical edge stress depend only on the value of the external moment
M irrespectively whether it be produced by transverse, edge loads or a combination of the two.

It is now obvious from equations (72b) or (117) and the preceding arguments that exactly the
same results can be deduced if the areas of the edge members are given and the edge-stress
distribution is initially unknown.
~ An arbitrary shear force diagram () can be represented by the Fourier series

knx

@(x):th}%chos—z—l— .. .. .. . .. (118)
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where 7 is a parameter expressing the magnitude of the transverse-load system. The corresponding
moment M (x) follows by integration,

_ 2 ® Rrx
M(x):g—rgtlw%kasm /AR .. . .. .. (119)
An arbitrary edge-load distribution was represented in section 8, Part IT
krx
—qtz S, cos o - . .. . .. .. (91
% odd
and the moment which these edge loads apply to the panel is (see also equation (92b))
. knx '
_szczx_—gﬂwzksksm T . (120

k odd

The load systems (118) and (91), apart from the additional term — ((x)/w¢ in the shear-stress
distribution of the former case, are identical in their effect upon the stress distribution in the
panel and edge members if S, = Q,. Thus a single transverse load P = §fw corresponds to a
uniform edge load S = §¢ and a uniformly distributed transverse load p = gtw/l corresponds
to a linearly increasing edge load of a magnitude S, = géx/l, etc.

2. Parallel Panel with Constant-Avea Edge Members under Avbitrary Tramsverse Loads.—
Consider a parallel panel stiffened with # stringers and with constant-area edge members.
Arbitrary transverse loads are applied to the panel. The corresponding shear force diagram
Q(x) can be represented by the Fourier cosine series (118).

To find the stress distribution in the panel, in accordance with the developments of section 1,
one has only to substitute the Fourier coefficients Q, for S, into the appropriate formulae of
section 8, Part II, and to take into account the additional terms for the shear-stress distribution
and deflection as indicated by equations (113) and (116).

One obtains for: the edge stress + f,
fnd 421 @ s knx

§7=+ﬂkodakd+c n2l .. .- . .. (121)
the stress £, in the sth stringer,
find 431 @ . knx
77 -—7;koddk 1 C G,,Ssmg .. . .. .o (122)
the shear stress g,
¢ _ < by Q
q - kodd O _I— Ck Nks €os 2Z th
= knx
——kodda’—*— Ck (N — Gy — ) cos 5 .. .. .. (123)
the shear stress ¢ at the edge,
g © Rax
q_——ock()dda_{_ckcos o .. .. . .o (124)

the moment M carried by the panel,

.1 . kux
M”—n,%ikoc—{—c Casin 5r
where M" = wil§

(125)
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the deflections v(x),

nA 3222 2,1 _ . knx
Ev— = IOdekg ot Ck{ (— 1)%-D72 — sin ﬂ}
2EnA . Rax
toCa l% Qk{ (= 1FI" — sin 5 } .. (126)
It is now interesting to follow in detail the limiting case of u — co.
We have
jgri C,={(n—1)/3(n + 1)}. o . o . .. (56a)
Hence the limit of the edge stress
fnd 4 1 2.1 kax
kﬂqtl—wa+ﬂnfnﬁm+l)%ﬁﬁﬁm92
2 1 _
= Zthw o1 {n — 13 - 1)) L
. 1 1 _
and I f= 5w %+ (0 = 13 = 1)) M @)
. (n -+ 1)b/2 W7
= Bl + 002 + (nn — D + L5A/12 M)
w2

If—]—I M(x) = f.

where f, is the edge stress given by the engineering theory of bending.

Similarly
i J. fn+1 oo
Furthermore,
I,
lim M = M +—12—+,
Ml_l;fi I f "I" I

which is the result predicted by the engineering theory of bending. For shear stresses in the
limiting case we note that

- 2 n—1 n—1
ﬂ%ﬂ(Nks—c) (%‘]‘ %_L {( )~ }[ 5 >+(S_|_1)}
Hence
2 n—1 n— 1
oM ox et =yl () s ) e -
R a+{%—1Bm+U}
Multiplying numerator and denominator by 1ndb*(# + 1)® one obtains for the limit
Abrn—1 n—1 n+ 1
I L At 1 Sad e e Rkl
ull—I>I:o o+ G, - If + I;iv

It can readily be seen that the numerator of the ratio is the static moment S, about the x axis
of the edge member and the stringers (s + 1), (s + 2) ... {(n — 1)/2}.
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It follows that

_ ' kax Ox) S,
lim g, = — WI+@%@wS =, 1 L=

where g, is the shear stress predicted by the engineering theory of bending.

2.1. Special case:  stringer-sheet, when number of stringers is infintte.—In the limiting case of -

stringer-sheet one has to substitute the limiting values G,,, N,, and C, defined by (62) into
formulae (121) to (126).

Provided that » > 7 it is usually preferable to use for transverse loading cases the stringer-
sheet method. The application of the formulae given in this section is straightforward and no
particular example need be given.

APPENDIX I
Parallel Stiffened Panel with Symmetyical Edge-Stress Distribution

In this section a collection of formulae will be given for the stress distribution in parallel
stiffened panels with symmelrical edge-stress distribution. The equations marked with an
asterisk have already been derived in R. & M. 1969° and 2038°, the others are new. The
derivations of the latter formulae are not given, as they can readily be obtained by the methods
indicated in this paper. By combining the results of this section with those given in Parts II
and III the stress distribution in a panel with any asymmetric edge-stress can easily be found.

1. Constant Symmem'cal Edge—Sh/ess — f.—Stress f, in the rth stringer,

L > cot 5 sin — (1 — w) - . .. (127)%

f= + 1 5 —l— ™" n+1 cosh ;!

for » =1 to n (see Fig. 1 for 7—system of notation for the stringers).

It can be shown that

2 273 w”
A r1= Ctan nsing, =1L
Hence
I . wir  cosh u;(l — x)
7= 1+%+1w§d(1: CO’E —I—l)smw,—}—l coshad - .. .. .. (128)

The corresponding formula in the s-system of notation is

Js wts  cosh u,(l — )

-y m_
F= —1+ —I—l,% (— 1) COtZ( 7+ 1) €08 n-+1 coshud °° - (129)
for — (n —12<s< + (v — 1)/2

Averége stringer stress f,:

_ 2 . i cosh p,;(I— x) ' .
"_1+(+)%f“mmu>cmwz e (180
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Shear stress g, in the sheet between the (s + 1)th and sth stringers:

(0.[F) v/ (EBEGA) = _HZ (= 1697 cot 5 J'rl) sin%zggsjl)) anﬁog;flﬂz )

7 odd

Shear stress ¢ in the sheet adjacent to the edge members:

g sinh u,(l — %)
IQI/f ’\/(Ebt/GA n + 1% COt % + 1) (% + 1) COSh[LLil . .. .. (132)*

The shear-stress distribution at a cross-section is antisymmetric about the x-axis.

1.1. Stringer-sheet when number of stringers is injfinite.—When 7n— o, formulae (129) to (132)

becorne,

ff: —14= % (— 1)6-n1 3 os’igcosilo{s’ﬁgiﬁ/g/z} L. (133

]%Z —1 +%“de %zcosilo‘{symnliﬁ/g}? 2 - (1834)F

(G (EBGA) = 2= (—1yean L sin T SR B 002 (135)

(elviEuea =2 S 1mERl A e
For I—» co series (133) and (135) can be summed. One obtains

fj—% — — Ztant [sinh e/ Bfeos fryfel] .. . . .. (18)

(1) v/ (EtfGE) = 2 In [ggii ii’;fcﬁifiii Zﬁ‘;ﬂ O € F: )

(g1 if)y/ (BHGE) =2 n [coth {rux/4)] L sy

|g| — o as x— 0. Formula (137) has been found very useful for the qulck computation of the
direct-stress distribution in long panels (! > 3w say).

2. Avbitrary Edge-Stress Distribution.—An arbitrary symmetrlcal edge-stress distribution — f
may be represented by
knx 42

. .k
z I, sin —zje(fb—!—Fk)sm—g; .. .. .. (140)

ﬂ kodd 2Z Tk odd
where — f, is the edge stress at the free end.

For the stress distribution in the panel one obtains

4.2 knx ’
f=—727 L (fy + F)H,, sin o 5] co e e e (14D
k odd A

42 knx

;2 (fo + Fu)Thsin 57 R
4 z(f + F)R cosk (143)-
%A/tl fyer] b k ks ()l .. .. . « . o« s Py
gl _ _%, (fo + )T cosk ‘ (144)*
%A/tl ) 4b k k zl . » . . . . .. ..
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The functions H,,, T and R,, are defined by:
cosh {24,s} 1 sinh {(2s + 1)}

ks = cosh {(n + 14}’ R = sinh ¢, cosh {(n + 1)¢:}
1 [tanh {(# 4+ 1)¢
T, = {Ri}smtp-p = ) |: til(nh br )b - 1} : < .. (145)
. ke 1
and » ¢ = sinh™* {Qfln_——i— 1 }

If the edge stress is constant, 7, = 0 and the resulting equations represent the Fourier series
expansion of formulae (120) to (132).

2.1. Stringer-sheet, when number of stringers is infinite— When #—co one has only to substitute
the limiting values H,,, R,,, and T into equations (141) to (144), where

7 _ cosh {(2y/) (knj2u)}

B cosh {kn/2ul}
s 2ulsinh {(2y/w)(kn/2ul)}
Ry=% cosh (n 2} S e . . .. (1486)
T, = %/f—nl tanh {Qk;%l}

3. Parallel Panel with Constant-Arvea Edge Members under Concentrated Symumetrical End

Loads.—For a parallel panel with constant-area members under concentrated symmetrical end
loads P one obtains

%=—1+g§%£-%ksin%c .. .. G . .. (147)*
%z—ga%%“z’“nsin%}—x O (713
]%’:—g-oc]%%o;%sin%‘ L .. (149)*
W%Za]%af}km% ce e (150)
%=d]§$ﬁws% TR .. .. .. .. (181)*

where — f, = — P/B is the edge stress at the free end and H,,, R,., and T, are defined by

equations (145).
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For computational reasons it is preferable to separate the influence of a constant edge-stress
— f» by taking into account formulae (129) to (132). One obtains

= er § 2 (— oot g g 08 7y o
%%kgi’fT Hkssink;lx O € )
%: -1+ n@"i—l)zdd cot’ 2<nni 1 Cosgo’éifl,ufz .
M%MJFTI 'n%’f R € )
=" 2 (= Dot gy sin g ) SRS
—k:dmi’*T Ry, cos ™2 P ¢ )
lﬂt% = %‘Z 2, cot 2(;1 [ zmn-i 1) Sin}éoﬁ;ﬁl,l; i
*éoﬂﬁicos%c' O 6

For the limiting case of a stringer-sheet, formulae (146) have to be substituted.

4. Parallel Panel with Constant-Avea Edge Members under Arbitrary Symmetrical Edge Loads.—
An arbitrary symmetrical edge-load distribution S(x) may be represented by

krx

Sqtk%scos%. . .. . . .. .. . .o (9%

The corresponding stresses in edge members and panel are
fnd 421 S5, | kax

i T askat TOMO . .. .. .. . .. (156)*
%%:—gk;%aiknﬂksm% N ¢ 1:7)
%@_A:—g%% kaTk s s

% ]%;1 _l_TRkscoskglx L .. S .. (159)
% k%ijkacoskglx Y 6 1




APPENDIX II
An Alternative Approach to Diffusion and Shear Lag in Parallel Panels

Introduction.—The series of reports R. & M. 1969° and 2038° and the present paper give a
fairly complete analysis of diffusion and shear lag in flat parallel panels under very general
loading conditions. It is hence not inappropriate to attempt to consider now, critically, the
methods used in the solution of the problems.

The first interesting conclusion one would probably draw is that the formulae for diffusion in
panels under constant or linearly varying edge stress are diametrically opposed to those for
panels with constant boom areas. Thus, whilst in the first case the cross-sectional distribution of
stresses is described by trigonometrical functions and the longitudinal variation by hyperbolic
functions, exactly the opposite applies to the second type of problem. A further revealing
difference is that in the formulae corresponding to the first group it is always possible, and in
fact appears as a natural step, to separate from the series for the direct stresses a constant stress
(for symmetrical cases) or a linearly varying stress (for antisymmetrical cases) but that this is
not so readily achieved in the second group.

These observations should be sufficient to show that the analysis for panels with a given edge
stress is more logical and attractive than for the panels with constant boom areas. It is, after
all, a well-known characteristic property of a diffusion phenomenon in a semi-infinite region or
strip that the dying-out process is expressed by exponental functions of the type e * which
indicates that the longitudinal variation of the stresses in a uniform panel should be expressed
by hyperbolic functions. Also the splitting-up of the formulae in a so-called engineers’ theory
term and an additional series expansion will appeal to the physical instinct of most structural
analysts. ,

The above arguments convinced the author that an alternative analysis of parallel panels with
given boom areas should be sought. The results of this attempt are given in this Appendix.
The method consists in all loading cases of finding first the simple engineers’ theory stress system
which, at every station; is in equilibrium with the applied external load. Then the difference
between the true stresses and these engineers’ theory stresses must be obviously self-equilibrating
or self-balancing and the main task of the analysis 1s to find the expression for this stress-system.
Note that the raison d’étre of these self-equilibrating stress systems is not only to satisfy the
boundary conditions but also to contribute, in general, to the elastic compatibility of the total
stresses. The latter may be necessary if the engineers’ theory stresses are not by themselves
elastically compatible. In the author’s opinion the new analysis is preferable to the old one
and the series expansions are very quickly convergent. One drawback, but probably the only one,
of the new method is that it involves the solution of transcendental equations. A great advantage
of the present approach is that it allows one to derive, without undue complications, the differential
equations when the thicknesses and boom areas vary similarly lengthwise. Note that the direct
and shear-stress-carrying thicknesses may vary independently lengthwise but the variation of
the boom areas must be the same as that of the direct-stress-carrying thickness. The
investigation has been restricted here to stringer-sheet panels but the extension to a finite
stringer-panel would present no difficulties.

It is believed that the new analysis has considerable potentialities for the solution of diffusion
and shear-lag problems in tubular cylindrical or conical structures. It should be pointed out
that the mathematics of this Appendix could have been made more rigorous and concise by the
use of the Sturm-Liouville Theorem for eigen-values and eigen-functions. But it was thought
preferable to give here a discussion mainly in physical terms and to avoid mathematical com-
plications and terminologies.

The notation and signs of this Appendix are in some respects different from those of the main
report. Figs. 13 and 14 should be sufficient in explaining the differences. For simplicity of printing
the symbol sn w is used to denote :

S @ = sin o/w
There should be no danger of confusing it with a Jacobian sine. The suffixes -~ and — are
used to denote values of a function at the two edges ¥ = -4 @/2 and y = — w/2 respectively.
The numbering of the equations starts at (1) again.
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1. Basic Equations.—Consider a flat stringer-sheet combination symmetrlca.l about the Ox axis
with effective thicknesses #,’, ¢’ in direct and shear stress respectively. £’ and ¢’ may vary both
with x and . If one denotes the direct and shear flows* by N, and N,, the following equilibrium
conditions in the x direction may immediately be written down from a perusal of Fig. 13a.

oN, , oN,,
0x oy

N, =#/, N, =gt . . N )

Let the panel be bounded by booms (flange) of area B, parallel to the x -axis at y = i w/2.
Then the equilibrium of an element dx of the boom at y = - w/2 yields

=0 .. .. .. .. .. .. (1)
where,

apP

—Z — Nahyeep — S =0 .. . . . . )
where P, is the boom load at y = w/2 and S the edge load per unit length (see Fig. 13 for positive
signs, etc.). A similar equation may be found for the boom at y = — w/2.

The usual stress-strain relations are

ou du  dv
fZEé—x’ Q"__G{@_]L%} .« .« > . .. (4)
Eliminating # from equations (4) and using equations (2) one obtains the compatibility equation
12 /N,
E% 77)— L EL )
or ‘
1 0® ¢N, N, ‘ :
an( ) — Gaxay( ):0. L (k)
It will now be assumed that #," and ¢’ vary only in the x-direction. Thus
tSI - ts¢s
= I . . . .. . .. (6)

where £, and ¢ are constant and ¢, and ¢ are non-dimensional functions of x. For a panel with
booms of cross-section B, it will also be assumed that

B’ = Bé¢.. . .. .. . .. (6a)

Laws (8) and (6a) will be taken to apply throughout this Appendix. For convenience ¢, and ¢ are
taken as the actual thicknesses at x = 0. Thus, the boundary conditions for ¢, and ¢ are

$,(0) = $(0) = 1. ... .. .. .. (@D

Using equations (1) and (6) in equation (5a) one derives the ultimate form of the compatibility
relation as it will be used here,

1 N 2 /1N,
E¢tay2+Gtax¢ax* R

which is a partial differential equation in the sole unknown N,. Note that it is valid in the region

Izx>0and w2 >y > —w/2. .. . .. . (8)

* The direct flows N, are ignored in this presentation.
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If the panel is unloaded at x = 0

N, =0 .. . . .. . . 9)
and if the panel is built-in at # = / one finds from (1) using (2), (4) and (6)
N, '
) =0, R

At the edges y = -+ w/2 the strains in panel and booms must obviously be equal. Thus, if
the boom and the direct-stress-carrying material of the panel are of the same material one obtains

B

Pi:ZN"i° . . . . .. (10)

Having derived N, from (7) and the appropriate boundary conditions, NV,, is found from (see

equation (1))
V2N,

Ny=— [ = PP (0}

where N, 1s the shear flow at ¥ = 0 and can be determined from the equilibrium in the y-direction
+w/2 _

N,dy=0Q .. . . .. .. .o (12)

(see Fig. 13 for signs).

The shear stress (and shear flow) at a built-in end, say x = I, must be constant over the width.

2 _
This follows immediately from (4) and (a—;‘ ) —0. Thus,

(ny),,=l=Q;@=l. L (12a)

Finally the deflection # may be found from

w-EE s - L L L w

2. Engineers’ Theory Stress Systems.—The end and edge loads on a parallel panel may always be
analysed in a symmetrical system and an antisymmetrical system (see Figs. 13b and 13c).

Assume first that the loading consists solely of end loads P, and that the panel is very long
(lJ/w = 1). It is obvious that for symmetrical end loads, P, the stress distribution for large x,
must approach a constant value both with respect to x and y. Similarly for an antlsymmetrlcal
couple + P, the stress distribution at a cross-section approaches asymptotically the linearly
varying stress of the simple engineers’ theory of bending (Euler-Bernouilli assumption). Thus;
the asymptotic flow distributions and boom loads are

(@) Symmetrical case

N”E:z%ts'zw—(%;&zﬁﬁ’gzliaa (14)
N,z=0
(b) Antisymmetrical case
N, — 6P, £ 2y 6Py 2y, P 3P,
# wt,” - 6B' " w(l + 3a) w e (15)
nyE =0 !
where . x = 2B'[wt,’ = 2B/wt, . e .. . .. .. (18)
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The suffix - will be used throughout this Appendix to indicate the usual simple engineers’ theory
stress systems, either in direct load or bending. Note that the distributions (14) and (15) do
satisfy the compatibility condition (7).

As next let the panel be submitted also to edge loads S (see Figs. 14b and 14c). Then it is still
possible to equilibrate the applied loads with the direct stress flows and boom loads of (14) or
(15) if one substitutes P for P,, where

PPyt [ Sdn .. .. .. .o

But these stress-systems will, in general, violate the compatibility condition (7) since the variation
of P with % will entail also shear flows. Thus one finds from equations (11) and (12), with ¢ = 0,
for the

(i) Symmetrical case

25 , S (2
Nos = —grregg by = —125(2) = o - (8
(ii) Antisymmetrical case
S 29\ ) '
N"”:2(1—+_30c){1_3<%5>} parabolic ) . .. .. .. .. (19

When the panel is subjected to transverse loads @(z) (se¢ Figs. 13d and 13e), it is again possible to
equilibrate the applied moment M with N, and Py of (15) if one replaces Pyw by M (x).

In fact,
M
Tk

B’wzts,y: L'y e .o (20)

o

which is the standard engineers’ theory result. For the shear flow distribution one obtains from
(11), (12) and (20), ‘ ,

_ .. @

the well-known formula for the shear flow in the web of an I-beam.

3. Condition of C ompatibility of the Engineers’ Theory Stress Systems of Section 2.—To obviate
continual reference in full to < engineers’ theory stress systems ’, and to ‘ self-equilibrating stress
systems ’, the abbreviations E.T.S.S. and S.E.S.S. will be used.

The elementary E.T.S.S. of section 2 satisfy the compatibility condition of equation (7) only
in some simple cases. Thus, as already mentioned, this is obviously the case with the distributions
(14) and (15) corresponding to end loads P..

When edge loads S are applied to the panel substitution of (14) and (15) with (17) in (7) yields
the following condition for compatibility :

i (S
ZC)=0 . . @
. Secd. i (220

36




For example, in a uniform panel the stress distributions (14) or' (15) and (18) or (19) corresponding
to constant S are elastically compatible. In fact, in an infinitely long panel these solutions will
satisfy also the boundary conditions and thus be the true stresses. They are in the anti-
symmetrical case ' '
, S 65Sx 2 3Sxa

21 T30 w ° Pro=2%7113,
and N,,; given by equation (19).

(23)

For a panel under transverse loads the E.T.S.S. are, but for a constant in the shear flow, the
same as for a panel under antisymmetrical end and edge loads subject to the following relation
between the two loading systems,

, M = Pw or Q = Sw . . .. .. .. .o (24
Hence, the condition of compatibility or the E.T.S.S. in a beam under transverse loads is
' Ooc ¢ . o . . . .. (22b)

Thus, in a uniform cantilever under a congtant shear force, which corresponds to the case of
constant antisymmetrical edge loads - S, the simple theory does satisfy equation (7). But it
will not represent the true solution if the end x =/ is fully built-in. It is easy to give many
more examples where the E.T.S.S., although internally elastically compatible, is not true due to
the boundary conditions.

However, in all cases it is possible to represent the stress distribution as a combination of—
(@) an E.T.S.S. which is in equilibrium with the applied loads, and

(8) a self-equilibrating stress system conditioned by the requirement that the total stresses
satisfy the compatibility and boundary conditions. ‘

Consider, for example, an infinite panel under end loads P.,. The E.T.S.S. is given by (14)
or (15) which satisfies (7). But in order to achieve the correct boundary condition at x = 0 one
must superimpose on the E.T.S.S., an S.E.S.S. at x = 0 which is equal to the difference between
the P, system and the E.T.S.S. This is shown in Fig. 14 both for symmetrical and
antisymmetrical loadings. The next step is now obviously the study of self-equilibrating stress
systems. ‘ ‘

4. Self-equilibvating Stress Systems.—It is natural to inquire into the possibility of SESS.
which take the form
N, =h(y).glx) .. .. . .. . .. (25)

with shear flows N,, in accordance with formulae (12) and (12a) for 0 = 0.

Since the direct flows are self-equilibrating they must satisfy the conditions of zero total end
load and moment, ¢.e., ' :

+w/2 B ‘ ‘

[ by +3heth)=0"0 ()
+of2 Bw

J_wlzhydy—l—zg(m—h_):o O /)

where %, and %_ denote the values of % and y = + w/2 and — w/2 respectively.

" Substitution of (25) in (7) yields an equation which may be written as follows :

é(!@) La% ,

Edx\¢ dx t, dy*? ' 98

E—T—-——_—"—“ h . . P T .. « . ( )
58 =
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By definition the first ratio can only be a function of #, or a constant, and the second a function
of y or a constant. Thus, the common value of these ratios must be a constant, say 4%. Equation
(28) can now be split into two ordinary differential equations,

1d%h h :
ZW-{—}»ZZ:O .. . .. .. .. (29
d/ldg\ G, g | '
@(S—‘%)—Eags:o L @0
It is interesting to pause at this stage and to see what solutions correspond to 4* = 0.
They are
h=C;+ Cy .. .. . .. .. (31)
and a4 /1 dg
zGa)=0
a
or d—f:oc({;. - .. .. .. o (32)

But equation (31) does obviously not represent a S.E.S.S. and in fact is the most general form
of a ET.S.S. Equation (32) is identical in substance with (22a) and indicates the condition
under which the E.T.S.S. do satisfy the internal elastic compatibility. Thus the solutions for
4* = ( merely restate the results of sections 2 and 8 and are hence of no interest any more.

The general solution of (29) for A* = 0 is
h = C;cos 2y + C,sin iy .. .. .. . .. (38)

where _ 1 = A/ (t,[¢) .. . .. .. .. .. .. (34

The terms C, cos 2y and C, sin 2y correspond to symmetrical and antisymmetrical N,-distributions.
respectively and are best considered separately. Since the C-constants can be absorbed in the
g-functions they will be taken here as unity.

(@) The Symmetrical h-functions.—The solution |
h=cosly .. .. .. . .. . .. .. (35)
does automatically satisfy the zero-moment condition (27).
Substitution of (35) into the zero direct-load condition (26) yields the transcendental equation for 1

tan (Aw/2) + «(iw/2) = 0... . .. . . .. (36)
where « is given by (16). ’

It appears now that 4 cannot take an arbitrary value but must be one of the infinite roots

21,12’23...2%'... .. .. .. .. .. .. (37)

of (36). Thus the 4,’s are the eigen-values and %,’s the eigen-functions of equation (29). To
each of the roots there corresponds a different and independent S.E.S.S.* As the order 7 increases
the roots approach asymptotically the values
w2 — (20 — 1)z/2 .. .. . . .. .. (38)
. . 2 . :
and the %,-functions approach the form cos { (20 — 1) g _z% } . Thus, it follows that for large ¢’s

the boom loads tend to zero and self-equilibrium is achieved practically by the N,-distribution in
the stringer-sheet alone.

* Note that a different g-function corresponds to each value ,.

38



Of interest are also the extreme values of 21 for «— 0 and «— w0, i.e., B— 0 and B— .
In the first case
and in the second C e .. . .. .. (39
2aw[2— (26 — 1) =[2 |

The stress distribution in the panel for each value of 1, may be determined from

7 B ; in (1,0/2
Nx:COSAiy.gi, :;COS (llw/Z).g’l‘: __Sl_ngj'ﬂ.lg%
sin 2,y dg;
N,=-SEEL@)

In the derivation of the second form of the boom-load equation (36) was used.
() The Antisymmetrical h-functions.—The solution
h=sinly .. .. .. . .. . . .. (41)
does satisfy automatically the zero and load condition (26).
Substitution of (41) into the zero moment condition (27) yields the transcendental equation
T’T‘% =0 .. .. .o (42

the infinite set of roots of which give the appropriate i,-values for the ant1symmetr1cal case.
A similar discussion to that of the symmetrical case apphes here too. Thus, for large ¢’s the
roots approach asymptotically the values :

tan (Aw/2) —

2,0]2— im .. . .. . .. (438
The stress distribution in the panel for each value of 1; may be determined from,
- B -
N,=sinldy.g, P, =4+ sin (4,w/2) . g;
: cos 1,y — sn (1,w/2) dg; ‘
N, = 7, Tr - .. .. .. .o (44

The S.E.S.S. (48) and (44) will be dénoted collectively as the eigenloads of the structure.

An important relation, which corresponds to the usual orthogonality conditions of Fourier
series, holds for the 4- functions of either kind. Thus one can easily prove that

+wf2 . : .
[ty dy & Bl by + b ]=0  whenij .. .. (45)

the following relations apply:
(i) Symmetrical case, 4; = cos 1,y

/2 £w
f . thi dy + 2B(hi ) = 5 {1 + o cos® (%; w/Z):l
- (46)
tw
=—2—[1—sn(lw)}
(ii) Antisymmetrical case, #; = sin 2,y
+wf2
I thEdy + Bl + bt = [L+mm@wﬂ—muwm]
" . (47)

Il

[1 + sn (1,w) — 2sn’ (Ziw/Z)]

o

9

(60926) c2



The next step is to investigate the lengthwise variation of the self-equilibrating stress systems.
For this it will be necessary to find the general solution of equation (30).

g:i(%) = Du¥ (%) + Di¥il) .. . . . .. (48)

where ¥, 'and ¥',, are the complementary functions and the D’s are constants depending on the
end conditions. '

At a free end N, = 0 and hence

‘ g=0. . . . . . . .o (49)
At a built-in end N,, = 0 and hence
dg;/dx = 0. . . . e . .. (80)
In the case of a uniform panel (¢ = ¢, = 1) '
g; = D, coshux + Dy sinhpx .. .. .. .. (81)
where '
wi = i/ (G/E) . .. .. . .. (52

From equations (51) and (50) one can derive the following expression for the g-function in a
panel built-in at x = 1.

cosh u;(l — %)
cosh u;l (53)

Equation (53) shows that the larger ¢ and hence the greater the quicker the self-equilibrating
system dies out.

gizDi

It is often useful to have an expression for the warping, 7.e., the out-of-plane displacements
in a cross-section. In the estimation of the warping, which will be denoted by #*, it is immaterial
if any translational or rotational rigid body movements are superimposed. The following formula -
for #* can be obtained from the shear-shear strain relation (4) using equation (29)

i 1 &, dg; —
(Built-in condition dg;/dx = 0!). Note that the warping is proportional to the direct stress.

This is a characteristic property of the self-equilibrating stress systems described in equations
(35) and (41).

Assume now that an arbitrary S.E.S.S. is applied at the free end x = 0 of a panel built-in at .

x = . The stress distribution is obtained if one succeeds in expressing the given S.E.S.S. in
terms of the eigen-loads (43) and (44). Again symmetrical and antisymmetrical loading groups
will be considered separately.

(1) Symumetrical Arbitrary S.E.S.S.—Let, at x = 0, the direct stress flow in the stringer-sheet
be N,, (which may vary with y) and the boom loads P,. It is required to express this system
in the form of an infinite series in the %;’s.

0

N, = Z (g:)oh;

i=1

B (55)
P, = _t—s Z (gi)ohi +

where %; = cos 1,y and (g,), is found from equation (53) for a uniform panel. For panels with
lengthwise variation of thickness one must obtain the appropriate solution (48) and adjust it to
the boundary condition (50). In all cases it is possible to write equations (55) in the form

i=1
B2
PSZ—ZZD’ihi—F' .. ¢ .« .. » e .. (55&)
s i=1
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Thus, the problem consists in the determination of the constants D;. Multiplying ﬁow the first
of (55a) by 4; = cos 1,y and integrating between 0 and w/2 and adding to the second multiplied
by cos (2,1/2) one obtains, using equations (45) and (46), an explicit expression for each constant D;.

Dy(w/4) [1 —sn (Aw)] = [ N..cos 7y dy + P, cos (Lwf2) . .. (58)

It is hence possible to derive for any self-equilibrating stress system a unique expansion of the
type (55a).

(2) Antisymmetrical Arbitrary S.E.S.S.—Let at x = 0 the direct stress flow be N,, and the
boom loads -+ P,. An expansion similar to equation (55a) is sought with the only difference
that now %; = sin A;y. Proceeding as in the previous case one obtains

D;(w/4) [1 + sn (A,;w) — 2 sn® (A;2/2)] = jwlsz sin A,y dy + P, sin (4;w/2) .. (57)

which solves the antisymmétrical problem uniquely.

Having the D; coefficients for a symmetrical or antisymmetrical loading one determines the
stress distribution in the stringer-sheet and the booms of a uniform panel from the following
formulae:

= cosh (I — x)
N, = Z D cosh s,/ b

B cosh p;(l — =)
Py = , Z D cosh u;l hi 59

Gt < sinh p; (0 — %) . -
ny — /\/( Et5> 1:=El Dz ——————COSh = il sin Z,Ly for a symmetrical case
Gt = Sinh /li(l - x) - = for an
- S50 2 0 ™ coshy — o o) s

The series are so quickly convergent that, in general, only a few terms are required to obtain a
good approximation. ' ’

N

2y e}

5. The Panel Under End Loads P,.—The results of the previous section will be applied to the
problem of a panel under symmetrical or antisymmetrical end loads P .

(@) Symmetrical End Loads.—The symmetrical loads P, on the booms at ¥ = 0 can be regarded
as the super position of the uniform loading indicated by N, and Py of equations (14) and a
S.ES.S. N,, and P, defined by

Nxs = - NxE
P, =P, — Py . . . . .. . .. . .. (59
(see Fig. 14a). ‘

Substituting equations (59) on the right-hand side of equation (56) and remembering that the
contribution of the uniform E-system must be zero, one obtains ‘

4P, cos (A;w/2) :
]:wl_sn(l]w)ZK]Po .. . .. .. P . « (60)
where
4 cos (Aw[2)
K]——Z_w'l_sn(l]w). .. « o .. .. .. . .o .o (603.)
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Thus, the total stress distribution is given by

2P, ® [ cos (L;w/2) cosh p;(I —=x)
Ne==y {1+oc+ z[l——sn(lw) cosh g, cosl]-y:H
1 2. [ cos? (1,w/2) cosh pu;(l — %)
P:P"“[I—l—oc Z[l—sn(/l w)  cosh pl :H (61)

4P, cos (A;w/2) sinhpu;(l —x) . - ]
Ny \/( ) {1 —sn(iw) coshpl O A
() Antisymmetrical End Loads -+ P,—The method is similar to that under (@). Thus, if one
notes that the linearly distributed E-system of equation (15) cannot contribute to the rlght—hand
side of (57) one obtains ,
D — 4P, sin (1;w/2)
I w 1+ sn (1;w) — 2 sn® (1;w/2)

—KPy .. .. .. .. .. (82

where

B

, sin (1,0/2)
J':@l—[—sn(ijw)——anZ(/TW/Z) .. .. .. .. .. .. (62a)

N, — { T 5 6 2y . z:: I: ~cosh p;(7 — %) <in ij:l }

+ 3a) w cosh u ¢
3 w2 s cosh u;(l — %
Py =t P [1 Tt > | K sin (]2 c,oili,u,.l )” e (69

Gt © sinh p;({ — % - =
N, = — J(ﬁ> P:] Z K; sinh ;0 — %) (cos 1,y — sn (Ajw/Z)):I .

cosh p;0

8. Panel Under Arbitrary Edge Loads S.—The next loading cases to be considered are those
of a panel under arbitrary edge loads S; as in the previous sections symmetrical and anti-
symmetrlcal loads will be investigated separately

Whatever the nature of the edge loads S it is always possible to equilibrate them with stress
systems of the type (14), (18) or (15), (19) subject to the substitution P for P,. The analytical
character of the additional self-equilibrating stress systems, however, will in general be different

from those discussed in section 4, since the present E.T.S.S.’s may violate the compatibility
condition (7). Thus the purpose of ‘the S.E.S.S. will not only be to satisfy the boundary conditions
but also % combination with the E.T.S.S. the compatibility equation (7). This will obviously
only affect the g;,-function which in the present case will be denoted by g..

Following this preamble one can express the direct-stress distribution in the panel and booms
as follows :

Nx = NxE + Zlgzhz

B (64)
P:i::PEi—}_—t Zgiki
Substituting the first of these equations into (7) and noting that
*N, 5
oy: 0
for all E.T.S. S one obtains
10N,z 2 { d% ki d (14dg, }

o) =t 2 mme wGa)l o ®



or, using equation (29),
0 laNxE . = d ldg-, th
7\ ax>—+zhi[g,; %E) s 953} . N )

A corresponding equation for the booms can easily be derived from the second of (64) using (3)
and (30). Thus, for the boom at y = 4 w/2,

(;dp) ;d§§+)=§§2hi+{% %gi) “fﬂ} N 7))

where P is given by equation (17). Equation (67) can also be obtained by a simple physical
argument. The right-hand side of (66) represents essentially the expansion in an A,-series of a
self-equilibrating stress system with a direct-flow distribution in the stringer sheet equal to

é “ox
The corresponding boom load of this S.E.S.S. is at v = + w/2,
d 1d(P — Py ) ) 14P 1dPE+>
¢ dx ¢ dx dx ¢ dx

and can obv1ously be expressed by the right-hand side series of (67), (see also the discussion of
sections 4 and 5). ‘

The subsequent analysis is very similar to that given in section 5 for end loads P,. Thus,
multiplying (66) by %; and integrating between 0 and w/2 and adding (67) after multlplymg it
by %, one obtains, using (17), (45) (46) or (47) the required differential equation in g;,

d ;2%) M& K= S) e A .. .. (88)

¥ S

where Ki is for symmetrical loads given by (60a) and for antisymmetrical loads by (62a).

If S ¢ the right-hand side of (68) is zero and g; = g,. This confirms also condition (22a)
for elastic compatibility of the E.T.S.S.

As next one must define the boundary conditions. At a free end N, = N,z = 0 and hence
g=0. e e (89

At a built-in end # = 0 or dN,/ox = 0 and hence, by a method similar to that applied for the
derivation of (68), one finds

ag,Jdx = K;S. .. .. .. . .. .. (70)
Examples
(1) Uniform panel, free at » = 0, built-in at x — Z; loading :
symmetrical and anti-symmetrical S = constant.
The differential equation for g; reduces to that of g, which in the present case is

a’g;
W"—[L,;Zgizo. . .. . . . .. . (71)
The solution of (71) adjusted to the boundary conditions (69) and (70) is
KS . ‘
gi=ms1nhmx. .. e .. (72)
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Thus, the stress distribution in the panel is as follows:

(@) Symmetrical case

N, = w(l + «) —l— o) + Z u, cosh pg ©%° Ay
Sxo Sla & ;W sinh w,x ]
Pegp T 72[ cosh 1 05 (0/2) N V)
S Zy & [Kycoshpw o }
ny:_l—}—cca SZ i COSh/cl in (1)

(b) Anti-symmetrical case

65y %y [K sinhpx . . }
No= i 35w T° § w; cosh pd S AY

3Sxw . Sk Kmwsinhpx . . ]
Po=tyiisg™ ZZ[ulcosh,ul in (2.2/2) - (74

N, = gt~ 3(2) | + 5 2 [0 (cos iy — s (i)

(2) Uniform panel, free at x = 0, built-in at x = /; Loading : symmetrical and antisymmetrical
linearly increasing edge-loads S = Sy(«/).

The differential equation (68) reduces in the present case to

azg; - S
dxz —‘//Lz-zg,;:K,b'To, .. . « .. . .. (75)

the solution of which adjusted to the boundary conditions (69) and (70) is

- K,S,(coshpu;(l — x) + pdsinh px )
z =15 { S -1 ()

The final formulae for the stresses will not be given here, but they may be found very snnply
from equations (64) and (76).

In all cases only a few terms of the series need be taken to obtain a very good accuracy in the
stresses. :

7. The Panel Under Transverse Loads.—It was stated repeatedly in the main report and also
in this appendix that the stress distribution in a panel under transverse loads is, but for a constant
Q/w in the shear flow, the same as in the panel under antisymmetrical loads as long as the following
reciprocal relation holds between the two loadings,

M =Pwor(=Sw. .. . . . .. o (24

Hence, the dlfferenhal equation (68) for the g;functlon takes the following form in a panel under

transverse loads:
d (1dg; g _ 0
dx g dx > [L(/,Lz ¢ w dﬂ,( ) .o « o .. o (77)
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Similarly, the boundary condition (70) may be written as

9@ _ g

0] :
e Dy . .. .. .. .. .. (78)

The two examples investigated in the previous section find an immediate interesting application
here. Thus, the case of a uniform antisymmetrical edge load S corresponds to that of a constant
shear force § and equations (74) give the stress distribution subject to the substitution (74) and

;

the superposition of a constant shear flow Q/w. Furthermore, the results of example (2) may
similarly be used for a panel under uniform transverse load.
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w2 7 J w/2 }
--{-——-4— ------- --i---—> Pl —J -
| — —— — — ! i —g— - —— - —p— !
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1} L '—ﬁ; L ¥Al
1
(b) Symmetrical Diffusion Case (c) Antisymmetrical Diffusion Case
m—TT-W W(x) Transverse Load
’ :
“Y i
.._é __________ A — [
wi2 2
_*__.__..—,--CB—» w ﬁ a
X 7
w2 [ i
! 7 : 7
I 2R i
H I
O ——

{d) Transverse Loading Case

(¢) Positive signs of Shear Force Q
and Bending Moment M

F1a. 138. General notation for Appendix II.
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Iy

E.T.S.S.

+

(a) symmetrical €nd Loads P,

E£.T.S.S.

-+

(b) Antisymmetrical End Loads P,

i

F1c. 14. Analysis of a symmetrical or antisymmetrical end-load system P,
into an engineers’-theory stress system (E.T.S.5.) and a self-equilibrating

K.5 12/5¢ Hw.

stress system (S.E.S.S.).
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