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Summary—In many problems relating to the stressing of thin-walled cylinders, and in particular those concerned
with the stresses set up in a cylinder under torsion when one section is restrained against warping, it has been commonly
assumed that sections have their shape retained by closely spaced stiff ribs. Justification for this assumption is that,
for certain types of loading, the ribs of most practical structures do little work in maintaining the section shape (and

the analysis is considerably simplified).

In this report the effect of discrete, flexible ribs has been investigated and the results have been incorporated in a
number of graphs which show the effect of rib-flexibility in a long thin-walled cylinder of arbitrary shape under end
constraint. Some of the results of these investigations are, as would be expected, of a negative character, in that
they show that for certain types of end conditions (roughly, those in which the predominating self-equilibrating loads
act parallel to the cylinder axis) the effect of rib-flexibility is negligible. DBut rib-flexibility is of paramount importance
when self-equilibrating shear-distorting forces are applied to a cylinder—such as occur at a wing cut-out or near an
overhanging engine—and this report makes the stress distribution in such a case readily determinable.

It is shown that the complete stress die-away pattern depends, apart from the boundary conditions, on two non-
dimensional parameters., These parameters are functions of the type of end constraint as well as of the structure
dimensions and elastic constants. Expressions are given for determining these parameters when the cylinder shape

and loading are arbitrary.
The simplified case of a four-boom cylinder of rectangular section under torque is treated separately in a second
appendix.

The solution is strictly true for a four-boom cylinder or when the self-equilibrating end-load System is orthogonal
(eigenload)®; but as minimum-energy methods are used in the analysis, the results are believed to be substantially
correct for a smoothly varying end-load system applied to a cylinder of arbitrary shape.

1. [ mfwoducnon —When a thin-walled cylinder undergoes torsion, or bending with shear,
there will be in general an axial warping of all sections ; however, if one section is restrained
against warping then a self-equilibrating stress system will exist at, and in the neighbourhood of,
the restrained section. It is convenient to regard the stresses in such a cylinder as being made
ap of two parts, the one due to the primary applied loads and the other due to the self-equili-
brating system. This system can be regarded as that which will just liquidate the warping at
the constrained section.

* R.AE. Report Structures 6, received 8th November, 1947.
A
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In calculating the magnitude and rate of decay of these self-equilibrating stresses it has been
commonly assumed that the cylinder sections have their shape retained by closely spaced stiff
ribs. This assumption has the advantage of considerably simplifying the analysis and it is
usually sufficiently accurate in problems in which the ribs do little work in retaining the cylinder
shape and may therefore be regarded as infinitely stiff. However, in such problems as the
stress determination near large cut-outs, etc., this assumption is not valid. :

It will be noticed that by considering the ribs to be flexible we have introduced a second
degree of freedom for the cylinder displacements, and hence the stresses will have two independent
modes. Here, therefore, we consider the stresses set up by applying to one end of a long cylinder,
stiffened by uniformly spaced flexible ribs, two self-equilibrating sets of stresses. The first of
these corresponds to the case where the root section is subjected to axial warping alone and
no shear distortion ; the second to the case where there is only shear-distortion of the root section
(¢.e., distortion in its own plane) but no axial warping. Any end condition may be obtained by a
linear combination of these two fundamental systems.

Mention has been made earlier of the application of this work to the  torsion problem ’ and,
although the main part of the analysis here is concerned with the more general problem of
applying any smoothly varying self-equilibrating system to one end of a long cylinder of arbitrary
shape, the particular application to the torsion of a cylinder of rectangular section is dealt with
in Appendix II. :

2. Assumptions and Method of Solution.—The fundamental assumption made is that the
dustribution of direct stress round a section is constant along the cylinder. This is strictly true®
only in the case of a four-boom cylinder or when the stress distribution is ‘ orthogonal ’ (as it is
for example, in the building-in effect of a tube of rectangular section under torque). The method
developed here cannot therefore be applied to find the effect of rib-flexibility on the stresses in
a cylinder to one end of which is applied a ‘ four-point loading ’, and other problems where the
stress diffusion has a discontinuous character. But, as stated in the summary, the method
used here being a minimum-energy one, the stress die-away pattern will be substantially
correct—being the best possible subject to the given assumptions. The second main assumption
that the direct stress varies linearly between ribs is then in agreement with previous investi-
gations®.

In addition to these assumptions the following are also made : the material is isotropic and
the stress-strain relations are linear ; the structure is integral and constant along its length ;
stringers, if present, may be spread into a stringer sheet ; the peripheral stresses are negligible
in comparison with the longitudinal and shear stresses. The ribs are assumed to have no stiffness
normal to their plane. Reference is made throughout to an ‘ equivalent shear-rib thickness ’ :
for a rib of framework construction this is understood to mean the thickness of a simple shear
rib (z.e., a uniform sheet) which has the same stiffness as the actual rib.

The method of solution is an energy one. The direct-stress distribution round the section at
the root is one of the data of the problem and, by introducing a representative decay factor
(because of the two possible modes of stress distribution there will be four decay factors altogether,
two increasing and two corresponding ones decreasing), the variation along the cylinder is also
known. From considerations of equilibrium the shear stresses in the cylinder walls and the
rib stresses are therefore known in terms of the unknown decay factor. The total strain energy
of the system is now evaluated and Castigliano’s Energy Theorem used to get the quartic equation
which determines the decay factors.

For the particular case of end constraint of a cylinder of rectangular section under torsion it
is of interest to note that the decay factors obtained by this method are in complete agreement
with those obtained by solving the difference equation which results from considering com-
patibility of displacements and stresses. )
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3. Description of Results—In Appendix I an equation for determining the decay factors
is derived ; these factors are shown to be functions of two non-dimensional parameters, one,
8, a measure of the rib pitch and the other, y, a “ generalised rib stiffness ’. Precise definitions
of p and y for cylinders of arbitrary shape are given in equation (40). For the particular case
of a rectangular box under torsion g and y are given by equations (92) and (93). '

3.1. Influence of Rib-Flexibility when one Section is Restrained against Shear Distortion.—
In Appendix 1A the particular problem of the effect of uniformly spaced flexible ribs on the
stresses due to a self-equilibrating system applied to a long thin-walled cylinder, when one
section—the root section—is restrained against shear-distortion, is considered in detail. This
condition of zero shear-distortion may be regarded as produced by a stiff root rib.

Figs. 1 to 4 show the effect of g and y on the direct stresses and shear stresses at the root.
Previous theory, in which cross-sections are assumed to retain their shape, corresponds to the
particular case when g is zero and y infinite ; it is seen therefore from Figs. 1 to 4 that the
functions plotted there, i.e., v,, ¢, and 4,, may be regarded as factors by which the stresses
obtained by such theory hereafter called elementary theory, must be multiplied to give the
correct stresses. Over the current practical range of  and y (roughly, # < 1,y > 2) the factor
for the direct stresses lies between 0-9 and 1-0 and for the shear stresses between 0-6 and 1-0.

Fig. 5 shows the maximal value of the self-equilibrating shear-distorting forces applied to a
rib in terms of the forces exerted by the stiff root rib ; this ratio is less than 0-5 over the practical
range of g and y. The most highly stressed rib may be determined from Fig. 6 : it is usually
the first or second.

The ratio of the direct stress at the first rib to that at the root has been plotted for
various f and y in Fig. 8; it will be seen that rib-flexibility is relatively unimportant
and this ratio differs little from that given by elementary theory (shown by broken
line). A more marked dependence on rib-flexibility is shown in Fig. 9 where the ratio
magnitude of self-equilibrating shear stresses in first bay ) ’

has been plotted.

magnitude of self-equilibrating shear stresses in root bay

The direct stress distribution along the cylinder when each rib is infinitely stiff has been
plotted for various g in Fig. 10. It is of interest to note that the area under each curve is in-
dependent of g and it follows that the direct stresses at rib stations are lower than those given
by elementary theory but are higher between ribs. - '

For a full explanation of the curves in Figs. 7 and 11 reference should be made to A.6.3 where
the concept of a ‘ rib medium ’ is introduced.

The functions 1;, 4, of Figs. 12 and 18 are for use in determining the stresses along the cylinder ;
they apply to this particular end condition and when there is zero axial warping at the root.

3.2. Influence of Rib-Flexibility when ome Section 1s Restrained against Axial Warping.—
In Appendix IB the particular problem of the effect of uniformly spaced flexible ribs on the
stresses due to a self-equilibrating system applied to a long thin-walled cylinder, when one section—
the root section—is restrained against axial warping, is considered in detail. This condition of
zero warping may be regarded as produced by a self-equilibrating shear-distorting system
applied at a section in the middle of a long cylinder ; it will be seen from symmetry that this
root section will not experience axial warping.

From a physical point of view it would be expected that the degree of rib-flexibility and
spacing would have a marked effect upon the stresses and their rates of die-away. This is
abundantly clear from Figs. 14 to 18 where numerous families of curves, analogous to the previous
ones, have been drawn.

That part of the notation which is relevant to Figs. 1 to 18 is reproduced in Note II,
3



3.3. Application to a Cylinder of Rectangular Section under Torsion.—This has been treated
in detail in Appendix IT where expressions for the standard decay factor, % and the non-dimen-
sional 1ib spacing and stiffness parameters g and 7 have been given ; these expressions are given
in A.9.2 and are more manageable than the general ones derived in Appendix I.

A complete numerical example demonstrating the practical application of this report is given
at the end of Appendix II.

An equivalent y for a cylinder with walls of sandwich construction is found in A.12 where a _
simple formula is given in equation ( 101).

3.4.  Subsidiary Problems.—Numerous particular cases of the general problem have been

investigated in Appendices Ia and Is, e.g., the concept of a rib medium, etc. : and the effect
“of a rib medium in combination with discrete ribs is discussed in A64.

4. Conclusions.—When one end of a thin-walled cylinder is subjected to a smoothly varying
self-equilibrating system, it has been general to assume that cross-sections have their shape
retained by closely spaced stiff ribs. In this report the effect of flexible and discrete ribs has
been investigated, and the stess at any point in the cylinder is shown to be that given by
elementary theory multiplied by an appropriate function of two non-dimensional parameters.

Expressions are given for these parameters, and the functions referred to above have been
plotted in Figs. 1 to 18.

It is shown that the effect of rib-flexibility upon the stresses in a cylinder when one section
is restrained against shear-distortion is small (producing errors, over the current practical range,

of less than 10 per cent in the direct stresses and less than 40 per cent in the shear stresses, and
these on the conservative side)

The corresponding problem when one section undergoes shear-distortion but is prevented
from axial warping has been investigated and the stresses are shown to be markedly dependent
upon rib-flexibility. Such a condition of rib distortion may occur near large cut-outs in a
cylinder under torsion or where a sudden torque is applied in a ‘ non-Batho ’ manner, e.g., an
up-and-down torque produced by an over-hanging engine in an aircraft wing.

An example demonstrating the practical application of this report has been given at the end
of Appendix II.

5. LIST OF SYMBOLS

first introduced

Notation of Appendix I in equation :—

E G Elastic moduli
b4 Distance along cylinder measured from a rib (1), (2)
s Distance around section measured from a fixed point (3)
% Axial displacement, assumed to be of the form u,(S) u,(z) (1)
% = 4(s) which determines the direct-stress distribution
- round a section (1)
f Constant of proportionality such that .
Ji Direct stress (axial stress) (1)
7 Number of rib or bay (see Diagram 1) (1)
¥ Stress decay factor (1)
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Notation of Appendix I—continued

[
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W,

By, B,, B
€o
k
B
e

7y
Vs

Additional notation in Appendices 1A and 1B

fu fo

El: 52
Yo
4

A,

A
J

I

|

first introduced
in equation :—

Rib pitch (assumed constant) (2)
Skin thickness of cylinder walls (3)
Stringer-sheet thickness (3)
Shear stress in cylinder walls (3)
g¢ = shear flux (5)
Value of Q at's = 0 (5)
Section area of jth flange - (6)

(7)

Length of perpendicular from Oz to tangent to point
on section (
Total area of cylinder section = }¢P ds (area of equi-

[y
oy
~—

valent shear rib) (13) (19)
Area of section bounded by radii from Oz to s = s,
Ss=s, (18).
(14)
.. .. .. .. (16)
Rib boundary shear flux (17)
Valuesof S, H ats = s’ (19)
Thickness of equivalent shear rib (19)
.. .. .. .. (19)
Strain energy stored in rib (19)
Strain energy stored in flanges (21)

Strain energy stored in stringer-sheet (24)
Strain energy stored in cylinder walls (due to shear) (
Total strain energy

‘ Standard decay factor’
‘ Non-dimensional rib pitch measure ’

‘ Generalised rib stiffness’ (40), (76)
et seq
7B, v) N values of # whose moduli are less than

73(8, 7) } unity (42)
Values of f corresponding to 7, #, (43)
- (52)

(53)

(54)

(56), (57)

(59)



Additional notation in Appendices 1a and 1B—continued

4, (59)
bu (60)
Aug (61)
g (64)
2 (77)
0 (79) et supra
$n (80)
Iz (80)
4p (82) et supra
App (86)

The notation used in Appendix II is given in section A.1.9.
The notation relevant to the Figures only is given in Note II.
Throughout all Greek letters are non-dimensional.

No. Awuthor
1 M. Fine and D. Williams ..

2 D. Williams
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APPENDIX I

Derivation of Equation for Determining the Decay Factors

I P > P +| le P
]
T
BAY O BAY 1 BAY m
RIB O RIB 1 e -~ T RIB7 RIB N+t
= ROOT RIB

Diagram 1. Elevation of cylinder showing rib and bay notation. .
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A.1.1.  Direct Stresses.—We have assumed the self- equ111brat1ng direct-stress system applied
at the root to be proportional to a given axial warping @, a function of s only, to vary linearly
between consecutive ribs and to decay as a geometric progression at rib positions. We can
thus write the direct stress at the nth rib in the form :

ou, .

where f is a constant of proportionality and 7 a representative decay factor®. Thence the direct
stress in the »th bay is given by

E%:ﬂwﬁ+5@—n} L

where z is zero at the #th rib.

A.1.2.  Shear Stresses.—For longitudinal equilibrium of direct and shear-stresses in the region
between flanges, we have

saz>+as 0, . .. . . .. . (3)
which on substitution from (2) gives
fty e 2 —
?7(7 1)—|—as(gt)_—0. . . .. . .. . (4)

Hence, apart from changes in shear flux ¢¢ = Q, due to flange loads,

N

Q=%+ﬁ%§ﬁfmm . . .. . . .. B

0

where (, is the value of Q at s = 0.

Changes in shear flux due to the presence of flanges will now be considered. The flange load
in the sth flange

=Fﬂw{1+§V—U}~ T ()
and SO '
m/%p =Y a0—0, .. .. .. .. . @
Wheré 4,Q is the increase in @ due to load in £ |
Hence @ due to ﬂaﬁges alone = % 49, .. .. . D . (8)
where % denétes summation over the interval (0, s),
=ﬁi%:O§F%. R ()

* By writing #* in the form exp(n log 7) we can regard the decay as exponential,
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Equations (5) and (9) give the total shear flux

Q= —I—W{fﬁsads+ %Fﬂz]}. . . . .. (10)

0

Since the system is self-equilibrating the torque must vanish; this condition determines
Qo. Taking moments about Oz gives

3§QPds=o, e 81

ie. fp[@o —}—]mp—m—ﬂ{ftﬂ ds - iFjﬁ,.H ds = 0 L2

and, writing,
EJ P<§Fjaj> czsforfRPiFﬂzj)ds, N ¢ 0
0 0

becomes o “
240, — _fL(I_ﬁ:’_) M{P Jm ds}ds + 22{(A,,L—A,,,_1) s Fi, H .. (13)
or QDZJM;—_Q,say, . .. .. . .. . .. (14)

where R depends only on % and the geometry of the cylinder.

Consequently from (10) and (14), and introducing the suffix

L2

Qn:f—ﬂﬂ(l—?“—z/—)R+jts%ds+§Fjﬁj e s
:]Eg_—y),séy, .- .. .. .. .. .. .. (16)

where S depends only on @ and the geometry of the cylinder.

A.1.8.  Limitation on Possible Forms Jor S.—TIt will be seen from the above that for a given
smoothly varying # we can find the corresponding shear-stress distribution given by S; that

the converse is not necessarily true is evident from the following : differentiating (16) we have
in the region between flanges,

0S _ :
5e = Ll .. .. .. .. .. .. .. . .. (16a)

Now, because of the continuous character of 4, it will be seen that (16a) determines @ all round
the section. Substituting the value of % given by (16a) in (16) it will be seen that unless there

are jumps at the flange positions in S of magnitude (F/£)(3S/3s) there is no corresponding
smoothly varying form for 4. :
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A.1.4. Rib Siresses.—

RIB n+l

Diagram 2. Shear flux along boundary of rib.

Consider the forces per unit length that act at a point s on the boundary of the #th rib. For
equilibrium we have :

H o4 Qe Qur=0, oo o e e e (1D

where H is the ‘ rib-boundary shear flux .
Using (16) we can write (17) in the form

LA O PR ()

Tt will be seen from the above equation that the distribution of H round the rib periphery is
proportional to S and is therefore similar to the distribution of Q.

A.2. Strain Emnergy.—The total strain energy will now be found and- Castigliano’s Energy
Theorem applied to obtain an equation for the decay factor 7.

A2.1. Energy Stoved in the Ribs.—As has been stated above the distribution of shear flux
round the rib periphery is proportional to S, i.e., if we know the numerical value of H at any
point, say at s = s, then, provided that value (= H’, say) is not identically zero, the shear
flux at all other points on the rib periphery is known.

Now we have assumed that the stress-strain relations are linear and hence the strain energy
in a rib will be proportional to the square of the shear stresses. These shear stresses are pro-

portional to H' and so we may write :

strain energy in rib # = W,
« (H,)
__ NAH))®
=m,say, . .. .. .. .. . .. (19

where N is a non-dimensional coefficient dependent on the geometry and elastic properties of
. the rib and the mode of connection between the rib and the cylinder walls. The form of equation

(19) has been chosen so that N = 1 when the ribs are rectangular (in a four-boom cylinder of
doubly-symmetrical rectangular section) and of uniform thickness and when the applied 7 is
that obtained when the cylinder undergoes pure torsion.

Using (18), (19) becomes ‘ ‘
f2(S’)2NA1,2n—2 (1 . 1,)4 ' »
We = 25°Cly . . o .. .. .. S (20)




A.2.2. Energy Due to Diyect Stresses.—The strain energy in the flanges in bay # due to

direct stress is

' 1 ? ou
We, = o EJU F_.(Ea dz

f27,2n ? z 2
pumm——y .—.2 — —_—
= 5% 2 F; 0 1 -{—p(y 1) > dz, from (2),

— ]6% 7,2n(

147+ ) 3 Fa?,

the summation being taken over all values of 7.

Similarly the strain energy due to direct stress in the skin and stringers in bay # is

Wy, = fzip Lyt 4y +7)j£t5%2ds.

(21)

(22)

(23)

(24)

A.2.3. Energy Due to Shear Stress in the Cylmder Walls—Due to the shear flux Q, the strain

energy in bay # is

2
W, = 2G§Q ds

2,21 - 2, 2
= jy—ngJ %% ds, from (16).

A.2.4. Total Strain Energy.—The total strain energy stored in bay # and rib # will be

Wn == WF,n + WS,n —l— WQ,n + WR,n >
and the total strain energy for a long cylinder is

= EW,,.

n=

Now Z#™ = 1/(1 — #¥, || < 1, and hence from (27) and (28) :
#=0

W {pBl(l tr4r) Bl —7) Byl _+7):)}'

6(1 — 7% 26(1 4+ 7) P21
where 1 h
Bl == E“ EFﬂij —l— ts’b_bz dS ' ‘
B, = é ffg ds , r
_ (S')*NAp
33 o G:tril:l J

10
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A.8. External Forces Applied at the Root.—In order to apply an energy theorem, by means
of which we can evaluate the decay factor #, we must first find out -what are the externally
applied forces and the displacements through which they move.

The externally applied direct-stress system is one of the data of the problem and was assumed
to be given by ’

0 L
{E—ﬂ PPN 1)

0z

which is @ priori independent of 7, and it will be seen later from equation (37) that the corres-
ponding axial displacements need not be found.

Consider now the external self-equilibrating shear loads that are applied at the root and the
displacements through which they move. '

The externally applied shear flux is given by
Hy + Qo (= 0-)

_ St =)
= b , from (16). .. .. .. .. .. e (32)
To find the displacements through which @_, moves we find the corresponding root-rib
peripheral movement—which is necessarily the same. '

At the root rib we have from (18)

_fsA =7 ,
H, = y» . .. .. .. . . . .. (33
and the strain energy in the root rib is
_ NAH¢ |
WR,O - ZGtﬂb ] (34)
hence the generalised displacement of the root-rib periphery will be
. aWR,O '
e(,,say,_——~—aH0 .. .. .. .. .. .. .. .. .. »(35)
_ fSNA(L — 7)?
=ty from (88), (34). . . e . .. (36)

From continuity of displacements ¢, will be the displacement of the externally applied shear
flux Q_,.

A.3.1. We can now apply Castigliano’s Theorem, in the form : * When a structure obeying
Hooke’s Law is in equilibrium under a system of external forces the correct stress distribution
is such that for a small change in that stress distribution the change in the strain energy stored
in the structure is equal to the work done by the changes in the external forces moving through
their equilibrium displacements.’ .. .. .. .. . . .. .. (37)

This theorem may therefore be written :

ow _ [0, . *
81'_{87}60’ . .. . .. . . .. (38

the direct stresses at the root are, as stated in (31), independent of the parameter » and so
contribute nothing towards (38). '

11



Substituting from (29), (34) and (36) in (38) and dividing by /2 gives
El {1531(1 +r ) Bl =), Byl — 7 }: Byl — )

or 6(1 — #?) 2p(1 -+ 7)  2p%%(1 + #) I
i.e., P Bur(r* + 4y + 1) — 6p°Bar(1 — 7)* + 6B,(1 — 7)t = 0. .. .. (89
A.3.2. We now introduce %, 8 and y, defined as follows :—
B, )
k= B,
B = kp (non-dimensional) > ... (40)

and y = B _ B (non-dimensional)
BB, kB,

J

From the definition of the B’s, given in equation (30), it will be seen that % is independent of
the rib-pitch and flexibility and that  is independent of the rib-flexibility and proportional
to the rib-pitch. All are independent of the magnitude of 4. , :

With this notation the equation for » may be written
¥ — {4 £ yBA1 — BY6)} + {6 + 2vp%(1 + %3)}
, — {4 4 yp*(1 — pY6)} -1 =0, .. . .. ce . (41
a reciprocal equation of which two roots are therefore less than unity and two greater.
We shall call the roots :
7/11 1/71; 72: 1/7/2
where, say, [rie] < 1. .. .. .. .. . .. .. .o (42)
A4, Determination of f—In A.1.1 it was assumed that the direct stresses at the uth rib
were given by

014,

E*a;_:fm”, .. .. .. . . . .. .. oo (1 bis)

but from (42) it will be seen that there are four different values of 7, i.e., there are four possible
modes of axial stress distribution and the complete form of (1) will be*

o,

E?z— = 4(fi" + fars + for A+ fr) . .. .. .. .. (43)

* The f’s and #'s are not necessarily real. The accompanying
diagram indicates the region (shaded) in the f — y domain in
which the f’s and #’s are complex.
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For a cylinder of finite length the four unknown f’s in (43) are determined from the four end
conditions, viz., the magnitude of the direct stresses and the rib distortion at each end of the
cylinder.

In the following work we assume the cylinder is long enough for it to be considered semi-
infinite (¢.e., conditions at the root end do not appreciably affect those at the far end), in which
case f, and f, in equation (43) are zero.

In Appendix Ia the particular problem in which there is no shear-distortion of the root rib
is considered and in Appendix I that in which there is distortion at the root but zero axial
warp. All systems of self-equilibrating load applied at the root may be obtained by a suitable
combination of these two systems. In both cases the root direct stress and rate of stress
die-away, etc., are found for varying values of the parameters § and y.

APPENDIX Ia

Particular Case of Zero Shear-distortion at the Root

A.5.1. InAppendix I the equation for determining the decay factors 7 was found—see equations
(41) and (42). ~ The roots of this equation whose moduli are less than unity are

1= n(B, ) } L

and - 7, == 7:(B, ¥)
and the direct stresses at the #th rib in a long cylinder are given by

E

a%”__— # n
az—u(fﬁ'1 + fars") .. . .. .. . . . .. (45)

with a linear variation between ribs.

A.5.2. Determination of f, and. f,—We shall now find the f’s for the case when there is no
shear-distortion of the root rib and when the axial warp at the root is — 4. (Chosen negative
so that if 4 is a warp in the unconstrained state of the cylinder—under torsion, say—then for
complete building-in at the root we should have %, + % = 0, i.e., 4, = — 1.)

From (2) we have, leaving out the suffices , and , and considering the general term,

du _ fart 2y — 1) : :
w = F {1-|— _—ﬁ } , .. .. .. .- .. (251?)

which on integrating over bay n gives

' * ou
Upr1 — %nZJ' adz

0

_fapr(it7) |

= oF ;o .. . .. . .. .. .. (46) -
therefore — #, = t,, — U,, SINCE %, 1S Z€T0,

= % (Ugr — )

_Jap (1t -

=55\ 1> from equation (46) .. - . .. .. (47)

= ¢ for the particular case under consideration. . .. (48)
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Hence, introducing the suffices , and , and rearranging, we get

1+ 7 1+ 7\ 2F
f1<1—7’1>+f2<1—7’z)_1b' .. .. .. .. .. (49)
The condition of zero shear-distortion at the root implies that the root rib is unstressed, t.e.,
H,=0. .. .. .. .. .. .. .. .. .. (80)

Hence from (18) :

f(l —#7)? +f2(1 — 73)° —0 . .

7y ¥y

(51)

This condition of zero shear-distortion at the root can be regarded as produced by an infinitely
stiff root rib even though flexible ribs have been considered in deriving the decay factors.

Equations (49) and (51) determine f; and f,, which are of the form

S = (E[p)éss (ry, 7,), say, '
where from (44) (82)
r =178,y .
A.5.3. Direct Stress at the Root.—The direct stress at the root is
L
alfy + fo) = ?% (£, + &) from (52)
B
= Fiky,, say, .. .. .. .. .. .. .. .. (583)

where v, is non-dimensional, being a function of p and y only. The suffix w has been introduced
as the end conditions of the self-equilibrating system which we are applying to the structure are
such that there is axial warping at the root section and no shear-distortion. In Appendix IB
we consider the effect of a self-equilibrating system which produces shear distortion and no axial
warping of the root section.

Two y,—p—y families of curves have been drawn in Figs. 1 and 2, one showing lines of constant
B, the other lines of constant y. It will be seen from these that over the current practical range
(0-2 < g < 1) it is sufficient to assume g — 0; this assumption is shown in A.8.3 to be the
same as assuming the ribs to be spread out into a homogeneous * rib medium °.

A.5.4. Direct Stress along the Cylinder —Owing to the existence of two decay factors there
is no simple ‘ exponential ’ expression for the direct stress along the cylinder ; there is however
a simple recurrence relation for the stresses at the #th rib.

The ratio magnitude of self-equilibrating axial stresses at first rib

magnitude of sell-equilibrating axial stresscs at root rib

:f17’1 + fore
fi+ £

=4, say, .. .. .. .. .. .. .. .. .. (54)

where 4,, = 4,(8, v). The 4,~f—y family of curves has been drawn in Fig. 8,
, , 14




In general we have

self-equilibrating axial stresses at nth rib f 11’1”' —|— f o i

self-equilibrating axial stresses at root rib ~ fl + f2 ( 5 5)
=4,,, say,
= ZI'A wn—1 "~ 2'2A wn—2 (56)

by virtue of (§5) and where
A=+ ra = (B, v) }

_ Ay = 17y = /12(/3, V)
Figs. 12 and 13 show the 4,—5—y and 4,-f—y families of curves.

and

4,, which occurs in (56) when # = 2, is, of course, unity. We have for convenience
written 4,,; = 4, as there is no risk of ambiguity.

A5.5. Externally Applied Shears—In order to keep the root section free from shear dis-
tortion there must be applied to the cylinder, either externally or by a stiff rib, a system of shears
which will be determined by equation (16) with » = — 1 (or zero, by virtue of the particular
end conditions under consideration).

We therefore have :

S (A1 — ) fo(l — 7)) ' :
Q_l_p{ ’ vd— s ;. .. .. - .. .. (58)
using equation (52) we may write this in the form
J=0Q_, = RES4,, .. e . . .. . .. (59)

where 4, 1s a function of p and y only. The A,-p—y family of curves has been drawn in Fig. 4.

Alternatively we can express ;/ in terms of the direct stresses at the root. We then have the
relation :

(direct stress at root) > = 9, + 4,

=y . .. . .. .. .. ce .. (80)
Fig. 3-shows the ¢,——y family of curves.

A5.6. Shear Stresses along the Cylinder.—The self-equilibrating shear flux in bay O = Q*
= (Q_, — H, from (17)
= ], since H, is zero. e .. . . .. (61)
The ratio Q, : ¢, will be denoted by 4,, (this is similar to the notation used in A.5.4).

The 4,,f-y family of curves is shown in Fig. 9. The shear ﬂux in the nth bay satisfies
the recurrence relation

: Aw@n = A AwQ,n—l - AgAwQ,"__g ) . o . . . . . .. (63)
where Ao = 0n: Qo .

* This must not be confused with the Q, of equation (5).
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A.5.7. Rib Stresses.—The root rib undergoes no shear-distortion and is therefore unstressed.
The ribs at the far end of the cylinder are unstressed—from the principle of Saint-Venant. The
self-equilibrating rib shear flux H is however not zero near the root but increases towards a
maximal value and then decreases to zero as indicated in Diagram 3 below ;

Diagram 3. Variation of rib distortion (oc H) along the cylinder.

The maximal value of H can be expressed in the form

Ho = &J, L L (84

where [ is the externally applied self- equ111brat1ng shear ﬂux (see A5, 5) and & = & (8, y);
this has been plotted-in Fig. 5.

The position of the most highly stressed rib is also a func’uon of p and y only. TFig. 6 gives
the appropriate value of # for given values of g and y ; eg., if § = 0-4,y = 4, it follows .
that the 2nd rib is the most highly stressed.

A.8. Some Particular Cases and a Physical Interpretation of k, § and y.—The results obtained
in this Appendix will now be adapted to the following special cases :
() the ribs are infinitely stiff—the rib-pitch being finite
(b) the rib-pitch tends to zero—ribs of finite stiffness

(¢) the ribs are considered to be spread out into a uniform elastic rib-medium of effective
thickness 7,;,/p per unit length.

A.B8.1. Case (@).—Since the ribs are infinitely stiff we have, in effect, 7;, = o and hence
from equation (30) B; = 0. It follows from equation (40) that y = o which means that the
equation for the decay factor » takes the form

+ 53
— 1——546) + 1= .. .. .. .. .. (65)
The direct stress at the root is
2Ew% /1 — 7,
5 () (66)
where || < 1. This reduces to
ﬁz —1/2 .
Eﬂk(l—}-ﬁ , .. .. .. .. .. .. .. (67)

which is in agreement with the results obtained in Ref. 4 where a doubly symmetrical rectangular
box under torsion was considered. The variation of direct stress along the cylinder for various
values of g is shown in Fig. 10.
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A.8.2. Case (b).—Since the rib-pitch tends to zero it is reasonable to assume that the varjation
of direct stress from one rib to the next will be very small. We accordingly search for a solution
in the form

=14 cp + cp* + O(p°) , .. .. .. .. .. (68)
where the ¢’s are constants. Observing that as p — 0, y — o and so the equation for 7 is a
particular case of equation (65). Substituting (68) in (85) gives ¢,2p® = 2,
i.e., =4k, .. . (69)
terms of higher order in p being neglected.

The expression for the direct stress at the #th rib becomes :

o _

E hm{ FA(L A+ k) + fu(1 —ki))”}
A

— {flﬂ(l + kpY + fui(1 — kj))’/"} ,

im
—>0
where z is now measured only from the root,

= d(fie” - fie™H) T (1)

Thus % has been identified with the decay factor obtained when cross-sections are assumed
to retain their shape (since y = ). For this reason it is convenient to call % the ‘standard
decay factor ’. This %, given by equation (40), is in agreement with that obtained by other
writers in considering cylinders under torsion*2

For a long cylinder where there is complete building-in at the root (70) becomes
oU . . .
Ea__Euke .. .. . . .. .. .. .. .. (71)

B(= kp) may be regarded as a non-dimensional measure of the rib-pitch.

It is of interest to note that to retain the shape of cross-section it is necessary and
sufficient that p =0 and y = o, ie., lim ({y/p) = . Previous writers have
0

assumed that p = 0, and, in effect, 7, = oo_.> Provided the ribs are infinitely close
together they could, in theory, even have zero stiffness, e.g., if £, behaves like 4/p as
p— 0.

A.6.3. Case (c).—The concept of a stringer-sheet, in which the stringers have been spread out
into a uniform sheet with equivalent uni-directional properties, is well known and this concept
may likewise be extended to the discrete ribs of the present problem. In this case the individual
ribs are represented by a uniform elastic rib-medium of thickness f,/p per unit length. This
means that y is unchanged. The properties of this medium are such that it distorts in a manner
similar to that of the individual ribs and that there is no axial interaction.

As in Case (b) the direct stresses will decay exponentially and accordingly we put # = 1 4+ ¢,
+ O($?% so that as p — 0 the solution takes the form
B2 = fa explers) | L

The resulting equation for ¢, is the quadratic in ¢,?
¢t — yRtE + pRt =0, N, .. . .. . . .. (79)
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Let the roots of this equation, corresponding to decaying stresses only, be ¢, = — %, and
— ke The condition of complete axial building-in at the root is

fi o
g (74)
and for zero shear-distortion at the root
Rfy + ke =0 . .. .. .. .. .. .. .. .. .. (75)
The direct stress at the root is now
B } y1/4 2 + y1/2 1/2
lh + 1) = Euk{ IR 76

This function of y is of course a particular case of the y, of equation (53). It will be seen from
Figs. 1 and 2 that over the current practical range of 8, 0-2 < g < 1, this function of y gives
a good representation of y,, i.e., for the particular problem under consideration the assumption
that the effect of rib-flexibility may be estimated sufficiently accurately by spreading the ribs
out into a uniform elastic rib medium is justified. Because of this fact and that y o #;/p it is
convenient to call y the  generalised rib stiffness .

There are practical cases where an equivalent rib-medium does actually exist. For example,
consider a cylinder whose walls are of a sandwich construction. Any shear distortion of the
section will be resisted by the bending stiffness of the walls and we have in effect an equivalent
rib-medium. The fictitious value of 7,/ which we must use for calculating y is that which,
when subjected to a set of self-equilibrating shears per unit length (proportional to S), will
store the same amount of strain energy as the actual structure. An example is given in A.12.

A.8.3.1. Direct stresses away from the voot.—The direct stresses along the cylinder have been
plotted, in non-dimensional form, for various values of y in Fig. 11. It will be seen that over
the current practical range (approximately: 1 <y < 32) the effect of rib-medium flexibility
is small. One reason for this is that at the root, where rib distortions would produce most effect
on the direct stresses, we have prevented any distortion.

A.6.3.2. Rib distortion along the cylinder—The rib-medium distortion is proportional to
(e=** —e ") and is therefore of the form indicated in Diagram 4 below.

RIB-MEDIUM
DISTORTION

o 3

Diagram 4. Rib-medium distortion,
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If z,, is the value of z at which the distortion is a maximum then we have the relation :

EN

arg cosh (y/?/2)
kz, = YT — I fory > 4
. (77)
arc cos (y*/*/2 '
and Q—NII(QTI/Z)/T/% for Yy < 4

These have been plotted in Fig. 7.

If it were desirable to keep the distortion of the section everywhere as small as possible then
an extra rib in the structure at the section z = z,, where the distortion would otherwise be very
large, would be most effective.

A.8.4. Combination of Rib Medium with Discrete Ribs.—With a slight modification of the
analysis in Appendix I we can derive expressions for the stresses at the rib stations and the
variation, now non-linear, between ribs. These are of academic interest only as the effect of
discrete flexible ribs upon the various stresses is, in most cases, a second-order one, and there
is no justification for investigating accurately the combination of two second-order effects (since
this would introduce third-order effects). :

It is probable that in such a case (combination of rib-medium with discrete ribs) the following
device will give the stresses, etc., with sufficient accuracy :

let suffix » refer to the rib-medium and suffix - to the discrete ribs and let (8, y) be a stress
or bending moment, say,

th . ‘ F == _V—r> F v Fy m < P )F O: .r mje
en <7’r+7’m (ﬁy+y)+ Yy T Vi ( y—f—y)

APPENDIX Is

Particulay Case of Zevo Axial Warvp at the Root

A7. In Appendix I the equation for determining the decay factors » was found, se¢ Equations
(41) and (42). The roots of this equation whose moduli are less than unity are

7’1 == 7’1(61 '}’)
: . . . . . 44 bis
and v = 7afB, ), } (44 bus)
and the direct stresses at the »th rib in a long cylinder are given by
Eou, ,
a_;“ = a(fo" + fr) . e e e (45 Bis)

with a linear variation between ribs.

A.7.1. Expressions for Determining f, and f,.—In Appendix IA the special case of zero shear-
distortion at the root was considered ; in this Appendix the similar problem of zero axial warp,
but non-zero shear-distortion, at the root is considered. All systems of self-equilibrating load
applied at the root may be obtained by suitable combination of these two systems,
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To fix ideas we consider a long cylinder, as represented in Diagrams 5 and 6, to one rib of which
is applied a self-equilibrating shear system 2] proportional to S. From symmetry it will be
seen that there will be no axial warping of the section at this (root) rib. For slightly increased
generality we take the stiffness of this ‘ root rib ’ to be 2o times the stiffness of each of the other
ribs ; the y in the following work refers to the rest of the structure.

Diagram 5. Self-equilibriating shear system.

Z Q=2
2Pl
P P P P
BAY 1 BAY O BAY O BAY
ROOT RIB

Diagram 6. Section of cylinder showing ribs,

The condition of zero axial warp at the root is, from equation (47),

1+71>+f2<1_rz S

1‘—7’1

The equation of shear equilibrium is evidently

2] = 20H, + 2Q,, .. .. .. .. .. .. .. .. (79
which, on substituting from equations (16) and (18), gives another relation between f, and f,.

A7.2. Divect Stress at the Root.—Solving equations (78) and (79) for f, and f,, we obtain
the following expression for the direct stress at the root :

Bl alfy + 1)

(LB 4 8o

SE) @ —Du +1°

where ¢, and p are functions of 8 and y only. These have been plotted in Figs. 14 and 18. It
will be observed that the magnitude of % in (80) is immaterial as it is proportional to that of S,
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I 2 = 1, .e., all ribs are equally stiff, equation (80) reduces to
au Ja
——éé-)—" >¢D - .. P .. P - .« . .. P (81)

and it will be seen that ¢, is analogous to ¢, of equation (60).

A.7.3. Direct Stress along the Cylinder.—The ratio :

magnitude of self-equilibriating axial stresses at first rib .
magnitude of self-equilibriating axial stresses at root rib has been denoted by AD and the Ap=p s famlly

of curves has been drawn in Fig. 16 ; and using the notation :

self-equilibriating axial stresses at nth rib 80
self-equilibriating axial stresses at root rib — D ) ot o v v . v ( )

we have the recurrence relation, similar to that of equations (56) and (63),
App = hillppos — dodlp sz - .. ' . .. . .. (83)
This enables the direct stress to be found at any pomt along the cyhnder

A.7.4, * Rib Loads.—That part of the applied self-equilibrating shear flux 2/ which is taken
by the root rib is given by

dpo] :
H, = .. . . . . .. . .. (84
Tl 4+ (2 —1)° (84)
which, when all the ribs are equally stiff, reduces to _

Hy = 2u]j. . . . .. . . .. .. .. (85)

The shear flux taken by each adjacent rib is

H
H1=<?;>ADD, .. .. .. .. .. .. .. .. (86)

where 4,, = 4, (8, v) and is shown in Fig. 17.

Using the notation :

H
H,,:(Z—g")aw,”, OO 1

we have the recurrence relation

(88)

ADD,n e AIADD, n—1 ZZADD, n—2

A.8. Rib Medium.—When such a self—ethbratmg shear system is applied to a cylinder
with a rib-medium—such as that mentioned in A.6.3—the direct stress at the root is given by

ouy, | Ju 1
N

This function of y is analogous to that of equation (76) and is a particular case of ¢p.

The direct-stress distribution along the cylinder has been plotted (in non-dimensional form)
for various values of y in Fig. 15.
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APPENDIX Il

Application to a Rectangular Box under Torsion

A.9. We consider now the particular problem of the effect of self-equilibrating constraints
applied to a cylinder of rectangular section under torsion. The cylinder is stiffened by uniformly
spaced flexible ribs. Expressions are given for %, §, y, etc., which are more manageable than
the general ones derived in Appendix I. .

The notation—given below——is similar to that of R. & M. 1761°
A9.1. Notation

1/
i
L i? _ 2b_ ) T / 1e
&
% 2a
Diagram 7. Section of box.
E G Elastic moduli
2a Distance between front and rear spars
2b Distance between top and bottom panels
I Moment of inertia of spar section about its centre-line
7 Skin thickness
4, Area of section of top panel capable of taking direct stress
= Area of section of bottom panel capable of taking direct stress
P Rib pitch
Leib Thickness of equivalent shear rib
M Bending moment in spar or panel
T Applied torque

suffices 1, » and » refer to front spar, rear spar and top or bottom panel,
suffix o refers to the root section. ’

A9.2. Expressions for k, p and y.—Introducing =, I,, C,;, C, and C, defined by the relations :

1t B ]
T 14 24,1,

11, = 1/I, + /I,

) 90
C, = 1lat; + 1/at, + 2]b2, . (90)
Co = (1 + 7)a®1, 4 8°1, )
we have the following expression for £?
16abG
2 —
R = C.CE (91)
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and hence

ﬁz@d((;ﬁ?jﬁ) ' ce e e (92)

= pk .
The equation for y corresponding to equation (40) is
. Cltrib

A.9.3. Direct and Shear Stresses at the Root.” (Constant torque case).—We shall now find
the self-equilibrating shear loads and bending moments at the root due to complete building-in
at that section when a constant torque is applied to the far end of the box. This end condition
corresponds to that of Appendix Ia.

In the unconstrained state there will be shear stresses distributed according to the Batho-
Bredt torsion theory, 7.e., a constant shear-flux round the section, and no direct stresses. There
will also be in general an axial warping of all sections and if this warp is given by 4 then there
must be applied to the box at the root a warp of — #* in order that there will be complete
building-in. (For partial building-in we impose a warp of — K7, etc.) We shall concern our-
selves with the stresses due to this self-equilibrating system as was done in Appendix A, It
is clear that since @ will be proportional to the applied torque 7 we can express the stresses at
the root directly in terms of 7.

It readily follows that

ERC,. )
Mf"“—T(lGGb)% Lo e

and M,, = <M;, J

This equation corresponds to equation (53) where the stresses at the root were considered
bending moments being, of course, meaningless for a section of arbitrary shape. :

The self-equilibrating shear-flux system is of the form indicated in Diagram 8 below, but we
can considerably simplify our working is we consider the fofal shear load in the spars and panels
(S, and S,) and not the distribution along the spar webs and panels.”

£l [I-]

Diagram 8. Distribution of self-equilibrating shear system.

With the notation introduced above we have the equilibrium relation

20S, = 2aS; , .. . .. .. .. . (95)
and the equation corresponding to equation (60) of Appendix Ia is
N AV : |
2@55—<2ﬂ1x b .. .. .. .. .. .. .. .. (96)

*In order to ensure that the resulting system is self-equilibrating it will generally be necessary to add to % a linear
warp of the form 4 + Bx 4 Cy.
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and that corresponding to equation (89) :

4@55=2a55—{—2651,=<%>1“/1w... N 4
1

It will be remembered that these shear loads are in addition to the Batho-Bredt torsion loads.
If these are designated by S* we have the following relation :

4081 =25 — WS} =T . .. . . s

A94. Stresses along the Cylinder.—The direct and shear stresses along the cylinder may be
found by using the recurrence relations given in equations (55) and (63).

A10. Varying Torque—When the torque is not constant but is a function of z the 4 at
the root may be calculated by standard methods (¢.g-, Ref. 2) with sufficient accuracy and the
present method used for determining the- direct stresses due to building-in ; these stresses will
be additional to those due to the rate of change of torque. If the torque varies considerably
over any one bay then the stressing problem may need further investigation.

Al.  Direct and Shear Stresses at the Root when that Section undergoes Shear-distortion
only.—Proceeding on lines similar to those of Appendix IB and using the notation of the previous

sections we obtain the following relation between the bending moments at the ‘root’ and
the applied shear system 27 :

_ [4a, Sén
Mf0_<kca B e 10 e e (99)

where [ is as in Diagram 8. As in section A.9.3 we have the simple relation between the front
and rear spar bending moments :

Myo=<M;o ... . L 00)

The application of the rest of Appendix I8 is quite straight-forward and requires no explanation.

A2, Rib-Medium Representation of Cylinder with Walls of Sandwich Construction.—It was
mentioned in section A.6.3 that in cases where the cylinder walls were of a sandwich construction
any shear-distortion of the section will be resisted by the bending stiffness of the walls and we

have in effect an equivalent rib medium. This means that f is zero and we can use the results
of equations (72) to (76).

We shall now give an expression for » when the section of the box is as in Diagram 9 below.

2a

Diagram 9.  Section of cylinder with walls of sandwich construction.
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We introduce the following additional notation :

I, moment of inertia of unit axial length of top panel section
=, o e . . ,, bottom panel section

I, s s ., ) ,, front spar web section
= rear spar web section.

bR 22 2 2 LR . bR4 ERS 1

By considering the strain-energy stored in the structure when self-equilibrating loads of the
type shown in Diagram 8 are applied and comparing the strain energy with that which would
be stored in a ‘ pure shear rib ’ {z.c., a rib of constant skin thickness) we arrive at this equation

for y 1 —
_ 8EC, fa | b\
V_ZGkaab<Il+[2> . - - .. .. . .. .- (101)

EXAMPLE

A long thin-walled cylinder of doubly symmetrical rectangular section is resisting a constant
torque applied at one end of the cylinder. The other end of the cylinder is rigidly built-in, and
~ the top and bottom panels and the ribs are removed over a length L from this encastréd end.
The rest of the cylinder is stiffened by uniformly spaced ribs, the junction rib being ¢ times the
stiffness of each of the remainder. The problem is to determine how the spar bending moments
throughout, and at the junction rib in particular, are influenced by rib-flexibility and spacing.
An expression is also derived for the load taken by the junction rib. The results are also given
in Figs. 19 to 22. .

L 2] JUNCTION  RiB

& o p rall
N y e -
/ J (NNER  STRUCTURE) .~ (OUTER STRUCTUREY
// -
~

kY
N pd - —_— -
N i l i T T
] 2b | | i
~ 1 1 | | ]
N i | !
N
N

N

N

N

N -~

M, S

N N o\]
3 ~
N fa N
N x<——o>l STC M
N X s e
N
~N

Diagram 10. Torque applied to rectangular box with cut-out.
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T Applied torque (constant throughout)

I Moment of inertia of front and rear spar
L Distance along cylinder (from encastréd end to the junction rib) in
which the spars alone are present to resist torsion
2a, 2b Width and depth of cylinder section
S Shear load in each spar (as in Diagram 10)
M (x) Bending moment in spars between encastréd end and junction rib
M, Value of M (x) at junction rib
M Bending moment in spars just outboard of junction rib
E, G Elastic moduli
X,y Co-ordinates measured from junction rib (see Diagram 10)
k Standard decay factor
I vws dw, Ay, bp } as in Appendix II.
Cu, Coo, B,7, 1

Other symbols introduced where necessary.

We proceed to find relations between the spar slopes and spar bending-moments in the inner
and outer structures at the junction rib section. Compatibility of slope and moment at that
section then determines each. :

Inner Structure—The torque is resisted solely by the spars and hence

2a5 =T. .. .. .. . . .. .. .. .. . (i)

d*y .

Also, M(x):EICE—z———MO—Sx. . .. .. .. .. .. . (ii)
Integrating (ii) gives

ay S .

EIdx__MD(x—L)——Z(x—L), . .. .. . .. S (il

it being assumed that the spars are rigidly encastréd at x = L. At the junction rib the spar

slope (due to bending) given by (iii) must be the slope of the spars in the outer structure at that
section ; and we have :—

dyN _ L -
<dx->o_2EI(SL—2M0). R R (iv)

Outer Structure—Bending Moments.—The bending moment at the junction rib section in
the front and rear spars of the outer structure will be slightly less than M, because of the con-
tribution in bending stiffness of the top and bottom panels. We can write however

M = MK .. .. .. . .. .. .- .. - (v)
where K is a constant depending on the section dimensions of the outer structure.
If 4, is the area of section of the top and of the bottom panel capable of taking direct stress

the bending moment taken by these panels will be 524,/2] of the moment in the adjacent spars,
a result obtained by equating the stresses in the panels and in the spars at their common points.

The value for K above is accordingly

I 4 04,21 . .. .. .. . .. . .. .. .. (va)
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Shears—We regard the up-and-down shears to be made up of two systems one of the type :—

SIEJ 5/2

—————~ a§/2b

which represents a Batho system, and the other :

S/ZJ sh

<+ 05/2b

which is a self-equilibrating * J * system.

The Batho system will produce a slope of the front spar (equal and opposite to that in the
rear spar) given by

&\ _ TG, | .
(dx)o__SZG . .. .. .. .. .. o e (vi)

Equation (vi) may be deduced from first principles or indirectly from equation (94) when closely
spaced stiff ribs are considered; the bending moment that would be caused by building-in
would then decay as exp(— k«) and may be integrated to give this slope.

The self-equilibrating shear and differential bending system may be split up into two further
systems, as was done in Appendices Ia and Is, one in which axial warping only of the section
at the junction rib is permitted and the other in which shear-distortion of the section and no
axial warping is permitted. Distinguishing these two systems by using suffices w and » we
can therefore write.

M=M w +7 M, W
. (vii)
and S/12 =Sy 4+ Sp '
And from equations (96) and (99) :—
MW = C‘¢'WS<W ) \L
4 (viii)
MD = CQSD’SD J .
where C = — 2a°1[RC, .. . .. .. . (ix)
and ¢, is the modified ¢, to take account of different flexibility of the junction rib, and is given by
' ¢’D
qSD—(Zg—l),u—|—1 . .. .. .. .. .. .. .. (%)

Of the four unknowns M, M, S,y and Sp, the first alone produces a slope in the spars due to
differential bending. Accordingly we solve (vii) and (viii) for My, :—

M — C¢,'S/2 , .
POV . .. .. .. . .. .. (Xl)
27 '
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The slope in the spars due to My, is proportional to the axial warping due to M, and is given by

d )
(ZZ@D:MW/EMW. e (xi)

The total differential spar slope is given by (vi) and (xii) and must be the spar slope (due to
bending only) of the inner structure at the junction rib: given by (iv). Equating these spar
slopes gives :—

L M — C¢,'S/2 TC,
957 L = M) = B e 326 (xii)
and hence
TL4a + (C, — C,/g,)TEI|32Gb .
M = IK F 1jk, . .. .. .. oo (xiv)
where
& = ywl(l/dp" — 1/éw) } ,
. . (xv)
and g2 = ¢D'g1

It is worth noting that for closely spaced stiff ribs g, becomes infinite and g, becomes unity.
We accordingly expect the bending moment at the junction rib to be very small when

L*4a + C,EI|32Gb = 0
which on substituting for C, and simplifying gives
" L == 4/{(single boom area) afip)} . .. .. . . . oo (xvi)

Dic-away of Bending Moments along the Cylinder.—The bending moments elsewhere in the
outer structure may be found accurately as follows. M, is calculated from equation (xi) and
thence M), by subtraction from M. The bending moment varies linearly from the junction
rib to the first rib where it has the value

M, = AWMW + 4pMp B
(xvii)
= A,M, say ;
and, in general, at the »th rib
M, =AM, .. .. .. .. .. .. .. .. (xviii)
where the 4’s are found from the recurrence relationship
An — ZflA”_]_ —_ Agdn_z . - « o e . e P . (XiX)

Ay, 4p, 4, and 2, are taken from the figures at the end of the report.

Considerable ‘errors may be made if the bending moments are assumed to die away as
exp — (kx), as will be seen from Figs. 19 and 21 which show graphically the results of the
numerical example below. ,

Load taken by the junction rib.—The load taken by the junction rib is given directly by equation
(84), and we have

_ 210Sp
SJR_ml—f—y(Zg——l) , .. .. .. .. .. oo (%x)
_ ¢ul[4a — M|C
by — ¢ '
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Numerical example—Let us assume that

20 = 30 in.
2b = 10 in.
t, = 0-11in.
t, = 0-04 in.
A4,=1-5in?
So that I, = 110 in.*
boom area "~ = 0-44 in.” each
So that I =30imn*
GIE = 0-4
p = 61n.

ty = 0-02 in. (0-03 in. sheet with lightening holes)
L = 8 in. [Case (a)], 24 in. [Case (D)].
Substituting in equations (90), (91), (92) and (93) we have
2 2
G=%xoitsxood 1%
15 x 0-1 5 x0:04
Cy = a*l + b, = 6750 + 2750 = 9500.
16 x 15 x5 x0-4

Ce

— 8-67 ,

Therefore R = 11-3 % 9500 = 0-00446
and k = 0-0668
and - g =6k = 0-40
11-3 x 0-02
and Y =0-00446 x 12 © 7
K (see equation (va)) = 1 + %5—2—01—5- = 1-62
—2x 15 x 30

“and C (see equation (ix)) = — 21-3 .

0-0668 x 9500
These values of # and y give :
py = 0-94,  $, =147, ¢, =0318, u=0-392

These were obtained directly from the Figures at the end of the report.

For Case (4) in which L = 8 in. we have from equation (xiv) :
M 860 + (— 8-67 — 11-3/g,)30/32 x 0-4 X 5

T 8 x 1:62 4 1/0-0668g,
_ _ (8 +533g) ..
= 3 + 15/g, . .. . . e .. . (xxii)
Iftg=1
, _ 0-318 .
¢p = T 0.392 from equation (x)
- = 0-228,
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and hence
& = 0-94(1/0-228 — 1/1-47) = 3-49

and g = 0-228 x 3-49 = 0-798
and therefore from (xxii)

M|T = — 0-142 .
Iig =4:

$p = 1—0;3—21% = 0-0850 ,

so that g = 10-4, g = 0-885
and therefore

M|T = — 0-117
For closely spaced stiff ribs throughout we have M [T = — 0-107.

If L = 24 in. the equation corresponding to (xxii) becomes
M 5-54 — 5-33/g,

T 39 + 15/g, " .. - .. . .. . .. (xxiii)
and if p = 1
M|T = _;_0.sz
ifo =4 :
M|T = 4+ 0-09 ,

~and for closely spaced stiff ribs throughout M/T = -- 0-103.

The load taken by the junction rib (expressed in terms of the vertical shears applied by it to
the spars) is given by (xxi), and we can write this in the form

ST = 0-784 ¢ 1-47/60 + (M|T)/21-3
RS 71+ 0-392(20 — 1) 1-47 — ¢, )
If L =8in.andp = 1: ‘

o 7 0:78410-0246 — 0-142/21-3
ml =T33 1-47 —0-228

= 0-0081 ,

(xxiv)

c.f. 1/4a = 0-0167 if we assume the junction rib alone puts the up-and-down torque into a
Batho distribution.

Ifp=4:
S/T = 0-0115 |

Similarly for L = 24 in. we have :

ife =1
ST — 0-784 [0-0245 + 0-07/21-3
T = 1-392 1-47 — 0-228
= 0-0125 .
and if o = 4:

Si/T = 0-0174 .
All these numerical results are shown in graph form in Figs. 19 to 22.
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NOTE 1

Summary of Formulae for Various Functions of 8, v

4, and 4, calculated from :—
1
o (1 + 4, + 4,)2 = 16 + y8%(4 + 6%/3) ,
2

1
- ;1‘(1_114'12)2:7/34,
2

. ﬁ(l_‘lz) _1_12
—1_}‘1_’_}'2_/3'\/(7}'2) ’

201 = 21 — A A )
PZ B 4 dy — 26 — A — A}

222’)"52

and b

Ay =
Tl A= (6 — A — 4
2k — %
»AW_ 1_/12 )
AWQ:ll_ﬂ'z;
5 = 462,
P = A1 4 4 Ay
sy bt BT,

y _ Ja(4 — 3k — 4Ry + Mdy + A7)
PO hy — A6 — A — Ag)
L 2(1 4 Ay — 34y 1
CEUSII A

NOTE 11

On the curves of Figs. 1 to 18

Accuracy of the Graphs.—The values of 4, and 4, (= 71 + 7, and 7;7,) have been calculated to
six significant figures for some fifty pairs of values of g and y over the range 0<pg <3 l<y
< 64. The various functions of 3 and y in the Figures have been calculated to three places of
decimals using the formulae tabulated in Note II and the values of ,, 4, mentioned above.
In most cases lines of constant y have been drawn and in such cases there is a change of scale at
B = 1; this has been done to include the effect of comparatively large values of BB < 4)
without altering the accuracy of the curves over the practical range. In Figs. 2, 6 and 7 a scale
for y over the range 0 < y < « is given ; this has been obtained from a linear scale by a trans-
formation of the form y = 4x/(1 — %).
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Notation relevant to Figs. 140 18

E Young’s Modulus
R * Standard decay factor ’, see equations (40), (30), (16) or (91)
Ji Non-dimensional rib-pitch measure
=k X rib-pitch
% * Generalised rib stiffness ’, see equations (40), (30), (16) or (93)
i A warping, round a section of the cylinder, which determines the dis-
tribution of the self-equilibrating direct stress around a section : see
All
'S A function of the cylinder dimensions which is proportional to the mag-

nitude of 7 and determines the distribution of self-equilibrating shear-flux
across a section, see equation (16)

J Self-equilibrating shear-flux applied at root to semi-infinite cylinder ;
it is proportional to S.

Those Figures which appertain to the particular end condition investigated in Appendix
Ia, .e., axial warping but zero shear-distortion at the root, have the sign @) displayed at the
head of the page: those which refer to the complementary case of shear-distortion but zero
warp have the sign ®).
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Fic. 1. Axial stresses at root due to axial warp at the root.
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Fic. 2. Stresses at root due to axial warping at root.
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Fic. 4. Root shears corresponding to axial warping at the root.
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F16. 5. Peak rib shears due to axial warping at root.
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Fic. 6. Most highly stressed rib due to axial warping at root.
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F1G. 7. Position of maximum shear-distortion of rib medium due to axial
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Fic. 8. Curves for determining the axial stresses in the cylinder at the 1st rib section due

to axial warping at the root.
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Fic. 10. Effect of varying rib-pitch. Each rib infinitely stiff. (Axial warp but no shear-distortion at root.)
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FiG. 14. Direct stress at root due to shear-distortion at root.
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Fi1c. 19. Influence of junction rib stiffness on spar bending moments.
{(Example with 8-in. cut-out at root end.)
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Fic. 20. Variation of junction rib load with stiffness. (L = 8 in.)
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