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Summary and Introduction.—Some general solutions of the linearised equations of supersonic flow, in terms of Lamé
functions, were obtained by G. M. Roperl? (1949, 1950), using the methods of Robinson®® (1946, 1948) and Squire*
(1947). The results were applied to calculate : (@) the pressure distribution over some swept-back wings at zero lift,
having symmetrical sections with rounded leading edges' ; (4) the effect of camber and twist on the pressure distribution

and drag on some wings of negligible thickness®. The solutions are only valid for surfaces lying wholly within the
Mach cone of the apex. : :

In the present paper, some further special solutions are found. In Part I, some of these solutions are combined with
solutions already found®* to give : (4) the pressure distribution and wave drag, at zero lift, on some finite unyawed
swept-back wings having symmetrical sections with rounded leading edges and wing tips perpendicular to the wind

direction ; {B) the change in pressure distribution and wave drag at zero lift on the surface of a Squire wing*, when
the local thickness/chord ratio is modified.

The shapes of some curved wings, with swept-back subsonic leading edges were found by Roper? (1950), such that
the thrust loading on the leading edges, at supersonic speeds, is removed or modified. In Part II of this paper, the

effect of a change of Mach number on the aerodynamic characteristics of such a wing, designed for a given Mach number,
is calculated.

Some additional solutions of the linearised supersonic flow equations, applicable to cambered and twisted wings,
have also been calculated, and the results are given in Appendices III and IV of Part I1.

*R.A.E. Tech. Note Aero. 2117, received 13th December, 1951.
R.A.E. Report Aero. 2436, received 13th December, 1951.
R.A.E. Report Aero. 2437, received 13th December, 1951.
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PART I

Funate Swept-back Wings with Symmetrical Sections and
Rounded Leading Edges

L. Introduction.—In a previous paper’, the results of certain general solutions of the linearised
differential equations of supersonic flow are applied to find the pressure distribution over some
swept-back wings, with rounded leading edges, whose equations are of the form

z o %2 — By\'*
g, = fle) (P

c

x is measured downstream from the apex, y is measured to starboard, and z is measured vertically
upwards. ¢ is the chord in the vertical plane of symmetry, y(= cot-'k) is the apex semi-angle
in the horizontal plane of symmetry, and 4, is a constant proportional to the maximum thickness.
The surfaces are symmetrical with respect to the xy and zx-planes, and are set symmetrically
to the wind direction, with the apex pointing against the stream. The Mach angle m(= cosec™'M)
is greater than the semi-apex angle y.

In this paper, the special solutions which give the flow over surfaces of the above form, with
J(#,5°) a function of degree 3, 4 or 5 in x and y, are found. Certain of these solutions are com-
bined with others already found* to give: (i) the pressure distribution and wave drag, at zero
incidence, on some swept-back wings having symmetrical sections, rounded leading edges, a
trailing edge parabolic in plan-form, and wing tips perpendicular to the root chord ; (i) the change
in pressure distribution and drag on the surface of a Squire wing*, when the local thickness/chord
ratio is modified. Method (ii) could be applied to any surface of a similar type.

By modifying the thickness distribution, in particular by increasing the thickness of the sections
near the wing tips, it is believed that the peak suction on the upper surface near the leading
edge, at incidence, will be reduced, and that the chance of realising the suction force predicted
by theory will be improved. Wind-tunnel tests show only part of the theoretical suction force
on the basic Squire wing.

2. Method of Solution.—The co-ordinates used are the pseudo-orthogonal co-ordinates intro-
duced by Robinson® (1946), where

. ffﬁl’ _ 7’(/,&2 . hz)uz(,pz . h2)1/2 B 7,(qu . kz)l/z(kz . ,p2)1/2

2= M*— 1= cot*m = k* — I?
k*=cot’y, h*=cot?’y — cot’m

(2)

It is assumed that the surfaces all lie close to the basic plate, whose equation is u — %, (z = 0),
and that the induced velocities on the surface are small and equal to the induced velocities on
the plate. Therefore the relation between the shape of the body and its induced velocity potential
¢ is of the form

0% | L) :
ax_V<8z IS .. .. .. .. .. .. . (8)

where V is the free-stream velocity.

For the linearised theory, the pressure coefficient is

2 /3
Cr*_f<@#ﬂ- e (4)



The required solutions of the linearised differential equation for the velocity potential ¢, in terms

of 7, u, » (equation (5) of R. & M. 2700%) are given by combinations of solutions of the form
¢nm — C}h,nan ( /'I’)Enm ( 'p), | -

where E,”(») is a standard Lamé function of degree # of the K class, and F,*(u) is the second

Lamé function given by"* ' :

N dt .
£, (:“) =K, (:“)Jt [E (0] [liz - hzll 2o kzul/z e e < . (5)

= E”m([u)an(‘u) .
Solutions for # = 1, 2 are given by Squire! (1947), and solutions for # = 3 by Roper' (1949).
Solutions for # = 4, 5, 6 will now be found. ‘ : I

)

3. Solutions for n = 4. For n = 4, there are three K functions of the form
EMu) = p* — aupu® + b, , (m=1,2,3) . . . e (6)
where a,, b,, are positive constants. : :

Substituting (6) in the linearised differential equation for ¢ in terms of 7, u, », or using relation
(1) of Appendix II of Ref. 1, it can be shown that

496{1)»,3 - 98(1 + %2)&Zml2 _l— {48(1 + %2)2 + 52%2}“7}», - 48%2(1 "i" %2) = O s
106, = 7a,”* — 6(1 + ), + 6+, |

~

and hence ~ (7)

2450, — [56(1 - %%)% -+ 77x%b,,/* + #*[24(1 4 »*)* — 3771, — 3x®* =0
where a, = a,/k*, b, = b.Jk*, x* = h*[R*. ‘ .
For a given value of »?*, equations (7) can be solved for a,,’, b, to any required degree of accurac’y.

Horner’s approximation method has been used to calculate the three values of a,’, b, correct to
six decimal places, for »* = 0-19 and »* = 2/3. The values are given in Appendix [.

We consider the solution
(ﬁm — C4r4F4m(M).E4m(V) .
= C47’4E47”(166>..E4m('v).R4m(lu) . “ s .. - . P ‘s (8)
At the plate, » — &, and

= (x* — B [P?, ¥ = WPXP[BE, .. .. .. .. .. 9)
and, using relation (8), it can be shown that (¢f. equation (20) of R. & M. 2700%)
?E — — C4 —(k4 - amk2 _l_ bm)x4 —|— (ﬂmkz . 2bm)ﬁzx2y2 + bwzﬂ4y4 10
ox - V,B4E4’”(k) i (xz . k2y2)1/2 ‘o ( )
and therefore
— _—:_QL_ I 174 '2 3 37,2/74 2
Z == V‘B4E4m(k) _{Z(k _ Clmh _l— bm)x + ‘:Sk (h - amh’ + bm)
—I— %ﬂz(amh’z - 2b7)1):|xy2} (x2 - k2y2)1/2 + {%k4(k4 - amh’2 + b;n)
LB @ — 2B, + bt bt |
+ 2/3 (am — m) + m(g y (xz _ kzyz)l/a . ’ + e . .. (11)
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It can be shown that

(B(}S,,,) e L f 0lm]\32 + bm) [4(h4
=tk

where (see Append1x IT, R. & M. 2700Y),

o K (a, | 20 —a,
Bul®) = e — 10, [ z {bm T b,,,}

— @yl A+ b))% + 28°xy*a, i — 20,)IRME),  (12)

1 a 1 2h — a 1 2R —
— k2 i i —
FE() {h%z b, TR (h @+ b,,,> 52k2< a4 b )H - (18)
K(x), E(x) being the complete elliptic integrals of the first and second kind respectively, of
modulus »(= A4/).

If we construct a potential

3
¢4 = ”Zl (lmEALM(k)?Sm) »

where the 4,’s are chosen so that the coefficient of

. ax
y ( kzy )1/2

(11) is zero, we obtain the solution for a surface whose equation is of the form
z2 = (€& + coxy?) (¥ — RAyHY2

Y
where ¢,, ¢, are constants.

We shall construct solutions for the two surfaces whose equations are of the form

z K /B2

(a) %= <_02__y> ,
P kzxyz 52— kzya i/2

@) 5= 2 (")

3 2 1,2,,2\1/2
(a) The surface §Zt~ = Z} <£~C-2k—y> at zero incidence.
. 0

If @, is the induced velocity potential for flow past surface (a), it can be shown that

%_1 (Anby) = O
j; (hntt) = — 3B°/(6°%) > e (14)
$ () =k — 46 |
if C, is chosen so that A -
—C, 2
Vﬁ;:c—;’. e, (15)
Solving (14), and using the notation of equation (7), we obtain
BAAdy = —— 1

’ ’ 1 — 4s* I3 1y
m[?)(bl — &) - L= (o, —-azbl)J ,




and two similar expressions for i,, 4,, where

A= 1 1 1
@’  a’ a5
bl’ b2’ b3/

The pressure coefficient is

- _ ! ne ' 2 ’
¢, =2%p 34,4 “’"””‘)[K("){@—”LJr Ea— }

C m=1 a,’® — 4b,’ x* b, o« —a,%* 40,

('lm, 1 27{2 - am’
o E(%){ %%b,,’ + %31 — »?) ( xt — a,’%* + b,,,')

1 2 —a, . ) s NZAN
'—1___%2<1_am¢+bm/>}}|:4(% — Ay % +bm)<c>

. 2 '
121 — #?){an'%® — 2b,)R? ’%] N € V)
where the 4,’s are given by (16).
20,2 2 L2\ 1/2
(6) The surface Zit = B ;y <x Czky ) at zevo incidence.
0 .
If @, is the induced velocity potential for flow past surface (4), it can be shown that
3 o )
"21 (Ambm) = - /?1
3 2R
mz=l (A’mam) - 79? } 3 (18)
3 (R = 2nh)R
m2=1 (lm) - h4‘34
if C, is again as chosen in (15).
Hence we obtain
1 ’ ’ ' ’ 1 — 20® A A
Ak = — A= [Z(b1 — b)) — (a) — a)') — 3 (@), — ay'by )] , . (19)

and two similar expressions for 4;, 4,. The pressure coefficient is given by (17), where the 4,’s
are given by (19).

The values of a,’, b, and the Cdrresponding values of 4,, for surfaces (a) and (b), for »* = 0-19
and »* = 2/3, are given in Appendix I.

4. Solutions for n = 5.—For n = 5, there are three K functions of the form
ElMu) =p* —ap®+b,p, m=1238. .. .. .. .. .. (20)
It can be shown that : (using notation of (7))
274, — 60(1 + #¥a,’t + [32(1 + #%)? ++ 44u¥a,’ — 4031 + 5 =0 .. (21)
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and 146, = 9a,* — 8(1 4+ #¥a,’ + 1022 . .. bv o ar s o (22
The solution

o = Cor"F"(u) Es"(v) = Cor*Eg"(u) E"(v) Rs™(u)
gives the flow over the surface

—
= VERE — ak T ) [%W R

+ {_lé-‘f Z(k‘Jl - amhz + bm) + %{ﬂz(dmhz — me)} xz_’yz
+ SR — a, -+ by) + §6%RNaul — 2D,,)
+ bmﬂ‘l} y4] (x2 — k2y2)1/2 ) e - . .. . (23)

If we construct a potential

2

@5 - § [ﬂ'mk<k4 - amkz + bm)(ﬁm] ]

m=1
the 2,’s can be chosen so that @; gives the flow over any surface of the form
P (01964 _l_ szzyz + 63y4)(x2 . k2y2)1/2 ,
where ¢;, ¢,, ¢; are constants.

For the particular surface

2 k4y4 P - kzyz 1/2
o0~ o (*—“—> ’

it can be shown that

3 Et
mzl (Ambm) = E;
3 2%
2 (Tnit) = > e e e (24)
3 Rt
m?——:l (ZM) - Ef};l
if Cy is chosen so that
Csh 24, ‘
7 s . .. .. .. ‘s .. .. (25)
and hence we obtain
) 2 1 ’ I ‘
k4A (1 - %2)22.1 === [(azl - azal) — %_2 (bg’ — bg,) - ’;1 (ag/b;; _— as bz ):] LY . (26)
and two similar formulae for 1,, 4;, where
4 = 1 1 1
a;’ a,’ a;’
b b by . .. .. .. .. .. (27)



‘The pressure coefficient is

_ 4f/o 4 Y 4 N2 (BLLP m
(CP) Ryt T ke (1 — )2 mzl [:{k A(]‘ » ) j‘m} (1 — Ay _I_ bm ) (k R5 (k))
. Kt ) k2x2y2
X 8(t — a,'x%* + bm) + 3(1 — #)a'%" — 2b,") =
(L — xz)%,,,'/wZzH , e (28)

where (see Appendix II, R. & M. 2700%)

},uR m(k) . 1 3{E(%) _— K(%)}(sz —_1 —I_ xzaml + aﬂz,z - mel)
’ ? - 2%2(6lm,2 - 4bm,) (%4 - “nz,%2 + bml)(l - aml + bml)

. {2(1 + %2) ( ) 2 + % }{am x + %2) (am’z ——me,) —I—aml(amlz—‘gbml)} (29)
bm (%4 - am % + bm )( aml —l_ bml) )

The values of a,,, b,/ 4, for x* == (- 48 are given in Appendix II.

5. Solutions for n = 6.—For n = 6, there are four K functions of the form

Eo(p) = p* — aup* + bpp* —c,, m=1,234 .. . . . (30)
where (using the notation of (7) and ¢, = c,,/%°)
1331a,,’* — 5324(1 + »*a,® + [6908(1 + »*)* +- 3234x%]a,,

— [2880(1 + »?*)° 4 7764x*(1 4 »*)]a,, + [4820:*(1 + »*)* + 315x*1 =0 .. (31)
180, = 11a,* — 10(1 4 »*a,’ + 15x°, . . .. . .. (32a)

378¢c,, = 121a,’* — 286(1 + »*a,* + {160(1 - »*)* & + 273%"}a,,’
— 2400%(1 + #%) . .. .. .. .. .. .. .. (32p)

The solution
qsm — CG”GFG”I(/U')ESm(V) — C‘GysEGm([u)Esm(,V)Rﬁm(‘u)
gives the flow over the surface

&= — CB )[{(kﬁ - dnt]?’4 + bmh’2 - Cm) (%xs + __'kzxy

Vﬁe(ke - amk4 —]_ bmk2 — Cnm
- by + Bt — 2,07 + Be )y + 3En)
F BB — 80,) (3"} (xF — RV - { Bk — @+ b — c,)

dax

+ 3Rt — Db, Be,) + 3R (Bl — B6,) + ﬁec,,,}yejmz} .(33)

7



[f we construct a potential

4

Q)S = E [lm(k amk‘l + bmk m)(!)m]:

m=1

the 4,’s can be chosen so that @, gives the flow over any surface of the form

z = (0% 4 cx*y* + coxy )( — Ry
where ¢, ¢,, ¢, are constants.

For the particular surface

o xy x* — RPN\
2250 c* ’

it can be shown that

R )
mE=J. ( mcm) - ﬂﬁ
4
-mE=1 (Ambm) == ‘Bshz (Zkz + k )
o
; LT
m§1 (}“manz) == ﬂ6k4 ( — R )
S ) = — 2 o
m=1( m) - ﬂﬁkfs( — ) J
if Cq is chosen so that
—=Ce _ 2,
Ves ¢S

and hence we obtain

kﬂA(l — % )32'1» — % (1 - 4%2)A1n _l_ %—12 (1 + ZKZ)Bm - Cm + (1 - 2?"’ )Dm ]

where.
Ay =/ (b — b)) + o' (b — b)) + ' (by — b)) )

)
=4, = (0 — ') + ¢ (b — by) + ¢ (by — b,)
Ay =B — b)) + ¢,'(b — b)) + ¢/ (b — by)
—Ai =0/ (b — b)) + (b — by) + ' (b — b))

/

(34)

(37)

The formulae for B, C, are given by (37), with a substituted for & for B,, and b substituted

for ¢, and a for & for C

e

Dy = ¢,/(as'by" — a/'by’) + ¢’ (a/by’ — a,'b)) + ¢ (ay'b,' — as'by")
—Dy = (a0 — a/'b)) + o' (@b — ay'b)) + o (@b — a'by)
Dy = ¢,/ (a8 — a)'by) + ¢,/ (b — a,'by)) + ¢ (a'by — a,'B,)
—D, = ¢/ (a,'by — a5'd,) + ¢ (a5’ — a)'by’) + ¢’ (2B, — ay'by)

and
4 =¢'C; 4 ¢)/Cy + ¢'Cs + ¢,/C,

~




The pressure coefficient is

4,

4
(Cﬁ)haixytl = m mzl I:{k“[](l — %2)3,’{”1}(1 — am} + bm' . C’u’)z(kaam(k))

%5
5

X {6(%‘* at by — o) D A1 — (@, — 2b,% + 3o, )R C{

[

+2(1——x2)2(bm'x2——-30,,,')7649%;}}, e (40)

where

- 2y r2
leRe(k) — 211_‘ I:K(%) %2 E(”) (3“”,1 + am bm - 4bm >

C
1 1 E(x
—i—%—z(K(x)—1_%2E(%)>H1—1—1_)%2H2], L@
Tm = lsamlbmllcml - 276171’2 + amlzbmlz - 4amlscml - 4bm’3 .. . .. (42)
Hl == [‘%4(2“’»;’2 - Gbm,) - xz(zamla - 7am,bm, + 90»1,)
+ (“mlzbml + 3am,cm/ - 46;71/2)]/[%6 - dm,%4 —I— bm,%2 - le:l ’ - .. (43)
HZ - [(2“111/2 - 6bml) - (26lml3 - 7amlbml + 9cml)
| + (amlzbm, —]_ 3amlcml - 4bm’2)]/[1 - aml + bm, - cml]' ) [ .. (44)

The values of a,/, b,/ c,’, 4, for x* = 0-48 are given in Appendix II.
Note :

When » = 0, the smallest root of equations (7), (21), (31) {for a,,’ is, in each case, zero. Therefore,
when calculating the smallest roots of the equations for any other value of =, and the corres-

- ponding pressure coefficient C,, we may write &,/, b,’, ¢, as #%a,", #°b,", «%c,". For example,
for » = 6, (31), (32a), (32b) become :

1331x%a"* — 5324(1 + =%)xta” + [6908(1 + «%)* + 3234«"]x"a" '
— [2880(1 4 #*)® + 7764x*(1 + »%)]a" + [4320(1 + »°)* 4 315«°] =0
186" = 11x%%a" - 10(1 + »¥a" + 15
378¢c" = 121x*a" — 286(1 + »¥)x%a" + {160(1 + «%)* 4 273x*}a" — 240(1 + =°).
(40) becomes :

(Ot = ot B, [(#4(0 = 283{1 = e — 0.7+ 6 )P RI(E)

kCA (1 —_ %2)8 m=1

5
% {6(%4 — e, -, — c,,,")% 1 4(1 — %Y (xta,’ — 24D,

2

3, nd
+ 86, )8 53 4 2(1 — wh,” — B, ”C%H

9



where

) 1 I{ o E . Vé m/lzbm// . 4bmi}2
k13R6 (k) == Q7 ! l: (%) n? (%) <3am + - c >

wm

w

1 1 .,
(0 -y me )+ ]

T, = 18+%,"b,"c,” — 27c,"* + x*a,"®,"* — du'a,"c,” — 4x?b,"*

m m ” m

Hy' = [(2'a," — 6x%,") — (2%, — Tx*a,"b,’ + 9c,)

m m

+ (%Zam’/me” +~3am”c)n” - 4b)ﬂ”2):|/[%4 - %4am” + %2bm” - cﬂl”:l)
HZI = [(2%2“m”2 - Gbm”) — (2%46lm”3 — 7x%*a,"D,” + 9Cm”>

n e

+ %2(%2amﬂzbmﬂ + 3“7)z”0m” - 4bm”2>]/|:1 - %Z(Olm” - bm” + Cm”)}'

For small values of », the formulae in terms of 4,” are more convenient for numerical calculations
than those in terms of a,,’.

Applications.—(A). Pressure distribution and drag, at supersonic speeds and zero lift, on
some finite swept-back wings, having symmetrical sections, with rounded leading edges, and

o

wing tips perpendicular to the root chord.

(4 _x F WO\ RYTNT
6. The surface o, _<c — c><1 - + o )( o ) .

By combining the solution (b) found in section 3 and those previously given**, a formula
can be found for the pressure coefficient for a finite swept-back wing having symmetrical sections,
rounded leading edges, and a parabolic trailing edge, except near the wing tips, where the trailing
edge is straight and perpendicular to the root chord. For a hyperbolic trailing edge, solution
(@) would also be used.

The pressure coefficients for the surfaces
7 2 p2yN\1/2 . 2 p2EN\1/2
% y> and & =¥ (x RPy

§t:, - c? 2 ¢ c?
are? :
(C,,)(,=Z%f1 .. .. .. .. .. .. .. .. .. (45)
(C,). = C—”;; if, tespectively .. .. .. .. .. .. .. (48)
where
 <1 _ x2)1/2 '
(1 — ”2)1/2 2 2
fo= TS [(® 4+ 2)K (%) — 2(1 + =*)E(x)]. .. .. .. .. (48

10



The pressure coefficients for the surfaces

z _x—z _962— koy? 1/2 di_]azyz Xt — FAy? i/3
%, c? an 2, c?

are':
Colo = 22 (22F, & IyF
(Cplw = 8 (2 Fy + BPy°L),
4t0 2 25,2
(Colu = 55 (s + BT,
respectively, where
1 — x2)12
o= 2 (3 4 8K () — (661 + 54+ 8)E(]
(1 L x2)1/2
Fy = =5 [(x — 9% + 8)K(x) + (* + 5¢° — 8)E(x))
Fy = UL 8 — 5K ) — (8 — #9E ()
(1 _ %2)1/2 .
Fo= g[8 — 156 4 7e)K(x) — (8 — 114 + 2')E(x)].

Combining these results the pressure coefficient for the surface

L0

d ad @
Ziem—(1+ ) 2 €y — 1 oo

24,

is

l|

Ill

[A+B +1c +Dy+%E§+F%—j.

Some numerical examples are given in section 7.

(56)

(57)

7. Numerical Examples.—Some numerical examples, for »*=0-19 and »*=2/3 (tan y/tan m
= 0-9 and 1/4/3 respectlvely) of the wing described in section 6 are shown in Figs. 1 to 7. The
required values of ,, b, given by equation (7), and the corresponding values of 4, for surfaces
(a), (b) given by equations (14), (18), and also the values of fi, f,, Iy, Fs, F;, F, from (47), (48)
and (51) to (54) are given in Appendix I. The formulae for the shape of the surface, and the

pressure coefficient C, are given below.
(i)(a) tanyftanm = 09, y = 45 deg, M =1-345 (Fig. 1).
The shape of the surface is given by the equation

5= (D0 raB) ()

1f T, is the maximum thickness in the plane of symmetry, 2, = 2-08057,.
The maximum-thickness line is :

o YN L 14 .Y Y1
—cz<48+cz>+c(14_1302>+<24E§+2§>_0

11



The pressure coefficient, at zero incidence, is
2 2 3 b3
C, = zci’ [4-9464 — 19-2481 ’Z 4 13-2813% _ 0-6426%2 — 0-0904’53 - 1-8803%—}

The trailing edge is supersonic, therefore the solution is valid for the whole surface.
(i)(6) tany/tanm = 0-9, y = 45 deg, M = 1-345 (Fig. 2).
The shape of the surface is given by the equation

5= (=00 - B

Zto ‘= 1' 3868T0.
The maximum-thickness line is

XX 58+> <19-1053> <29y+1y)_0.

The pressure coefficient, at zero incidence, is

and

2 2 3 2
C, = 5’[4-4748 — 155036 + 8-9778%; — 0-1125%; — 0-06027; — 1-25343@—] .

The parobolic trailing edge is subsonic for x/c > 1-4. No allowance has been made for the small
corrections necessary in the regions near the subsonic portions of the trailing edge.

(ii) tany/tanm = 0-9, y = 45 deg, M = 1-345 (Fig. 3).
The shape of the surface is given by the equation

zzo 135—»)(1__+ )( 2)1,2

2ty = 2-18797,,.

The maximum-thickness line is
3 X/, 1y X, ) ¥ PR YA
= C—~2<47—{-202>—i—0<1 35 1662562>—}—<2 3502+4c4 = 0.

The pressure coefficient at zero incidence is

2 2 3 2
¢, = Lo|5.0159 — 198108 % 1 13-6831% — 1.3984% — 0-0475 % — 0.9887 2|
? ¢ c c? c? c? c?

and

The trailing edge is supersonic and the solution is valid for the whole surface_.

The wave-drag coefficient at zero lift is calculated in section 8.
(iii) tan y/tanm = 0-9, y =45deg, M = 1-345 (Fig. 4).
The shape of the surface is given by the equation

2= (=D -I D))

2t, = 1-73617, .
The maximum-thickness line is

SN EIE S WA 44y~ ;vlyu
> —02<5 z+302>~-|-c<1 >4 <26 St g 0.

and



The pressure coefficient at zero incidence is
' 2 2 3 2
C, = %[47173 - 17-4005'—‘; + 10-9794% — 0-7999%2 — 005087 — 1-0460 ’%} .
The trailing edge is supersonic and the solution is valid for the whole surface.

(iv) tan y/tan m = 1/4/3, y = 30 deg, M = 1-414 (Fig. 5).
The shape of the surface is given by the equation

y x_gyzuz
= (=D 0) ()

2y = 2-43757,.

The maximum-thickness line is

i;__x<45+zy>+ <125—4759’> (675y +3 >_o

The pressure coefficient, at zero incidence, is

c, _?0_0[4 0556 — 17-2219% 4 12- 9861— — 3 4332y — 0 4246—— 4 0385’@}

The trailing edge is supersonic and the solution is valid for the whole surface.
v) tan y/tan m = 1[4/3, y = 30 deg, M =1-414 (Fig. 6).
The shape of the surface is given by the equation

2 2 2% 1/2
5,_:<1.2_9ﬁ><1__16+1.274y_2><%> ,
2£, c c - C ¢

2%, = 2-58347,.

The maximum-thickness line is

2 2 4
8¢ _ %4412 5481> 4+ =2 ( 1-2 — 4-4712%)4-(6-6% + 3-822%): 0.

and

and

03
The pressure coefficient, at zero incidence, is
2 2 3 2
C, = [—:%’4-1265 - 17-8477%“ 1 13-8685 Zi — 3-2269% - 0-5734% — 5-4532 ’%J .

The trailing edge is supersonic and the solution is valid for the whole surface.
(vi) tan y/tan m = 1/4/3, y = 30 deg, M = 1-414 (Fig. 7).
The shape of the surface is given by the equation

. 2N 1/2
Qi—<1 .96 — )(1——+0943y> 2 3y> ,

2y = 2-41017,.

and

The maximum-thickness line is

s 2 2 2 2 4
s % <4.52 I 1.886%’2> +§<1-26 — 4-8118%) + (6-7830)—2 + 2-829%;—) = 0.

c3

13



The pressure coefficient, at zero incidence, is

2 2 3 2
c,— Lol 4.0491 — 17-1044% 4 12-8188 % — 3.4708% _ 0.3950 % _ 3.7656 2] |
? ¢ c c? c? c? c3

The trailing edge is supersonic and the solution is valid for the whole surface.

8. Calculation of the Wave Drag at Zero Incidence—The wave drag at zero incidence is
D = D, + D,, where D, is the pressure integral and D, is the drag due to the high pressure
at the rounded leading edges of the wing. The pressure integral is found by integrating the
component pressure, along the wind direction, over the plan form, and the corresponding drag
coefficient is given by :

Cp, X (area of plan form) = 2 J {CP %j—c ax dy,
. oC,
integrated over the plan form, = — 2 B dx dy, .. .. .. .. (58)

since 2z is zero on the leading and trailing edges. R. T. Jones’ formula for the force per unit
length normal to the leading edge at any point is

. pV? sin® y
F,=aR 7(1 — M sin® y )i/
where R is the radius of curvature of the leading edge”. Hence
D,=2tany [ F,ds,
0

and the corresponding drag coefficient is

c 9 ¢
CD,,=2”tanysmyJRdx, L 9
0

S(1— M?sin®y)/2
where S is the area of the plan form.

The total wave drag coefficient at zero lift is
Cp = CDp + Cp .
For a surface given by equation (30), it can be shown that

16¢,2 7 4 'y |
0350[2(C,IZ,)JFrgO(c,Jz,)J, e o)

r={
where S is the area of the plan form,

Y 2y
Y
_[21, :J a g 1/2 CZJ), .. .. v e ‘.. ' “« s (61)
{Eryw]

Cop= —

¢
afk er
o (@ — )
C,, C, are constants (given in Appendix III) and
Y2=§(cz~c). L e

14



If «.? o,? are the roots of the equation .

X — (B — 2a)c*’X 4+ a* = 0, (0 > o)
and «, Y = sn », where sn % is a Jacobian elliptic function of modulus ¢ =
that

/o), it can be shown

K
1
Ly, = —%5 | sn¥u du
cou?
(]

-1 s, . SR (1)

'—A COC12;'—{-1

The reduction formula for S,, is

(2r — 1)o®S, = cn o dnw sn® 2w + (27 — 2)(1 4 0%)Ss0 — (28 — 3)Sera - .. (65)
If oy, o, are complex,
1 ‘sn¥ v’ dn¥v'
I, = Jrariran J oy v’ .. .- . . .- .. (66)
' ]
1 ”
= Gt g

where (snv dnv)fcn v = AaY, ais the real part of «; or «,, and the square of the modulus of the
elliptic functions 1s 1/A* = «*/oya,.  The reduction formula for S,,” is

23 23 22
(2r — 1)S," = s dntho <dn4 v — 1=/ sn* v>

cn® v a*
2 — A
+ 4(7’ - 1) (/1—2'_‘) 521, (27 - 3)527 4 B .. .. .. (67)
The formula for [, is
d21’ ' , .
I27':kZT+1 2 3 - .. .. .o - « .. « . .. (68)
where
E
Se) = J sin® 4 du,
sin=? kY/d
and
%S, = cos O sin¥ 6 - (2r — 1)S,,_ .. .. .. (69)
where d sin & = kY. The drag coefficient due to the leadmg~edge force 1s given by
8 toz s 2\ 2
CD”_kzx .?S:Jo(b——x) <1—x—|— X dx. .. .. .- .. (70)

The total wave-drag coefficient at zero lift is

1652 | 7 s o
Co= — =g [7;20 (Cla) + 2 (C/I ﬂ
8zt [ o
TS (b*xy(l"“r sdc .. . . . (7)

where b = d/c.
15



Examples :

For surface (i), (Fig. 3), a =%, 6 =1:35, k = 1. &, «, are real and the modulus ¢ = 1,
amplitude of # = 36 deg 16 min, » = 0-680135 = S,, S, = 0-088527. Hence, using formulae
(64), (65) and (68) to (71), and the formulae given in Appendix III, the drag coefficients for
Tolc =01, M = 1-345, are

Cp, = 0-018, Cp,= 0-051, Cp=20-067. .. .. .. .o (72)
For the corresponding complete delta wing with Squire sections?,
(a) 1if thickness/chord = Tfc = 0-1,

Cp, = 0-040, Cp, = 0-048, C,=10-088. .. .. - .. (78

(b) if thickness/chord = T,/1-85¢ = 0-074,
Cpp,=0-022, Cpr, = 0-026, Cp, =0-048. .. .. .. o (74
For surface (v), (Fig. 6), a = 1-274, b = 1-2, B* = 3. &, a, are complex, 1/2* = 0-5887, am-

plitude of v = 25 deg 20 min, v = 0-4510 = S,”, S,” = 0-03055. Hence, using formulae
(66) to (71) and the formulae given in Appendix III, the drag coefficients for T,/c =0-1,
M = 1-414 are :
Cp, = 0-068, Cp,=0-020, C,=0-086. .. . . .. (75)
For the corresponding complete delta wing with Squire sections :
(z)  if thickness/chord = T,/c = 0-1,

Cp, = 0-033, Cpn.= 0015, Cp,=10-048. .. .. .. .. (76)
(22) if thickness/chord = 7T,/1-2¢ = 0-083,
Cp, = 0-023, Cp.= 0-010, Cp=10-033. .. .. .. .. {77

(B) The change in pressure distribution and drag, at supersonic speeds and zero lift, on a
certain swept-back wing having symmetrical sections with rounded leading edges, when the local
thickness/chord ratio is modified. '

2z _ SV TR C i
9. The surface o~ (1 + ak = T bk C4><1 C)( o .

By combining the solutions found in sections 3, 4, 5 and those quoted in section 6, a formula
is found for the pressure coefficient for a wing whose surface is given by the equation

2 2 4 2 R\ Y2 .
e 1+ak2%}5—}-bk4%><1——%><x—«?y>, R )

where a, b are positive or negative constants. This surface is obtained by multiplying the
ordinates of the sections, parallel to the wind direction, of the Squire wing* :

2 ' % xz__kzzllz
é—to:<1_;)<*cz—y> O )

by the factor
2 L
1+ akz% 4 bk4yc—4.

The root section and the position of the maximum-thickness line of the two wings are the
same.

The pressure coefficient for surface (78) is given by
Cp = (Colo — (Cola + UCohins — AClims + B(Colay — B(Colise -+ oo (8O)

16



The formulae for the first three terms in (80) are given in section 6, equations (45), (46), (50),

and formulae for the last three terms are given by equations (19), (17), (28), (40).
have been computed for »* = 1 — tan® y/tan” m = 0-48, (e.g., M = 1-

The formulae
6, » = 30 deg.,) and the

isobars for surface (78) for 2* =38 and (1) a =0-29, b =1-12, (2) a = — 0-28, b = 2:06, are

shown in Figs. 8a and 9a.

The variations of local thickness are shown in Figs. 8b and 9b. The

pressures on the root chord are the same for surface (78) as for surface (79), but for (79) the
pressure coefficient C, is independent of v, and the isobars are straight lines across the span.

It can be shown that the wave-drag coefficient at zero lift is

Cp

8tk

C3

87z #,?
+ kx C*

relk ¢ o 4
2y’ Y AN e a2 06
OJ ]<1—]—ak 02—}—bk 04><1 C>(x R*y?) Y ax dy
J y= s=hy

rL

(81)

(T — x)*(1 + ax® + bx*)x dx .

Jo

This expression has been integrated and, as an example, C,, has been computed for surface (1),
giving C, = 0-0142. For the corresponding Squire wing, C,, = 0-0113.

APPENDIX I

Values of a,’, b, for tany[tanm = 0.9 and tan A/tan m = 1/4/3, and the
corvesponding values of 1,, for surfaces (a) and (b)

tan y A1 — 5?)h,, | BA(L — 22)22,,
" tan m x? a,’ b, for surface (a) for surface (B)
1 0-9 0-19 1-253234 0-318608 —0-17738 0-51289
2 0-938440 0-060422 1-01162 0-50017
3 0-188324 0-004363 —1-05659 —4-03616
1 1/4/3 2/3 1672390 0-685432 —0-13761 0-28242
2 1-027598 0-111571 - -1-02703 —0-02914
3 0633349 0047442 —0-42719 —0-11461
Values of fi, fa, Fi, F, F, F,
tan y '

tan m fi fa Fy By F, F,
0-9 0-7642 1.7847 2-760 —0-4260 0-1610 0-4100
1/4/3 0-6655 "1-5701 2-573 —0-3539 0-2179 (-2859




APPENDIX II

Values of a,’, b,’, ¢, for n = 4,5, 6 and »* = 0-48

n m x? @, b, Cp'

4 1 0-48 1-496680 0-526984
2 0-996920 0-098430
3 0-466401 0-026107

5 1 0-48 0-587724 0-0678686
2 1-167935 0-232021
3 1-533230 0-557407

6 1 0-48 0708305 0124208 0-003163
2 1-328999 0-386635 0-015439
3 1-648489 '0-705280 0-039797
4 2-234203 1-613449 0-375263

Values of fi, f,, F,, F,, for x* = 0-48

® ’ A ‘ Je Iy F,
0-48 , 0-7165 ‘ 1-6576 0-1900 0-3447
Values of 2,,

Surface m BA(1 — 224,
1 0-382421
2 e ﬁﬂ)“"*’ 2 0-007362
24, c3 c* 3 —0-422980
RA(L — 2)22,
1 0-291089
e <w)“2 9 0-123991
2% " a\" o 3 0-144067
FA(L — %232,
_ 1 0-090968
E ’fﬂ)l.’z 2 +0-012447
2ty 8 e 3 —0-014357
4 —0-078386
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APPENDIX III

Formulae for the constants C,, C, in formula (60) for C,,.
(B, C, E, F are coefficients in the formula (57) for C,]

Cofc® = B(gh — %) 4+ C(7'sd — +%) + E(5%0 — +%)
Cofe = B3ab — (fa — 75k + Clb(Fsa — 25k)

t
o
BN
i

"
l\Dlw
|
el
[ 3
=
—

+ E[bloa — 25H) — (e — 1hs] + Fl3b — 1)
Coc = Blbla® + Zak® — 3k') — (3a® — Fak® - 45"
+ Clb(8a® — Fak® + F5k*) — (3a° — $3ak* + &%)
+ E[b(3a* — ek’ + ') — (5a® — dgak® — ek
+ Flb(a + {5#) — (faa — £cb]
Coc® = Bla®(3a + 58%) — a(fa® — Fak® 4 54
-+ Claba® — gak® + &§RY) — (a° — 33a°R* -+ Afsak' — &%)
+ E [6(a® — 33a’R® + &5ak — &R°) — (Za® — La’h® — Llakt — 82
+ Flb(a® + &5ak® — 34 — (§a* — Fak® + £5kY)]
Cie® = Blga'd — a*(%5a — 54~%)]
e — k) — (4 = Hat* + b
+ E[@*b(3a” — 35ak® + E&5%h") — a(fa® — {5ak?* — Fak* + 548%k%)]
+ Fla®b(3a + +%%°) — a(§a® — Fak® + k)]
= — 508 - Cleah — aha — 45t
+ E[a'b(Fa — #5687 — a(F%a® — Fgak® — 4i5kY)]
+ Fla't — a’(Fsa — %Y

Coc® = — 95a°C + Elo5a°0 — a*(5a — 1i5RY)] — 5Fa’

Cot = — 34a’E
G = BU(k = ) + Cis — o)+ PG — )
Cy'fc = BE[40E" + $ab®] + CO'[— gak® -+ 308 L Jsab”

+ E0[— 5k* + 1hobk® + wgab?) + FbE — 2b)
Cy'c = BR[{5ab® — 5bk* — k%] + COR[ — JGab® — 1bR* + 5%

+ EVRY[ — 15%5ab® + 5'{sbk* - k']

+ Fb[3ab® + 50k* - 4%
Cycd = — aB + CR(32ab + &5

|+ ERERab — S7obk — F5k) + FR(abt — 13bE —
CJjc® = — &k%aE — ikaF.
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PART 1II

The Effect of a Change of Mach Number on the Pressuve Distribution and Drag at Supersonic
Speeds on some Wings having given Camber and Twist

1. Introduction.—In R. & M. 2794% the effect of camber and twist on the pressure distribution
and drag on some wings, of negligible thickness, at supersonic speeds is investigated. The
shapes of some curved wings, with swept-back subsonic leading edges, are found, such that the
thrust loading on the leading edges is removed or modified, while certain requirements with
respect to camber and twist, or aerodynamic properties, are satisfied. The wings are designed
for given Mach numbers and are such that, when they are at design incidence, (a) there are no
leading-edge pressure singularities, and therefore no leading-edge thrust; or (b) the leading-
edge singularity is modified so that its strength increases along the edge from zero at the apex
to a maximum, and then decreases to zero at some point on the edge further downstream. The
effect of additional incidence is also calculated.

In the present paper, the effect of a change of Mach number on the aerodynamic character-
istics of a wing of type (b), designed for a given Mach number, is calculated.

The methods and notation used are those of R. & M. 2794*. x is measured downstream from
the apex, y is measured to starboard, z is measured vertically upwards. The semi-apex angle
y 1s less than the Mach angle (= cosec™* M). The surfaces are symmetrical with respect to the
zx-plane and are set symmetrically to the wind direction, the apex pointing against the stream.

Some numerical examples showing the effect of a change of Mach number on the lift, drag
and moment coefficients of a wing designed for a given Mach number, are given.

2. Summary of Gemeral Results given in R. & M. 2794*—Non-dimensional co-ordinates
%' = xofc, ¥y = yofc, 2’ = zo]c are used ; ¢ is the maximum chord of the wing, and 1/s is the
distance, in maximum chord lengths (in the free-stream direction) from the apex, of the point

of zero pressure on the leading edge. Since these co-ordinates are used throughout the report,
the dashes are dropped, and X is written for (x* — &2y"*)1/2,

The following results are given in Ref. 2. The velocity potential

Q=A¢, + BO} -+ C¥P, + Dd,} + E¥, .. . . . ()
gives the flow over the surface

7= ax -+ bx* 4 dx* + fx* 4+ gR*xy* + WRPYE + fly), .. .. . (2)
where (¢f. equations (128), (130) of R. & M. 2794%)

a=— (4 4+ B+ D) = D — fuE)

b= Af g=fC — fB . . (3)

4y = 5fB — ful o= 3(fuk — fisD)
A, B,C,D, E are constants, and f, f,, ....fis are functions of (tany)/(tan @) given in

Appendices I, IT of R. & M. 2794°. (The constant ¢ which appears in Ref. 2 is here put equal

to 1. There is no loss of generality, since this is eventually equivalent to including ¢ in the
constants 4, . ... E.) :

The velocity potentials @,, @', ¥,, &, ¥,, which aré combined to give the velocity potential
2 in (1), are the five independent solutions given in R. & M. 2794* and are given by :

@2 - ¢1 - ¢‘2>
Dt = ¢4 - és', ¥y = 9{’31 ha k2¢'32,
B — b — b, W= gt — S . (&)
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whete ¢, da, . - - . . are the ‘ basic’ solutions given in R. & M. 2794* whose values at the plane
z <=0 are: (putting é = 1, and writing x for " = xs/c, etc.)

| A
v
(¢l)z:0 = JB-E—%%—) X:
v
((l’z)z_o GkEE%) xX,
Ve
(‘7531)::0 == O‘kE(E%) ¥ X,
o . 5
(¢32)z=0 - GkE(%) sz!
|4
(‘#41);—_0 = O'kE?%) ¥*X,
14
(¢42) =0 = O‘kEC(%) sz

-

% is the cotangent of the semi-apex angle y, and V is the free-stream velocity.
x* =1 — (tan’y)/(tan® &) and E(x) is the complete elliptic integral of the second kind of modulus #.

The pressure coefficient C,, and the lift, induced drag and pitching-moment coefficients C, ,,
Cpi» Caro, at design incidence, are given by :

2 wl—2x) Wl — 2%
—CPO—kE(%)l:A{ X —*A}—{—B{T—ZXX}

(1 — %°) 3
+ C(3xX) 4+ D % 32X 4+ E<(4x* — PV X »| .. .. (6)
P
Cra :m [A(1 — o) + B(l — ¢%) + D(1 — 6% + 2(C + Eo)o?]
2
__ T r3 ] 7 .
#kE(x)[4(C b E)], wheno = 1 .. .. . .. . .. (7)
. 27 , . .
Cov = 3o e + (6B — 10 + (D — 4B . . .. @
8 .
CDi:kE(%> [AP1+BP2+ CP3—;—DP4—|—EP5]
2m (R — BH)YE o 3 372
_7ﬁﬂﬁ?LxMﬂ—@+Bﬂ—m+Dﬂ—xﬂM,.. (9)
where P;, . ... P; are given in equations (144) of R. & M. 2794°
In R. & M. 27942, for a wing of given plan form, the constants 4,....Eora,....h, are
chosen, and the corresponding coefficients of equation (2) or equation (1) determined for a given
Mach number, that is for given values of f;, . . . . fis. In the following sections, the constants
a, . . .. h having been chosen to satisfy certain conditions for a given Mach number, the effect

of a varying Mach number on the given wing is calculated. The variable ¢ is taken equal to 1,

that is, at the design Mach number, the points of zero pressure on the leading edges are at the
wing tips. ’
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The above results are based on solutions of the hinearised supersonic flow equation in terms
of Lamé functions of the M class of degree n, forn = 1,2, 3,4. Since R. & M. 2794® was written,
the solutions for # = 5 have been worked out, and the results are given in Appendix III. These
solutions could be used to give three extra terms in expression (1) for 2, and thus three more
arbitrary constants. The equation of the resulting surface (2) would contain three extra terms,
viz., constant multiples of x°, %%, and xy*.

3. The Pressure Coefficient and the Aevodynamic Characteristics of a gwen Surface at a Varying
Mach Number (1 < M < cosec y).—We first determine the velocity potentials corresponding
to the separate terms of the equation of surface (2). Using equations (125), (91), (98), (105)
of R. & M. 2794%, we obtain the following formulae for the velocity potentials in terms of the

basic solutions ¢, ¢4 5, ¢,* and the solutions %,, ¥,, given in Ref. 2. (¢f. equations (4), (5) of
this paper.)

z | Velocz'tj/ potential
X — ¢1 )
x* . - ]%1 ¢2
x3 D (¥ — figd)
fsfe — 3f4f7 743 5P3
4 > ... .. (10)
‘ 7 135-U4 — /1 41 '
g Fufa = frafu Su¥s = Jusd)
3
By Y % BYI:R — J4 31
& AR TG
2,272 _ HZ _ 1
Rkix y f11f12 - f1of13 (f12¥’4 f10¢4 ) )

The formulae for f;, . . . . fi; are given in Appendix I, and a table of numerical values in Appendix
II. It can be shown that :

Wl — fufs = gy [ + 11 — 1)(EG)y

+ (I — #*) (16 — 8«*)E(x%)K (x) — 5(1 — #*) (K (»))?], .. .o (1)
and

Jufie — fufis = m [(32x° — 64%° + 151" — 119%2 + 12)(E(x))?

(1 — #%)(82+° — 126+ + 1664 — 24)E(x) K (x)

+ (1 — )12 — 47x + 8x) (K (x))%. .. . .. .. .. (12
Since we are using the linear theory of supersonic flow, the velocity potential for the surface (2)
can be obtained by combining the solutions given in (10). Hence it can be shown that the
velocity potential giving the flow over the surface
z2=ax + bx" + dix® 4 fa* 4 gh*xy® - bkt f(v)
Q=A0</>1+A£D2+B(D31—}—C‘Ifa—i—D@f—l—EYQ .. .. .. (13)
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where Ay, = —a — A — B — D, (at the design Mach number, 4, = 0)

L
B — 3(d1f5 -+ gf4)_, C = 3d1f1 + gfe
fsfs — 3fafn 7 fsfs — 31tz
(14)
b 2%t Info o 2A%fi+ fil
Sufe — frofis Jufie — frofus

Hence, since it is assumed that the surface lies close to the plane z =0, the velomty potential
on the surface is

- _ax L 3 Lo f\X
(s = g — X = G+ g U+ X

. 2
— (difs + gf)¥° X} +f11f12 — Fufes {2 fis + Mfro)xX

The pressure coefficient at design incidence is

——(fou—l-hlfm)xsX}}. .. .. .. . . .. (15)
(5"

wal %G

LT {(3d1f7 + e — (s + o) (5 + éxx)}

2 ) e
fuflz fmfls{(szls + A fio){da? — B2yHX

-—(2ff11+h1fm)<§—:,—{-3x2X>H .. e 18)

On the leading edges of the wing, X =0, and C,,— — (2/V)P/(x — k|y|)”*, where P is the
strength of the singularity in the axial Velo<:1ty (0 2[0%),-0. P isequalto zeroat x = 0 and where

P+ AP +Bx+C, =0, .. .. .. .. .. .. (17)

where

A' — 3@ifs + gf)(fuufie — frofis)
C22ffu A ufu)(fofs — 3uf2)

_ W{fufis — frofs)
B, = 501 e T ) > e .. .. (18)

C. — #{fufie — frof1s)
YT 220 0 F Inf) J
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If o is taken equai to'1, that is the poi‘n’ts of zero pressure on the leading edges at the ﬂéSign
Mach number are taken at the wing tips, the formulae for the aerodynamic coefficients at design
incidence are as follows :

The lift coefficient is

%
—_ T3 4 : ¢
CLO_kE(%)[4(C+E)_+AO]. . . . .. . . o (19)
- The total induced-drag coefficient is
Coi = 7o [APy + AP, + BP, + CP, + DP, + EP]
RE (%)
1
272:(]32 —_ ﬁz /2 .2 372
_WLMOJFA(I — %) + B(1 — 2% + D(1 — %) dx, .. (29)
where
Py = — (ko + 30+ 8y + 3 + g+ Toh) ]

Py = g4b + Fsdy + 15/ + 2hol '
Pz:il—sb+%d1+‘9%f+ Ti_ohl ‘

— 3G%sa + b + §dy 4 Ff + g + k)
Py = i%5b + %di 4+ %5 f + 35l

Py = — (oa + b + %%d: + 35/ + g + thsh) J

The pitching-moment coefficient (taken about the chordwise position distant' two-thirds of the
maximum chord from the vertex) is :

O

-
I

' CMozk_E‘(%_)(%A —|—14=-§B—‘})C—}«%D——%E) . v e . e (22)
The corresponding formulae for the flat delta wing at (small) incidence « are :
CLo = _Zna. ' )
RE(x)
coo— Zwo®  ma(k® — B - o (23)
YT RE() RYE(x)]?
Cuo=20 ‘

-

4. Numerical Examples—Some numerical results for two wings, designed to satisfy certain
conditions at given Mach numbers, are given. The shapes of the surfaces and their pressure
distributions at design Mach number and design incidence, are shown in Figs. 10a and 1la.
The variations in lift, drag and moment coefficients, as the Mach number varies, are shown in
Figs. 10b, 11b. The results are compared with those for the corresponding flat delta wing
having the same lift coefficient at the design Mach number, the incidence remaining unchanged.
The formulae giving the shapes of the surfaces, and the numerical values of the lift, induced
drag, and moment coefficients at different Mach numbers are given below. The positions of the
point of zero pressure on the leading edge are also given.

(i) The first surface chosen is surface (xvi) of R. & M. 2794 designed to satisfy the following
conditions at M = 1-442. (o is taken equal to 1)

(@) zero camber at the root,
(b) CL 0 — O' 1, .
(¢) minimum induced drag with conditions (a), (b) (using solutions given in section 2).
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The shape of the surface is given by
2= — 0-05729x 1 0-69610xy* — 0+18792x%* - f(v),
the co-ordinates being measured in chord lengths, since ¢ = 1.

The semi-apex angle y is 30 deg.

The numerical values of the aerodynamic coefficients, and the positions of the point of zero
pressure, are given in the following table :

Flat delta wing
x co-ordinate at incidence
M on leading edge Ciro Cro ) Co, 0-035 radians
where P =0
Cro Coi
1-015 1-099 0-0183 0-111 0-0021 0-126 0-00225
1-058 1-089 0-0175 0-110 0-0022 0-121 000228
1127 1-076 0-0165 0-109 0-0024 0-116 0-00231
1-217 1-056 0-0154 0-107 0-0025 0-111 0-00235
1-323 1:030 0-0144 0-104 00026 0-105 0-00238
1-442 1 0-013 0-1 0-0027 0-1 0-00242
1-572 0-969 00125 0-095 0-00275 0-095 0-00245
1-709 0-940 0-0118 0-091 0-0028 0-090 00025
1-852 0-910 0-0114 0-086 0-00285 0-085 0-0026
2 0-880 0-0109 0-081 0-0030 0-081 0-0028

Finite values are given by the formulae at M = 1, but since the linear theory is used, the formulae
are not valid when M approaches 1.

(i) The second surface is chosen to satisfy conditions (a), (¢) satisfied by surface (i), (with
s =1, y = 30 deg), but is designed for C., = 0-15 at M = 1-6. The shape of the surface
is given by (in the non-dimensional co-ordinates) :
z = — 0-08882x 4 1-06442xy* — 0-29578x%".

The numerical values of the aerodynamic coefficients, and the positions of the point of zero
pressure, are given in the following table :

Flat delta wing
x co-ordinate at incidence
M on leading edge Cio Cro Coi. 0-056 radians
where P =0
CLO Cus
1-015 No point 0-0263 0-178 0-0054 0-201 0-00577
1-058 for M<1-09 0-0255 0-177 0-0056 0-194 0-0058
1-127 1-184 0-0240 0-174 0-0059 0-186 0-0059
1-217 1-134 0-0223 0-171 0:0062 0-177 0-0060
1-323 1-089 0-0208 0-165 0-0085 0-169 0-0081
1-442 1-047 0-0195 0-159 0-0067 0-160 0-0062
1-572 1-008 0-0184 0-152 0-0088 0-152 0:00627
1:6 1 0-0182 0-15 0-00683 0-15 0-0063
1709 0-975 0-0175 0-144 0-0069 0-144 0-0064
1-852 0-940 0-0168 0-137 0-0070 0-137 0-0066
2 0-862 0-0162 0-129 0-0074 0-130 0-0073

For both cases considered, it can be seen that the point of zero pressure on a leading edge moves
along the edge towards the apex, or downstream of the wing tips, according as the Mach number
is greater than or less than the design Mach number.
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APPENDIX 1
The functions fi, . . . . fi

fi=f= 2%2;:(%) {(2* — DE(x) + (1 — »)K(x)}

o = gy A0+ #IEG) — (1 — K0}

fo = gy L= 72 + BAK() — 201+ — 3B ()

fr = g (2 — 34 4 B() — 21— K ()

Fo = 2741—12(%) {201 — (1 + 2AK(x) — (2 + 3 — SAE(x)}
1

Jfio = W {(1 — »3)(8 4 7x* 4+ 122 K () — (8 4 3u® + Twt — 24%6)E(x)}

fus = @{(8 — 1Lt 4wt Y E () — (1 — #%)(8 — Tt~ YK ()}

APPENDIX II

The functions fy, fi, . . . .. Jfis-  Numerical Values
! ' |
tan ¢ i
tan p Si=/ Js Js /7 fro Ju Jie Jis
0 0-5 13 1 0 1-5 3 1 0
0-1 0-5135 29600 1-0624 0-0048 1-5751 2-9744 1-1040 0-0142
0-2 0-5390 2-8831 1-1774 0-0176 17163 2-9358 1-2929 0-0508
0-3 0-5690 2-7929 1-3093 0-0359 1-8786 2-9002 1-5044 0-1010
0-4 0-6000 2-6999 1-4429 0-0571 2-0430 2-8713 1-7143 0-1578
0-5 0-6300 2-6097 1-5703 0-0799 22007 2-8495 1-9123 0-2163
0-6 0-6585 2-5247 1-6894 0-1030 2-3476 2-8338 2-0944 0-2735
0-7 0-6845 2-4463 1-7969 0-1257 2-4817 2-8235 2-2583 0-3284
4/52 0-6899 2-4304 1-8190 0-1303 . 2-5088 2-8213 2-2918 0-3386
0-8 0-7085 2-3743 1-8952 0-1473 2-6038 2-8167 2-4066 0-3786
0-9 0-7300 2-3093 1-9820 0-1685 27125 2-8146 2-5365 0-4306
1-0 0-7500 2-2500 2-0625 0-1875 2-8125 2-8125 2-6563 0-4688
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APPENDIX 111

Solutrons of the Linearised Supersonic Flow Equation in Terms of the Lamé Functions of the
M Class of Degree n = 5 ‘

For# = 5, there are three M Lamé functions of the form

E*(u) = (|u® — B|)'PP"(u), m=1,2,3 . .. . . .. (1)
where
Pr(p) = p* — RPa,p® + k*D,, .. .. .. .. .. .. .. (2)
27a,? — (60x® 4 42)a,’ + (32x* + 68x° + 16)a,, — 2*(12x* + 8) =0 .. (3) -
b _— xzaﬂl (4)
"= %" 18 —9a)’ .. .. . .. .. .. ..
where
R tan® y
® = -
‘ tan® g
(cf. general solutions for » = 2N - 1 in Ref. 2).
The roots of equations (3), (4), correct to six decimal places, for different values of = 7_/
are given in Appendix IV. an #
%, y, 2 are written for the non-dimensional co-ordinates x = xo/c, ¥’ = yo/c, 2’ = z0/c.
The solution for the velocity potential
. P — C57’5F5(|LL)E5('V),
with
__oVB%e*
Cs = tE(x) ’
gives
_ Vel = R . .
(P(m>z=0 - G'kE( )( —a, + bm) I:(% — a,x + bm)x
+ (@ — 2b,)(1 — = )kzxy + b, (1 — =) .. . .. .. (5)
and
— 6(1 _ %2) 11 2
Zm - E(%) ( dm + bm) (k Im)[ ( am% + bm)
+ (1 — 2% (a,2® — 2b,) 2% + (1 — »*)%,k%y*] + fly) .. .. (6)
where

" d 1 dt
11 —
k Im — ] J\k de l:t[Pm.ﬁ(t)]Z(tZ . h2)1/2] (tZ __ kz)l/z
. ___1_ 1 Xy, —l‘ 2* a,,
o A, 4bm * %me (1 - %2)2%2(%4 - amx2 _'I— bm)
2 ?"am _l— am m % — 2 2 — 4,
-3 <(1 — % ) — Ay + bm > —I_ 2 ? <1 — 4y _|_ bm.>

4 Ay — 1
+ (1 - %2)(1 — A, + bm)}E(%> B {2 <bm(1 — 4y _I— bm)>
[ m Zb')b ‘)L( ”1/ — )H>—|——a1}14+4aﬂlzbﬁl 146”12 4a)”bl)l )}l —_36))1
=30 k()] (2)

+* b1 — a, + b))
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By constructing potentials of the form

3
(/b-ﬁs = zl ':lmkd(]~ - am + bm)(Pm]) § = 1) 2: 3 . L O .. (8)
we obtain the three basic solutions

Véc
1 _
<¢5 Jima = ORE (»

2 X,

~—

Véc
(SkE(x

2™y X,

~—

Ve
3 — ‘e
Wl = 2By ¥

The shapes of the corresponding surfaces are given by

Zs,s = % [134}'111(1 A, + bm)zm]y S = 1, 2, 3- . .. . . .. (11)
m=1
For the solution ¢,', we obtain
1
)'1 - %4k4d (a2b3 - a:}b2>;
where
d =11 1 1
a, ay ay
by by by

and similar expressions for 4,, 4s.

For the solution ¢?

1 1
},1 — m [bz - bs + %"2 (‘ﬂzbg - a3b2)} .. « . .. .. (12)‘
and for the solution ¢;°, ‘
1 1 2 '
2.1 — mzl %—4 (6!263 — Gl;;bg) + ;2 (b2 — b3> —_ (CZE — 6£3) . . . (13)

The values of a,,, b,, are given in Appendix 1V, and the values of 4,, for s = 1, 2, 3 in Appendix V.

Hence we form three independent solutions of the type given in R. & M. 2794%.
(i) Using the basic solutions ¢,', ¢, we construct the induced velocity-potential
V= ‘7351 - kz‘/’szy
for which (X == (x"* — k%)%

Véc
1 —_ 2V 3
(%)“:"_akE(x)XX’ . . . . .. . . .. (14)
and the pressure coefficient is
— 2% o
Cpozmj)l(tixﬂ—Zkzxy“)Xj : N ¢ 1)
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The shape of the surface, at design incidence, is given by

Z =25, — K%, . .. : ..o (18)
(ii) Using the basic solutions %, ¢5°, we constl uct the mduced Ve10(:1ty potentlal
W= g2 — k%
for which
(Y’sa)zzozggg(cx)sz'“, S RPN ¢ )
and
Cﬁo_—Z(BxyX). o . . .. . . . . (18)
RE (x)
The shape of the surface at design incidence is given by
Z = %5, — K% . . .. (19)
(iii) Using the basic solutions ¢,, ¢;", we construct the mduced Velo<:1ty potentlal
@5 - ¢‘1 - ¢5 >
for which
(05 20:07322;) R )
and
: -+
cﬂskE(i‘; ["(IX”)—LW ] L e
The shape of the surface at the design incidence is
Z=2 — %51 - .- .. - .. .. .. .. .. .o (22)
Example
For »* = 0-48, the surfaces corresponding to the three basic solutions for # = 5 are given by :
25, = — 0(0-5610x" — 0-24444%"* + 0-1821%*xy*")
225, = 6(0-0470x° — 1-0071%%°y* -+ 0-3631k%xy*)
Rizs s = — 5(0-0977945 — 1-40807%2x%* + 6-8350k%xy*).
The surfaces corresponding to the basic solutions for # = 1, 2, 3, 4 are given by :
By = — 0%
7, = — 0-68995x"
25, = — 0(0-6063x° — 0-1303%°xy”)

Rz, , = 5(0-0835x° — 2-30014%y?)
2oy = — 06(0-5720x% — 0- 1693k
Ry, = 8(00542x% — 1-2414k%%%) .




APPENDIX IV

Numerical Values of a,, b, for the Lamé Function E'(u) = (u* — a,k%u® + kY (|p® — R3[)M*

tan y
tan g a, by ay by, a, by xt
0 0-666667 0-047619 1-111111 0-111111 2 1 1
0-1 0-664970 0-047377 1-103081 - 0-109729 1-987504 0-987536 0-99
0-2 0-659505 0- 046607 1-079327 0-105665 1-950064 0-950563 0-98
0-3 0-648970 0-045153 1-040976 0-099180 1-887832 0-890343 0-91
0-4 0-630543 0-042697 0-990590 0-090794 1-801089 0-808959 0-84
0-5 0-598776 0-038677 0-933138 0-081362 1-690307 0-709324 0-75
0-6 0-544852 0-032358 0-876653 0-072022 1-556272 0-595150 0-64
0-7 0-459468 0-023469 0-829013 0-063494 1-400408 0-471012 0-51
4/52 0-436934 0-021341 0-820339 0-061748 1-364949 0-444049 0-48
0-8 0-338897 0-013161 0-790825 0-054722 1-225834 0-342759 0-36
0-9 0-184935 0-004078 0-750701 0-040478 1-029338 0-192502 0-19
1-0 0 0 0-666667 0 0-888889 0 0
APPENDIX V
- Numerical Values of 1, i the basic Solutions forn =25
tan y 4 6 8
tan % N F, R S FS 2y Fhol e, R >
0 2-62500 | —1-68750] 0-06250 1
0-1 2:69840 | —1-74222 0-06413 | 0-68660 |114-06225|—12-70684 0-32045 186-20341 (10117-588 0-99
0-2 2-93344 | —1-91772| 0-068934 | 0-78825 | 29-67611| —3-33745 0-40779 |22-81665 654-9521 | 0-96
0-3 3.37805 | —2-24977) 0-07930 | 0-99635 | 14-03547| —1-61400 0-53905 |11-13325 137-3924 | 0-91
0-4 4:11647 | —2-79575) 0-09651 | 1-39406 | 8-49012 —1-02646 0-80435 | 7-10968 47-44718| 0-84
0-5 5-24759 | —3-59616/ 0-12636 | 2-13750 | 5-74962] —0-93854 1-33448 | 5-22539 21-88458| 0-75
0-6 6-82132 | —4-56100, 0-18108 | 3-46218 | 3-99047| —0-67115| 2-38891 4-13520 12-33554| 0-64
0-7 9-07704 | —5-52492) 0-29250 | 5-75745 | 274579 —0-65701, 432642 3-53619 8-15027 0-51
A/52 9-75534 | —5-74514] 0-33006 | 6-46478 2-54675] —0-66486| 4-95533 | 3-49116 7-60481] 0-48
0-8 14-04160 | —6-88558 0-56013 [10-78680 | 2-00364| —0-73407 8-90245 | 3-75386 6-18168| 0-36
0-9 |23-96306 | —8-93885| 0-97539 [20-41064 1-77704] —0-85380(17-92285 | 3-06294 5-45887 0-19
1-0  137-54870 |—11-46503| 1-61535 [33-33941 1-98244| —1-12316|30-68293 | 5-40664 6:13070] 0
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Conclusion.—1In Part I of this paper, formulae have been found for the pressure distribution
and wave drag at zero incidence, at supersonic speeds, for some finite swept-back wings, having
symmetrical sections with rounded leading edges and wing tips perpendicular to the root chord.
The formulae derived enable a numerical comparison with the drag of a complete delta wing
to be made. (c¢f. equations (72) to (77).)

Formulae have also been found for calculating the change in pressure distribution on a Squire
wing, when the local thickness/chord ratio, particularly towards the wing tips, is modified. The
same method could be applied to any surface of the type of those given in Refs. 4 or 1.

Within the limits of the linearised theory of supersonic flow, a fairly full investigation into
the effect of camber and twist on the pressure distribution and drag on a curved wing has now
been made. In Ref. 2, wings were designed for given Mach numbers, such that the thrust
loading on a leading edge was removed, or decreased to zero at some point on the edge. The
effects of varying the position of the point of zero pressure, and of a change of incidence were

calculated.

In Part II of the present paper, the effect of a change of Mach number has been calculated.
Some additional solutions of the linearised supersonic flow equation are given in Appendices
II1, IV of Part II. The formulae given in section 3 for any Mach number can easily be extended
to include these, or any higher order, solutions. .
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LIST OF SYMBOLS
Parts [ and 11 :

y Apex semi-angle
% Chordwise co-ordinate (measured downstream from the apex)
¥ Spanwise co-ordinate (positive to starboard)
z Normal co-ordinate (positive upwards)
M Mach number
g o= (r—1pn
kR = coty
14 Free-stream velocity
p Free-stream density
) Complete elliptic integral of the first kind, modulus x
E(x) Complete elliptic integral of the second kind, modulus

¢ Chord in the vertical plane of symmetry

%y Constant determining thickness (in section 6)
or  Maximum thickness of the wing in the vertical plane of symmetry
(in section 9) '
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@y b, C,
a, = a,/k®
w = a, [k

Ay
D

a

D?
D,
C D =

fl:f‘b Fl
F2J F3J F4

Y =
C?" Cf,
a, d
A, B, C,}

D, EF

Part 11 :

1/e

LIST OF SYMBOLS—continued

Maximum thickness of the wing in the vertical plane of symmetry
(in section 6)

¢f. equations (1), (2)

Mach angle
(cot? y — cot® m)"?

— Ik

Induced velocity potential

Pressure coefficient

Standard Lamé function of the K class of degree #

Lamé function of the second kind of the K class of degree
Bo(w) [ Eop)

¢f. equations (68), (20), (30)

b, = b,[k Cp = CpnfR°
b, = b, |k ¢ = ¢, |R?
¢f. equations (14, (18), (24), (34)
Total drag

Pressure integral
Drag due to pressure at rounded lemdlng edge

Cpp + Cp,, total wave-drag coefficient at zero lift

cf. equations (45) to (54)

E (ci’ _ C)}l/z (¢f. equation (63)v)

¢f. formula (60)
¢f. equation (55)
dfc

¢f. equation (57)

Maximum chord of a triangular wing

Small dimensionless constant, proportional to design lift coefficient C, ,.

Distance in maximum chord lengths, (in free-stream dlrectlon) from

the apex, of point of zero pressure on a leading edge
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, Xo
X = —
c
e
y="r
, 20
g =
¢ ~
X =
¥
.22
v
i
%2
E, (1)
Fo(u)
P(u)
¢
2R
¢
0
P
Cro
CMO
Cpi
Ji oo s
4, B, C,
D, E, A,
a, b’ dl;}
f’ g: hl
A‘lJ Bl! Cl
POJ Pl) PZJ}
-PS; Pll; :p5
2 bm

LIST OF SYMBOLS—continued

Non-dimensional co-ordinates
(The dashes are dropped in the text)

(x/Z . ka/Z)1/2
¢f. equations (1), (2) of Ref. 2

Mach angle

1 — tan® y/tan®*a

Standard Lamé function of the M class of degree »

Lamé function of the second kind of the M class of degree #
()} (e — Relr

Induced velocity potential, ¢f. Appendix III (5)

Induced velocity potential, ¢f. equation (4)

Induced velocity potential, ¢f. equation (5)

Induced velocity potential, ¢f. equation (1)

Pressure coefficient at design incidence

Strength of singularity in axial velocity on a leading edge
Lift coefficient at design incidence

Pitching-moment coefficient

Total induced-drag coefficient at design incidence

Functions of tan y/tan 7 given in Appendices I, II

¢f. equations (1), (13)

¢f. equations (2), (3)
¢f. equations (17), (18)
¢f. equations (20), (21)

¢f. Appendix III, (2), (3), (4)
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Fi16. 10a. Surface (i), shape and pressure distribution. F16. 10b. Aerodynamic characteristics of surface (i) at varying
M =1-442. C, o =0-"1. Mach number (1 << M < cosec ).
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