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. Summary—This report investigates the extent to which the dynamic behaviour of a torpedo is sensitive to changes
in its stability derivatives. The main object in carrying out the investigation was to provide guidance on the accuracy
of measurement of the stability derivatives that should be necessary for any given torpedo. The considerations of the
report are, however, also pertinent to the problem of deciding the effectiveness of possible changes in the design of a
torpedo, the dynamic behaviour of which is unsatisfactory. Illustrative examples are worked out in detail. The report
emphasises the importance of the so-called margin of stability.

1. Introduction.—The purpose of this report is to investigate the extent to which the dynamic
behaviour of a torpedo is sensitive to changes in its stability derivatives. Since dynamic
behaviour covers the whole class of possible motions of a torpedo, attention has had to be confined
to certain well defined aspects. The main object in carrying out the investigation was to provide
guidance on the accuracy of measurement of the stability derivatives that would be necessary
for any given torpedo : specifically, what error in predicted performance will given errors in
the stability derivatives cause ? The considerations of the report are, however, also pertinent
to the problem of deciding the effectiveness of possible changes in the design of a torpedo, the
dynamic behaviour of which is unsatisfactory.

2. The Motron of the Torpedo—We consider motion in a vertical plane only, and neglect
buoyancy and trim effects. The treatment applies equally to motion in a horizontal plane only.

The relevant equations of motion are

Zo+Zf + Zs 8, = mVa— mVo, .. .. .. .. .. (1)
Ma+Mp+Mps,=J0, .. .. .. .. . . . ©®
where ) '
V' = speed of torpedo, assumed constant
« = angle of attack
= pitch angle
8, = elevator angle
g = 0 = pitching rate
VA denotes the coefficient of a force normal to the torpedo axis
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M denotes the coefficient of a moment about the transverse horizontal axis
through the torpedo c.g.

Z, = 0Z[0a, etc.

m, = total transverse mass of torpedo = m - Kym;

m; = total longitudinal mass of torpedo = m -+ Km,

m = mass of torpedo-

m; = mass of displaced fluid

J, = total moment of inertia about the transverse horizontal axis through the

: cg. =1, 4+ K'I,

I, = moment of inertia of torpedo about the transverse horizontal axis through
the c.g. '

I,, = moment of inertia of displaced fluid about the transverse horizontal axis -
through the c.g.

K' K, K, are Lamb’s inertia coefficients for an equivalent ellipsoid.

The positive senses of the various parameters are illustrated in Fig. 1.

If we multiply each term of equations (1) and (2) by e~** and integrate with respect to the

time ¢ between 0 and o« throughout (denoting Laplace-transformed quantities by a bar) and
eliminate § we have

[V )" — (JyZe A mV M )p + M Z, — MomV + Z,)]a
= [J,Zs p + My (mV + Z,) — M,Z, 5. . R )

If we had found, instead, the equation connecting %, or $8 with §,, the left-hand side would have
been identical with that of equation (3). We write this left-hand side as

[A.p* 4 Agp + As)a,
4, =mV],
A2 —_— JyZaa - MZVMq
Ay=+MZ, — M, (mV + Z))
It follows from equation (3) that the transient part of the solution for «(t) will be

where

Ay et - 4, efeh .. .. - .. .. .. .. .. (5)
where p; and u,, the decay constants of the motion are the roots of
Alﬂz_{'_Az‘u“{—A-s:O .. .« . .. .. . .. .. ..- (6)

and 1, and 1, are constants.

In particular, if the elevators are locked at zero, the right-hand side of equation (3) disappears,

and the expression (5) represents the complete solution for the angle of attack «, following a
disturbance.

A torpedo is said to have dynamic stability, if, when disturbed from a straight-line path, it
will again settle down to a straight-line path (but not necessarily the original straight-line path),
that is, it tends to reduce its angle of attack to zero. If a dynamically unstable torpedo is
disturbed from its straight-line path, it will circle with smaller and smaller radius until the
linear analysis used here no longer applies. It is clear from equation (5) that the necessary and
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sufficient condition for the torpedo to have dynamic stability is that the roots of equation (6)
have negative real parts. The necessary and sufficient condition for this is that 4,, 4, and 4,
all have the same sign :

Al — M2V]y > O

Ay=—J,Z,—mVM,>0
since Z, < 0, M, < 0 for all conventional torpedoes. The criterion for dynamic stability is
therefore that 4, > 0. Since Z,M, > 0, we can write

M (mV + Z)

G=1-— Z., > 0 for dynamic stability . .. .. (7)

G is called the margin of stability. The following Table indicates torpedo behaviour for different
values of G.

Stability G Controllability Application
ﬁg?;fii;uzt;&?able <8 }Requires special control equipment .. | No known application.
Dynamically stable 0-1

, 0-2 Turns rapidly with small rudders ; hard to | Homing torpedoes.
0-3 control and maintain in straight flight.
0-4
0-5 Turns rapidly with medium-sized rudders ; | Homing torpedoes and
0-8 controls moderately well. straight-running torpedoes.
0-7 Turns rapidly with large rudders ; controls | Straight-running torpedoes.
0-8 easily.
(1)8 Requires very large rudders ; controls very | Straight-running torpedoes.

~1-0 easily. .

2.1. Circling Motion.—Suppose the torpedo is moving steadily in a vertical circle of constant

radius R, with the following (constant) values of its parameters
g=10=10%; g=o0o%; §,=4x*
a=0=0.

Putting these values in equations (1) and (2) and solving for 6* and a* we have
0.* M“Z(;e — ZxMae

G5 =—"9a1 )
Gi:M"f(m‘VjL ) — M2, L ()
57 Z.,

(We note that, since the right-hand side of equations (8) and (9) are both negative for all con-
ventional torpedoes,

g% o®
Sgn 55 = g 5% = —sgn G .

This implies that a dynamically stable torpedo (G > 0) turns with its elevators, while a dynamic- .
ally unstable one (G < 0) turns against its elevators.)
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In a stable (G > 0) turn of constant radius R, ¥ = R6*, and from equation (8) we have

VGZ.M, 1

R:M“Z%—-ZMM(;E(W.' . .. .. .. . .. .« (10)

3. The Effect of Ervors in the Stability Derivatives—We can now study the effects of errors in
the stability derivatives Z,, M,, Z,, M, Z, and M, on three aspects of the dynamic behaviour

of a torpedo :
(@) The effect on the radius of turn R for a given elevator angle 6,*
() The effect on the margin of stability G

(c) The effect on the transient motion of the torpedo following a disturbance. This is done
by studying the effect on the decay constants u, and u, defined by equation (5).
Errors in the range -4 20 per cent will be considered for the static and éontrol surface
derivatives Z,, M,, Z% and M 5, and errors in the range - 50 per cent for the rotary derivatives

Z, and M, Each case will be illustrated by examples of two torpedoes of widely differing
hydrodynamic characteristics, Torpedo A (G about 1-0), and Torpedo B (G about 06). They
have the following hydrodynamic coefficients : :

TORPEDO A. _
aCL . . R aC‘L —_ . . aCL J— | .
W o T F e =0T gy = G
aCM 0. . aC‘M . . . aCM J— .
T = 0-05; ; —@——037, a(Z/R)*_OG&"
We use the relations v :
oC oC aC
— 1 2 L. __ 1 2 L. — L
Zoc_' 2PAV de Zde— 2PAV aae 3 Zq——%pAVla(l/R)
' oC oC ' oC
1 2] T M, — 1 M. 1 M
M, = 2.pAVZ P Ms = 5pAV? 55, M,= 2PAW28(Z/R)
where p = density of water = 2 slugs/cu ft
A = maximum cross-sectional area of torpedo = 2-4 ft?
V = speed of torpedo = 40 ft/sec
! = length of tofpedo = 14 ft.
This gives
| “ 11-866 ; i 2 Ze
W__' : ) 103:_ .688, W:_I'SSS
M. 2-957 : M,, M,
= -957 ; W:—IQ-SQI, 1—032—11967.
Also m = mass of torpedo = 58-5 slugs

I, = moment of inertia of torpedo about the transverse horizontal axis through
the c.g. = 745 slugs/ft*
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The Lamb inertia coefficients for an ellipsoid of the same fineness ratio (8) are
K’ = 0-840, giving

K, =0-029; Ky, =0-945 ;
mV o e, mlV o b
103_—]—.2408, W—+4501’ 103——}—1371.
TORPEDO B.
aCL_ N . aC‘L_ . . aCL — .
E_~_229’ aae——0396, WR—)__IM
aCM o . . aC‘M _ . . ‘acﬂ’[ — .
W_+0556’ aée——0229, a(l/R)_“OSO
p = 2 slugs/cu ft m = 94-47 slugs
A =2-405 ft* = I, = 1886-8 slugs/ft*
V = 49 ft/sec Fineness ratio = 11-7, whence
[ =20-49 ft K, =0-019; K, =0-968 ; K" =0-908.
These give
. Zoc' Z(Sg Zq ’ 5
103:—13-223, 103:—2'287, 1—03,2—2' 11
M, j M, M, 04.78
103:+65-785, = 27-095 ; T 4-7
) - . . le__ ) . Jl — .
103—%—9110, TG?—+4717’ , 103——1—3600.

3.1. The Effect on Radius of Turn.—For a given elevator deflection §,*, the radius ,o,f} turn is

(equation (10)).

, vV
R — R '5:;,2 .
where ‘ ' . .. . .o (17)
o GZ,M, _ZM,— M, (mV + Z,)
M.Z;,, — Z,M; M.Zs — Z,M,,

We denote by R, and R,’ the Vélues of R and R’ when there are no errors in the stability
derivatives, and by 6R and dR’ the changes in R and R’ due to changes 8C in C, where C is

one of Z,, M,, Zde’ M%’ Z,and M,
Since V and §,* are constant, it is clear that
IR _ SR’
R R'
The fractional change in R for any given fractional error in C can be calculated from equation (11)
as set down below, for all six interpretations of C.
-We note that R, has the following values for the two torpedoes chosen as examples :

Torpedo A R, = 144 ft when 38,* = 10 deg

Torpédo B R, = 100 ft when 6,* = 10 deg.
5
. Ax
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Errors in Z,

Torpedo A :

Torpedo B :

Errors in M,

Torpedo A :

Torpedo B :

Errors in Z s,

Torpedo A :

Torpedo B :

Errors in M s,

Torpedo A :

Torpedo B :

Lo~ 2L, 4+ 087,

SR MJM,Z, — M, (mV + Z,)] 82,]Z,
R M, Z, Mu(m%I/ T Z) é—a i, (1 N 5ZZ)
SR _ 0Z.JZ.
R 91.05— 99.71 9%
Z,
OR 07,2,
10-92 4 0-64 522“'
M,— M, -+ 6M,
R ZIMZ, — M, (mV + Z,)] SM., M,
R M,Z, = M,lmV + Z,) Z% a (1 N 32414')
SR sM,|M, '
R +21-95—0-77‘S]f/[”“
SR OM.[M.
5,
—0:92 — 0-27 57
Z"e — Zs -+ cSZdc
SR 57,2, -
R~ M, 7 3Z;,
w7
SR 62, |Z,,
(59
28-70 — Z
SR 8Z, |2,
R~ 0Z,
~ 338 — Z
M, - M, + sM,
R M, [M,
R Z, M, 5M,
ZM, T,
SR M, |M,
R~ oM, ‘
— 0-97 i,
SR oM, M,
o o
— 42—



Errors in'Zq o Z,—~ Z,+ 6Z,
SR — M,Z, 6z, Z, Gy—16Z,
R MZ, —MmV ¥ Z) Z, mV+2Z) G Z,°

where G, is the Value of G, the ma,rgln of stablhty, when there are no errors in the stability
derivatives.

, . O0R 8z,
Torpedo A : = 0-04 Z
. Y ¢ 8Z,
Torpedo B : 53 =+ 0- 917;.
Errors in M, ‘ M,-~M,+ M,
R M,Z, oM, 1M,
R MZ,—M,mV +2Z) M, G, M,
. O0R oo M,
Torpedo A : 7 = + 0-99 i,
. 6R M
Torpedo B: - =+ 1-80 i

These results are plotted in the form percentage error in R against percentage error in C in Fig. 2
for Torpedo A, and in Fig. 3 for Torpedo B. It is clear from Fig. 2 that, for Torpedo A, errors
only in M, and M, are significant. It is therefore useful to study the variation of R when there -

are errors 1n_M and M, simultaneously. The result for Torpedo A is

0-99 — M, —1- 04 oM,

— —{_ Mq 65
R . Mﬁe
1+4+1-04 7,

This can be plotted as a family of straight lines in the s R/R — 6 M /M, plane with 6M, [M; as

parameter. From this it can be seen what ranges of errors (positive and negative) in M and

. M, are permissible for a given permissible range of error in R. This information is plotted in
' Flg 4.

For Torpedo B errors in all stability derivatives are’ significant, and there is no point in
considering simultaneous variations of two only.

3.2. The Effect on the Margin of Stability—G was defined by equation (7) as

M (mV + Z)
ZM,

Go=1—

where G, is the value of G when there are no errors in the stability derivatives. We are now
interested in the value of G when errors in the stability derivatives exist, and not in the fractional
change in G. The values of G, for the two torpedoes being considered are .

Torpedo A : G, = -+ 1-011
Torpedo B: G, = + 0-556.

(78290) A¥ 2



Errorsin Z,

Errors in M,

Errors in Z,

Errors in M,

. These results are plotted with éC/C as a percentage in Fig. 5 for Torpedo A and in Fig. 6 for
It is obvious from the form of the equations that the variation of G with errors in
~the derivatives decreases as G, approaches unity and is in fact zero at G, = 1.

Torpedo B.

3.3. The Effect on the Transient M otion of the Torpedo, Following a Disturbance.—It was shown
in Section 2 that the transient part of the solution for the angle of attack

Torpedo A :

Torpedo B :

Torpedo A

Torpedo B :

Torpedo A :

Torpedo B :

Torpedo A :

Torpedo B :

G = 0-556 -+ 0-050 °Z

Ly L, + 62,
=1+ =1
1_{_620{
Z,
G 14 001
1_]_62,,:
Z,
G U
(1 07
Z,
M, - M, + 6M
oM,
G =G+ (G — 1) GF
oM,
G = 1-011 4 0-011 I,
- O0M,
G =0-556 — 0-444 i
Z,—>Z,+ 82,
— Zf]
AT A
G=1-011 —0- O4O—Z
Z

q

Z,

q

M,—~M,+ oM,

) ) .o é
which is the same variation as for

6=
1 q
+Mq
0-011
GC=1+- 5M,
1T+37
Q
610
1+ 7

{I

disturbance was the expression (5) :

Ay €1

+ lz eral |
8

«(f) following a



* The transient solution for the depth 2, or pitching rate 6 would be of the same form, with of
course, different values of the constants 4, and 1,. Real values of u, and u, will be associated
with aperiodic motion, and imaginary values with oscillatory motion.

The effect of errors in the stability derivatives on the transient motion of the torpedo can be
studied in two sub-sections : ‘ '
(@) The effect of such errors on the decay constants u, and u,

() The effect of such errors on the transient motion following one particular disturbance
which will be taken as a step function input to the elevators.

3.3 (a).—The ¢ffect of errors on the decay constants—The decay constants were defined by
equations (4) and (6). It is obvious from these that there are two types of problem involved
“since errors in Z, or M, cause 4, only to vary, while errors in Z, or M, cause both 4, and 4, to
vary. ,

Errors in M, M, M, -+ 6M,
Let u be a root of the new equation (replacing equation (6))
’ M,

A + A + A5 — (m,V 4 Zq)MuT =0.

Put 4 =y and éM,/M, = x, and this becomes the equation of a conic in the x-y plane. In
conventional conic notation, it becomes ‘

by? + 2gx + 2fy + ¢, =0,
where | by = + 4. = mV],
2, = — M m,V + Z)
2h=+4,=—mVM,— J,Z,

6=+ A =M,Z,— M, (mV + Z,) .

The discriminant 4 is, in conic notation, 4,*> — @,b, = 0. Hence the equation above represents
a parabola, providing the conic is non-degenerate (the case where the conic is degenerate is
discussed below). The parabola passes through the points (0, #,) and (0, x,) and its axis is parallel
to the x axis. Its vertex has an x co-ordinate of

SL=be [ _ (m, VM, — J,Z.)?
26,8, dm, V], M (m,V + Z,)°

The value of the decay constants for any given error in M,, say 6 ,*, are the values of y at
which the line x = 6 */M, meets the parabola.

The parabola cuts the x axis at the point x = Gy/(1 — G,), ¥ = 0, where G, is the margin of
stability calculated when no errors exist in any derivative. With this value of , the torpedo-is
marginally dynamically stable. Moreover, the nearer G, is to unity the smaller is the change in
the decay constants for any given error. At G, = 1, the coefficient g, in the equation of the
parabola disappears, and this is the.condition for the parabola to degenerate into a parallel
line-pair in the direction of the x axis, which implies no change at all in the decay constants for
errors in M,. We assume that when no errors exist, the torpedo is dynamically stable, that is
Go >0 and g, and g, negative. It follows that the parabola faces right or left according as
G, 2 1.

“The parabola is plotted in Fig. 7 for Torpedo A, and in Fig. 8 for Torpedo B. It should be
noticed that the horizontal scales of these diagrams are in units of 6M,/M, and not (6M,/M,)
per cent as in previous diagrams. The variations of the decay constants are greater for
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Torpedo B than for Torpedo A, as is to be expected, since G, is nearer unity for Torpedo A. In

fact, for Torpedo A, over the range 61‘]/}4 l 0:2 (z.e., -+ 20 per cent error), there is no noticeable

change in the decay constants. For Torpedo B the change in the decay Constants for the same
range of 6 /M, 1s noticeable but not significant.

The torpedo is dynamically stable or unstable according as x; and u, have negative or positive
real parts. When u, and u, become imaginary (i.e., in the region of the diagram past the vertex
of the parabola), the motion hitherto aperiodic becomes oscillatory. That the oscillatory motion
1s, in fact, stable can be easily checked.

Errorsin Z, Z,—~Z,+ d6Z,

Let # be a root of the new equation

A+ Ag + A, — ALZ? —0.

Put p =y and 6Z,/Z, = x and we can write this in conic notation as before
| bey® + 28 + 2fy + ¢ =0,
where by =+ 4, = mV],
28, = — M.,Z,
2=+ A= —m,VM,— JZ,
o=+ Ay =M_Z, — M, (mV + Z) .
This 1s, again, a parabolav passing through (0, #,) and (0, g,). The x co-ordinate of the vertex
is now
S = bola [_ [ — (m, VM, — J,Z,)* :l mV + Z,
268 dm,V ] M, (m,V + Z,) Z )
It will meet the x axis where

q

G, mV + Z,
1— G, Z, .
It is in fact the same parabola as before, but with the horizontal scale multiplied by a factor
(m,V + Z)|Z, Minimum variation again occurs when G, = 1, when the parabola degenerates
as before. The parabola is plotted in Fig. 7 for Torpedo A and Fig. 8 for Torpedo B. In both
cases the variation of the decay constants is a little greater than for the M, case but it is still

X =

negligible for Torpedo A and not very significant for Torpedo B in the range (SZZ < 0-2.
q
Errors in M, M,— M,+ 6M,
Let . be a root of the new equation
) oM, oM
A+ (A — VM, ) o+ A+ ZM, 557 =0,
1 2 M _‘_ s T q Mq
Put y = pu and x = 6M /M, In conic notation the equation becomes
2hsxy = byy? + 200 + 2y + =0, .. . . .o (12)
where
2hy = — myVIM,.
by = 4+ A, = m,V ],
2g, = + Z, M, ' > N .. (13)
2fi =4+ 4= — J,Z.— m,V M, )
o=+ Ay =M,Z, — M, mV + Z)
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The discriminant 4 = A — azb; = k> > 0, so the equation represents a conic which, if non-
degenerate, is a hyperbola. (The case when the conic is degenerate will be discussed below). The
equation of the asymptotes is got from this equation by adding a constant = such that

. /. gs
Ay by /s =0.
&3 fs cs + x|

4fh, — 20505
03+X=2g3(%“£):2g3»

Solviﬁg for » we get

since 4fhy — 2bsgy = 4h,* from (13).
The asymptote pair has, therefore, the equation , :
Oy -+ byt 2% + 2fiy + 26 =0 .. .. .. .. .. (14

The absence of a term in x* shows that one of the asymptotes is parallel to the x axis. The slope
- of the other one is therefore the tangent of the angle between them and is

24/ (hs® — ash;) - M,
= as + b =+ ] y ) ' '
From (14) we see that the point (— 1, 0) lies on the asymptote pair, and since the horizontal

asymptote is certainly not y = 0, the point (— 1, 0) necessarily lies on the sloping asymptote,
whose equation is therefore : o

y=i%(l+x)-

Since the hyperb'ola passes through the points (0, u;) and (0, p,) where g, and u, are negative,
this asymptote must have a negative gradient, whence its equation 1s

y=+ 1144,

M ,, being negative for all conventional torpedoes. The equation of the other asymptote is found
by differentiating equation (14) and finding the value of y for which dy/dx vanishes. It is

The horizontal asymptote has therefore the equation
. ! _ Z“ |
S 7
We note that the asymptotes intersect at (x*, y*), where
o JZ.— m VM, .
, mV M, A .
We can now draw the asymptotes directly, and we know, moreover, two points on the hyperbola,

namely, (0, #,) and (0, u,). There is one other point of interest on the hyperbola. From
equation (12) the x axis cuts the hyperbola where -

— - 03 —_—
| x = %, G .
There are four possible configurations of the hyperbola depending on whether x* 2 0 and
G, = 1. These are shown in Fig. 9. If we use the fact that the intercepts on any straight line
cut off between a hyperbola and its asymptotes are equal, it is possible to sketch in the hyperbola
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with reasonable accuracy from a knowledge of its asymptotes, the points (0, ), (0, ny) and
(— Gy, 0), which are known to lie on it. In the case G, < 1, as G, — 1, the rate of variation of
one decay constant decreases, while that of the other increases to the slope of the sloping
asymptote. In the case G, > 1 it is clear that the variation of both decay constants decreases

as G, approaches unity. If G, = 1, the hyperbola degenerates into its asymptotes, and only one
decay constant varies.

The hyperbola for Torpedo A is shown in Fig. 10, and for Torpedo B in Fig. 11, and the
stability regions are shown for each. It is easily proved that the region of oscillatory motion
is a region of stable motion. It is interesting to note that when G, < 1 it is impossible to reach
a condition of oscillatory motion of the body by altering M, only.

It is clear from these Figures that errors in M, are far more significant as regards the decay
constants, than are errors in Z, and M,. In fact an error of — 60 per cent in M . would cause
Torpedo A to oscillate, and Torpedo B to become dynamically unstable.

Errors in Z, Lo~ 2,4+ 67,

Let 4 be a root of the new equation

87, 8Z,
At (s — 1,252 w4 Ay + M,2. %2 =0
Putting p =y and 6Z,/Z, = #, this equation becomes, in-conic notation.

2haxy + by® + 28 + 2fyy + ¢, =0,

where
20y = — ], Z,
by = - 4, = myV [,
20, =+ M,Z,

o =+ Ay = — J,Z, — mVM,
6=+ Ay = M,Z, — M,(m,V + Z,) .

‘This is again a hyperbola, and, in the same way as before, we find that the asymptotes have the
equations ‘

o= | ]‘Ji’! (horizontal asymptote)
v .

Y=t 2 (1 + %) (sloping asymptote) |

y = iV ping asymp .

They intersect in the point (x*, ¥*) where

ot m, VM, — J,Z, .
JiZ.

Since the x axis cuts the hyperbola at x = — ¢:/2g, = — G,, as before, the remarks made about
the significance of having a value of G, close to unity still apply. The four configurations shown
in Fig. 9 also apply, if the new expression for #* is used. These hyperbolae are plotted in Fig. 10
for Torpedo A and in Fig. 11 for Torpedo B. The variations in the decay constants are still
large, but not so seriously as they were for errors in M o particularly as regards measuring accuracy,
since accuracy in measuring Z, is far easier to achieve than accuracy in measuring M, For
Torpedo A an error of — 100 per cent would be necessary to cause instability and an error of
-+ 200 per cent to cause oscillatory motion. For Torpedo B, instability would occur when Z,
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had an error of — 60 per cent. For both torpedoes, x* is positive for the Z, case and negative
for the M, case. This implies that the sloping asymptote has a less steep gradient in the Z, case
than in the M, case, and that the variations in the decay constants are correspondingly less.

3.3. (b). The effect of ervors on the tyamsient motion for owe particulay disturbance.—The
disturbance will be taken as a step function input on the elevators. The subsequent solution for
the angle of attack will be studied.” The relevant equation is equation (3), where 8,(¢) is now a
- step function of magnitude é,*. Then,

5.(9) =j§ 5%

and equation (3) gives,

QU

(P) _]erSep =+ Mde(le + Zq) - Mchse
85 V] p(p — m)(P — )

by the definition of g, and g, Splitting the right-hand side into partial fractions we have

a(p) _ s Ay As 15
_ 5 7 P+P—#1+?“M2’ .. .. .. .. (18)
where
A M, (mV + Z)) — M, Z;,
o mzvjyﬂlﬂz
A — ]yzaeﬂl -+ Mde(mlv -+ Zq) — Mqusg . N N (16)

’sz]y.”l(#l - Mz)

T e+ MV + Z) — MZ,,

Aa
sz]yﬂz(ﬂz - M1)

Inverse Laplace-transforming equation (15) gi,veé

) _ Ay + Apemt - A, et

5*

Since we are interested only in the transient solution, and not in the steady-state solution (which
is 15), we divide by 4, to get finally,

) _ | 4 apemt 4 apen

A0 *
where
A i ]Zaﬂl Mz
h=3= | VyZ—MZ+} — 17
3 L 55(7’/’1'1 -+ q) ¢, M M2

1 Ay i ]chseﬂz “1
=g T M+ 2) =Mz, e =
3 | s, \ Py a g4, H2 1

p1 and u, are affected by errors in Z,, M o Z,and M, as already shown. 2} and 4} are affected
by errors in all six derivatives. It is theretore possible to study how the solution (16) varies
with errors in each of the six stability derivatives, one at a time. This has been done for three
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values of error in each derivative, namely 0, - 50 per cent for the rotary derivatives Z cand M,
and 0, 4 20 per cent for the others. The results for Torpedo A are contained in Fig. 12, and for
Torpedo B in Fig. 13. The time for the ordinate to reach 95 per cent of its final value is marked
in each case. Errorsin Z; and M, do not affect either torpedo noticeably. For the remaining

derivatives, errors appear to affect Torpedo B more adversely than they do Torpedo A particularly
in the case of the rotary derivatives Z, and M, An error of — 50 per cent in M, causes a
substantial change in the motion of Torpedo B. It should-be noticed that the time to reach
95 per cent of the final value is less for Torpedo A than for Torpedo B ; this is to be expected

since Torpedo A has a larger margin of stability. : ‘

4. Summary and Conclusions.—In this report, the extent to which the dynamic behaviour of
the torpedo is sensitive to changes in its stability derivatives has been investigated. Attention
has necessarily been confined to certain well defined aspects of dynamic behaviour. These aspects
were the radius of turn for a given elevator angle, the margin of stability, the decay constants of
disturbed motion, and the motion following a particular disturbance, namely, a step function
input to the elevators. It is not too unreasonable to suppose that these aspects are broadly
representative of dynamic behaviour. It must be admitted, however, that the theoretical results
apply to an uncontrolled torpedo. Nevertheless, it should be noted that according to the Table,

the margin of stability indicates the ease with which a control system for a homing torpedo can
be designed.

The results obtained in particular cases, namely, Torpedo A and Torpedo B which have been
used as illustrative examples, may be summarised as follows : The radius of turn per elevator
angle of Torpedo A is very susceptible to errors in M, and M,; that of Torpedo B is very

susceptible to errors in all derivatives except perhaps Z, s~ The margin of stability G, for Torpedo

A varies very little with etrors in the stability derivatives. For Torpedo B, G varies rapidly
with errors in Z,, M, and M,. For both torpedoes, the decay constants vary much more with
errors in' Z, and M, than with errors in M, and Z,. This tendency is reflected in the effect of
errors on the solution for angle of attack following a step function input to the elevators, but it
is not as pronounced as one would expect, presumably due to the effects of the errors on the -
coefficients A1 and 2}. For Torpedo A, the variation of the solution is small for all feasible errors.
This is not so for Torpedo B, the variations due to errors in Z, and M , being rather severe.

In view of the complexity of the concept of dynamic behaviour and the number of parameters
mvolved, it is difficult to draw general conclusions. It does seem clear, however, that the
susceptibility of torpedo performance to changes or errors in the stability derivatives depends
to a great extent on the margin of stability. The effect of errors is, in most respects, at a
minimum when G, = 1, that is, when the torpedo is marginally statically stable.’

Acknowledgements —The author is indebted to Mr. I. J. Campbell of the Admiralty Research
Laboratory and to Mr. A. MacDonald of the Torpedo Experimental Establishment, for much
helpful advice given during the preparation of this report. ‘
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