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Summary. The equations of attitude motion arederived for small angular displacements from the equilibrium 
position of an earth-pointing satellite employing reaction-flywheel damping. This is followed by a discussion 
on the attitude control of a space-stabilised satellite, with particular reference to attitude control against the 
gravitational torque due to the earth and the use of reaction-jets for the control of a spherical satellite 
configuration; finally a single-plane analytical account is given, of a method of eliminating any undesirable 
angular momentum which the satellite may possess immediately it leaves the carrier missile for its future orbit. 

1. Introduction. It  is ext~ected that perturbation torques tending to produce turning moments 

about the centre of mass of an orbiting satellite will arise from many different causes; among the 

more important may be listed: 

The  torque due to the earth's gravitational field. 

Torques due to movement of equipment inside the satellite. 

The  effect of the sun's radiation pressure. 

Residual air drag. 

Bombardment  by meteoroids. 

Electric and magnetic fields around the earth. 
The effect of these torque disturbances on the satellite is greatly dependent on its configuration. 

Relatively long thin satellites will generally be more influenced by perturbation torques than 

satellites which possess some degree of spherical symmetry. 
Perturbation torques may be divided into three classes: 

(1) Short-lived torques. 
(2) Torques which vary in an oscillatory manner as a result of the orbital motion of the satellite 

round the earth. 

(3) Torques which tend to produce, a persistent turning moment  about the centre of mass of the 

satellite. 
The  effect of perturbation torques on a satellite's attitude depends upon the reference frame 

chosen; the space-stabilised vehicle will be subject to a turning moment  due to the variation of the 
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earth's gravitational field over the satellite configuration, unless the satellite is a homogeneous sphere 
for example, when the perturbation torque vanishes. On the other hand an earth-pointing satellite 
can utilise this gravitational torque as a stabilising effect, so as to provide a natural position of 
equilibrium. 

Some satellite missions will be expected to demand much greater precision in attitude control 
than others. A mission characterised primarily for making very accurate astronomical observations 
will in general require much more stringent control of attitude motion than a satellite whose primary 
concern is to make weather obser,Jations. 

For a satellite orbiting close to the earth the three major disturbing torques will be those due to 
the earth's gravitational field, air drag and movement of any kind within the satellite. For more 
distant satellites both the gravitational torque and that due to air drag will become very small, and 
the chief perturbation torques will generally originate from internal moving parts and the radiation 

pressure of the sun's radiation. However, in both cases, a collision with a meteoroid will need to be 
catered for, and the attitude control should be capable of coping with the disturbance initiated by the 
largest meteoroid that is likely to be encountered. 

The main object of this Report is to derive the equations of motion for small angular displacements 
from the equilibrium position of an earth-pointing satellite employing reaction-flywheel damping. 
This is followed by a discussion on the space-stabilised satellite and finally a single-plane analytical 
account is given of a method for eliminating any undesirable angular momentum which the satellite 
may possess at orbit injection. 

2. Reaction-Flywheel Control. In the theory that follows, attitude control is investigated on the 
concept that reaction-flywheels are to be used in helping to provide any desirable control of the 
satellite's orientation in space. The spin axes of the flywheels are along the directions of the principal 
axes of inertia of the satellite. It will be assumed that the principal axes maintain a fixed orientation 
in the satellite, any fluctuations of the axes due to distribution changes of matter inside the satellite 
being omitted. Such flywheels, mounted in fixed bearings, provide an inertial reaction torque when 
accelerated relative to the satellite body. Control of roll, pitch and yaw motions from the desired 
reference orientation may be provided by the use of three flywheels, one along each of the satellite's 
principal axes. For example, the control-flywheel along the roll axis of the vehicle when accelerated 
in the same direction as the rolling motion of the satellite, will result in an equal and opposite reaction 
torque being exerted on the satellite, thus attempting to counteract the roll motion. 

2.1. Derivation of the Equations of Attitude Motion. Let XYZ be an orthogonal system of right- 
handed axes with origin at the centre of mass of the satellite, and let these define the principal axes 
of inertia of the satellite (subsequently referred to simply as 'satellite axes'). Define the unit vectors 

(i, j, k) along the XYZ axes respectively. The angular velocity of the satellite relative to space axes 
will be denoted by the vector to, with components (oox, ooy, aJz) along (i, j, k). The quantities 

(Ix, IF, Iz) will represent the principal moments of inertia of the whole satellite configuration, 
i.e., satellite body plus flywheels. The flywheels may be positioned anywhere along the satellite axes. 

If the flywheels possess angular velocities (%, 002, cos) relative to the vehicle frame the total 
angular-momentum vector of the satellite is given by: 

= (L. oo  +I 1)i + + rc%)j + ( z z+IO,3)k (2) 
assuming all flywheels to have equal polar moments of inertia I. 



The equation of rotational motion of the satellite is therefore: 

d 
L = ~ ~ (2)" 

a 
= 3~ H~, + to x I-IT, (3) 

O 
where L is the resultant external torque acting on the satellite, and ~ A denotes differentiation of 

A with respect to satellite axes. 

I f  (Lx,  Ly ,  Lz) are the components of L along the satellite axes, the component equations of 
motion are: 

L~40x + 140, + ( I z - / r ) t o r t o z  + / ( t o r t o a -  tOztoz) = L x ,  (4) 

I r40r  + Id°2 + ( I x -  Iz)toztox + I ( t o z % -  %~:toa) L r ,  (5) 

Iz°Sz + I40a + ( I t -  Ix)toxtor + I( tOxwz-tOt%) = Lz .  (6) 

Now (tox, tot,  tOz) represent the component angular velocities of the satellite axes in space. 

Attitude deviations will, however, be measured from a set of reference axes which may have an 

angular velocity ~2 = (f2fi"+ f2uj"+ f2,k"), where the orthogonal unit  vectors (i", j", k") are along 

reference axes (x, y, z), origin at the centre of mass of the satellite. For a space-fixed reference frame 

= 0, but the general case of reference-axes motion will be treated here. 

The orientation of the satellite axes (X, Y, Z) relative to the reference axes (x, y, z ) m a y  be defined 

by the angles 01, 0 3 and 0a, and the rotations necessary to transfer from reference axes to satellite 

axes are illustrated with the help of Fig. 1: 

Rotation about Ox through angle 0 1 brings y to Y1 and z to Z 1. 

Rotation about OY 1 through angle 0z brings Z 1 to Z and x to X 1. 

Rotation about OZ through angle 0 a brings Y1 to Y and X 1 to X. 

The  angular-velocity components (tOx'i, tOr'J, c°z'k) of satellite axes relative to reference axes 
are given by: 

I_O X ! = 

t 
t O y  = 

t O Z *  

01 cos0  3cos0  a +  0 2s in0a,  

0 2 cos0 a - 0 1  cos 0 2 sin0a,  

0 a + 01 sin 0 2 . 

But the reference axes have an angular velocity ~ relative to space-fixed axes and in order to 

determine the true angular velocity of the satellite, ~ = (~xi" + f2yj" + fl,k") must be expressed in 
terms of components along satellite axes. 

The  transformation is governed by: 

f2 x = Hf2,  + Jf~v + Gf2,, 

~ r  = FCG + E~y + Df~ ,  

g2 z = Af2 x + Bf~ u + Cf2~, 

(84400) A 2 



where (fta- , t2r ,  t)z) are the components  of £t along satellite axes and: 

A = sin 0~., 

B = - c o s 0 2 s i n  

C =  cos02cos0~ 

D = cos03s in01  

E = cos 03 cos 0 1 -  sin 03 sin 0~ sin 01, 

01, 

+ sin 0~ sin 02 cos 01, 

and 

J =  s i n 0 3 c o s 0 1 + c o s 0 3 s i n 0 2 s i n 0 1  . 

For  small attitude deviations of satellite axes from the reference axes cos 0 --> 1 and sin 0 -+ 0; 
using this approximation for small angles we arrive at the following: 

c°x' = 01 + 020~, cot'  = 02 - 0103, coz' = 0a + 0102- 

A convenient choice for the reference axes is such that k" is directed towards the cent re  of the 

earth and j "  normal to the orbital plane. Due to the earth 's  oblateness the orbital plane in general 

precesses about the earth 's  axis, but  the angular velocity of the reference frame due to this precession 

is small compared with that due to the motion of the satellite in its orbit. T h e  more important  

dynamical characteristics of the system may, therefore, be expected to be illustrated by considering 

the angular velocity of the reference frame to be due entirely to the orbital motion of the satellite, 

i .e . ,  I2 = t~yj", where j" is normal to the orbital plane and t2 v the angular velocity of the satellite 

in its orbit. The  problem will therefore be reduced to a development of the equations of motion for 

a satellite moving in an orbit which remains fixed in space i .e . ,  a non-precessing orbit. 
Hence we have (for small angles) 

f2 ~ = f~u03 , 

~2 r = ~2v, 

t2 z = _ f l y 0 1 ,  

neglecting terms involving cross-products of the attitude angles. 
Consequently we may write 

(t) X = 01 + 0203 + f~V03, 

cot = 02 - 010~ + t2.,/, 

coz = 03 + 0 1 0 ~ -  t2v01 

°'Jr = 02 - 010~ - 0108 + ~v,  

~ z  = 03 + 0102 + 0102 - f2 ~ jOl  - ~ y 0 1 .  

F = - s in  0a cos 02, 

U = sin 03 sin 01 - Cos 03 sin 0~, cos 01, 

H = cos 0~ cos 02, 



If  terms involving products of the attitude angles are neglected then Equation (4) becomes 

+ ( z z - / ~ )  [ ( f ly+ 0~)(03+ 0~0~- ~y01) - 010808] + 

+ z [ (0~-  0108 + a~)o~8 - (08 + 010~- ay0~)~o~] = L ~  

with similar expressions corresponding to Equations (5) and (6). 
For a circular orbit ~y = 0 since f2y remains constant; a circular orbit will therefore be assumed 

in order to keep the analysis as simple as possible. The  further assumption that all attitude rates 
are small compared with f2y greatly simplifies the attitude equations and the resulting equations are 

~ 1  + L~01 + ( Z ~ -  Z~)a~0,  + ( t~  + Z ~ - ~ ) ~ , ~ 0 a  = L~ - I[avo~ 3 - (08 - a ~ 0 1 ) ~ ]  , (7) 

I ~  + IrO~ = L y  - I[( 0 8 -  fly0~)~l - (01 + ~08)~3] ,  (8) 

I ~  + I~O~ + ( Z ~ - I ~ ) a y ~  - ( L ~ +  I ~ - I ~ ) a ~ 0 1  = L z  - I[(0~+ a~08)~  - a , ~ l ] .  (9) 

At this stage it is convenient to introduce the effect of the variation of the earth's gravitational field 
over the satellite configuration. 

2.2. General At t i tude  Departure f r o m  the Radius Vector. To the order Of approximation given in 
Appendix I, the gravitational torque acting about the centre of mass of the satellite is 

G M E  
r = - 3 ~ [ (Zr - I z ) r rorzo i  + (Iz-L~z)rxorzoj + (L~ - I r ) r xorFok] ,  (10) 

where G is the gravitational' constant and i-V/z t he  mass of the earth. 
Since r 0 = rok" , the reference--satellite axis transformation (section 2.1) gives 

r x o  = ro(sin 03 sin 01-  cos 03 sin O~ cos 01) , (11) 

r~- o = ro(COS Oa sin 01 + sin 08 sin O~ cos 01), (12) 

rzo = ro(COS O~ cos 01), (13) 

which for small angles approximates to 

r x  o = - roO~, 
J 

r y  o = to01, 

r z o  = 1 . "  

Since the orbit is circular we also have G M ~ / l r o ]  ~ ~ f2v2 and the gravitational torque is 

r = - 3 ~ [ ( ~ .  - I~)01i + ( ~ -  ~z) 0 j ] ,  

again neglecting the cross-product of the attitude angles. 
Including the gravitational terms in the equations, we have 

IdJ 1 + I.~O 1 + 4 ( I r - I z ) f~v~ '01  + ( L ~ +  I z - I r ) f ~ v O  8 : L x '  - I[ f2¢o 3 - (08 - f~v01)~o~], (14) 

IdJ~' + I r O  2 + 3 ( I x - -  Iz)f2y~O2 = L r '  - I [ (03-  ~v01)co 1 - (01+ f2y03)~%] , (15) 

IdJ 3 + IzO 3 + (117 - Ix)~2v~O 3 - (IAy + I z -  Ir)f~yO 1 = L Z' - Z[(O 1 + f2v08)~o2- f]yo~l], (16) 

where ( L x ,  L y ,  L z )  have been replaced by ( L x '  , L I / ,  L z '  ) to indicate that the gravitational torque 
has been included in the equations and is no longer regarded as a part of L. 
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In the absence of the flywheels and any external torque and with Ij~ = / x  + I z  (e.g., a lamina 
with its mass in the XZ-plane) Equations (14) to (16) represent undamped oscillatory modes 
provided that I y  > I x > I z.  

Added stability for the 01 and 0 a modes canbe  achieved by the use of a constant-speed wheel 
(regarded as constant relative to satellite axes) whose spin axis lies along the Y-axis of the satellite. 
Such a wheel will possess angular momentum HI, j relative to the vehicle. Owing to the rotational 
motion of the satellite, such an angular momentum will result in the development of the additional 
terms (01 + f~v0a)Hrk and - (0 a -  f~vO1)Hs.i to the L.H.S's of the attitude equations, since 

d o 
dtHJ~ = H i ~ + m  x H  r a n d ~ H  r = 0, (H r = H r j  ). 

The L.H.S's of Equations (14) to (16) are now 

g r  ~v~01+ I x  + I z -  I r Ic% + I zO  1 +  4(I r - I z ) + ~  

+ Ii702 + 3(L :-Iz)ny  

Furthermore, if ( I  x + I z )  > Ii~ and the angular momentum of the wheel is determined by the 
relation H y  = ( I  x + I z - I r ) ~ Q v ,  the attitude equations become 

+ L 01 + + L d Yl = - I[a  a - (0 L (17) 

Id)~ + I rO ~ + 3 ( I r -  Iz)f~y20~ = L r '  - I[(O a -  f~y01) % _ ( 0 1 .  j-  ~-~y03)oA3] , (18) 

Icba + IzOa + Izf~v20a = Lz '  - 1[(01+ f~vOa)% - ~-~y¢ol]. (19) 

In the absence of the flywheels Equations (17) to (19) define undamped motions so the control 
flywheels may serve a very useful purpose by providing damping of any oscillations by making 
flywheel angular acceleration proportional to angular deviation rate. 

i.e., Id) 1 = k101, Icb 2 = k~O~, IdJ a = haOa, 

where hi, k a and k 3 are control parameters. If the system is designed for critical damping in the 
absence of the terms arising as a result of flywheel'cross-couplings then 

]¢1 = 2-q,j~/{/x[3(Ij~- I z )  + / x ] } ,  

k., = 2 f l , A , / { 3 I r ( I x -  I z ) } ,  

h a = 292,aI z . 

The general effect of cross-coupling terms, and the effect of f~y variation for an elliptic orbit, on the 
dynamic response of a particular system is best.studied by solution of the attitude equations using an 
electronic computer. 

The response of the system to the  various perturbation torques that are likely to arise should be 
investigated. Short-lived disturbances are equivalent to imparting an initial angular velocity to the 
satellite, and the control-flywheels should be capable of providing sufficient damping for the satellite 
to return to rest again at its equilibrium position. In the case of a cylindrical type of satellite (Fig. 2), 
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if the projection of the centre of pressure onto the 'long axis' does not coincide with the centre of 

mass, it is clear that any significant torque which arises as a result of upper atmospheric molecules 

will tend to produce a persistent deviation of the satellite X- and Z-axes from the desired reference. 

However, it may very well be that the deviations produced "by this or any other persistent torque 

disturbance, are small enough to be insignificant in regard to the specific mission to which the 

satellite has been assigned. 
The angular velocity coit of the constant-speed flywheel necessary to produce the constant angular 

momentum H y  may be determined numerically for typical satellite mass and dimensions. 
Suppose that I F = / x  (e.g., homogeneous cylindrical satellite), the mass of the satellite is 500 lb 

and the time taken to describe the orbit is 5 hours, i.e., f~v = 2rr/(5 x 3600) ~--- 0"00035 rad/sec. 
For a homogeneous cylindrical satellite I Z = ½Msrs 2 where M s is the mass and r s the radius of the 

cylinder. If r s = 2 ft, then I z = 1000 lb ft ~. These give H F = f~vI z = 0.35 lb ft 2 see -1. If the 
flywheel has a mass of 0.5 lb which is supposed concentrated in the rim of radius 2 in., then the 

polar moment of inertia of the flywheel is 0.5(1/6) 3 = 1/72 lb ft ~. These figures give ~or~ ~ 25 rad/sec. 

The theory and equations developed in this section have assumed the presence of an additional 

flywheel to enhance the stability of the 01, 03 modes; in general, however, it is not necessary to include 

a separate flywheel for this purpose since the control-flywheel situated along the Y-axis of the 

satellite may be given this constarit angular velocity as a bias, about which angular acceleration for 

control purposes may be developed. 

3. Reference Axes  Fixed in Space. By making sightings on fixed stars it is possible to define an 

attitude reference system which maintains a definite orientation in space. The use of such a 
reference may be ideally suited for missions where it is desired to make certain optical observations, 

for example by the use of an astronomical telescope on board the satellite. For such observations, 

greater precision in the attitude control of the satellite will generally be demanded than in many 

satellite missions. 
One problem, associated with the attitude control of a satellite tied to such a space-stabitised 

reference, arises from the fact that the orientation of the satellite will not be such that the gravitational 

perturbation torque due to the earth acts as a directional reference; in fact the general effect of the 

earth's gravitation will be to rotate the satellite away from its desired reference, in order to align 

the principal axis having the smallest moment of inertia into a direction perpendicular to the local 

gravitational equipotential surface. 

3.1. Space-Stabil ised Satellite Subjected to the Earth 's  Gravitat ional  Torque. Suppose the 
satellite to move in a fixed plane along an elliptical orbit of semi-major axis a and eccentricity e. 

It will be assumed that the only perturbation torque acting on the satellite is due to the earth's 
gravitational field, and that the attitude control maintains complete space-stabilisation of the satellite. 

This means that the satellite axes X, Y, Z are coincident with the reference axes x, y, z. Equation 
(68) of Appendix I gives the gravitational torque acting on the satellite. As the satellite orbits the 

earth the gravitational torque will vary and in order to perform integrations round the orbit it is 

convenient to introduce a set of axes which allow the gravitational torque to be expressed in terms of 

the angle 0, where 0 is measured in the orbital plane. Let X', Y', Z' define a system of space-fixed 

axes, origin at the centre of mass of the satellite, and having ~Y' perpendicular to the orbital plane 

and Z' and X' in the orbital plane, and suppose Z' to be inclined at some arbitrary angle 19 with the 
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direction parallel to 

(X', Y', Z') and have 

respectively, 
/ .C.~  

the major axis of the ellipse (Fig. 3). Let (i', j ' ,  k') be unit vectors along 

direction cosines [(ll, m~, nl); (/2, m2, n2); (13, ms, n3) ] relative to (i, j ,  k) 

i' = l l i +  ml j  + nlk , 

j '  = lsi + msj + n~k, 

k'  = /ai + rnaj + n3k. 

I f  r 0 is the radius vector f rom the centre of mass of the satellite to the centre of the earth then, 

r o = r0(cos Ok' + sin 0i'), (20) 

where 0 is the angle between the Z'-axis and the radius vector. Thus,  

r0 = ro[(13i + m3j + nak ) cos 0 + ( l l i  + ml j  + nlk ) sin 0] 

= ro[(/3 cos O + l  1 sin 0)i + (m 3 cos O + m  x sin 0)j + (n s cos O + n  t sin 0)k]. (21) 

The  components  of .the radius vector along satellite axes are therefore 

r x o  = ro(l 3 cos O+ h sin 0), 

r y  o = ro(ms cos 0 + m 1 sin 0), 

r z  o = ro(ns cos 0 + n 1 sin 0). 

and the equation for the gravitational torque is 

r = - 3 G M ~  {(I t  - I z )  (n~ cos 0 + n 1 sin O) (ms cos 0 + m 1 sin O)i + 
~'0 3 

+ ( I  z -  I x )  (l s cos 0 +/1 sin 0) (n s cos 0 +  n~ sin 0)j + 

+ ( Ix  - I t )  (ms cos 0 + m~ sin 0) (l 3 cos 0 + h sin 0)k}. (22) 

I f  the atti tude control is to keep the satellite completely space-stabilised against the gravitational 

torque the mean angular impulse imparted by the control during one orbit is: 

JR = P(0) dO where r°2 
0=0 d0 ' d~ = h-~' r° = 1 + ecos(0+]?)  

and h is the angular momentum/uni t  mass of satellite in orbit. 

Using the expression for r (o )  given by Equation (22) this becomes: 

J R  = - 3 ~ -  0=0 ( I t  - I z )  (n~m3 cos e, 0 + nlrn 3 + nsrrzl sin 0 cos 0 + nlm 1 sin e 0)i + 

+ ( I  z - I~c) (lan s cos e 0 + lln 3 + 13n I sin 0 cos 0 + lln 1 sin e 0)j + 

+ ( l x  - Ig)  (real 3 cos s 0 + roll a + m311 sin 0 cos 0 + roll 1 sin s 0)k 1 x 
. l  

x [1 + e cos (O+~)]dO.  (23) 

The  integrals cos s 0 dO, sin s 0 dO, cos s 0 sin 0 dO, sin s 0 cos 0 dO, sin 0 cos 0 dO, 
0 0 0 0 0 

f fl are all zero and the integrals cos e 0 dO, sin s 0 dO, are both equal to ~. 
0 

8 



Hence: 
G M ~ r  

J~ = - 3 ~ U -  [(z~ - ~ )  (,~m~ + n~m~)i + (_rz-  L~) (l~n~ + l~n~)j + 

+ ( /x  - Is-) (mala + mfl,)k]. (24) 

I f  (i, j ,  k) are parallel to (i', j ' ,  k') then /1  = m2 = na ~ 1 (all the other direction cosines being 

zero) and the mean angular impulse per orbit is zero. This result is independent of the angle 13 so 

that if the X- and Z-axes of the satellite lie in the orbital plane the mean angular impulse per orbit 

will be zero, and in general if any two of the satellite axes lie in the plane of the orbit there will be 

no unidirectional build up of angular momentum during one complete orbit; during each orbit 

equal amounts of positive and negative angular impulse will be imparted to the satellite. I f  the 

satellite axes are not so orientated the mean angular impulse per orbit is not zero and the attitude 

control must be capable of providing a compensating resultant impulse. Control by reaction-flywheels 

would eventually cease to be of any use owing to the continual demand for angular acceleration to 
balance the ever increasing resultant impulse. 

3.2. Max imum Vahte of r per Orbit. 
of the gravitational torque is: 

GM~,. 0) a ] r  I = - 3  ~ ( I ~ - L ~ ) s i n 0 c o s 0 ( l + e c o s  , 

and this is zero when 0 = mr~2, n = O, 1, 2, . . . . 
To find the maximum value we have 

dF 

d O -  

+ (1 + ~  cos 0)~(cos~ 0 -  sin~ 0)] ,  

When (i, j, k) and (i', j ' ,  k') are coincident the magnitude 

assuming fi = 0, 

GM~. 
3 ~ g ~  ( I z - / x )  [3(1 +e  cos O)~(-e sin O) sin 0 cos 0 + 

and this is zero when (5e cos 3 0 + 2  cos 2 0 - 4 e  cos 0 -  1) = 0. 

Taking the particular case of a circular orbit (e = 0) the maxima occur when cos 0 = + 1/~/2 

i.e., for 0 = (2n+ 1)~r/4, n = 0, 1, 2 . . . , and the magnitude of this maximum torque is: 

~ GM ~ ( i z _ I x )  (25) I lr. x = 

3.3. Total Angular impulse per Orbit [(i, j, k) and (i', j ' ,  k') Coincident]. For a circular orbit, 

the total amount  of angular momentum which must be supplied by the attitude-control system in 
order that the satellite may remain completely space-stabilised is: 

i.e., 

giving 

J = r(0) dO 
4 Jo=0 ) o  ' 

3 GM~: ( i  z _ i x  ) (~i~ dO J =  4 ~  ½ sin 20 
d O  

GME (Iz - L~) 
J =  6 ~  

(84400) A* 
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(27) 

(28) 
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Equation (28) gives the total change of angular momentum that would have to be provided by the 
attitude control in order to balance the gravitational torque for each complete orbit. For a non- 
precessing orbit the angular-momentum storage capacity for any number of complete orbits can 
be evaluated. However, the situation will not in general be quite so simple, for it is known that the 
effect of the oblateness of the earth is to cause precession of the orbital plane about the earth's 
axis. A further analysis on the effect of  such a precessing orbit with regard to this particular attitude 
control problem is outside the scope of the present Report, but the principles involved are the same. 

3.4. The Attitude Equations of Motion for a Space-Stabilised Satellite. Neglecting second-order 
products for the case of small angles and angular rates as in Section 2, Equations (4) to (6) in the 
absence of any form of control reduce to the simple form: 

Ix01 = L x ,  

IzO 3 = L z . 

(29) 

(30) 

(31) 

In order to provide a usable system, some means of damping and position stabilisation must be 
supplied by a suitable control mechanism. 

3.5. The Use of Reaction-Flywheels. 

Equations (7) to (9) become: 

Id~ + IrO ~ + I(030) 1 -  01o)3) = L ~ ,  

I ~  + I zG + I( 0~0)~- 0~0)~) = Lz.  

To the order of approximation quoted in Section 2, 

, ( 3 2 )  

(33) 

(34) 

As there is now no position stabilisation in the equations of motion the angular accelerations of the 

flywheels must be made some function of Oy and Oj, (j = 1, 2, 3); any unidirectional torque will 
"eventually cause saturation of the flywheel control owing to the continual demand for increase of 
angular acceleration to oppose the external torque. 

3.6. Control by Ejection of Gaseous 38atter from the Satellite. This is an obvious method of 

imparting control torques to a satellite vehicle, for the escape of gas at pressure will result in a 
reaction on the satellite body. A method of control about the three mutually perpendicular satellite 
axes can be envisaged by supplying the satellite with three pairs of diametrically opposite orifices 
for the ejection of gaseous matter. The members of a pair should be diametrically opposite with 
respect to the centre of mass so as to produce no nett force On the satellite but only a couple. The 

reaction torques available by such means will provide for control about each of the three body axes. 
Since the magnitude of such a torque is the product of force and length of torque arm, a greater 
torque magnitude can be attained for a given velocity of ejection if the orifices are positioned some 
distance away from the main body of the satellite. 

The use of a single jet orifice to provide a control torque about a given axis is undesirable from 

the point of view of the translational thrust that is experienced at the centre of mass. The existence 

of such a force during the long time duration of attitude control may introduce undesirable perturba- 
tions in the satellite's orbit. 
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3.7. The Jet-Reaction Equations. Ejection of matter at a constant velocity, using the amount of 
matter ejected per second as the controlling element, will provide a change of angular momentum 
about the centre of mass of the satellite. The change of angular momentum may be made to take 
place about each of the three satellite axes by employing diametrically opposite jets, the orifices 
being positioned at the surface of the satellite so as to coincide with the points where the axes would 
emerge from the satellite body, each orifice being arranged so that the ejected gas is tangential to the 

satellite surface, see Fig. 4 (spherical outer Shell assumed). 
Consider first control of motion about the Z-axis, with only the control jets for 0 a operative. 

If V~ is the ejection velocity relative to the satellite and r the radius of the sphere, then the angular 
velocity of the ejected matter relative to satellite axes is (VE/r)k for either of the jets parallel to the 
direction of the X-axis. But the axes themselves have angular velocity co = (01i+O2j+ Oak) for 
small angular displacements. Hence the resultant angular velocity of the ejected matter at the 
ihstant of ejection will be  {Oli + O~j + [(V~/r) + 03] k} about the centre of mass. 

For the orifice situated along the positive direction of the Y-axis, the actual velocity of the jet 
material is therefore: 

Hence, the change of angular momentum per second about the centre of mass due to material 
having this velocity being ejected at a rate rh x from each of the two orifices is: 

2rh x [ r j x  l r O l k - ( V ~ +  0a ) rill =2mxV~rk+2rhxr~(01i_ ~Oak) , (36) 

where mx is the controllable quantity. 
Similarly, control of motion about the X- and Y-axes may be achieved by ejection parallel to the 

Y- and Z-axes respectively. For 01 control, the change of angular momentum per second about the 
centre ofmass is: 

2rh r VErl + 2rhrr2(02j + 01i ) (37) 

and for 02 control the corresponding expression is: 

2rhzVEr j + 2rhzr~(O3k + 0 j ) .  (38) 

Equations (29) to (31) with jet-reaction control may therefore be written: 

IxO 1 + 2rhrVEr + 2r2(rhr + ~'zx)O 1 = r x , (39) 

IyOn + 2rhzVEr + 2r2(rhz+ rhr)O z = L r , (40) 

+ + + = ( 4 8 )  

The satellite's moments of inertia (/x, I t ,  Iz) must now be regarded as instantaneous values 
since they will be decreasing as a result of loss of mass by ejection. The centre-of-mass position, 
however, must remain unchanged since the loss of mass is symmetrical about the origin. 

By making rh dependent on 0j and 0j the equations take the form of damped harmonic motion, 
modified somewhat by the presence of small effects representing components of change of angular 
momentum due to rotation of the satellite body axes. For small displacements the attitude rates 
will be small and the jet system can be regarded as providing pure couples about each of the three 
body axes. 

11 
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A unidirectional perturbation torque can be catered for by the jet-reaction attitude control, since 
this simply requires continuous operation of the jet source in question. 

4. On the Elimination of Initial Angular Momentum of the Satellite. The placing of a satellite 

into an orbit may result in the satellite having an initial angular velocity relative to its reference 

frame. The first task of the attitude-control system will be to remove this angular momentum and 

orientate the satellite axes along the desired reference directions. The control torque necessary for 

the satellite to maintain a desired attitude once the initial angular momentum has been removed 

will in general be of a much smaller magnitude than that required to eliminate the initial angular 

momentum. Consequently, the attitude-control system must be capable of developing a relatively 

large control torque for a short time duration, and a relatively small torque over a much longer 

period of time. The initial angular momentum is probably best eliminated by the use of reaction- 

jets, but subsequent attitude control may be by reaction-flywheels, reaction-jets or any other device 

suitable as an attitude control element.. 

It will be convenient to refer to the elimination of any initial angular momentum of the satellite 

as phase I of the attitude control, and subsequent attitude control as phase II. In the following 

theory, the satellite is assumed to be spinning about only one of its principal axes of inertia, which is 

assumed toremain constant throughout. The small effect representing change of angular momentum 
due to loss of mass at the satellite's angular velocity is also neglected. 

4.1. Space-Stabilised Satellite. Suppose that the axis of spin is the Y-axis of the satellite and is 

assumed to be coincident with the y-axis of the reference system. The attitude-deviation angle O' is 
then measured in the X-Z plane. In the absence of perturbation torques the uncontrolled rotational 
motion of the satellite relative to its reference axes may be expressed simply as: 

IjTO' = 0 (42) 

By applying a control torque of the form F1 = - hO', the equation of motion becomes: 

I~O' + hO' -- 0. (43) 

For the initial condition 0' = O / w h e n  t = 0, Equation (43) has the solution for 0': 

0 ' =  O/e-(klIr~ I (44) 
and 

F1 = - hoe 'e-(kt±Y~t. (45) 

Assuming the control torque to be supplied by reaction-jets, the jet-reaction angular impulse 
necessary to eliminate the initial angular momentum is: 

J~ = r l d t  (46) 
0 

= _ kO i' e-(~cIr~tdt, 
0 

i . e . ,  
J1 = - I y O / .  (47) 

Having eliminated the angular momentum relative to the reference frame, the X and Z satellite 
axes will in general be at some angle 0 o' relative to the x and z reference axes respectively. This 
residual angle can now be removed by cutting out phase I control and letting phase II control take 
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over .  I n  order  tha t  0' = 0 shall be  a positior~ of  equ i l ib r ium the phase  I I  contro l  t o rque  m u s t  be  of  

the  f o r m  12~ = - ( k l l 0 ' +  k120'), w h e r e  hi1 and klz are contro l  pa ramete r s .  T h e  equa t ion  of mo t ion  

n o w  takes the  fo rm:  
~.0' + kilO' + k~lo' = 0 .  (4_8) 

I f  the  m o t i o n  is t aken  to be  cri t ically d a m p e d  the  solut ion of  Equa t i on  (48) is 

O' = (a + b t ) e - ~ h  (49) 

w h e r e  a and b are cons tan ts  and  K = ~ / i z  z - 2 I  r 

T h e  initial condi t ions  .for the  phase  I I  con t ro l  are O' = 0o', O' = 0, t I = 0, w h e r e  t ,  is measu red  

f r o m  the  end  of  phase  I control .  (Assuming  phase  I I  to c o m m e n c e  i m m e d i a t e l y  phase  I is cut  out.)  

T h e s e  initial condi t ions  give a = 0 o' and b = KOo'. 

. .  O' = 00'(1 +Kt~)e-~:11 (50) 
and  

O '  = - K20o' tle-ZC41. (51) 
H e n c e  

F~ = - [kl~00'(1 + Kt~) - k12K20o'tl] e-ZCh 

= - [K2I:;(1 + K t i )  - 2 I rKat~]  Oo'e-K4~, 
i.e.~ 

P~ = - [1 - Kt , ]  K2IrOo'e-ZCq. (52) 

E q u a t i o n  (52) indicates  tha t  I? 2 changes  d i rec t ion  at some  t ime  t o = 1 / K .  

I f  phase  I I  cont ro l  is also by  react ion-je ts ,  the  j e t - r eac t ion  angula r  impu l se  necessary  to cor rec t  

the  a t t i tude  devia t ion  angle 0 o' u n d e r  the  above  condi t ions  is: 

J~ = P~dt 1 = P2dt 1 (53) 
41=0 11=10 

N o w  

? ? • P~dt 1 = - i r K 2 0 o  ' (1 - Kt l ) e -Za ld t l  
11=0 11=0 

1 
= _ I r K 2 0 o  ' (t0e-ZCt0), and*if t o = ~ : 

f ro I y K O  o' 
P2dtl  = (54) 

11=0 e 

Since there  is no initial angular  m o m e n t u m  for  phase  I I ,  

f,o P~dt~ = - P j t  1 . 
41=0 41=10 

Hence ,  
2 I y K O  o' 

J~ - (55) 
e 

Using  this  m e t h o d  of control ,  the  total  j e t - r eac t ion  angula r  impu l se  necessary  to r e m o v e  the  initial 

angula r  m o m e n t u m  and then  line up  the  satelli te in the  desired direct ion is: 

J ' =  IJ l + I J21 (56) 
2 I r  f f  Oo' 

J '  = l i t 0 ,  ] + - . (57) 
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If, after attitude control is complete, a total amount M of gaseous matter has been expelled from 

the orifices in the form of a mass flow at a constant exhaust velocity VE, then the change of angular 

momentum about the centre of mass of the satellite as a result of this is 2 r ' M V E ,  if the torque arm 

is of length 2r'. This overall change of angular momentum must be equal to the jet-reaction angular 
impulse J '  given by Equation (57): 
i,e., 

2I~-KO o' 
2 r ' M V u  = i iyoe,  I + _ (58) 

2 I y K O  o' 
I± 0i' [ + - 

. .  M = 2r 'V~  (59) 

Equation (59) is a theoretical estimate of the mass expelled at velocity V~ in order that attitude 

control be complete. In a practical system the efficiency will not be 100 per cent, and in addition, 

the weight of the gas containers and feed pipes must be taken into account for an overall estimate 
of weight. 

Alternatively, of course, phase I control may be designed to provide a torque of the form 

P1 = - (h'O' +hO'),  so as to produce the desired result (i.e., satellite and reference axes coincident) 
before phase II is brought into operation. In particular, this would be a necessity if the phase II 

control was designed to cope only with small angular deviations. On the other hand, if phase II  has 
been designed to deal with arbitrarily large angles, then Fx -- - hO' is a simpler system for phase I. 

4.2. Earth-Pointing Satellite. t f  the satellite is dependent solely on the earth's gravitational field 
for providing stabilisation, a control torque of the form F 1 = - (h'0' +/~0') is desirable during phase I 

control. For example, correction by the torque arising from the earth's gravitational field of a 

residual angle of 90 deg or more of the 'long axis' from the radius vector would result in the satellite 
pointing the 'wrong end' towards the earth. 

5. Conchtsio~s. The problem of attitude control has been discussed for an earth-pointing satellite 

and a satellite stabilised to a space-fixed reference frame. The equations of attitude motion have 

been derived using small-angle approximations. However, choice of optimum control parameters 

may result in a given control system providing satisfactory control for angles in excess of the values 
for which the small-angle approximation is valid. 

An earth-pointing satellite using the angular acceleration of reaction-flywheels to provide damping 

of attitude motion would seem to be a suitable starting point for the design of an attitude-control 
system. Such an orbiting satellite could be used for making observations of the earth and its 

surroundings, or for making astronomical observations. In' the absence of damping, any small 

disturbance producing a nett turning effect about the centre of mass of the satellite will cause the 
vehicle to execute oscillations about its equilibrium position. Additional disturbances could increase 
the amplitude of oscillation, and eventually result in a stable attitude being lost over the period of 
time for which the satellite was intended to be used. Damping of the first disturbance would 
eliminate the oscillatory motion and return the satellite to its equilibrium position ready for any 
future perturbation. 

The major torque disturbance for a space-stabilised satellite orbiting relatively close to the earth 
will in general be due to the gravitational-field gradient due to the earth; depending on the 
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orientation of the satellite relative to the earth, this perturbation can be expected to cause either an 
oscillatory torque of zero mean, or the more troublesome oscillatory torque with finite mean. 

For the space-stabilised satellite position atabilisation has to be provided in order that the desired 

reference directions may be maintained. In general reaction-jets are probably more suitable than 
flywheels for this purpose as the flywheel system is more susceptible to angular-momentum 
saturation. The more logical choice for a space-stabilised satellite is the configuration having its 

principal moments of inertia all equal since the gravitational torque then disappears. 
In general, the design and nature of the attitude-control system will be determined by the type of 

mission to which the satellite has been assigned, different missions being characterised essentially 
by the attitude tolerance which may be allowed, in order that useful data may be obtained from 

observations and recordings made by the satellite's instruments. 
Any angular momentum possessed by the satellite at orbit injection may be eliminated by reaction- 

jets. The magnitudes of the control torques used in this process will in general be far greater than 
those required to counter the attitude perturbations once the satellite has settled down in its orbit. 

The attitude-control designer may therefore have the task of supplying two control mechanisms, 

not necessarily different in principle, to satisfy both needs. 
Attitude stabilisation is necessary for a great many satellite applications and must therefore demand 

detailed studies of suitable control systems. The account presented in this Report is intended only 

as an introduction to the subject, written (it is hoped) in sufficiently simple mathematical language 

to enable the non-specialist to appreciate the principles involved. 

6. Acknowledgements. The author is indebted to Dr. R. N. A. Plimmer for checking the contents 

of this Report. 
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N O T A T I O N  

Spin vector of satellite 

Spin vector of reference axes 

Spin vector of a typical flywheel relative to satellite axes 

Total angular-momentum vector of satellite 

Resultant external torque acting on the satellite from all sources 

Gravitational torque on the satellite configuration 

Radius vector from centre of mass of satellite to centre of the earth 

Position vector of a typical satellite particle relative to the centre of mass 

Resultant angular impulse per orbit on space-stabilised satellite due to the 
earth's gravitational torque 

Orthogonal system of right-handed axes, origin, at the centre of mass of the 
satellite and defining the directions of the principal axes of inertia of the 
satellite 

Orthogonal system of right-handed axes, origin at the centre of mass of the 
satellite and defining the attitude reference directions 

System of axes having Z' and X' parallel to the major and minor axes of an 
elliptical orbit and Y' normal to the orbital plane 

System of unit vectors along the (X, Y, Z) satellite axes 

System of unit vectors along the (x, y, z) reference axes 

System of unit vectors along axes (X', Y', Z') 

Principal moments of inertia of the satellite 

Direction cosines specifying relative spatial orientations of (i, j, k) and 
(i', j', k') 

Spin components of satellite along satellite axes 

Spin components along satellite axes of satellite relative to reference axes 

Angular velocities of reaction-flywheels along the X, Y and Z axes respectively 
(relative to satellite axes) 

Components of L along satellite axes 

Components of L after the gravitational torque components have been 
omitted 

Components of f~ along reference axes 

Components of r 0 along satellite axes 

Gravitational constant 

Mass of the earth 
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NOTATION- -con t inued  

Polar moment of inertia of typical flywheel 

Angular momentum of constant-speed flywheel relative to satellite axes 

Angular velocity of constant-speed flywheel relative to satellite axes 

Angular momentum per unit mass of satellite in orbit 

Control parameters 

Eccentricity of elliptic orbit 

Semi-latus rectum of elliptic orbit 

Angle which radius vector from satellite to earth's centre makes with the major 

axis of elliptic orbit 

Magnitude of total angular impulse per orbit due to earth's gravitational 
torque acting on spade-stabilised satellite in a non-precessing orbit 

Exhaust velocity of jet-stream relative tO satellite axes 

Radius of spherical satellite 

Mass of cylindrical satellite 

Radius of cylindrical satellite 

Rate of loss of mass parallel to the X, Y, Z satellite axes respectively 

Unit tensor 

Denotes differentiation of A with respect to satellite axes 

Denotes differentiation of A with respect to space axes 

Angular displacement from attitude equilibrium position for space-stabilised 

satellite 

Initial angular velocity of satellite about an axis having moment of inertia I r 

Residual angle from attitude equilibrium position 

Control  torques 

Control parameters 

Jet-reaction angular impulses 

Total amount of matter expelled from the satellite in order to give complete 
attitude correction for an arbitrary initial spin O( 

Exhaust velocity of jet-stream relative to satellite axes 

Length of torque arm 
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A P P E N D I X  

Gravi ta t ional  Torque on the Satel l i te  Configuration 

Let O be the centre of mass of the satellite and P the position of any particle of the satellite 

characterised by the vector r relative to the centre of mass. Let  r 0 be the position vector of the 

centre of the earth relative to the satellite's centre of mass, see Fig. 5. I f  3m is the mass of the particle 

at P and p the density, then 3m = p 3v where 3v is the volume element it occupies. 

The  gravitational force of attraction on the particle by the earth is 

G M z  
- i ~ -  ~ 13 (~o-~)p~v (60) 

where M E is the mass of the earth and G the gravitational constant. 

The  torque about the centre of mass of the satellite due to the force exerted on this particle is:  

i.e., 

~r - G M ~  
r x ( r o - r ) p 3 v  , (61) 

3 r  - G M ~  
i~,o _ ~. 131- × ~.op~v. ( 6 2 )  

T h e  resultant torque about the centre of mass due to all particleg of the satellite is therefore: 

fff r = a M ~  I ~ Z ~13 pdv' ( 6 3 )  
s 

where the triple integral indicates integration over the whole configuration. 

Since the satellite is small compared with its distance from the centre of the earth, we may 
expand ] r  0 - r [ -3  as follows: 

Iro - r 1-3 = [ ( t o - r ) .  ( t o -  ~)]-3j~ 

= I r o l - 3 1 1  2~.1-o l ~ l ~ l  -~'~ 

3 2r I r [~ _l ol_ El_ ( 
~01 -~ ÷ I ro I ~] 

+ 

1 1 2)2 . . 

Thus  

[ 3 .ro (r)] = It0 1-3 1 + ~ + terms of h i g h e r  order in ~ . 

r - G M E  (1 3 r .  r0~ (64) 
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Since r is the  pos i t ion  vec tor  re fe r red  to the  cent re  of  mass,  

Hence ,  

i.e., 

fff~,av=O, andifa= ~×rothenfffapd~=O. 
S S 

3GM~fff r _ i r ° 15 (r × ~o)(~.  ~o)pdv, 
S 

  M E(ff f ) J r _ i r ° i o rrpdv ,  . r o x r o. 

T h e  iner t ia  t ensor  abou t  the  cent re  of  mass  of  the  satellite is def ined  by:  

(65) 

(66) 

S 

w h e r e  U* is the  un i t  tensor ,  and  since 

( U * .  to) × to = 0 
we have  

I - 

S 

H e n c e  
3 G IVI E 

r -- I r o V  ( z ~  to) × r0. 

For  c o m p o n e n t s  a long the  pr inc ipa l  axes of  iner t ia  of  the  satellite we  have:  

I*  = I x i i  + I r j j  + I z  k k  and r o = r x o i + r y  oJ + rz  o k ,  

(67) 

and  

So, 

I*  • to = I x r x  o i + I F r y  oJ + I z r z  o k , 

( I * .  ro) ' × r o = ( I y  - I z ) r  ~ orz oi + ( I  Z -  I x ) r x  orz oJ + ( I x  - I~ ' ) rx  or~ o k .  

3 G M E  
r = I ro 15 [ ( I t  - I z ) r r  orz o i + ( I z -  I x ) r x  orz oJ + ( / x -  I r ) r x  o r r  ok] • (68) 
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FIo. 1. Orientation of satellite axes relative to reference axes. 
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Fie. 2. Earth-pointing cylindrical satellite. 
(Satellite axes and reference axes coincident.) 

Fro. 3. Space-stabilised satellite in elliptic 
orbit. 
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