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Part I. Calculations based on Lighthill 's Method 

Summary. Two methods are derived for calculating the heat transfer through a constant-property laminar 
boundary layer, that depend respectively on approximations valid at low and high values of a, the Prandtl 
number. The high ~ approach is a development of an earlier method, due to Lighthill; an additional term is 
now retained in the assumed form of the velocity profile near the wall. The low cr approach is effectively an 
extension to Prandtl numbers of order unity of the limiting solution of Morgan et al, valid as cr -> 0. 

A certain amount of empirical fitting ensures good agreement with the 'similar' solutions. When the methods 

are used to calculate heat transfer in flow past a circular cylinder, a comparison with experiment suggests that 
the high a approximation is at least as good as other methods of calculating heat transfer, and that the low o- 

approximation may be even better. 

1. Introduction and Outline of Method. I t  is now some years since Lighthill ~ (1950) wrote his 

wel l -known paper  on heat t ransfer  through a laminar boundary  layer, a paper  which aimed mainly 

at two things: (i) the calculation of heat transfer in laminar f low at low Mach number  for arbi trary 

main-s t ream velocity and wall temperature ,  (ii) the calculation of a distribution of wall t empera ture  

which, with constant supersonic main-s t ream speed, would yield a positive heat- t ransfer  rate 

which balanced radiation of heat f rom the wall. This  paper  is concerned with the first of these 

two problems.  

Physically Lighthil l 's  work was based on the idea that  when  the Prandtl  number ,  or, is large the 

tempera ture  boundary  layer is much  thinner than the velocity boundary  layer, so that the velocity 

u is given approximately  as 
,~ = ~ ( x ) y / ~  (1.1) 

throughout  the tempera ture  boundary layer, an idea used earlier by  Fage and Falkner = (1931). 

Here  x and y are co-ordinates along and normal  to the wal l , / ,  is the viscosity and rw(x ) is the skin 

friction at the wall. Naturally one would expect that  at fixed Prandtl  n u m b e r  of order unity the 
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best results would be obtained for the case of zero pressure gradient, since the velocity is then 

closely linear for a considerable part of the (velocity) boundary layer. This, indeed, turned out to be 

the case, the predicted heat transfer being in error by only 3 per cent when ~ = 0-7. For  main- 

stream velocities like u 1 oc x c, the error increases to 18} per cent when c = 1, that is at a stagnation 

point, and to 24 per cent for large values of c. On tile other hand, the errors are even more severe 

for negative values of c, and become intolerable as c -~ - 0.0904 (i.e., as a separation profile is 

approached), when the predicted heat transfer tends to zero, since the approximation (1.1) is then 

equivalent to the assumption that the velocity is everywhere zero. 

Mathematically Lighthill 's method works because from (1.1) we may express the velocity u in 

terms of ~b, the rate of mass flow between a given point and the wall, as 

u = 4; , (1.2) 
\ hip 

so that upon neglecting frictional heating, the yon Mises form of the energy equation becomes 

aT 1 a / 1o 

Lighthill integrated this equation, using the Heaviside operational method, and showed that the 

local heat-transfer rate to the wall is given by 

(T) f(f" ) = (c~p~ '/~ {r~(x)}>- * {%,(z)}V~dz\_l/~ d r o ( x l ) ,  (1.4) Q,o(x) = h o r  ~ - h \9lz~} (1/3) T. o ~ 

where T o is defined as the difference between the wall temperature  and the temperature T 1 of the 
main stream (constant at low Mach number),  

T o ( x )  = (1.5) 

and the StieltjSs integral in (1.4) may be regarded as a shorthand notation for 

f.(y ),+ y {'rw(z))~/2dz d T ° ( x l )  = ~' '/~ + / r'~ \ ,/.~ dx~. (1.6) 

0 " \ d x  1 / 

It  is fairly clear that a considerable all-round improvement  could be effected by approximating 
the velocity as 

l d p  
txzt = r~,(x)y + ~ ~ y ° ,  (1.7) 

but  this cannot be expressed in the form 

u(x ,  ¢)  = A ( x ) B ( ¢ )  (1.8) 

so that Lighthill 's mathematical technique could not be used. 

It is perhaps worth noting that Davies and Bourn@ (1956) indicated a method yielding good 

heat-transfer predictions for the similarity solutions. This  involves choosing u to be approximately 
given by 

u(x,  ¢)  ~ A(x)¢ '+,  (1.9) 

where A ( x )  and n are chosen so that (1.9) gives a good representation of the true velocity over the 

major portion of the boundary layer. I t  is difficult to see how this approach can be precisely expressed 

for the case of arbitrary main-stream velocity, when the velocity profile is not known a pr ior i  in 
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simple terms. An alternative (and better) method of improving the numerical accuracy of Lighthili's 
method was later given by Spalding 4 (1958), who attempted to account for the effects of the second 
term in equation (1.7) for the velocity. Spalding noted that a key parameter is the ratio of the two 
terms on the right-hand side of (1.7) as calculated at a representative position in the thermal boundary 
layer. By introducing such an additional parameter, good agreement is obtained with the similarity 
solutions over a much greater range of pressure gradients, with Prandtl numbers from 0.7 to infinity, 
although the method still breaks down very near to separation. 

A further important development has recently appeared in the work of Liepmann 5 (1958), who 
derives Lighthill's formula (1.4) by an independent procedure Which makes use of the thermal-energy 
integral equation. For low-speed flow, with frictional heating neglected, it is well known that this 
equation may be written as 

d u ( r -  T~)dy Q,~(x) (1.1o) 
dx o pcp 

Ow(x) being defined, as in (1.4), to be the heat-transfer rate to the wall. Liepmann uses an alternative 
approximation to the velocity, holding asymptotically as the wall is approached, 

and by writing 

(1.10) becomes 

where 

. & ) % ( T -  T~) 
u = eQ,o(x) ' (1.11) 

k 
dy = ~ d r ,  (1 .12)  

l f°(1-°) l -~--Pk~ d ~ ( r ~ - r ~ ) ~  ~ / ~ ;  dO , (1.13) 
g ~ ( * ) =  ~,~ & 9~ ~ o 

T - T .  
0 = T ~ -  r~" (1.t4) 

Liepmann then considers the special case in which the wall temperature is equal to its zero heat- 
transfer value T i when x ~< x0, say, and increases step-wise to a new constant value downstream of 
this position. In such a special case ~O/~o is approximately a universal function of 0 alone, so 
that (1.13) becomes 

~ph 8 d ( r~ ) (1.15) 
9w(x) = - a - 7  ( r w -  r l )  ~ ~ ~ , 

where 

f l 0(1 - 0) 
a = dO, (1.16) 

o 

is a constant. When r w is known as a function of x, equation (1.15) is easily integrated to yield Qw(x). 
Afterdoing this, Liepmann derives the value of Qw(x) for an arbitrary wall temperature by integrating 
the contributions from a distribution of elementary charges similar to the above, and shows that 
his result is identical to (1.4) with the constant {91/3(½)!} -1 = 0.538 replaced by (~-a) 1/3. Upon 
assuming the value a = 0.215, obtained by setting ~/O~ = (1-0~) 1/0- in (1.16), Liepmann's 
formula agrees with Lighthill's to within 3 per cent. Liepmann also derives a formula, similar to 
(1.4), which is valid in the vicinity of separation. 
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The present paper shows how the improved approximation (1.7) to u may be incorporated into a 
method similar to Liepmann's. The result of doing this is an equation 

d p  

dxx (1.17) 
up ks d a  (Tw- T1) 3 b (Tw-  T1)4k 

- Q w ( x )  = - 2 Q 3  , 

which replaces (1.15). Here a and b are constants which can be determined either by making a 
similarity approximation (following Liepmann) or empirically so that (1.17) agrees well with exact 
solutions. This latter was done, using known results for the exact similarity solutions, and it was 
found that with 

a = 0.2226, b = 0.1046 (1.18) 

the predicted heat-transfer values are correct to within about 1 per cent for values of cr of order unity 

and ten. This accuracy is attained over the whole range from stagnation point to separation, and 
indicates the considerably greater accuracy than that obtained from Lighthill's formula. 

By integrating (1.17) we find 

c~ ~2 k3( T~ 3 T1)31ar~o Q~ - l b ~ k ( T ~ - T 1 )  I = -  fXo ~O~( ~)d~ " (1.19) 

The presence of two terms on the left-hand side of this integral equation precludes its solution in 

terms of a simple quadrature, but the integral equation is not in practice excessively more difficult 
to deal with, as will be seen. 

The possibility of calculating heat-transfer rates for Prandtl numbers of order unity by proceeding 
from a low Prandtl number solution has also been investigated in this paper. This corresponds, 
physically, to a temperature boundary layer which is much thicker than the velocity layer, so that 
most of the temperature boundary layer is outside of the velocity layer. Thus, corresponding to the 
use of (1.1) as an approximation to the velocity when + is large, there is the approximation 

u(x, y) -'- u~(x) , (1.20) 

valid as ~ ~ 0. By substituting this approximation in (1.10) and proceeding exactly in the manner 
indicated by Liepmann for the high a approach, the equation 

d [ u l ,  = 7,Q~o 
(1.21) 

is obtained, corresponding to (1.15), for the special case when the wall temperature distribution is 
given by a step-function. The constant a o is determined empirically, as before. This equation may be 
integrated exactly, and the solution further generalised to the case of arbitrary wall temperature, 
yielding the result 

\ 2v ] u~(x) Jo uzdx dro(~). (1.22) 

An equation of this form, with the constant (½a0) ~/2 = zr-~/~, was given by Morgan et aI 6 (1958), 

who substituted the approximation (1.20) into the yon Mises form of the temperature equation, 
so finding that 

0 T /~p 0 ~ T 
- u l  ( 1 . 2 3 )  Ox ,~ a ~ 2 ' 

an equation which they solved by operational techniques. 



If, alternatively, the value of (½a0) ~/~ is obtained empirically by reference to exact solutions with 
values of ~ close to unity, an accuracy of + 25 per cent is obtained, but this may be considerably 

improved if a 0 is chosen to depend upon a pressure-gradient parameter, and a method of doing 

this will be indicated. 
The methods are applied (Section 4) to the case of sub-critical flow past a circular cylinder for 

which extensive experimental work has been done. Comparisons between the results of the two 
methods of the present paper and the theoretical results of Squire r (1942) and Eckert and Drewitz s 
(1942) are made. These indicate that the low Prandtl number approximation shows very good 
agreement with experiment, and that the high Prandtl number solution, though less accurate, is 
still to be preferred to the other methods with which comparison is made. It is suggested that, 
although the high Prandtl number approximation is extremely accurate (+ 1 per cent) for the case 
of the similar solutions, it is likely to be less accurate in more realistic cases, and that in general the 
low Prandtl number approximation is likely to prove most reliable, as well as being fairly simple 

to apply. 

2. High Prandtl Number Approximation. When speed s are sufficiently low that terms of order 

the square of the Mach number can be neglected, so that frictional heating may be ignored, the 

temperature T in a laminar boundary layer is given by solution of the equation 

0T 0T v 0ST 
u ~ + v ~fy = ~ Oy2, (2.1) 

provided that temperature differences are not too great. Upon integration from y = 0 to y = co the 
thermal-energy integral equation is obtained 

d u ( T -  T~)dy = ,,Q,o(x) (2.2) 
o k~ 

We now seek a solution of (2.1) and (2.2) subject to the approximation that the velocity u is taken as 

tzu = %oY + g Y~, (2.3) 

which approximation is relevant to flows where the PrandtI number is large. Upon substitution 

into (2.2) we find 

dxx "r• o y( r -  rl)dy + -~ dx Jo y~( T -  T1)dy = pk~ Q+(x). (2.4) 

Following Liepmann, we consider the special case in which the temperature is uniform upstream 

of x = x 0 (which could in practice be the leading edge), and a true temperature boundary exists 
downstream of it, with the wall at a constant temperature T w + TI. The temperature profile will 

not vary much over a reasonable range of pressure gradients, and it is likely that it can be represented 
fairly accurately by a universal shape dependent upon a boundary-layer thickness ~ which varies 
with position. This assumption was made by both Squire and Liepmann, and is a direct consequence 
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of any attempt to specify the temperature profile by means of a Pohlhausen approach using a few 
boundary conditions. It follows that 

and 

f ' y ( T -  T~)dy = O{(T~,- T~)3~}, 
0 

f + y e ( T -  r~)dy = 0{(T w -  T~)3a}, 
0 

, l 
(2.s) 

where 3 is a measure of the thermal boundary-layer thickness. Thus 

f ~ T -  a ( T . -  :.1) ~ 
Y( T1)dy 

o (a r / ay )~  ~ 

and 

_ ~ k ~ ( T ~ -  T~)~ 

Q.W 2 
(2.6) 

f ~ y ~ ( T -  T1)ay = bk~(T~- T #  
o Qw . , (2.7) 

where a and b are positive constants, to be determined later. Substitution from (2.6) and (2.7) into 
(2.4) yields 

d [ak2"r,o(T~ T1) s b dp ha ( T ~ _  T1)4 / - ~ = t *2 
[ Qw ~ - 2 Q j  J pk~ Qw, (2.8) 

which may be compared with Liepmann's equation (1.15). The presence of two terms on the 
left-hand side makes it impossible to solve (2.8) in closed form, but it may be integrated once to 
yield an associated integral equation 

f 
x per 

Owdx = 
0 "v 7 

,~.~k~( T~- T~)~ 
Qw~ 2Qwa 

(2.9) 

An alternative form of (2.9), more suitable for many purposes, is obtained by introducing a 
representative velocity U 0 and a representative length l, and defining a local Nusseh number 

l ( 3 T )  10, o ( 2 . 1 0 )  
Nu - r w -  r 1 Tyy w = k( r w -  T1) ' 

and a representative Reynolds number 

Uol 
Ro - (2.11) 

Y 



Then  (2.9) can be reduced to 

K d  = ~ 2  K a ' 

where 
K = N u R o  J/2 , 

(2.12) 

(2.13) 

and 

= , ( 2 . 1 4 - )  

l dp 
B = - ½b~ pVo~ & .  (2.15) 

It now remains to estimate the constants a and b. There  are many ways of doing this, but  perhaps 
the most useful one from a practical point of view is to choose a and b so that (2.9) or (2.12) yield 
good predictions of heat transfer for accurately known cases. Following Lighthill we determine 
a and b to give good agreement with the similarity solutions. 

If  we consider a flow'in which the main-stream velocity is 

ul = U~x °, (2.16) 

for some value of c, then the velocity distribution is (Falkner and Skan 9, 1930) 

u = u l f ' ( ~ ) ,  ~ = w x /  y '  

1 1/2 (2.17) 
v = - ~ ( ~ )  { (c+ l ) f (~ / )+(c -1 )~Tf ' (~ )} .  / 

With this velocity distribution, a solution of (2.1), with constant wall temperature T~ and main-stream 
temperature T1, is 

- exp 2 ~ d~, (2.18) 
T w -  Tl" o 

where 

It  is seen from (2.17) and (2.18) that 

- G ( x )  = - k ~ y  w w x /  ' 
o r  

, ~ ( ~ , ~ ) -  Qw(~) (~Z]  '/~ (2.21) 
k( T ~ -  G )  ~ u~/ " 

The exact values of ~(c, a) can be readily computed from (2.19), and the results are already known 
for a wide range of values of c and a. By substituting for Qw from (2.20) into (2.8) or (2.9) the 
following equation for ~(c, a ) i s  obtained after some algebra. 

~ = ½a(c+ 1) {af"(0)~ - ½bc}, (2.22) 
where 

i f (O)  = -  "~ (~x]  (2.23) 
l~u 1 \ u~/ 

is a function of m wl~ich was tabulated by Hartree 1° (1937). The  values of a and b are chosen so 



that solutions of (2.22)agree as nearly as possible with the exact values given by (2.19) for the 
physically important range of values of c and ~. 

A number of representative cases were chosen, namely, c = 1 (stagnation point), c = 0 (Blasius 

layer) and c = - 0. 0904 (separation), and values of the Prandtl number cr = 0-7 (typical of gases) 

and a = 10 (typical of liquids). It was found possible to choose a and b so that the heat-transfer 
rate was predicted by the present method to within about + 1 per cent for all these cases, the 

values chosen being 
a = 0.2226, b = 0.10¢6. (2.24) 

The considerable accuracy of the method is apparent. 

In general, the presence of two terms on the rigbt-hand side of (2.12) makes it impossible to 
integrate the equation ana!ytically, even for the above simple case of a region of zero heat transfer 

followed by a step in wall temperature. Accordingly, numerical methods must be used. A suggested 

method is to replace the integral in (2.12) by its Simpson's rule value, an idea used earlier by 
Thwaites 11 (1949), so that when K(x) and K ( x + h )  are known, K(x+2h)  can be determined by 

solution of a quartic algebraic equation. The solution for arbitrary wall temperature is then obtained 

by adding the contributions (to the heat transfer) from a distribution of elementary steps in wall 

temperature. 

3. Low Prandtl Number Approximation. When the Prandtl number is extremely small, the 
thermal boundary layer is much thicker than the velocity boundary layer, so that the velocity is 
equal to its free-stream value throughout most of the thermal boundary layer. Thus, upon neglecting 
frictional heating, the yon Mises form of the energy equation becomes 

T /~p 32 T 
- u 1 ( 3 . 1 )  

~x ~ 3~b~' 

which is immediately soluble. This equation has been derived by Morgan et al 6 (1958), and integrated 
by operational techniques. An alternative method of deriving their result for the heat transfer is as 
follows. We begin with the thermal-energy integral equation (1.10), which approximates to 

I f ° I d ( r -  r l ) +  = k~ 
-~X Ul 0 

Considering, as a starting point, the special case of a wall temperature distribution with a single 

step, we may assume that 

f ~  _ a0k(T~-  T1)~ (T- T1)dy (3.3) 
0 9 ' + '  ' 

where a 0 is positive and is almost constant. Thus (3.2) becomes 

d [.ul~ = vQw 
(3.4) 

[ J G  a0kMTw-T0 ~' 
and upon multiplying by ul/Q~o, this equation integrates to yield 

u~ ~ 2v f~: 
Q~o ~ - aok2a( T~o- T~) ~ o uldx'  

or 
t.x )-lh 

I Qd~)  = - k \G-~/ 

8 



We remember that this represents the heat transfer to the wall at a station x, due to a step in wall 

temperature of magnitude T~ - T 1 at position x = 0. More generally, with T~o- T1 written as 

T0{as in (1.5)}, the heat transfer when there is a step AT0(~ ) at x = ~ is 

/ao t f uldxl AQ~,(x) = - k ( 2 7 )  ul(x) ATo(~), (3.6) 

and for an arbitrary distribution of wall temperature 

\ ~v  ][a°~r~ ll2 _f:c I. t ' x  )-~l.a Qw(x) = - k  *q(x) o t j  uldxf dTo(~), (3.7) 

where the integral is to be interpreted in the Stieltj~s sense (1.6). The form of this result agrees 

with that obtained by Morgan et al, who show that the asymptotically exact value of (½ao) ~1~ as 

--> 0 is 
(½%)>- = 7r -~/~ = 0"5642. (3.8) 

We now examine the possibility of using an equation such as (3.7) when the Prandtl number is of 

order unity. I t  is clear that the approximation to the velocity in (3.2) should be amended when the 

velocity and thermal boundary layers have the same order of thickness, and it would seem 

appropriate to set the velocity equal to say/3ul, where/3 will be less than unity, tending to unity as 

tends to zero. Accordingly a 0 must be replaced by/3% in equations (3.4) to (3.7). The problem is 

to choose the value of fia o in the revised form of (3.7) 

-I Ow(x) = - k u~(x) _ u*dxl dTo(~). (3.9) 

When a = 0.7, the values of (½fiao) ~12 required to obtain exact agreement with the similarity 

solutions are (i) 0.418 for a stagnation point, (ii) 0. 350 for zero pressure gradient, and (iii) 0. 250 at 

separation. The significance of these differences is fairly easy to see. The asymptotic value (3.8) is 

obtained by assuming zero viscous boundary-layer thickness. At finite a the viscous boundary layer 

is of order or>- times the thermal boundary layer in thickness, the precise ratio being further affected 

by the influence of pressure gradient upon the viscous boundary-layer thickness. Accordingly we 
expect the required correction to the asymptotic value to be greater near separation than when there 

is zero pressure gradient, and to be smaller again near to a stagnation point, in view of the relative 
boundary-layer thickness at these positions. This is in fact what  is found. 

As a first attempt to account for these effects empirically when a is of order unity, it would seem 
reasonable to take 

(½pao) ~/= = 0. 5642 - cr>-g(m), (3.10) 

where m is the pressure-gradient parameter u,'82~/v. Assuming that m is calculated by the method 
of Thwaites 12 (1949), so that 

f" m = - 0"45 ul'u1-6 ulSdx, (3.11) 
0 

it is found that (3.9) agrees with the three values cited above provided 

g ( - 0 . 0 7 5 )  = 0.174,  g(0) = 0.257,  g(0.074) = 0.376. (3.12) 

A particularly simple expression, agreeing with these three values to + 4 per cent, is 

g(m) = 0.265 ( l + 5 m ) ,  

and this will be accepted in all that follows. 

(3.13) 



It is rather difficult to estimate precisely what accuracy would be expected from the empirically 
corrected formula. It may be remarked, however, that the choice of a constant value, (½]?a0) x/o. = O. 313, 
yields values of the heat transfer agreeing with the similar solutions to + 25 per cent. Presumably 
the rough correction suggested above should account for most of this difference. It will be noted 

that numerical calculations require nothing more difficult than the quadratures in (3.9) and (3.11). 

4. Some Calculated Results for Flow Past a Circular Cylinder. The methods developed in the 
preceding sections have been applied to the calculation of the heat transfer in sub-critical flow past 
a circular cylinder which is heated to a constant temperature. This case is particularly appropriate, 
since it has been extensively studied both experimentally and theoretically. It was found by 
Heimenz 1~ (1911) that for a cylinder of diameter d and an oncoming stream of velocity U0, the local 
velocity z h at the edge of the boundary layer could be expressed as 

U 1 _ X X 3 ~ 5  

Uo 3 . 6 2 8 ~ -  2 . 1 6 4 ~  - 1.507 d- ~ (4.1) 

throughout the region from the forward stagnation point to separation. 
Since the excess of wall temperature T~,; over that of the main stream /'1 was constant, equations 

(2.12) and (3.5) were relevant to calculations of heat transfer by the two approximations. For the 
high Prandtl number approximation (2.12), the function A(x) was estimated by the method of 
Thwaites 12 (1949), and B(x) by direct substitution from (4.1). For the low Prandtl number 
approximation the relevant value of the parameter (½/3a0)~l~ was given by (3.10) and (3.13), the values 
of re(x) having been already determined by Thwaites's method when calculating A(x). 

The results are shown in Fig. 1, together with the theoretical results of SquirC (1942) and Eckert 
and Drewitz 8 (1942). In calculating these results the Prandtl number ~ was taken to be 0. 715, the 
representative length l and velocity Uo being the diameter d of the cylinder and the velocity U0 of 
the oncoming stream, respectively. Also shown are the limits between which the relevant experimental 
results of Schmidt and Wenner 1~ (1941) lie. 

It will be noted that of the four sets of theoretical results the low Prandtl number approximation 
of the present paper is dearly superior to the others; it is also, of course, comparatively simple to 
apply. The high Prandtl number approximation is also seen to give better results than either of the 
other methods. 

A feature of these comparisons which is at first sight surprising is that the low Prandtl number 
approximation gives better resuks than the high Prandtl number approximation. On the basis of 
the expected accuracies, as discussed in Sections 2 and 3, we would have expected these to have been 
reversed. Possible reasons for this are as follows. 

(i) The high a approximation was shown above to give agreement to within + 1 per cent with the 
'similar' solutions. It is not clear, however, that such good agreement will be given for more realistic 
cases. For example, calculations of the development of the velocity boundary layer by methods 
based upon the similar solution (Walz 15, 1941), with separation when m -~- 0-07 are well known to 
be less accurate in general than methods with separation occurring when m ~ 0.09 (Thwaites 1~, 
1949, Curie and Skan 16, 1957). It would not be surprising, therefore, if related discrepancies arise 
in calculating thermal boundary layers by methods based on the similar solutions. This point is 
illustrated by the results obtained by the method of Eckert and Drewitz 8 (1942), which is based 
wholly on the similar solutions, since Fig. 1 indicates that it is less accurate than the other methods. 

10 



(ii) T h e  exceedingly high accuracy of the high ~ approximation was achieved in cases for which the 

skin friction was precisely known. In  general this is only known approximately, and the accuracy of 

the predicted heat transfer is reduced accordingly. T o  illustrate this point we remark that when 

the function A(x) is calculated by Thwai tes ' s  method, with separation on the circular cylinder at an 

angle of 78.6  dcg from the stagnation point, the predic ted  value of/(7 at separation is about 0-48. 

When, however, A(x) is slightly akered, so as to give separation at an angle of 81 deg (the 

experimentally obtained value) the value o f / £  at this position is 0.52. 

I t  will be seen, then, that though we have every reason to expect the predicted accuracy of say 

+ 5 per cent to be achieved in general by the low Prandtl  number  approximation, a more realistic 

estimate of the accuracy of the high Prandtl  number  approximation awaits the calculation of exact 

solutions for physically more acceptable cases. T h e  results of the comparison with the experimental 

results in the case of the circular cylinder suggest that the low Prandtl  number  approximation may 

well be the more accurate. 
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Part II.--Calculations based on Stratford's Method 

Summary. The now well-known technique of Stratford is used to calculate heat-transfer rates through a 
constant-property laminar boundary layer with an arbitrary adverse pressure gradient. The velocity profiles 
are assumed to have been calculated by Stratford's method, linking solutions valid respectively in the inner 
and outer parts of the boundary layer, and a similar division is made in analysing the temperature profiles. 
A particularly simple formula is obtained for the heat-transfer rate at the wall. 

The accuracy of the method, estimated by comparison with such exact solutions as are available, is found 
to be reasonable. 

1. Introduction and Outline of  Method.  In two-dimensional low-speed flow a very accurate (and 

physically enlightening) method of calculating laminar boundary-layer development in an adverse 
pressure gradient is that due to Stratford 1 (1954). Stratford developed the idea, originally due to 

K~irm~in and Millikan ~ (1935), of dividing the boundary layer into two regions. In the inner region 

near the wall, where inertia forces are small, the velocity profile is determined principally by the 

balance between viscous and pressure forces. In the outer part of the boundary layer, where viscous 

effects are small, changes in velocity profile are determined mainly by the balance between pressure 

and inertia forces, as expressed in Bernoulli 's equation that the total head does not vary along a 

streamline. By expressing these conditions appropriately, allowing approximately (in effect) for 
second-order effects, and linking together the solutions for the outer and inner regions, Stratford 

derives a criterion for boundary-layer separation. This criterion was later extended by the author 

(Curle 3, 1960) and a method derived for calculating the distribution of skin friction in a boundary 

layer with an adverse pressure gradient, including the effects of distributed suction. 

The  purpose of this paper is to indicate how similar considerations may be used to provide a rapid, 

convenient and reasonably accurate solution for the thermal boundary layer. It is assumed that the 

viscous boundary-layer problem has been solved previously by Stratford's method. For constant- 

property flows the equation for the temperature profile takes the form 

~T aT  ~ T  
u ~ + V - ~ y  = K aye,  (1.1) 

where x, y, are measured parallel and normal to the wall, the associated velocity components are 
u and v, and • is the thermometric conductivity. The method of solution (as for the viscous layer) is 

to link two solutions, valid in the inner and outer parts of the thermal boundary layer respectively. 
By this procedure an explicit expression is obtained for the heat-transfer rate at the wall, 

Qw(x  ) = ~,/3 k( T 1 - T w ) r  B (0." 6642 + 0" 3358 Tx) ~1~ , (1.2) 
/xu 0 

where k is the thermal conductivity of the fluid, cr its Prandtl number,/~ its viscosity, T w and T 1 are 
respectively the absolute temperatures at the wall and in the main stream, u 0 is the velocity at the 
leading edge, ~ rB(X ) is the-skin friction in a Blasius boundary layer with external velocity u0, and T x 

is the ratio r / r  B of local skin friction to the local zero pressure-gradient value. 

e Note that when there is an initial region of favourable pressure gradient, u 0 is equal to the maximum 
external velocity, and x is measured from a fictitious origin. 
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The predictions of (1.2) are compared with accurate values in two particular cases. Firstly, at 

the position of separation, where T x = 0, (1.2) yields 

Qw(x) = o. 72 k( T 1 -  Tw)'r B (1.3) 
/~u 0 

when s = 0.7. Now in an exact solution of the boundary-layer equations the value of this numerical 

coefficient would presumably depend upon the pressure gradient. By an argument based on the 

'similar' profiles a value of about 0.57 is obtained at a Prandtl number  of 0.7. Secondly, for the case 

( ; )  zq = u o 1 -  , (1.4) 

it is shown that the exact solution for small values of x/c is 

Q~.v - h (T1-  Tw) r2~ (1 - 1 . 8 6 - x . . . ) ,  (1.5) 
/zu 0 c 

when (r = 1, whereas the value of the coefficient of x/c is given as 2.13 by the present method. 

It  is deduced that in the presence of an adverse pressure gradient the predicted value of Qn1 will 

decrease initially with distance slightly more rapidly than the accurate value. On the other hand, 

by the time separation has been reached, the predicted Qw is likely to be too high, but  possibly 

not by as much as the 20 per cent found for the similar profiles. 

Finally the various limitations of the method are discussed. It is suggested that these are not 

unduly serious, and that the accuracy of the method bears favourable relationship to the small 

amount  of work involved. 

2. General Theory. We take co-ordinates x, y, measured along and normal to the wall, with 
associated velocity components u and v, and absolute temperature T. Then  for constant-property flows, 

the continuity, momentum and energy equations of the laminar boundary layer become' 

3u /?v 
+ = o ,  (2.1) 

3~ o3, 

3u 3u du, a2u u ~ +V ~ yy  = u l ~ + v ~ y y ~ ,  (2.2) 

aT aT 3~'T 
= ( 2 . 3 )  

The boundary conditions at the wall, y = 0, are that u and v are zero, with T taking the value Try , 

usually known. Far enough away from the wall u tends to the known main-stream value uz(x ) and T 

tends to the (constant) value T 1. 
We assume that equations (2.1) and (2.2) have already been solved by the author's generalization 

(Curle 3, 1960) of the method of Stratford 1 (1954). I t  must  be remembered that this method is not 

applicable in the vicinity of a stagnation point; for x ~< x 0 we assume that the external velocity ul(x ) 
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takes the constant value u0, and the velocity profile is of the Blasius type. Then when x /> x 0 the 
solution of (2.1) and (2.2) in the region y ~< yj., near the wall, may be written (Curle a, 1960) 

= + ½ ~ . , ,  + a(x)y ' ,  (2.4) 

where the coefficients are 

{au  (2.5) 

dxx = 1-pul ' (2.6) 

satisfying exactly a boundary condition at the wall, and a(x), determined by the relationships at the 

join between (2.4) and an outer solution; the constant n is taken to equal 3.043. The value of T is 
given by the equation 

( d C ~  2 
x2Cp \-~-x ] = 0.0104(1 - Tx)3(1 + 2.02 Tx) (2.7) 

where 
'7" 

T~ = - - ,  (2.S) 

~B being the skin friction for the two-dimensional Blasius boundary layer at station x, and CI) is 
the pressure coefficient, 1 - ul~/Uo 2. 

Having obtained this solution, we now turn to the solution of equation (2.3). In the outer part 
of the boundary layer we write this equation in the alternative form 

0T 0~T 
u ~ -  s = ~: ay 2 , (2.9) 

where O/as denotes differentiation at constant ~b, where 

¢ = udy. (2.10) 
0 

Following Stratford 1 (1954) we now expand T(x, ¢) as 

+ O(x - Xo) z . (2.11) T(x, ¢) = T(xo, ~b) + (x-Xo)  Ts ~o,'2 

Now the pressure gradient, which is present only downstream of x = x0, will affect the shape of 

the outer part of the boundary layer only some way downstream of x = x o since the effects will 
diffuse outwards from the wall. Accordingly we deduce from (2.9) that aT/Os is unaffected in the 
outer part of the layer, so it follows from (2.11) that when ¢ > ¢ / ,  say, T(x, ¢) is exactly as it would 
have been in the absence of the pressure gradient, provided terms of order ( x -  x0) 2 are neglected. 
The Solution TB(x , ¢) of equation (2.1) in the absence of the pressure-gradient term was given by 
Pohlhausen 4 (1921). I t  may easily be shown from his analysis (anticipating the approximation 
below) that when ¢ is sufficiently small 

TB(x ' ~) ~ Tw + 1/~( T1 - Tw ) \ tZUo 2 ] . . .  (2.12) 

where cr is the Prandtl number v/~:, and the factor az/3 is a good approximation to a numerically- 

defined function. I t  must be stressed that though the value of ¢ /  will be of the same order of 
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magnitude as ~by (which determined the join in the u-profile), there is no a priori reason:why they 
should be equal. We shall assume, however, that ~bj.' is sufficiently small for TB(x , ~b) to be approxi- 
mated by equation (2.12) whenever ~b ~< ¢ / .  

Turning now to the inner region, ~b ~< ~b/,:We assume a form 

T = Tee + -Q~y,  (2.13) 

where Qw is the heat-transfer rate to tt~e wall per unit area. This linear form should be a good 
approximation to T throughout a considerable region near the wall, since 7"(0) = Tw, and it further 
follows from (2.3) that both 8~T/ay 2 and 8aT/Oy a are zero at the wall itself. We now link together 
the outer and inner solutions, (2.12) and (2.13), making T and 8T/ay continuous at the join 
y = y / ,  ~b = ¢/ .  Thus  we have 

Ow , ' ( 2 ~ ,  )>~ 
yj  = ,?/~( 7"1- Tw) \ffUo 2 ~b~'_ (2.14) 

by continuity of T. Eurther, by differentiating (2.14) with respect to ~b, it follows fl'om (2.13) that 

k , (2.15) 

by continuity of aT/By. These last two equations yield Qw and any one of ~bj', y / ,  u /  = u(x, ~b~'), 
these three being related through the velocity profile u(x, ~b). It is assumed, for simplicity, that the 
formula (2.4) may be used when ~b ~< ~bj.'. This means, strictly speaking, that ~b:.' must be less than 
~b:., but since the inner and outer solutions for u have continuous values of u, 8u/ay and 82u/ay ~ at 
~b = ~bj, (2.4) may in practice be adequate for values of ~b somewhat greater than ~b~.. Assuming this 
holds, then 

fzu~' = ry /  + ½ dp ~ .,~ + a(x)y/,  ~ (2.16) dx J3 
and 

tz~b ~, ! , v  ,2 dp , .,~ + a(x) ~,.,~+~ (2.17) 
= 2 . ~  + { d x . , 3  n + l . , ~  • 

We now eliminate u/ ,  ~b~', yj', between (2.14) to (2.17). By squaring (2.14) and substituting for 
/z~bj' from (2.17), we find that 

Qee~ _ , , ~ / 3  (T~- Teep 
k2 /X~Uo2 -r~ 

Also, by multiplying (2.14) and (2.15), we find that 

Qee ~ = ~/~ (T~- Tee)~ 
k ~ /Z~Uo 2 rB 

These equations are compatible provided . 

whence 

l @ , 2.(x) ,,,_11 
r+~-~xxY ~ + ~ y ~ .  , (2.18) 

1 @  , l'r + ~-~xyj + a(x)y/'~-I t . (2.19) 

~dp n - 1  
+ ~ a(x)y/~-~ = o,  

Qee~ - ~/3 ( T 1 -  Tw) ~ ~B t 
k2 /XZUo2 ( * 

(2.2o) 
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Thus,  defining a(x) from Ref. 3 as 
X 

TB -- ? I 

) @ (~ - 1 ) ( ~  - ~) 
y i y j  = ~ - _ i  

we can calculate yi '  from (2.20) and then Qw from (2.21). 

Now we may deduce from (2.20) and (2.22) that 

(y//yj)~-2 = ~n(n+ 1), 

and, from (2.21) and (2.22), that 

Qw ~ - ~I~ ( r~- rw) ~ 
k ~ /Z2Uo2 'r~ 

or  

(2.22) 

(2.23) 

+ ½(*B- ~x , (2.24) 

Qw ¢~/3 k( Tl Tw) ~[~ ~ T + ½(1-  T~) - (2.25) 
/~Uo 

Upon setting n = 3. 043 in (2.23) we deduce that 

so that (2.25) becomes 

y//yj  = 1.9926, (2.26) 

Qrv = c~11~ k( T~ - Tw) rB {0" 6642 + 0' 3358 ix} 1/" . (2.27) 
/zu 0 

This result is, of course, exact when there is no pressure gradient, and is expected to become less 
accurate as T x -> 0, at the separation position, where it predicts that 

Ow 0. 815a ~/~ k(I"1- Tw) (2.28) ~ ,  ~ ' ? B ,  

/~u 0 

the numerical coefficient 0. 815c?/~ being equal to 0.72 when ~ = 0.7. Now the exact value of Qw 
will presumably depend upon the particular pressure gradient, and it is not known just how widely 

it varies in typical cases. I t  can be said here, however, that for the case of the similarity solutions 
(possibly a rather extreme case) the accurate value of the numerical coefficient is 0.600 (ul/uo) '1"~, 
where ul/u o is the ratio of the value of the external velocity at separation to its maximum value. 

For a fair comparison we should perhaps set (ul/Uo) ~1~ = 0.95 or thereabouts, so that a value of 

0.57 results, about 20 per cent less than the predicted value. 
We turn now to an example in which the external velocity zq(x) is a power series in x/c, so that 

(Tifford 5, 1954) the solutions for both u and T may be expanded in a power series in x/c, whose 

coefficients are functions of the distance y normal to the wall. In particular, for the case 

ul = Uo ( l - X ) ,  (2.29) 

(2.30) 

it may be shown that 

( T1-  Tw)uo l x I 
T = T 1  + 40  - c 4 ~ .  • • 

Ul 
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where 40, 41, satisfy the equations 

1 
- 40" +/o~bo ' = 0 ,  
(7 

1 41" + fo41' 2fo'41 2fo'4o 24/14o', 
( r  

with boundary conditions 

40(0) = - 1, 4o(OO) = O, 

Similarly the functions fo, f l ,  satisfy 

fo" + fofo" = O, 
f .  Ill 

,1 + f o f l " -  2fo'fl' + 3fo"f, = - 1  , 

subject to the boundary conditions 

fo (0 )  = fo ' (0)  = 0 ,  fo' (Oo) = 2 ,  

In  all the above, 40, 41, fo and f l  are all functions of 

(Uo] 1̀2 
= ½3, ' 

and primes denote differentiation with respect to ~7. 

(2.31) 

(2.32) 

41(0) = - 1, 4~(oo) = 0. (2.33) 

(2.34) 

(2.38) 

f~(0) = f~'(0) = 0, f~'(oo) = k. (2.36) 

(2.37) 

aT  

(,,oi 
= ~k  \7.xx I 

Uo] ~12 aT  

2so ( 4 f 1 " -  G ' ) . . .  ~v" 
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so that 

Now the functions fo and f l  have been calculated by Howar th  6 (1938), and it may be seen by 
inspection that when  cr = 1 the solution of (2.31) is 

4o = ½ f o ' -  1. (2.38) 

It  remains to calculate 41, which requires the solution of (2.32). By writing 

4, = 4o + 4f1' - G, (2.39) 

it is found that G must satisfy the equation 

G" + foG' - 2fo'G = - 4, (2.40) 

with boundary  conditions 

G(0) = 0, G(oo) = 1. (2.41) 

This equation has been integrated on the D E U C E  by Mathematics Division, N.P.L., and the 
solution is shown in Table 1. The  method of solution was to replace (2.40) by its finite-difference 
equivalent, which was solved by a standard linear-equations programme. 

Substituting now from (2.38) and (2.39) into (2.30), we find that 

T =  Tl~ + ( r ~ _  T,v) 1½fo , x I - c (4 f1 ' -  G ) . . .  , (2.42) 



Upon dividing by 

this yields 

UO) l/o 
~-B = ~t~u0 ~x f°"(0)' (2.44) 

~'B 1 - - -  . . .  (2.45) 
/~u o c fo"(O) ' 

or, upon substituting for fo"(O), ~ "(0~ G'(O) J1 \ 1, 

Qw h( T1- Tw) ( x ) - Te 1 - 1 . 8 6 - . . .  . (2.46) 
/xu 0 c 

This, then, is the accurate solution immediately downstream of the leading edge. We compare 

with the solution given by the approximate method of this paper. In (2.7) we set 

So that it yields 

Cv 1 u12 2 x . . . .  + . . . ,  (2.47) 
UO 2 C 

T = 1 - 6. 3 3 8 - . . . x  . (2.48) 
C 

Then  upon substituting into (2.27) we find that 

h(T1- Tw)~'z (1 - 2.13 x ) (2.49) 
Qw - t~uo c . . . .  

We may regard the term in x/c as representing the effects of transverse pressure gradient upon the 
heat transfer. By comparison of (2.46) and (2.49) it is clear that the present method overestimates 

these effects a little, so that the predicted heat-transfer rate Qw is slightly low. We note that the 
error is of opposite sign to that found earlier for the separating similarity solution, suggesting again 

that the predicted heat-transfer rate at separation may not be greater than the exact value by as 

much as the 20 per cent found for the similarity solutions. 

3. Limitations of the Method. We examine first the theoretical limitations of the method, that 

is those which arise because of the various approximations made in the theory. 
It is clear that since u(x, ~b), which was assumed known in this paper, was itself calculated by an 

approximate method, the resuks for T(x, ~b) will presumably be less accurate in general. This, 

however, is a limitation which applies to any approximate method of dealing with this type of 

problem, and One would imagine that less accurate methods than Stratford's of calculating u(x, ~b) 
would suffer even graver deficiencies when applied to the calculation of T(x, ¢). 

It  follows from the above that some consideration must be given to the theoretical limitations of 

Stratford's method. When applied in the form used in the present paper, to calculations of two- 
dimensional boundary layers, it is necessary to assume that the pressure coefficient is less than 

0.11 at most, and it should be considerably smaller, strictly speaking. Nevertheless, the method 
has been found to give accurate predictions of the skin friction when the formula (2.7) has been 
applied beyond this range, even to values of C ,  as great as 0.25. This can only be due to a 
convenient cancelling of errors. Now it is by no means clear that a similar cancellation will occur 
when calculating T(z, ¢), so it may be necessary to limit the range of pressures to which the method 

is applied. 
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A further  assumption, made in the analysis of this paper, was that the join of the outer and inner 

T-profiles occurred within the inner u-profile, so that y /  <<. yj. In fact the calculations indicate 

that  this does not hold, for we have shown in equation (2.26) that 

2yj. (3.1) 

It is probable, however, that this is not a serious source of error. In joining the inner and outer 

u-profiles it was specified that ~, u, 3u/3y and 32u/Oy ~ should be continuous, so the inner solutions 

for ~ and u may be fairly accurate for a sufficient distance beyond the join. 

Turn ing  now to the practical limitations of the method, the obvious one is that the method predicts 

only the heat-transfer rate at the wall, and not the details of the temperature  profiles. Again this 

does not seem to be too great a drawback, since it is usually the heat-transfer rate which is of interest, 

rather than the various integral measures of boundary-layer  thickness, which may be estimated 

fairly well by methods of the Pohlhausen type. 

In conclusion it should be stressed that the amount  of work involved in applying this method t o  a 

particular case is very small, and that the accuracy obtained is a good return for one's  effort. 
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