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Summary. This report gives a survey of some of the methods currently used for evaluating the flutter 
derivatives for three-dimensional wings oscillating in subsonic flow. 

Introduction. In this report are given some of the methods used in three-dimensional subsonic 
flutter-derivative theory. It is hoped that it will provide a basis for the reading of specific papers on 
the subject. 

Two proofs are given of the basic integral equation: the first proof uses co-ordinates fixed in space, 

the second uses co-ordinates fixed in the wing. Analytical solutions of the integral equation can be 

found for very few planforms and in these particular cases the problem is more easily solved by 

starting from the differential equation. Nevertheless, for the sake of completeness and to be consistent 

with the rest of the report a method is given for obtaining an analytical solution of the integral 

equation. The rest of the report deals with the numerical solution of the integral equation. Since 
Gaussian integration is fundamental to the method of solution it is explained in some detail. Two 

methods of chordwise integration and two methods of spanwise integration are applied to the 
solution of the integral equation. Computational details are not given since they vary from author 
to author and a reader interested in a particular variant of the general method of solution is referred 
to the relevant papers. 

Several methods exist for eyaluating incompressible derivatives but these have now been super- 
seded by the methods used for compressible flow and so no account of them is given. 

No attempt has been made to give an historical survey of the subject. The references give the places 
where results may conveniently be found; they are not necessarily original papers. 

1. Basic Equations. In this Section we shall list the basic equations of hydrodynamics which we 
shall need. The equations are derived in Garrick t and Temple 2. 

When the axes are fixed in space the perturbation velocity potential satisfies the differential 
equation 

0~¢~ 02¢D a2~ 1 O2q~ 
Ox---F + ~y2 + Oz~ - c a Ot 2 (1) 

where c is the velocity of sound in the medium. 

Previously issued as R.A.E. Tech. Note Math. 75--A.R.C. 23,168. 



When the equation is referred to a set of axes ox'y'z' moving with velocity V along the negative 

x-axis, then, since 
x' = x +  Vt ,  

the equation becomes 

y '  y z' = = , = Z ,  t t 

1 8~I) 82(I) 3~(D 32(I) 2 M  82(I) 
(1 - M ~ )  ~,~: + ~ya  + a~'~ - c Ox'at 

In fixed co-ordinates the pressure p, the 

connected by the equations 

P_¢_ 
P~ 

where p~o is the density of the undisturbed 

P-C= 
P~ 

The acceleration potential also satisfies equations (1) and (2). 

c ~ 8t ~ 
- 0 (2) 

acceleration potential ¢ and the velocity potential (l~ are 

d(l) 

dt 

medium. In moving co-ordinates the equation is 

8(I) 8(I) 
- ~  + V Ox ~ . 

(3) 

2. The Derivation of the Basic Integral Equation. Proof A [Richardson3]. The source solution 

of equation (1) is 
47r¢ = H ( t -  r/c) 

where H is the Heaviside step function, r is the distance between the observation point and the 
source, t is the time measured from the instant of the disturbance and c is the speed of sound in the 
medium. The observation point is affected at time t if the disturbance moving with velocity c can 
traverse the distance r in that time; the strength of the disturbance is then - 1/47rr. Derivations of 

this formula are given in Morse and Feshbach 4. 
Let 0 x y z be co-ordinate axes fixed in space and let 0 ~ ,1 ~ be axes fixed on a wing moving 

with the velocity V along the negative x-axis. The time is chosen so that the axes coincide at time 

t = 0. The  co-ordinates of the point (~, 7, ~:t) referred to the fixed axes are ( ~ -  Vt, ~1, ~:t). 
A Unit acceleration-potential source at the point ( ~ -  Vt, % 0) will induce an acceleration potential 

at the point (x, y, z) after some time t' and the magnitude of the potential will be - 1/4rrr where 

~,~ = ( x -  ~ + v t )  2 + ( y -  ~)~ + z2. 

A doublet of strength A¢(~, v:t) will induce a potential ¢(x, y, z:t) of magnitude 

-- A¢(s e, ~7:t) ~ ~ " 

From equation (3) the velocity potential • and the acceleration potential ¢ are connected by the 

relation 

(I)(x, y, z:t) = ¢(x, y, z:t)dt 

and so the velocity potential at (x, y, z:O) due to the moving doublet at (~, ~) is 

(~(x, y,  z:0) = - ~ A¢(~, ~:t) g~ ,it 
00  
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where t o is the last instant of time for which the moving doublet  can affect the observation point, 

This  time t o is easily obtained from the equation 

i .e . : ,  

- + V t o ]  + + = 

I f  we w r i t e x - - ~  = X , y - ~ ]  = Y , z  = Z this becomes 

( X +  Vto)~ + y2 + Z 2 = c2to ~. 

I f  we put  V = 2VIc and rearrange we get 

which gives . 
(1 - M ~) (cto) 2 - 2MX(c to)  - ( X  2 + y2 + Z ~) = 0 

M X  +_ ~ / { M 2 X  ~ + (1 - M 2) (X z + y2 + Z2)} 
C t  0 = 

(1 - M  2) 

M X + _  R 
1 - M 2 

where R 2 = X 2 + ( 1 - M 2 ) Y  2. Since t o must  be negative we take the negative sign and obtain 

M X - R  
ct° - 1 - M 2 

ro= X + Vto 

M ( M X -  R)  
= X +  

1 - M 2 

X - M R  

1 - M ~ 

I f  we write X + Vt  = 7 then 

T he  velocity potential at (x, y, z, 0) due to the moving doublet at (~, ~7) then becomes 

4~ V J _ ~  

T h e  total velocity potential at (x, y, z:0) is then given by the equation 

47rq)(x,y, z:0) - d~? -~o A• ~, ~7: 0~ -v/(r2-¢ - Y2+Z2) dr  

where the double integral is taken over the wing area. 

Since the downwash w(x, y)  is given by 

we get the integral equation 

4mx,(x, y) - 1 z f f sd d. f_ (~, ~1: --,~-VX) O 2I~£~z2 @ ( r 2 +  y2+zz)lz=odr.1 

We now assume that the motion is periodic with frequency p and make all lengths non-dimensional 

with respect to some length s. We shall use the same symbols for the dimensional and non- 

dimensional lengths but  this should cause no confusion. We shall also replace w and A¢ by 

non-dimensional  equivalents. 

3 
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We write 

and 
w(x, y:t) = VW(x, y) exp (ipt) 

A¢(x, y:t) = A¢(x, y) exp (ipt) 

Ap(x, y) 
- exp (ipt). 

P 

If  we write Ap = pV=F where F is a non-dimensional pressure, we get 

A¢ = - V~P(x, y) exp (ipt). 

The integral equation then becomes 

4rrW(x,y) = f ~ ' s P ( e ,  TI)K[X, Y]d~dv 

where 

K[X, Y] = ,~01im ~-f(x-~R) ( l - i u % ~  8z 2 L~-7 7ffTFexp {i°~(r-X~]Y-2 ~T)_] dr 

and w = psi V. 

When the differentiation is performed the kernel takes the form 

M ( M X  + R) ~ ~ exp ( - iaJr) 
K[X,  Y] = -R(X2 + y,.) exp { i M a ( M X -  R)} + exp (-icox) j(_X+MR)(~_~u~) (r~ + y2)a/~ dr 

where 
f2 = o f l (1 -M~) .  

Proof B. The differential equation satisfied by the acceleration potential referred to co-ordinates 

fixed in the wing is 
ace a=¢ 02¢ 2M 02¢ 1 a2¢ 0 

( 1 - M  2 ) ~ + T y y  z+ az 2 c axSt c a 8t 2 - " 

If  we now assume that ¢ = ¢(x, y, z) exp (ipt) and make all lengths non-dimensional with respect 

to some length s then the equation becomes 

82¢ 8~¢ 0~¢ 2ioJM2 8¢ (I - M ~ )  ~ + ~ + ~ - T .  + M~,~¢ = 0 

where oo = ps/V and the same symbols have been used for the dimensionai and non-dimensional 

co-ordinates. 
If  we now write 

¢ = exp (iMef~x)¢v(x, y, z) 

where f~ = ~o/(1- M =) the differential equation becomes 

( 1 - M  =) ~ + ~ -  -t- ~ + 1 - M ~ 

We now write 

and the equation becomes 
x ' =  x ,  y ' =  ~ / ( 1 - M ~ ) y ,  z ' =  ~ / O - M 2 ) z  

@x,- ~ + a T  ¢ + az,--- ~ + = 0 (4) 

where k = M f L  
We now have to solve this equation for ¢* when (a¢*/az').,=0 is known over the transformed wing. 



We shall here for the sake of convenience drop the asterisk and the dashes and replace them when 
they are needed. 

To solve the equation we use Green's identity 

We take ~ to be the solution we are seeking and take for ~b the 'elementary' solution of equation (4) 

exp ( - ikr) 
r 

where 
r = = ( x -  ¢)2 + (y_7)2 + ( z -  ¢)2. 

We apply this identity to the region bounded by a sphere of large radius R and the surface formed by 
the upper and lower surfaces of the wing. 

Since 

(V~+k2) I exp (-ikr) = - 47rS(x-~)8(y-~)8(z-~), 

(Morse and Feshbach 4) the left-hand side of the identity becomes 

- 4~r}(x, y, z). 

The integral over the sphere of radius R is equal to 

dO R ~ sin O 4 ~ - . ~ - ~  d~ 

where 0, ~ are the Euler angles. The potential ~ behaves like {exp (-ikr)}/r for large r and so its 
value on the sphere can be given by a series of the form 

exp (-ikR) {ao(0, 9) + al(O, ~)/R + 0(I/R2)}. 
R 

Since ~ = {exp ('-ikr)}/r is approximately equal to {exp(-ikR)}/R for large R it can easily be 
seen that 

The-integral is then 0(l/R) and so tends to zero as R --> co. 
If therefore we denote the values taken by q5 on the upper and lower surfaces of the wing by 

~, and }~ respectively we get 

- 4zr~(x, y, z) = f f s [ ( ~ ° - * ) ~  lexp (rikr)'} - I exp ('Tikr) } ~--~ (d?"-~b)] d~d~7. 

Since ~ is an odd function of z we have 

8 
8-~ (~.-4~)  = 0 

• 81exp(-ikr) 1 ~ lexp ( ( i k r )  } and so since ff~ r =ff~z we have 

f f a l exp ( - ikr) l d~ d~ " - y ,  = 

B 
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If  we revert to the original notation we get 

f f 8 I exp ( - ikr) l d~ d~ - 4~¢ '+ (x ,  y,  z )  = (¢~'+:+ - ¢++)  ~ - r 
s 

where 
r ~ = ( x -  ~)~ + (1 - M  ~) [ ( y -  +j)2 + z ~ ] .  

To obtain the velocity potential from the acceleration potential we use the relation 

f* g exp (ivJx)q)(x, y, z) = exp (icox)~(x', y, z)dx' 
- - c o  

or the equivalent relation 

f+ V exp @ox)(P(x, y; z) = exp (ik2x')¢~(x ', y, z)dx'. 
- - c o  

We then have 

f+ ff 81exp(-ikr)Id+d+? - 4wV exp (iwx)q~(x, y, z) = exp (iD.x)dx ACe(+, ~7) 8z r 
- - c o  S 

where we have written 
zx¢+ = ¢+++ - ¢~+. 

Since the downwash is given by 

Fa(~ ] 
~(~' Y) = LT~ (~' y' ~)J z~O 

the integral equation becomes, ff we write w(x, y) = VW(x, y) and A¢ + = - V~F + 

f+ + 
47r exp (icox)W(x, y) = exp (i£2x)dx Pc(+, ~7)K[ x - ~, Y - ~7]d~ &7 

- - c o  S 

where 

K [ x -  & y -  ~/] = 

If  we replace P '* by {exp ( - i M Z f ~ ) } P  the integral equation becomes, after some rearrangement 

d , )  S 

where 
88 [+  exp (iD~x'-ikr) dx' 

K = exp ( -  icox- iM2~)  lira ~ d r 
z - + O  - - c o  

+.+ exp +>- 
= exp { -  io+(x- +)} lim ~ j _  r 

Z--~-O co 

If in the integral we make the transformation 

~ ( 1  - M ~ ) ~  = ( ~ ' -  ~) - M r  

the integral takes the form given by Richardson a. 

3. The Analytic Sohttion of the Integral Equation. 3.1. Before we discuss the numerical methods 

of solving the integral equation we shall give a short discussion of an analytical method of solution. 

The method will however only give solutions when the wing planform is simple, for example, an 

elliptic wing or an infinite strip wing, but for these specific cases the problem is more easily solved 

by starting with the differential equation because the special functions needed are usually defined 

by means of differential equations and not by integral equations. 



3.2. The  integral equation which connects the downwash VW(x, y) and the modified pressure 

PV~'F(~, ~7) is of the form 

F if exp (iom)W(x,y) = - exp (iD.x)dx K[x, ~:y, V] r(~:, ,)d~d, (5) 
• - - c o  

where the double integral is taken over the wing surface S and the kernel e K[F, ~:y, , ]  is such that 

K[x, ~::y, . ]  = K[~:, x : . ,  y ] .  

We can split up the integral equation into t w o  simpler equations 

exp @ox)W(x, y) = - exp (if~x)G(x, y)ax (6) 
- - c o  

and 
? ? 

c(.,  .,) = / / Kr , e:y, .] r(e, 
d d B' 

From equation (6) we get 

d 
exp (ia~)a(x, s) - d .  [exp (ioox)W(x, y)] 

= - exp (ioox) [ dW-dT + ico < 

= - exp (ioax)A(x, y) 
where A(x, y) is the normal acceleration. 

(7) 

(s) 

3.3. To  solve equation (6) we need to know the eigenvalues and eigenfunctions of the homo-. 

geneous equation, i.e., numbers  )~ and functions ¢~(x, y) for which 

¢, /x,  y) = A,~ [ [  KEx , ~:y, . ]  ¢,~(~, . )d~ d . .  
d d N 

Since the kernel is symmetric these eigenvalues and eigenfunctions will exist and the set of eigen- 

functions will be complete. The  functions are orthogonal, i.e., 

f f  ¢,,,(~, y ) ¢ & ,  y )&dy  = 0 m + .  s 

and they can be chosen so that 

f f ¢'~2(x' y)dxdy = 1" N 
Let 

• where 

and let 

c/3 

1 

ff~ c(x, y)¢ jx ,  y )& dy 

co  

r(~, . )  = E r~¢n(6 . ) .  
1 

e The K here is different from the K of Para. 3, it is in fact a constant multiple of/~. The precise form of 
K is not needed in this Section and so this should cause no confusion. 



If  we substitute these equations into equation (7) we get 

ff ~] G~¢~(x, y) = K[x, ~:y, V] Y, P~¢~(~, ~?)d~d~l 
1 ,g 1 

i . e . ~  

and so 

We shall call this solution F 1. 

p.¢~(x, y) 
An ' 

F = 
co 

E ~.G.¢.(~, v). 
1 

To obtain this function P1, we have used not the downwash W(x, y) but the acceleration A(x, y) 

and, as we shall see below, this series when substituted into  equation (5) gives not the original 

downwash W(x, y) but a downwash W(x, y) + c~(y) exp (-i~ox) where a is a function of y. It is 

obvious from equation (6) that any downwash of the form W(x, y) + c~(y) exp (-i~ox) will give the 

same value of G(x, y). To remove this extra term we add to F 1 a singular solution P0', a solution 

which gives G to be zero over the wing. Since the choice of this singular solution presents some 

difficulty we shall now discuss in general terms the choice of this singular function. 

3.4. The Singular Solution. Since the set of functions {On(x, y)} is complete the equation 
co 

• Z ¢.(x,  y)¢,~(~, ~/) = $ ( x -  ~ )30 ' -  v )  (9) 
1 

is satisfied. By using this result we see that the series 

co 

r = £ ,L#~(~, ~)¢~,(~', y') (10) 
1 

is a singular solution for 

S 1 S 

2 ¢,+(x', y,)¢+(., y) 
1 

= ~ ( x - x ' ) ~ ( y - y ' ) .  
It  is also easy to see that 

F = Z] A~¢n(~, ~/) ~ ¢,~(x', y ')  (11) 
1 

or any other function obtained by differentiating (10) with respect to the variables x' and y '  is a 

singular solution. It is difficult to give precise mathematical reasons why one singular solution should 
be chosen rather than another but  we shall try to justify the choice of (11) on physical grounds by 
considering the case of a control surface in two-dimensional steady flow. 

If  the leading edge of the control surface is at x --- 0 and the wing profile is such that 

z = H(x) 



where H(x) is the Heaviside step function, then the downwash is 

W(X) = 8(x) 
and the acceleration is 

A ( x )  = 

The leading edge of a wing behaves locally in the same way as the leading edge of a control surface 
with ae r@namic  balance and  so the acceleration must have a ~'(x) singularity at the leading edge 

of the wing. 
The singular solution 

co [- ~ t t 

1 [_OX _J x,=ZLE(y, ) 

will give zero acceleration over the wing and the correct singularity at one point of the leading edge. 

The singular solution 
co 

where the integration is taken from wing tip to wing tip and ~(y') is some function still to be 
determined, will therefore give zero acceleration over the wing and the correct singularity at all 

points of the leading edge. 

3.5. The Determination of c~(y). The complete solution is therefore 

Let 

7)  = 

y )  = 

When the point (x, y) is on the wing 

O(x, y) = G(x, y) .  

The downwash W(x, y) induced by this pressure is then giyen by the equation 

exp (ioox) W(x, y) = - exp (iax) G(x, y)dx 
--co 

f P0(~, 7:y')a(y')dy' + Pt(_~, 7). 

f f 7] lf ro( , + r q, 7)I d -d7 

f y:y')dy' + el(x, y).  

fU = - exp (i~2x) G(x, y)dx - exp (i~2x) G(x, y)dx. 
~ L  E (y) 

When the point (x, y) is on the wing by using (6) we see that the equation can be written in the form 

- f 
exp (i~ox)l/V(x, y).= A(x, y) + ~(y')B(x, y:y')dy' + 

+ exp (icox)W(x, y) - [exp (icox)W(x, y)]x=XLE(V) 
where 

and 

f ~LE(Y) A(x, y) = - exp (iDx) Gl(X , .y)dx 

f 
XL:E(Y) 

B(x, y:y') = - exp (if~x)G,,(X, y:y')dx. 
, g - - c o  

9 



Therefore W = W if 

A(x, y) + f o~(y')B(x, y:y')dy' = [exp (io)x)W(x, Y)]~=%E(V) 

which is an integral equation for the function a(y'). 
• ' 5 A detailed application of the method to an infinite-strip wing is given by Wl lhams .  The 

differential equation-for the two-dimensional case was used by Timmart and van de Vooren% 

Ki]ssner v has in addition given results for elliptic wings but his singular solution is believed to be 

incorrect (van de Voorena). 

4. Methods of Integration and the Choice of Downwash Points. In solving the integral equation 
Gaussian integration will be used. An account of this method will first be given: it follows very 

closely the account given by Mineur 9. 

4.1. We wish to find an integration formula for the integral 

f l w(x) f (x)dx (12) 

in the form 

w(x)f(x)dx = F, HJ(X~) (13) 
c~ 1 

where w(x) is a weight function, so that the formula is exact for a polynomial f(x) of as high a 

degree as possible. Since we have 2n unknowns x l , . . . ,  x,~, H I , . . .  , H,~ the highest order is ( 2 n -  1). 

We can calculate these constants by putting f(x) = x", r = 0, . . . ,  ( 2 n - 1 )  and solving the 

equations which result. There is however a simple method. 

Let {Gr(x)} be a set of polynomial functions which are orthogonal with respect to the weight 

function w(x), i.e., 

w(x)o .(x)c (x)ax = ,,-+ s .  (14) 0 

We assume that the formula (13) is exact for a polynomial of order (2n -1 ) .  Then if q)(x) is a 
polynomial of order ( n -  1), G,~(x)(!)(x) is a polynomial of order ( 2 n -  1) and we have 

a 1 

But 4)(x) can be expressed as a linear function of the polynomials Go(x), . . . , G,~_l(x ) and so by the 

orthogonality conditions (14) the integral is zero and we have 

E = 0 .  
1 

The polynomial (P(x) has been chosen arbitrarily and so we must have 

G~(xo:) = 0 o~ = 1 , . . . ,  n. 

The points to be chosen are then the zeros of G,~(x) and we have 

C~(x) = a ~I (x -x~)  
e = l  

where t is some constant. 

10 



We now want to calculate H a. The function 

c~(~) 
X - -  X a 

is a polynomial of order ( n -  1) with zeros xl, . . . , x ~ _  1,  x ~ +  1 ,  . . . ,  x ~  and so, using (13) we get 

f bw(x) G~(x) dx H~G~'(x~), 
~ X - -  X a 

i.e,~ 
1 (~ Gdx) 

- w ( ~ )  d x .  
Ha G'(x~) ~ ,  x - x~ 

4.2. From the zeros of G~(x) we can form Lagrangian interpolation polynomials {g/~(x)} of order 

( n -  1) with the property 
g/~(x~)  = ~,.~. 

These polynomials are also orthogonal with respect to w(x), for if r + s we can write 

g,2(x)gJ~(x) = G~(x)P,,~_~,(x) 

where Pn-z is a polynomial of order ( n - 2 ) ,  and we have 

w(~)g,*(~)g~(~)a~ = ~(~)a,~(~)P~_~(,)d~ 

=: 0 .  

It  is convenient to construct the functions 

w ( x )  g~(~).  

g~(~) -- w(~,.) 

These obviously have the property that 

g , . ( ~ . )  = ~,.~. 

The orthogonality property then becomes 

f bgr(x)gJ~(x)dx = 0 * Y $ .  

a 

We shall use such functions later as interpolation functions. 

4.3. Particular Weight Functions. We shall always transform our co-ordinates so that the range 

of integration is ( -  1, 1). We shall consider three kinds of weight functions. 

(A) 
1 

~(~) - V ( ~ - ~ )  

The orthogonal functions now satisfy the equation 

f + l  = m ~: n.  
G~.(x) G~(X) dx 0 

-1 V ( 1 - ~ )  

11 



The  functions are therefore the Chebyshev polynomials T~(x). I f  we write x = cos 0, the integral 

becomes 

f ~ G~( O)G,,( O)dO = o 
0 

and so we choose G~(O) to be a multiple of cos nO. since this function, unlike sin n0 is a polynomial 

in cos 0. 

We then have 
1 

T & )  = ~ : ~  cosn(cos-l~) 

where the factor 1/2 ~-1 has been chosen to make the coefficient of x n unity. 

We then have 

+1 T.,2(x) 1 cos2n0 dO 22._----- i .  
' --1 "X/(1-x ~) dx - 2~_2 o 

The  first few polynomials are 

T # )  = 2 

TI(x) = x 

T~(x) : ½ ( 2 ~ - 1 ) .  

T h e  integration points are the roots of T,,(x), i.e., the points for which cosn0 = 0. These  are 
the points 

nO = ~ + r~ 

Since 

we have 

0 - (2 r+  1) 7r 
n 2 

dT~(x)  1 dT~(O) n sinn0 

dx sin0 dO 2 ~ s i n 0  

sin 0~ ( ~  cos nO 
H~ = ~ J 0 n sin cos 0 Z Tos 0~ 

"IT 

- ° 

The  integration formula then becomes 

f + i  f ( x )  ~r n-~ 

-1 ~ / ( / - x 2 )  dx = -n ~=02 . f (~ ) .  
(B) 

The  orthogonal functions {G~(x)} satisfy the equation 

0 
- -1  

and so are the Chebyshev polynomials U,~(x). I f  we write x = cos 0 the integral becomes 

f ~ s i n ~ 0 a ~ ( e ) G ~ ( 0 ) d 0  = 0 
0 

12 



affd so Us(O ) is taken to be a multiple of s in(n+ 1)O/sin 0. We take 

1 sin (n+ 1)0 
Us(O) - 2 s sin 0 ' 

the coefficient of x s will then be unity. The  first few polynomials are 

Uo(x)  = 1 

G ( x )  = x 

G ( x )  = x~ - I .  

The integration points are the roots of Us(x ) and so are the points 

It  can easily be shown that 

57T 

n + l "  

where 

T" 

H,~ = n +-----1 (1 - x ~ ) .  

The integration formula then becomes 

f 
+ l  s 

~/(1 - x~lf(x)dx = ~ Bj(x~) 
- -1  1 

7/" 

G - ( n + l )  ( l - x 2 ) .  

We shall call the interpolation function associated with this weight flmction {gr(x)}. 

(c) 
1 - - x  . , - -  

The polynomials satisfy the equation 

F j (  0 
--1 ~ • 

I f  we write x = - cos 0 this becomes 

or 

If we take 

the integral becomes 

y 0 
o cos (2n + 1) g cos (2m 

' (1 o ) G d o ) G ( o ) d o  -- +cos  0 
0 

0 0 
cos 2 G ( 0 )  = cos (2n + 1) 

0 y 
+ 1) ~ = 4 cos(2m+ 1)0cos(2n+ 1)OdO 

b 

= 0 .  

13 



Therefore 

or, since x = - cos0 

cos (2n + 1) (0/2) 
G.,~(O) = cos (0/2) 

G,Jx) = 

= 22~7. 

cos (2n + 1) [cos-* 

The  integration points are the points for which 

0 ~r 
(2n + 1) ~ = ff + ~ ,  

i.e., 
0 (2~+ 1) 

(2n+ 1) 
The coefficient/:I~ is given by 

Now 

1 f+*N/(1-x) G~(x)& 

_ 1 ['~ ( l + c o s 0 )  cos(2n+l)(O/2)d 0 
G / ( . ~ )  2o c o 7 0 Z  cgsos0~ cos (0/2) 

_ 1 (~  cos (n + 1)0 + cos nO 
G((x~) Jo  cos 0 - cos G 

1 s in (n+  1)0~ + sinnO~ 
- -  7 7 "  

G ~ ' ( O ~ )  sin 0~ 

1 sin (2n + 1) (0~/2) 
- -  - -  7 7 "  

G~'(0~) sin(0~/2) 

[ d G ( x ) ]  = _ 

dx A~=~ 

I 1 d {cos(2n+l ) (0 /2) t  ~ 

si~ 0 go cos(0/2) tJo==o~ 

(2n+ 1) sin (2n+ 1)(G/2) 
2 sin 0~ cos (0~/2) " 

Therefore 
2rr 

H ~ -  2 n + l  
The  integration formula then becomes 

27/" 
- -  2 cos=(ed2)  - 2n + 1 ( 1 -  x~).  

x)dx = ~ CJ(x~) 
--1 ,x=O 

_ [ 2 ~ +  1~ 
2w (1 -x~)  and x~ = - cos \2n + 1] rr. where C~ 2n + 1 

We shall call the interpolation functions associated with this weight function, {f,.(x)}. 
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4.4. The Choice o f  the Downwash Points. The integral equation which connects the chordwise 
pressure P(y) and the downwash W(x)  in two-dimensional steady incompressible flow is 

f+l 2wW(x) = lP(y) dy .  

The solution of this integral equation is 

We want to approximate to W(x)  by a polynomial I~(x) of order ( n - l )  which gives the correct 

values at n points x l , . . . ,  xr~. We want to choose these n points so that the corresponding approximate 

pressure P(y) will be as good an approximation to P(y) as possible. 

• The error {P(y) - P(y)} is given by the equation 

'~ .d('-Y) f!~ I{1+ q r w ( , , )  - ~(.)] .~. 

We shall try to choose the points so that 

f +l IF(Y) _ = T'(y)]dy O, 
--1 

i.e., 

f+1_1Nl\~-x] I{1+ x] [W(x) - l~{x)]dx f+1_1 d ( I ~ - y )  x d,_ Y - 0  

or since the value of the inner integral is ~r, 

;+1 i(1 + 
-1 V \ I  - x / [ W ( x ) -  lg(x)]dx = O. 

Now if W(x) is a polynomial of order ( 2 n -  1) we can write 

w(~) = w(x)+ ]~ (x-~DP~-I(~) 
c~=1 

where P~_l(x) is some polynomial of order ( n -  1). The condition then becomes 

By writing x = - x we see from (C) that the points ( - x~) are the integration points for the weight  

function #/{(1 - x)/(1 + x)}. 

The condition can be written 

(+1 i ?  + q -1 ~] \1  - x/~=lII ( x - x ~ ) x ' d x  = 0 r = O, . . . ,  n -  1. 
J 

(+1 /{l+y~ y~ 
Since the value of the integral is a polynomial of degree s in x these same g _~ ~ / k V ~ -  y / x  - y  

conditions would be obtained if .we wished to approximate to a downwash polynomial of order 
( 2 n -  r) in terms of its values at n points subject to the conditions that 

f+l P( [r(y) - y)]y"dy = 0 s = 0 , . . .  , r  - 1. 
--1 
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In particular if we approximate to a polynomial of order n by the polynomial of order ( n -  1) we 

have " 

f +: F(y)]y~dy = 0 s = O, n - 1.  [ r (y)  D B • 

We find the best spanwise collocation points in a similar manner. The  integral equation which 
connects the two-dimensional steady incompressible spanwise downwash with the pressure is 

f+1 
2~W(x) = r(y) dy. 

-1 ( x - y )  ~ 

The solution of the integral equation is 

f + l  ~/(1 - x ~) 2rrr(y) = V'(1 _y2) -1 ( x - Y )  z w ( x ) & .  

As before we choose the approximate W so that for the corresponding P we have 

f +: F(y)) dy = O, {p(y) 
- 1  

i.e.~ 

? ? V 0 - ~ ) { w ( ~ ) -  ~(.)}& v'0-Y~) + = 0 
--1 --1 ( x - - Y )  2 " 

The value of the inner integral is - 7r and so we must have 

f +* ~/(1 - l~(x)}dx = 0. 
--1 

I f  W(x)  is a polynomial of order ( 2 n -  1) and IT" is a polynomial which gives the correct values at 

n points xl, . . . ,  xn, then as before we must have 

= 0  
3 --I ~:I 

for any polynomial of order ( n - 1 ) .  By referring to (B) We see that these points are the roots of 
u~(~). 

The spanwise integration points coincide with the downwash points given in (B). 

5. The Numer ica l  Solution of  the Integral Equation. We are now in a position to solve the integral  

equation 

s " ( Y - Y ' ) ~  
numerically. 

We shall transfer the co-ordinates to new co-ordinates s e, ~ defined by the equations 

y = s ~  

x = x ~ r  + ~so(y)~ 

where  s is the semi-span, XCL is the co-ordinate of the centreline at spanwise position y, and se(y) 

is the chord at this section. 
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We shall denote the downwash points by the suffices r, s and the integration points by the suffices 
a, ft. The y'  co-ordinate will only depend on s and will be written Ys, the x' co-ordinate will depend 

on r and s and @ill be written xrs. 

The integral equation then becomes 

f+, f+lr(e,,)K[..o_ . , yo  8 = w ( . r , ,  y , )  = -1 ( ~ -  ~.3 2 -1 
i 

5.1. Chordwise Integrat ion.  

If we write 

the integral becomes 

We shall first consider the chordwise integral 

f +~ lP(~, r l )K[x~,  - x, Ys - Y] d~ .  
- -1  

and using integration formula (C) its value is 

o r  

where 

m 

E CZ~(~:~, r l )K[x~,  - x~, Ys - Y] 
1 

qq~ 

X G ' r ( G ,  v ) K [ x , ,  - x~, ys  - y] 
1 

/ ( 1  + ~:~] 
G '  = , , / ~ 1  _ - - z - ~ j  G - 

297  

2n + 1 ~ ( 1 - ~ : 2 ) .  

We can also use an alternative method due to Multhopp 1°. 

The function 

has the property, that 

0 
--1 

IJ( )l 

for r = 0 , . . . ,  n -- 1. We may consider Pn, n # 0, to be a pressure function which give s the lift and 
the first ( n -  1) moments to be zero. We can expand the chordwise pressure in the form 

oo 

P0 = ~ a~Fn 
1 

and so if we only requi~e the lift and the first ( n -  1) moments we need only calculate ao, . . . ,  an. 

17 
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If  as i~ (C) we write x = - cos 0 the first two of these pressure functions are 

0 
F o = cot~, 

0 cos (30/2) 
r 1 = cot~ cos(0/2~ 

0 
= c o t ~ - 2 s i n 0  

We therefore take for P(~, 7) a finite series 

7 / t  

r(~, 7) = 2 a~(7)<~(~) 
1 

and we have to evaluate the integrals 

f +l F~(~)K[~, 7, 7'] ~', dS. 

These  integrals can, if wished, be evaluated by using the Gaussian integration formula (C). 

5.2. Spanwise Integration. With the first method of chordwise integration we are left with the 

spanwise integral 

d7 -1 ( 7 - ~ )  ~ 

and with the second method we are left with 

-1 (7 - 7 , )  ~ 

All these integrals are of the form 

f 
+l V ( 1 -  7 ~) a (7 ,  7~) 

dr .  

'The spanwise integration is mo/e difficult than the chordwise integration because the integral to be 

evaluated is a principal-value integral. We shall now discuss some possible methods. 

5.2.1. Multhopp's method. The method of spanwise integration usually used is due to Multhopp. 

'The function G(7, %) is expanded in terms of the interpolation functions {gr*(~)} given in Section 

4.3. The series 
N 

2 c(TB, 78)g~*(7) 
1 

~is then an approximation to G(7, 7s) which in addition to having the correct values at the points 

71, • • • 7~'~ has the property that the equation 

V ( 1 -  7 ~) G(7, 7,)d7 = X G(Te, 7,) ~ / ( 1 -  7~)g~*(v)d7 
1 1 --1 

.holds i f  G(7, 7s) isra polynomial in 7 of order less than ( 2 N -  1). 
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If  we use this approximation we get 

f ~" f+,C(1-r/~)g~,(n)d n +1 ~ / ( 1 -  r/2)G(r/, %) dr/ = ~] G(r//~, %) 
-i (r/- r/~)~ ~ -i (r/- r/a) ~ 

N 

= Z C, aJaB 
1 

where 

Ga/3 = G(r/~, r/a ) and J~# = f'|+l ,V/(I_ r/2)gp,(r/) dr/. -1 (r /_ r/8)2 d 

It  is more usual when approximating to a function by means of a polynomial to use as interpolation 
points the roots of the Chebyshev polynomial T~+l(X ). The analysis would be very similar but  the 
integrals Js,~ would be a little more difficult to evaluate. We shall now give an alternative method of 
deriving the integration formula. 

Since Un(O ) is a multiple of sin (n + 1)0/sin 0 it can easily be shown by integrating Glauerts integral 

f ~ cos  nO sin n~o 
o cos 0 7 cos qo dO = 7r s i n ~  

by parts, that 

f + l  dr/ = - -  (t/-~-1)TrU~,~(r/') 
V'(1 v,,(r/) 

_~ (r/- r/')'~ 

and using this result we get the formula 

~E - = K ( ~ ,  v ' )  
( v - v ' )  ~ o A~ 

where A n = ~/(1 -r/~) U:~2( r/ )dr/. The series is divergent but  it has a first Cesaro sum. We shall 
--1 

define an N ' t h  convergent K N to the function K(r/, r/') by taking the first N terms of this series. 
We then get the following approximation to the value of the spanwise integral 

f +1 ~/(1 - r/") a(r/, r/s)K~¥(r/, r/a)& 
--1 

i = ~ / ( 1 - r / ~ ) a @ ,  %) - = Z (n+  1) U~(r/)U,~(r/a) dr~. 
--1 0 /~n 

We can now evaluate the integral numerically by using the Gaussian integration formula (B). 
The  integral is then approximately equal to 

~v l 1,7 £ Bpa(r/p, r/a) - ~  X (n+ 2)g~(r/8)u~(r/,~) 
p = l  n =o An 

We shall show that this reduces to 

as in Mul thopp 's  method. 

We have 

N 

Z J~Gsp 

f 
+l  

-~ (~-  ~)~ 
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We first want  to expand g//*(7) in a series of the form 

N - - 1  

& ~ ( 7 )  = 2 %.G(7) .  
r = 0  

The  coefficients %. are given by 

f 
+ l  

a,,% = ~/(1 - 7~)g~(7)  u,.(~)g7. 
--1 

N o w  gz~'(~7) U~(7) is a polynomial of order ( 2 N -  2) at most and so can be evaluated exactly by th'e 

Gaussian formula (B). We then have 

Therefore 

dV 

A,.%. = ~ B~,gj*(rlz)U~(%)= BpU~(ro). 
# = i  

f 
+ l  

L p = ~/(1 - 7 2) g)*(7)d7 
_~ ( 7 -  7~) 2 

y, ( , ,+ l )g ,~ ( , s )  , BBU,,(TA +1 
= - ~/(1 - ~2) G.(~) u,~(7)d7 

,~=]. A,~ , '= I  2V - I  

~v -~  u~(7~) o d T A  

~ = 1 

Since U~v(% ) = U~x,(~?/3) = 0 

~v u,~(v~)u.,,(Te) 
y.~p = - ~ B p  Z 

The Multhopp method is then equivalent to using a degenerate kernel to approximate to the kernel 

1/(7,-~/.0 2 and evaluating the integrals by Oaussian integration. This was recognised by K. Jaeckel 
(Collatz) 1.. 

5.2.2. There is however the difficulty that G(% %) is really of the form 

G1(7, %) + ( 7 -  %)e log IT - % I Ge(7, 7~) 

where G 1 and G 2 are well behaved functions. The  logarithmic term is only significant near 7 = 7s 
and so we shall take the function to be of the form 

G ( >  ~s) + A(7,) (7 - 7~) 2 log 17 - 7~, l" 

The function GI(~, %) has no singularities and so we can approximate to it by means of the 

functions {g/~*(7)}. We have 

. ?~ 

G1(7, 7~) = ~ G(~p ,  "~)gf ' (7)  
f l = l  

9b 

= y~ {c(Tp, 7~) - z ( ~ ) ( 7 ~ - 7 ~ ) 2 1 o g  I ~  - 7~ I}g~(7 ) .  

2O 



Therefore 

f f +1 3/'(l_7~)G(v, %) d7 = +~k/(I_zT~)GI(v,%)d~7+A(%) "V/(1--'q2)log [~7 -- "% [d'q 
- 1  ~-~ - ~  Ti--~) ~ - ~  

Since 

we get 

{G(%~, 7s) - A(V~) (7~- 7~)21og I ~  - 7s [} ~ / (1 -  7~)gff(~) ' 

+ ;~(,~) f~ i  ~/ (~-  ¢) log I, - 7. I,¢,. 

f + l " V / ( 1 - v ~ ) l o g  [7 - ~/~ ]aT ' ~r{½% 2 - ~ - ½ l o g 2 }  
--1 

d~= E G(Tp, v~)Y~p + 
#=1  

+ A(7s) [~r{½7s 2 ~ ~log2}-- 

9 b  

- ~ (7 /~-~ / ,~)~ log  [ ~ p -  ~,~!J~/~] • 
/2=1 -J 

This modification is due to Mangler and Spencer 12. The evaluation of A(%) is difficult, possibly the 
best approximation is due to I. T. Minhinnick: it is derived in Appendix I. 

5.3. An alternative method is due to Hsu za. We can remove the singularity from the integrand by 
writing it in the form 

--  + 
(~  - Vs)' (~  --  ~s)~ 

Since 

and 

we get 

+ m 
(7- ~)2 + (7- 7~) ~ ~=~ 

f + l C ( l _ n  2) d 7 =  ' 

f+ l  d~] = - 7r 
~/(1 7 2 ) i 

f +lV'(1-72)G(%'~)  d~ 7rG(~8, V~) ~r%(8~- G) = - -  _ _  - ] -  

{ OG 

f a ( ~ ,  ~) - a(78, ~1 - (7 -~ , )  ~ ,,:,,.~ d~. 
+1 

+ <V(i-¢) ~-~)~ (15) 
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The integrand of the integral on the right-hand side has no singularity at 7 = 7~ we can app!y 
integration formula (B) to the integral. We get 

f -~+~ ~/(1 ~ -  7~)c(7~, 7) d7 = - ~c(7~, 7~) - ~7~ ~ -  ~=~s + 

+ N ~  1 ~ t ~ , . T  ~ ( , , , - 7 . ~ )  ~ ( 7 , , - 7 ~ ) ~  G- ,  ~=.~s 

7r iv Gs P 
- N ~ I  G ( 1 - 7 ~  2) 

i : .v (1_7~)) - -TrUss 1 q- N q-~ ~==1 ('r]~ ~fl)2 t 

3G I Z (: -- -7~--) (16) 
-Tr ~ ~=~ " % + N + ~ = :  7~-~I~)" 

The formula as it stands is of little use because it involves the derivative of G(%, ~1). If however the 
points % could be chosen to be the roots of the equation 

1 ~v (1'_7 ~) 
- o 

be removed. These points can easily be calcu]ated and the equation then this difficulty would 
(16) becomes 

+~ ~/(1 - 7 3) a(7~, 7) 
_~ ( 7 = ~ ; g ~ )  ~ 

where 

N 

+~1 ~v ( 1 -  7/#) 
~ = 1 + N E 

~7Z ---~s) 2" 

The points 7s are not related to the downwash points obtained in Section 4.4. If however we 
write the integral in equation (15) as 

c ( .~ ,  7) - C(Ts, 78) - ( 7 - ~ )  G {  

d7 
_, ~/(1 - 7 ~) (7 - %)2 

and use integration formula (A) for the weight function 1/~/(1 - 7 ~) we obtain equation (16) with the 
factor 1/(N+ 1) replaced by 1/N. Thederivative (3G/37),l=vs will be removed if we choose the down- 
wash points % to satisfy the equation 

1 N ( 1 - 7 9 )  
w +  N E - 0. 

tJ=l (7,e - 7~) ~ 

It is shown in Appendix II that these points are the roots of U~v_l(x ). With this choice of downwash 
points the expression 

1 N ( 1 _ 7 2 )  

: + N ~ :  (78- 7~) ~ 

is equal to N. The value of the integral is then 

-~ ( 7 -  7~) ~ N ~ (78- ~)~ " " 
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With this method we have one more integration point than downwash point, and so with the 
chordwise integration we must choose more downwash points than integration points. If we choose 
N spanwise integration points and M chordwise integration points then the number of chordwise 

points S must be chosen so that 

M N  = ( N -  1)S 

i.e., M must be a multiple of ( N -  1). 

5.4. We have now two possible methods of chordwise integration and two methods of spanwise 
integration. Acum 14,15,16 and Garner 17 have used Multhopp pressure functions for the chordwise 

integration and Multhopp's method for spanwise integration, Richardson a has used Gaussian 

integration for chordwise integration and Multhopp's method for spanwise integration, and Hsu ~a 
has used Gaussian integration for chordwise integration and method of his own for spanwise 

integration. These methods are given in detail in the references quoted. 
We shall give details of a method similar to that used by Richardson. If we neglect the logarithmic 

correction the integral equation is easily solved. The integral equation is 

87T V]Tr 8 

If we apply integration formula (C) to 

I =  

we get 

I =  

If we now integrate spanwise we get 

f +l c(~)d~ f+~ r ( ~ ,  ~)K[xr.~ - x, y~ - y ] d ~ .  
--1 ( ~ / -  ~,)~ -1  

the inner integral 

f +* e(-~, ~7)K[x~,  - x ,  y ,  - y ] d ~  
--1 

Z C ~ / F ( ~ , , .  ~7)K[x~s - x ,  Y s  - Y ] .  

where 

and 

~ = 1  

m m 

~ = 1  /7=1 

~ fb 

= Z Y ,  
~ = I  # = 1  

C~'r(.~=, ~e)c ( r lg )K[x , . s  - x~,g, y ,  - YB]&/~ 

ce = c(vp), I ~ p  = P(.G, ~a) 

K,.,,~,v = K[xr ,  - x=~, y.~ - YB]" 

These equations can easily be solved for lP~. 
If we are to include the logarithmic correction the integral of 

becomes 

where 

c ( r l ) K [ x r .  ~ - x ,  y ,  - y]e(~:~.v) 

,z 

1 

/x, = ~r[½% 2 -  ~ - ½1og2] - • 07V- %)=log Ire - v, 14v. 
1 
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It is shown in Appendix II  that 

where 

K = (cocJ2). 

We then have for ;~,., 

A,.,., = Z r ~ p 3 ~  - ( 1 -  M2)f~'(~) + (1 + M~)i,rf~(~,.) + 

? f + K ~ J~(~:) exp { - iK(~ r - ~:)}d~: 
--1_ 

cA=]  

where 

- -  -I- (1  + Mz)iKF(~,,, ~1.~) + ,~2 r ( ~ ,  ~/.~) exp ( - i K ( C t  - ~ ) } d s  e 
- 1  

G -(1-M2)f~"( '~") + (l+M~)i'cf~(~) + K~ /K(~:,.-~)}d~ . 

The complete equation is then 

m ~l Tft, 

= X 23 + E 
~=1 f l = l  o:=1 

This set of equations can also be put in matrix form and solved for F~./~, details are given by 

Williams and Birchall is. 
These interpolation functions have already been used implicitly; the original equations for I can 

be obtained by expanding P in terms of these functions. 

Conclusions. The methods used for incompressible flow and some of the methods for compressible 

flow were devised so as to reduce the amount of computation at the expense of complicating the 
method. With automatic digital computers, however, it is not so necessary to restrict the amount 
of computation but it is an advantage to have a simple method. The methods given here are suitable 
for digital computers and would be of little use without  them. The few published results available 

show that they are capable of giving the derivatives needed for flutter calculations. 
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A P P E N D I X  I 

The Evaluation of the Coefficient of y 2 log ly[ 

When x and y are small the kernel K(x, y) can be expanded in the series 

x icoy ~ 
y2K(x ,y )  = exp(-io~x) 1 + ~/(xZ+3~9) ,~/(x2+fi2y2) 

+ ~ -  log ~ N - z N  " j 

or alternatively 

~- x ico( x~'+ y ~) 
y~'K(x,y) = ~1 + ~/(x2+fi29) iwx 5/(x2+fi2yZ) 

where 

+ --2- A + 5~V(x~-+~y 9 + 

+ - 7 -  5~V(..+3~y~)} 

co= = t co ~/(*~ + 5>~) - co2 xa . ~ e x p  - icox) log ,  x}l  

= 9 K I ( x ' Y )  + ½co2y=exp(-icox)l°g { co 5/(x~+fi2Y~)2(1 - M) - x} 

3'I i,r 
A = r - ½ - ~ - + ~ -  

and y is Euler's constant (Watkins et allg). 
W e  want to find the coefficient o f y  2 log y in the expansion of the integral 

fXTE 
F(x', y) = JxLEf(x)yZK(x -- x, y)dx 

= (*'*'~f(x)y~K~(¢-., y )& + 
/ 

OXL]~ 

~y~  t,~,~,~ ~ co~/{(~,-~)~ + 5~y ~} - ( x , - ~ )  
+ - 2 -  -- J~LE exp t - i w ( x ' -  x)}f(x)log 2(1 - M) dx. 

If  we write x' - x = X then the first integral becomes 

- yZ f ( x ' - X ) K ~ ( X ,  y ) d X  
X1 

where 
X 2 = X' -- XTE , X 1 = X' -- XLE. 

Now we can write 

(17) 

• X 2  u i 

f ( x ' - X )  = f (x ' )  - X f ' ( x ' )  + ~ . f  ( X  ) . . . 

and if we substitute this into the integral we get, with an obvious notation, 

Fl(x' , y) = - f (x ' )  K I ( X  , y ) d X  + f ' (x ' )  X K I ( X ,  y ) d X  - 
X 1 X1 

/"(x')  
(~~ X~,KI(X, y)dX. 

2 ! - x ~  

The only terms in K 1 which can give rise to terms in log y are those which give rise to integrals 

of the form 
f X ". Xn 

z~ = j:q~V(x~,e~y &.  
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Now 

I 0 = log {x + ~ ' ( x  ~ + fiZy2)} = A (X1  ' X2 ) 
X 1 

~i = ~,/ ( x~ + ~y~) 
X 1 

and 

F~ n-'-I 1 X2 
n + 1 L n ~  x i  

and s(~ if we only retain the logarithmic terms and ignore the algebraic terms we have 

4 = A(X~, x~) 
I ~ = 0  

& = - ~ / ? ~ y ~ a ( & ,  x ~ )  

I a = 0  

I~ = a i~4~4A(X ~ X~)  8t~J \~ i~ • 

Therefore  if we single out the terms which can contr{bute to the term in y2 log y we have 

F,(x ' ,  y)  = f(x ')~o(y 2 -  ~-fi~y~)A(X,, X~,) + 

+ f'(~') ( -  { # 9 ) A ( x .  x2). 

Now for small y, X 1 = x ' - X L E  is positive and X 2 = x ' - X T E  is negative. Th e  term 

log [X 1 + ~/(Xz2+fi~y2)] has no singularity at y = 0. Th e  term log [X 2 + ~/(X~+/32y~)] can be 

writ ten as 
- log 1[ -  X~ + ~/(X~ ~ +~2y~)] l + log/729. 

The  first term has no singularity at y = 0 and so then we have 

A(x,, x,~) = 2  log lyl.  
Therefore  

F-t(x', y)  =; y~ log lY]{ + c°O + M e ) I @  ') - (1 - M~)f ' (x ' ) }  + . . .  

Similarly in the integrand of the second integral of (17), log ][X - x/(X2+fi2y~)]] can only have a 

logarithmic singularity at y = 0 if X is positive and the value of the singularity is then log fi~v ~. 

The  logarithmic term in the second integral is then 

f ~' exp ( - i~oX)f(x '  - X ) d X .  -o~2y~logly[ x 

The  coefficient of the term in y2 log ]y ] is then 

+ m(1 + M 2 ) f ( x  ') - (1 - M ~ ) f ' ( x  ') + co s exp ~ -  ico(x' - x)} ' f (x)dx .  
X L E  

When referred to the ~ co-ordinate this result becomes 

+1 Of 

+ ik(1 +M~)f(~ ') + 

f 1 + k a _ exp{-- ico(~ ' -~)}f (~)d~ y~log [y[ 

where k = ~oc/2, and c is the chord at the integration section. 
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APPENDIX II 

Some  Relations between the Zeros of  Chebyshev Polynomials 

Let  Yl, • • • Y , ~  be the  zeros  of  T~(y), t hen  

T,~(y) = h(y-r  y l )  . . . ( y -  y,~) . 
By logar i thmic  different ia t ion w e  get  

and  different ia t ing again 

1 Tj (y)  

. 1 [T.'(y)]~ T j ( y )  
==~ (y-y~)= L T.(y)A T d y )  

I f  we  choose y to be  a zero of  T~'(y) ,  i.e., a root  of  U,~_,(y) equa t ion  (19) becomes  

and  equa t ion  (20) becomes  

'~ 1 
g - 0  

~=lY - Y~ 

1 T j ( y )  
~ _ a  - -  • 

~=~ (y-y~)= T d y )  

Since T~(y)  satisfies the  differential  equa t ion  

2 P ( 1 - y  )T,, (y) - yT,?(y)  + n2T,~(y) = 0 

equa t ion  (22) reduces  to 
n 1 n 2 

E 
~ = 1  (Y-Y~)2 1 - y2" 

W e  need the  sums  of  the  series 

I f  we  wr i t e  (1 - y ~ )  as 

the  first  series becomes  

(1 -Y~)~ E (1 --Y~2) 

~=1 (Y--Y~)Z' ~=1 Y - Y~ 

(1-y)= + 2y(y-y~.) - (y-y~)= 

( 1 - 9 )  Z 
~ = 1  ( Y - - Y * ) 2  

and  so its s u m  is n 2 - n = n ( n - 1 ) ,  

- - + 2 y X  
~=1Y -- Y~ 

i.e., 

T h e  second series becomes  

(1-y~)~ n(n- 1). 

( 1 - y . )  E - -  + 2ny - y_, ( y -  y~) . 
~=1 Y -- Y~ ~=1 

gb 

Since  E Y~ = 0 we  have  therefore  

o r  

'~ (1-229  g - - -  ny 
~=1 Y - 3'~ 

1 ,~ ( l _ - _ y ~ ? )  _ o .  
Y + n S i  y~ - y 
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