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Summary. 

Leading-edge separation from fairly thin wings of moderate or low aspect ratio gives rise to aerodynamic 
loading and forces that are non-linear with incidence. It is important to be able to estimate these effects 
theoretically for wings of arbitrary planform. A simplified mathematical vortex model has been devised by 
Gersten for wings in steady incompressible flow. This model in conjunction with Multhopp's linear lifting- 
surface theory provides the basis of the present method. 

The investigation covers a variety of planforms, and each type serves to illustrate different facets of 
non-linear theory and its numerical application. Many comparisons between the calculated results and 
wind-tunnel measurements are used in a critical appraisal of the method. When there are leading-edge vortices 
or extensive regions of separated flow, the calculated total lift and pitching moment give a decisive improvement 
on linear theory. Analysis shows a simple correlation between the centre of non-linear lift and the linear 
aerodynamic centre. The spanwise distributions of lift and local centre of pressure on rectangular wings are 
well predicted, but the calculated loading on swept wings appears to be unrealistic. 

An alternative treatment of the mathematical model on the basis of slender-wing theory illustrates some 
defects of the method in its present form. It might be developed to simulate the rolling-up of vortex sheets 
into concentrated vortices. However, the reliability of the present method for steady aerodynamic forces 
appears to justify its immediate extension to the oscillatory problem of slowly pitching wings of arbitrary 
planform at high mean incidence. 
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1. Introduction. 
Conventional aircraft of past decades were designed to fly without extenmve regions of separated 

flow from the wing surface. Leading-edge separation without immediate reattachment was 
synonymous with stalling. Nowadays wings have greater sweepback and lower aspect ratio and 
commonly develop leading-edge vortices before the maximum usable lift coefficient is reached, but 
the associated increase in lift is rather small. The trend in planfo'rm continues in studies for 
supersonic aircraft, which envisage wings of increasing slenderness with sharp leading edges. Such 
aircraft are likely to have flow separation from the leading edge over most of their flight path. 
Moreover, during take-off and landing, up to one third of the lift may be associated directly with 
non-linear effects of flow separation. The estimation of these effects has now become an essential 

feature of aircraft design. 
Theories are required to estimate the wing loading as a non-linear function of incidence. One 

basic concept is that, when vorticity is shed forward of the trailing edge, this vorticity is displaced 
from the wing so as to diminish its contribution to the downwash at the surface; in consequence 
extra vorticity or lift is required to maintain tangential flow there. This concept only applies when 
a mathematical model of the flow is appropriate. , One of the earliest attempts on such lines was 
the work of Bollay 1 (1939) for rectangular wings of small aspect ratio. Several authors have since 
developed mathematical models for delta wings with varying degrees of success. More recently 

Gersten 2 (1961) has published a non-linear theory that in principle is applicable to any planform 

in steady incompressible flow; the theory uses the linear equations of motion, but introduces terms 
involving the square of the incidence. Gersten ~ (1961) has also reviewed the theoretical background 
to his work, and in both Refs. 2 and 3 experimental results are given to support his theory and justify 

its simplicity. 
The present work envisages an extension of the theory to the problem of unsteady flow past 

slowly pitching wings about a high mean incidence. Whereas Gersten associates his theory with the 
linear lifting-surface theory of Truckenbrodt ~ (1953), our extension of the theory requires the 
substitution of Multhopp's 5 (1950) linear theory in place of Ref. 4. During the course of the work 
it has become apparent that a critical appraisal of the steady theory should precede the publication 

of the unsteady theory (Ref. 6). 
After a general description of Gersten's theory (Section 2), its formal combiiaation with Multhopp's 

theory is set out (Section 3). Considerable difficulties have arisen in specifying a numerical 
procedure, and the scheme devised for non-rectangular wings in Section 4.2 differs significantly 
from that used by Gersten. The convergence of the theoretical results and comparisons with 
experiment are discussed in Sections 5 and 6, which clarify the imperfections and achievements 

of the theory. 
From the numerical standpoint the combined method is criticised on two counts. The approximate 

treatment of the central root section in Multhopp's theory assumes greater importance in the 
present application and becomes a likely source of error. Perhaps more serious is a singularity in 
the non-linear part of the boundary condition at the tip section, that would lead to divergence if 
the number of solving stations were increased indefinitely. For wings of very low aspect ratio both 
these criticisms can be avoided, if linear slender-wing theory is used and an approximation in 
Gersten's theory is removed (Section 7). There remains, however, a further criticism, that Gersten's 
mathematical model precludes the rolling-up of vortex sheets. When this occurs near the  leading 
edge, as it usually does in the case of swept wings, the calculated load distributions are unrealistic. 
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Nevertheless the present method gives reliable predictions of overall steady forces in incompressible 
flow, and it is worthy of further development (Section 8). 

2. Gersten' s Theory. 

2.1. Mathematical Model. 

One of the earliest }heoretical methods for determining non-linear effects of incidence is that 
developed by Bollay 1 (1939) for rectangular wings. The mathematical model, adopted by Bollay, 
has a continuous distribution of vortices trailing from the wing tips along straight lines inclined 
at an arbitrary, but constant, angle to the wing surface; this implies a uniform spanwise loading 
and flow separation at the wing tips. Bollay assumes that the aspect ratio is small, and he determines 
the strength and inclination of the vortices from average conditions that the flow is tangential 
along the centre-line and that the trailing vortices follow the streamlines initially. It can be seen 
from his iterative solutions in Fig. 13 of Ref. 1 that for very low aspect ratios the trailing vortices 
are inclined above the wing at an angle approximately equal to ½~; for finite aspect ratios (A < 1) 
the angle of inclination is 10 to 20% larger. 

Gersten ~ has ger/eralised Bollay's model by allowing the wing planform and its loading to be 
qu i t e  arbitrary, and he specifies that the trailing vorticity is shed from each point of the lifting 
surface at an angle of exactly 1~ to the plane of the wing. If we regard the wing as consisting of 
infinitesimal lifting elements, then Gersten has in effect applied Bollay's mathematical model to 
each lifting element. The condition of tangential flow is to be satisfied, but the streamline vortex 
condition is relaxed. A simple representation of Gersten's mathematical model is shown in Fig. la. 

The wing is without thickness and at a positive incidence ~. All the vorticity is shed instantly in 
planar sheets above the wing inclined at an angle 1~ to the surface. Thus rotational flow occurs 
throughout a wake of finite constant cross-section, illustrated for various planforms in Fig. lb. 
Nevertheless the flow at the wing can be built up as a superposition of elementary potential flows 
corresponding to planar vortex sheets. In reality flow separation involves singularities along 
separation lines in the wing surface, where free vortices originate. In the mathematical model it 
is supposed without physical justification, that the free vortices are shed at all points of the upper 
surface; moreover, there is a discontinuity of .~ 1 between the tangential surface flout and the 
direction in which the vorticity is assumed to be convected. Whilst the initial choice of angle ½~ 
is suggested by the results of Bollay's low-_aspect-ratio theory, there is no flow condition that can 
be applied as an independent check on the angle. 

The development of Gersten's theory is such that an arbitrary angle could be inserted to replace 
½~ as a final step in the solution. There are reasons for supposing that the angle will be a decreasing 
function of Mach number. But for incompressible flow the value ½c~ can be justified empirically 
by the comparisons between measured and calculated lift (Section 6). It should be noted that to 
the first order in ~ the mathematical model reduces to a vortex arrangement in the plane of the 
wing in accord with linear lifting-surface theory. 

2.2. Upwash Field from Linear Theory. 

The equations of linear theory can be formulated under the following assumptions. The wing 
is of negligible thickness, but may have small arbitrary incidence, camber and twist whose squares 
can be ignored: the free stream is inviscid, incompressible and of uniform velocity U: the squares 



and products of the non=dimensional velocity perturbations u/U, v~ U and w~ U are negligible: the 

flow is irrotational outside the vortex sheet formed by the wing and wake. With these assumptions 
the vortex sheet can be considered in a plane z = 0, and its strength can be determined from the 

boundary condition that the upward induced velocity 

w(x, y, 0) = - U~(x, y) = U -Dz(x' y) , (1) 
3x 

where z = z(x, y) is the equation of the wing surface and x is measured in the direction of the 

free stream. 
Let F(x', y') be the strength of the vortex sheet which, under the linear assumptions, corresponds 

to a lift per unit area 

ap  = ~-0Wl(x ' ,y ' )  = p U r ( x ' , y ' ) .  (2) 

I t  can be seen from equations (4), (10) and (12) of Ref. 5, that the upwash field is 

w(x, y ,  z)  = 

where 

K = o ~ z  - #  dxwi thr  2 = ( x - x ' )  2 + ( y - y ' ) ~ + z  ~ 

= [ ( ~  -7- z2] 2 1 + r (3'-Y')~ + z~ \ ~ / "  (4) 

In the plane of the vortex sheet equations (3) and (4) become 

ff E 1 P(x' ,y')  1 + 
w(x, y, O) = Wo(x, y) = -4~ ( y _  y,)2 {(x_ x,)g ~_ ( y _  y,)~}g,.j dx' dy' , (5) 

where the principal value of the integral through y '  = y is defined in Appendix I of Ref. 5. From 
equations (3) and (4) the upwash w(x, y, z) is clearly al-/ even function of z. Superficially it may 
appear that w can be expanded in even powers of z, bu t  there is in fact a term in Iz[. This  follows 
from equation (A5) of Appendix A, which will be seen to form the basis of Gersten's  theory. 

2.3. Basic Equations. 
Equations (1), (2) and (5) combine to give the integral equation of linear theory, from which the 

non-dimensional wing loading I(x', y') is determined as a linear function of the incidence. These 
equations are not very restrictive in ~, since linear theory can be a good approximation in cases of 
unseparated flow at fairly high incidence. Gersten's  theory is only non-linear in a restricted sense. 
In so far as they Would affect equation (2), squares of u/U, v~ U and w/U are still neglected. When  
Gersten's  mathematical model applies, the upwash field will involve terms in ~2, while those in 

a3 are neglected. 
As shown in Fig. la, the rectangular axes Ox, y, z are referred to an origin of co-ordinates at 

the leading edge of the centre-line. It  is convenient to take the z-axis normal to the elementary 

vortex sheets, so that they lie in parallel planes z = z' and the wing lies in the plane 

z = - ( 6 )  



If  F(x, y) denotes the strength of a vortex sheet in the plane z = z', then the neighbouring upwash 
field from equation (Ah) of Appendix A is 

w(x, y,  ~) = Wo - ½ [ ~ - ~' I ~ + 3y- q ~ r(Xo, y )&o + o ( z -  ~,)2, (7) 

provided that F(Xo, y) is a sufficiently well-behaved function. The  elementary potential flows 
correspond to a bound vortex of strength 1 , x' ~ U l ( x ,  y )Sx '  at x = and the associated trailing vorticity 
in the plane z = ' z '  = 1 , 

• - ~ x .  Thus  the elementary vortex sheet is defined by 

P(x, y) = 0 x < x' ~ 

; J r(x0, y)&o = ½ ul(x', y)a~' . > x' (8) 
- - o O  

Since ~P/3x = 0 for x > x', equations (7) and (8) combine to give an elementary contribution 

32 
8w(x, y ,  z)  = 8 %  - ½[z - z'] ~ [½Ul(x', y)] 8x', when x' < x ; 

as explained at the end of Appendix A, 

3w(x, y ,  z)  = 8%, when x' > x outside the range of integration. 

Integration with respect to x'. gives 

U f x  32 w(x, y ,  z)  = wo(x, y ) - 4 -co Iz - z'[ ~y2 [l(x', y ) ]dx ' ,  (9) 

where z' = - ½c~x' and on the wing surface z = - ½~x. Thus  by equations (5) and (9) 

l r  X ' '~  X - -  X '  

w ( x , y ,  - ½ax) = g ( y _ y , ) 2  {(x_x,)e _7 (7_y,)~},~/&'as' - 
N 

[; 1 S a  3 2 l(x', y ) ( x - x ' ) d x '  , (10) 
8 3y 2 x~ 

where S deffotes integration over the wing planform and x = xl(y ) is the equation of the leading 
edge. 

Referred to the axes of Fig. la the free-stream velocity is 

(U  cos ½% 0, g sin ½~) = (g ,  0, ½ g~) .  

By equation (6) (½% 0, 1) represents a normal to the wing surface. The  local velocity 
( U  + u, v, ½ U~ + w) is tangential to the wing, if 

w + ½u~ = - U~. (11) 

The  term lua  in equation (11) may be neglected, since the element (8) contributes 

3 
a. = (a~)o=~, + ( ~ -  ~') ~ (a.) + o ( ~ -  ~')~ 

3 (aw) + o(~-~ ' )~  = 0  + ( z - z ' )  ~ 

= 0 ( ~ ) .  
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Therefore the boundary condition to replace equation (1) is 

• 3z ½-V~ (12)  w(~,  y , -  l ~ x )  = _ ~ = c U .  - " 

The term U 3z/ax may include linear terms in camber and twist, just as they would occur in 
equation (1); but Gersten's mathematical model implies that their products with incidence are 
negligible. 

The final integral equa.tions are obtained from equations (10) and (12) by writing 

l(x', y') = odl()', y') + o,~l~,(x ', y') (13) 

and equating tile terms in ~ and ~z. By equation (13) the lift and pitching moment become quadratic 
functions of ~. 

It is stressed that the approximation in equation (7) is distinct from that associated with Gersten's 
mathematical model. Both approximations are necessary in order to achieve a tractable method for 
a wing of arbitrary Planform. At first sight equation (10) suggests that, since w/U = O(a) and the 
last term is O(c~2), terms in (w/U) 2 cannot be neglected consistently elsewhere in the analysis. 
There is, however, some justification, when the aspect ratio A is not large; then the last term of 
equation (10) becomes appreciable at fairly low incidences, well within the accepted range for the 
linear theory of unseparated flow. We may regard this term as O(o~2/A) and quite distinct from 

'smaller terms of order (w/U) 2 that arise independently. 

3. Formulation of Present Method. 

From the account of Gersten's non-linear theory in Section 2 it is clear that any linear theory 
can l~e used as a starting point. The present method results when Multhopp's 5 lifting-surface 
theory provides the linear basis. 

3.1. Multhopp's Linear Theory. 

The linear boundary condition from equations (1), (2) and (5) is 

if I + -  +' 7 + , + ,  
w 1 l ( x ' , y ' )  1 + 

~(~' Y) - u = 8 ~  ( y - y ' ) ~  { ( ~ -  ~ ' ) ~ - 7  ( y - y ' ) ~ } , ~ J  
S 

which corresponds to equation (15) of Ref. 5. At each section y '  the chordwise loading is expressed 
as N( ~< 4) terms of a series 

8s 
l(x', y') - rrc(y') [Y(Y') cot ½¢' + 4/*(y') (cot ½¢' -  2 sin ¢') + 

+ K(y') (cot ½¢' - 2 sin ¢' - 2 sin 2¢') + 

+ )t(y') (cot ½¢ ' -2  sin ¢ ' - 2  sin 2 6 ' - 2  sin 36')]. 

Here s is the sem!-span of the wing, and 

x' = x,(y') + ½c(y') (1 - e o s ¢ ' ) ,  

where c(y') is the local chord and xz(y' ) is the ordinate of the leading edge. 
The chordwise integration of equation (14) gives 

s f s  y i + l ~ j + K h + M  
~(x' Y) = - 2-g _s ( y -y ' )~  + "  

(is) 

06) 

(17) 



introducing influence functions i(X, Y),  j (X,  Y), k(X, Y)  and I(X, Y); for example, 

X - .~(1 - co s  ¢ ) 
(cot ½¢' - 2 sin ¢' - 2 sin 2¢') 1 + [ { x - T ( 1 - - ~ - ° s ¢ ~  2-T Y~]~/~ s ine ' de ' ,  zc(x, Y)  = _1 r / -  

, J  0 

where 
/ 

(18) 

Y = ( y - y ) / 4 y  ) 

Multhopp's original work is restricted to N = 2. It may be noted that, if N = 3 (i.e. A = 0), then 
all three influence functions can be evaluated from Ref. 7; i and j are tabulated explicitly, and the 

formula 
k = 2 i - ~ - j - 2 j j  

gives k in terms of these and jj  which is also tabulated in Ref. 7. In practice, a mechanized 

programme is used to compute the influence functions. 
The spanwise integration of equation (17) is achieved by Multhopp's technique of interpolation 

in which the functions V,/*, K, ;~ are represented by polynomials in terms of their values at the m 

collocation stations 
7 r n  

y'  = s% = s s i n - - ~ [ n  = 0, +1, _2  . . . .  _+½(m-I)], 
m +  

where m is an odd integer. Thus 
( m - 1 ) H  

e~(x, y,,) = a,(x) = b,(7i+tz]+ Kk+ ki), - E '  b,,~(ri+tzj+ ,&+ M),~, (19) 
- ( m -  1)/° 

where 
m + l  

b~ - 4~ / (1 -~2)  / 

~/(1-W~2) Iv - n I = 1, 3, 5, ) '  - (20) 
b~,~ = (m+ 1 ) ~ , 7 - -  ~ )  ~ ' "  

= 0  I"-*A = 2 , 4 , 6  . . . .  

the suffix v denotes that y = sr b = s sin {vrr/(m + l)} [v = 0, _+1, + 2 , . . .  ___-~-(m-1)], and £ '  
denotes that the value n = v is not included in the summation. There are logarithmic singularities 
in the derivatives of i,j, k and I with respect to Y, which contribute to the first term of equation (19); 

following Mangier and Spencer 8 we obtain 

(ri + A + K~ + ~i)~ = ~,~, + ~,], + ~,g  + ;U, , 

}iT = 

= 

a o - 

where 
s)2 4G. 

_2(¢+sin¢) + 7~ w sin ¢ ( 1 -  cos ¢) 7/" 

_ 2 (sin ¢+½ sin 2¢) + 7~ G~-nT(17-cTs N 
7T 

s)  2 4(7i,,(3 cos 2q~ - 2 cos 3¢) 
_2 (½ sin 2¢ + 1 sin 3¢) + 7,, 7 s~-n ¢O Z ~os ¢) 
7g 

( s )~  4Gd4 cos 3 ¢ - 3  cos 4¢) 
_2 (½ sin 3¢+¼ sin 4¢) +. ~ ~s~-n ¢~7c-os¢)  
77" 

1 4 ( , , , - l ) / e  
m +  l ( lOg~2+½- rb~)+ im+  e Y~' (1 -%2)  1og~[,,,-%.[ 1) -(,,~- 1)I2 

= (.~)~ + ½~(1  - c o s  ¢ )  

(2~) 
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At the kinked central section of a swept  wing, Multhopp evaluates equation (19) for an 'interpolated 
wing'  (Ref. 5, ~ Section 5.3), such that x~(0) = 0 and c(0) = c,. are replaced respectively by 

5 1 (22) 
C O = ~ Cr + 6 Cl 

in  terms of the neighbouring collocation station n = 1. 

With the aid of equations (18) to (22), equation (19) can be evaluated for arbitrary x. By choosing 

2 p ~  
¢~ - 2 N  + 1 (p = 1, 2 , . . .  N )  (23)  

and hence 
x = x~0~ = (xt), + ½c,(1-cos Cv), (24) 

and specifying the values of a(x~,  y,) for the m N  pairs of values (p, v), we derive the linear solution 

by collocation from a set of linear simultaneous equations for the m N  variables 7~, /&, etc. The 
local lift coefficient at ~/ = % and centre of pressure measured as a fraction of the local chord from 
the leading edge are respectively 

4s7% 
CLL - (25) 

gn 
and 

Y c l  - 

( X ~ , ) o  = 

The total lift coefficient is 

cL= 

1 /z~ (nO O) } 
4 y~ 

1 (x31 + Co - 
Vo 

(26) 

e L L  - d~ = A y d v  
-i g -i 

~rA (m- ~ )/2 
- 52 y~V(l - ~ , / ) .  (27)  

m + 1 -(m-1)/2 

The  total pi tching-moment coefficient about an axis x = x 0 is 

A fi = - ~(Xo - x z -  X ~ / ) d v  
-1  

,/7-A ( m -  t)12 
- ~ (m + I) Z [k%c~ + y~{x  o - (x~),~ - ~%}] 1 / ( 1  - % 2 ) ,  (28)  

- ( m -  1 ) / 2  

where the aerodynamic mean c h o r d  

; /;o g = c2d~7 c d v (29) 
o 

and the aerodynamic quarter-chord axis corresponds to 

; /f: x o = (x z + ~c)c &) c d~ 1 
0 

10 

= ~ +  1~ 
(30) 



Hence 

- (m+l)rrA (m-1)/2 I c % { Nz-(xt)'~ c - % / - ]  C,~ E /z~-7 + V,~ - + V ( 1 -  ~,~2). (31) 
-(m- 1)t2 g 4~ JJ 

3.2. Non-Linear Theory. 

In the notation of Section 2 the load distribution is expressed as 

og 

xl 

where 

l = 11~ + 111~ 2, (32) 

where ~ is the positive uniform incidence of the wing. Then  by equations (10) and (12), l I is precisely 
the linear solution from Section 3.1 with e~(x,y) = % = 1. The  terms in ~2 in equation (10) lead 
to a similar integral for lll which is identified with the linear solution for 

= - i~(.', y) ( ~ -  ~ ' ) & ' ,  (33) ~(*,y) %1 8ay~ +, 

where l 1 is given by equation (15) with y(y ' )  replaced by Yl(J) and so on. Hence 

ll(x', y ) ( x - x ' ) d x '  - 2sc(y) [rlCy)6(¢) + ~l(y)&(4) + ,q(y)Kl(¢) + ,q(y)L,(¢)], (34) 
77 

Therefore 

where 

f ¢  4 ' -  I1(¢) = (cos cos 4) (1 + cos ¢')d¢'  
0 

f f  ¢' 4' J1(¢) = 4 (cos - cos 4) (cos + c o s  24')d¢' 
0 

f ¢  4 ' -  
K1(¢) = (cos cos 4) (cos 2 4 ' +  cos 34')d¢' 

0 

f 0  4 ' -  L1(¢) = (cos cos 4) (cos 34' + cos 44')d¢' 
0 

(3s) 

1 32f 
%1 - 27rA ~ '  (36) 

C C~___I C//'I CK 1 C~ 1 f = I~(4) + -2- J1(4) + ~ K~(4) + - -  LI(¢),  c g 

cyl/g, c t q / g , . . ,  are specified by their values at the collocation stations ~ = ~7,, = sin {urr/(m+ 1)} 
and 4 may also depend on ~7 through the relationship 

x = x~(~) + ½c@) (1 - c o s  4)- (37) 

The  evaluation of %l(xp, ,y ,)  is considered in Section 4 and needs special care. The  values at the 

m N  collocation points are substi tuted in equation (19) to determine the numerical values of 

Yll, Ittll' Kll and Aal and hence 

111(x, %) = --8S [(7rt)ll cot ½4 + (/*~)n (cot ½4 -- 2 sin ¢) + 
" 7rC~ 

+ ('%)11 (cot ½4 - 2 sin ¢ - 2 sin 24) + 

+ (h,~)11(cot ½4 - 2 sin ¢ - 2 sin 24 - 2 sin 34) ] . (38) 
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It remains to determine e L L  , Xcp , C L and C,~ by setting 

7~ = ( ~ ) ~  + (r~)11~ ~ ] 
(39) 

J ~ ( , . ) ~  + ( , . )~i~ ~ 

in the respective equations (25), (26), (27) and (31). The lift and pitching-moment coefficmnts are 
conveniently written as 

C L = alo~ + allO~ 2 ] 

J 
o 

C m mlo~ + mllo~ 2 

The spanwise lift distribution is obtained as 

C C z z  

6Cz 

and the local centre of pressure 

Xcj1) 

(X~po = 

93" 

is 

2(m+ 1){(~)1 + a(Yn)n} 
(m-l)/2 

E 
- (m - I )/2 

1 (~)~ + ~(~)~' (n ¢ 0) 
4 (~)~ + ~(~)1~ 

c,_ g (~')~ + ~o (~'o)~ + 4 r o ) i d  

(40) 

(41) 

(42) 

4. Methods of Calculation. 
4.1. Rectangular Wings. 

In the particular case of a rectangular wing the evaluation of equation (36) presents little 
difficulty. We have 

1 0 ~ 
%~ - 2rrn 072 [v,I~(¢) + ff~J~(¢) + ,clK1(¢) + )kL~(¢)], (43) 

where ¢ is independent of ~7. The integrals (35) give 

1 1 . 
I1(¢) = - ¢ cos ¢ + ~ ¢ + sin ¢ - ~ sin ¢ cos ¢ 

4 sina ¢ J1(¢) = 2¢ - 2 sin ¢ cos ¢ + ] . (44) 

1 sina¢(1 + cos ¢) z q ( ¢ )  = 

1 sina¢( 1 + cos 6) (6 cos ¢ -  1) L1(¢) = ]-5- 

The second derivative of the function f in square brackets in equation (43) is evaluated by means 
of Multhopp's interpolation polynomial 

(m-nm ( -  1) n+l sin (m+ 1)0 sin 0~ 
f(~) = ( -  1) (m-1)t2 X f,~ , (45) 

,~=-0~-,)/~ (m+ 1) (cos 0 - c o s  0n) 
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where ~7 = cos 0, % = cos 0~ = sin {mr/(m + 1)} and f~ = f ( ~ ) .  Double differentiation and the 
substitution fl = ??. gives 

(~v~ . "-:>'" / sin 0~cos 0. 
07~2], ,,=--(m--1)Z2Z ( -  1)"-~f~ [ sin30,~o~-0~Z c0-os 0~) (46) 

w h e r e  the coefficient o f f ,  needs special care and is found to be 

2 sin 0~ 
sin 0.(cos 0.-cos 0~) 2 ] ' 

sin20. - 

Since w e  are concerned with symmetrical spanwise loading, f_~ = f~ and equation (46) gives 

where 

i ) . I  I 2 t [ F"°(v#O) = ( -  t (1 -T .~)  a/2 v.~/(T-v.~)J 
2 2 1 2 2 ._~ 7. V (  - v ~  ) ( , .  + ~ )  4 ~ / ( 1 - ~ )  t F.~(;¢n) (-1) {(~-7:-~:~-(~-U :-~Z~)~U-~Z)j 

- + - -  - ( m + l p +  

1 1 
F°° - 3  3 ( m + 1 )  2 

(47) 

The required incidence at the collocation points 

is readily evaluated from values of f at the ½N(m + 1) collocation points on the half wing. The  

function F,~ is tabulated in Table 1 for m = 7, 11 and 15. Apart from some errors in computation, 
Gersten's  coefficients d2n in Table 4 of Ref. 2 are equivalent. For  rectangular wings his method of 
calculation is essentially the same as the present one. 

4.2. Non-Rectangular Wings. 

The evaluation of equation (36) for other planforms is more complicated, It is simplest to r e g a r d f  
as a function of the two variables ~7 and - ½  cos ~, so that by equation (37) the partial derivative 

( • )  
x=const. 

Then 

can be expressed in terms of 

HI t 

' I } . . . .  cos 4) O(-½ (48) 
U~ ~=oo~. ~ t d~ + ~ d~ cos 4)" 

= f ' ,  say, 

ordinary derivatives 

dxz c' dc (cy:~' 
=~' =~' w :  = 

. (C l) 
~ , I /  - -  

d/1 
d ( -  1_ cos 4 ) '  etc. 

1 3  



Thus  from the expression for f in equation (36) 

where 

A [ syl I ' 3/Zl $':'1 3A1 / 
I ~" 1 q - (  -JI'-I-~KI'+-LI'c ( J ' tan 

s tan A = xt' + ½c'(1 - c o s  4) 

(49) 

and A is local angle of sweepback of the line ¢ = constant: I1, J1, K~ and L 1 are defined in 

equdtion (44) and their derivatives with respect to - ½ cos ¢ are 

C =  a f t  0 

K 1' = 2 f ¢  
o 

L 1' = 2 f ¢  0 

(1 + cos ¢')d¢'  = 24 + 2 sin 

(cos ¢' + cos 2¢')dqV = 8 sin ¢ + 4 sin 2¢ 

2 
(cos 2¢' + cos 3¢')d¢' = sin 24 + ~ sin 3¢ 

2 1 
(cos 3¢' + cos 4¢')d¢' = ~ sin 3¢ + ~ sin 4¢ 

(50) 

The difficulties of the central kink of sweptback wings and Mul thopp 's  use of an 'interpolated 
wing'  in equation (22) are partly overcome by putting f '  = 0 at the centre section ~1 = 0; this 
follows from the smooth spanwise symmetry of the load distribution. To  obtain numerical values 
o f f '  at the other collocation stations, the first term of equation (49) is evaluated by putting 

f = P(Iwl)(1-¢)~ along ~b = constant,  (51) 

where P is a polynomial in ]~7[ having the required values P~, at 

Then  f o r ~ / > 0  

nTr 
*/ = fin = sin [n = O, 1, ~-(m-1)] .  

m + l  " ' ' "  

f=( : - , ' )~  z (,-~,)/ n~ (,~-,,), 
n=O t=O = 

( m -  1)t2 

where I I '  denotes the product  of the ½(m-1)  values excluding that for t = n. It follows that 
t = 0  

at the collocation station ~7 = ~/p(v#0) 

with 

= Z G(~)(  (52) 
--*,?i, d ql 

¢ = c o n s t .  ~ = 0 

O?z-- 1)/2 / 1 
G~) = 2q~ + E' 1 

1 - -  ~12 n = o  7 . - - ' r b ~  

~<~) = I-I" ( , ~ - , , )  I-l_' ( , , , ~ - , , )  
-'" \ 1  - ~ 2 ]  t=o t=o 

(53) 
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( m - 1 ) / g  ( m - 1 ) / 2  

where Y,,' denotes that n = v is not included in the summation and ~1" denotes that t = n 
n = 0  /=0  

and t = v are both omitted in the product. The value of q depends on the form of f near the tip 

and will normally be a multiple of ½. With the aid of equation (49) we obtain 

where 

0;~-- 1)12 t f~ '=  Z --.~G(q)./'.. - f ~  tan A,, (v # O) 
n~_O 

f 0 , = 0  
(54) 

"[~ = I1 + -7- .11 + -7- K1 + - -  L1 
C { Y=~ln 

t 1 t s tan A~ = xt~ + ~c. (1 - cos ¢) 

The second differential 

f , ,  , 3/ ,  = - - tan A (56) 
\3,7 ] ~=oon~t C 3 ( -  ½ cos ¢) 

requires special care. We use the numerical definition o f f '  in equation (54) to evaluate the first 

term; for ~/ = 0 the second term vanishes, but for n # 0 differentiation of equation (49) gives 

s/, t s ~i ski 
s I I ' + ~ - J I ' + - z - K I ' + - - L I '  - 

c c 

{ ~  + Sl~lJl"SK1K1 "s )~ l  } +  A tail /1" -=- ~ -  + ~ -  Ll" . 
g g c 

After some cancellation this may be written conveniently as 

I~ 3f' l : f~' : F~-I -- J~ tan A~ t 3( - ½ cos ¢) ,~=,~ L ~d,~=,,~ 

(m-1)12  

,~--0 G}'q'' f~ - ]" tan A~ ) 

where f= and tan A. are defined in equation (55) and 

- [s~Yl I " s2/q Jl" s2K1 K( '  s2kl ] 
_J *]=Yv 

-[1" = 4 cot ½¢ "~ 

31" = 16(cot ½ ¢ - 2  sin ¢) 

KI" 4(cot ½¢ - 2 sin ¢ - 2 sin 2¢) 

LI" 4(cot ½¢ - 2 sin ¢ - 2 sin 2¢,-  2 sin 3¢) 

(57) 

(58) 

(59) 

with 
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Then equations (56) and (57) give 
019,-- 1),/2 

~(~") ( ' - (60) f / '  = ~ ~,,,,, j~ - f / t a n A , , ,  

where f / i s  defined in equation (54), f0' = 0 and for v =# 0 f / i s  defined in equation (57). 
As remarked below equation (53), the values of q, q' and q" in equations (54), (57) and (60) depend 

on the behaviour of the respective functions f, f and f '  near the tip. As in the linear theory and 
implied in equation (45), Y1, /'1, K1 and A 1 are supposed to be proportional to ~ / ( 1 -  72) as 7 ~ 1. 
but the tip shape will affect the appropriate power q in equation (51) according to the following 

table: 

Tip shape 

Streamwise 
Parabolic 
Triangular 

# 0  
oc 7)  
oc (1 - 7)  

.1_ 
2 

1 
1½ 

q' 

2 
--1 
2 

q" 

The values of G ~  for q = - ½, 0, ½, 1, 1½ are given in Table 2 for m = 7 and in Table 3 for m = 11. 

T o  obtain the values of 
1 

~(x~, y~) = ~11(7,, ~ )  = 2~Af/(~I~)'  , (61) 

it is necessary to substitute the appropriate values of $1) from equation (23). The local sweepback 

is given by 

(62) 1 t 1 - -  COS stanAp = x~ + ~c~ 2 N + l ]  

The numerical quantities I1, J 1 , - . - f o r  N = 2, 3 and 4, and their first and second derivatives 

I / ,  I1", . . . are given in Table 4. 
Unlike the procedure in Section 4.1, the present method of calculation for non-rectangular 

wings differs significantly from that used by Gersten 2. The differences are considered in some 
detail in Section 6.2, where separate calculations for a constant-chord swept wing are discussed. 
By appealing to spanwise symmetry, such t h a t f  0' = fo '  = O, we do not need to consider the values 
of A 0 at the centre section. In fact the 'interpolated wing' only enters explicitly into the evaluation 
of %1 through equation (54) and the dependence of f0 on c 0. No rigorous treatment of the central 

kink is possible, but the procedure now adopted seems to be the safest. 

4.3. S u m m a r y  o f  Me thods .  

The non-linear theory of Section 3.2 involves the numerical procedures associated with 
Multhopp's linear theory and the evaluation of %1 from equation (36). Digital-computer programmes 

exist for converting linear equations (19) into a matrix equation 

= [ A ] { l } ,  

where [A] is a square matrix of order ½ N ( m  + 1) in cases of spanwise symmetry. Thus the linear 

solution for the loading is given as 

{zl} = [A-1]{M. 
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The additional computations for the non-linear theory involve a matrix operation 

{~1~} = [ C l { / d  

corresponding to equation (36) and finally the matrix product 

{11~} = [ A - q { ~ } .  

In other words, by equation (32) the non-linear load distribution is 

{l} = [A-1]{O~l}g -~- [A-1CA-1]{Odl}O~2, 

where {%} is a unit column corresponding to uniform incidence. 
For rectangular wings the operation [C] is formulated in Section 4.1 and reduces to 

where 

(63) 

1 (m-- 1)12 

%~(~b, ¢~,) = - 2rr---A Z F ~ f ~ ) ,  (64) 
~=0 

~=0 
(m--1)12 

L j =  Z 
7~,=0 

fo~ '  = /0.~' = 

(7(qO £ -- fvp  t a n  A,p 

0 

fn:p ---- (Yl)n/l(¢~o) -1- ( / x l )n J l (¢p )  -1- (K1)nKl (¢p )  -}- (hl),~L~(¢p), 

ep = 2~rp/(2N+ 1); 

Fun is given in Table 1 for m = 7, 1I and 15, and I1(¢~), J~(¢,~),... are tabulated for integral 
values of p = 1, . . .  N in Table 4. 

For non-rectangular wings the corresponding operation in Section 4.2 is rather more complicated. 
A worked example is given in Appendix B to clarify the steps of the computation. Rearranged in 
order of computation, equations (54) to (62) become 

tanA,  p 1 Vdx,+½dc (1 -cos  Cs)] "l 

L~ = ~ [(rl)J~(¢P + (~),,]~(¢~) + (~I),KI(¢p + (,h)J-,l(¢,,)] 

- , S  . 

f,,~ = ? [(rl)J~ (¢~) + (,~)#1'(¢P + (~OJq'(¢P + (~),L?(¢p] 

= 3 9. 

fv~0 m e~; [(~/1)v/ltt(¢P) "~- (/A'l)vJltt(¢P) -1- (~I )pKI"(¢I° )  q- ('~l)vL1/t(¢2))] 
, (65) 

(m-1)l~ 

1 
G~2 f~p - f;p tan A,p 

v = 1, 2 , . . .  ½(m- l )  

1 y ] 

where G~ q) is given in Tables 2 and 3 for m = 7 and 11 respectively, q takes values q, q' and q" 
according to tip shape (Section 4.2), and I~(¢p), I~'(¢p), Ii"(q~), etc. are tabulated for integral 
values of p = 1 , . . .  N in Table 4. Given [d -~] and [A -1] {%}, the last term of equation (63) can 
be calculated and checked on a desk machine in about 0.01N2(m+ 1) 2 hours. That is to say, a 
non-linear solution for re(N) = 11(3) will involve about 2 days' extra computation. 
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It should be noted that the method of calculation for non-rectangular wings does not reduce to 

that for rectangular wings when we substitute A~p = 0. Equations (65) then become 

1 V ('~-~)/2 (:~=i Cdll('T],u' (fi3')) = 2~'A L "t~=l G~I/g) { 12 I~T(I['2) : I] • ~,, .,.~ jj (66) 

instead of the more precise equation (64). However, the Values of ~11 from equations (64) and (66) 

only differ by at most ~% of the mean value of ~n. 

5. Numerical Results. 
In order to apply the present method to any planform, it is first necessary to use Multhopp's  5 

linear theory, as described in Section 3.1. This involves the choice of m, the number of collocation 

stations across the span, and N, the number  of terms in the chordwise loading of equation (15). 
Having obtained from equations (19) the linear solution Yl, /zl, • . • for a uniform unit  incidence, 
we follow the procedure of equation (64) or (65) to evaluate ~1. It  remains to obtain the linear 

solution 711, /xll, • • • for ~ = %1 and then the loading characteristics from equations (39) to (42). 
Calculations have been made for eleven wings and five types of planform, as listed in Table 5. 

The rectangular, constant-chord and complete delta wings are adequately defined in Table 5. The 

gothic wings only differ in their semi-span s = {Am; otherwise the planform is defined in equation 
(B1) of the worked example in Appendix B. The leading edge x~(~/), chord c(~)) and semi-span of 

tl~e ogee wing are defined by the equations 

( 1 
c,. \64 

C ~ C v --X l 

S ,~ Ic r j 

(67) 

where c, denotes root chord. The lift and pitching moment,  referred to the aerodynamic quarter- 

chord axis, are expressed as coefficients in equation (40), viz. 

e L = alO~ + allOd 2 ] 

O m = mlo~ + 77:/11 ~2 ] ' 

and the numerical values of al, ml, all and m11 are given for each wing in Table 6. 

For certain rectangular, gothic and delta wings the calculations have been carried out for more 

than one pair of values m(N). As would be expected, the lift slope a 1 is not sensitive to the choice 

of re(N) and m 1 shows only slight dependence; the results for re(N) = 11(3) are presented 
graphically against aspect ratio in Fig. 2 to illustrate the effects of planform. 

The  tabulated I values of a n and mll for rectangular wings show negligible dependence on N, 
but all has an important and systematic variation with m. The results by the present method, 
plotted in Figs. 3 and 4, all correspond to N = 3 and show the calculated effect of m. The dashed 
curves from Gersten's method are taken from Ref. 2 and appear to correspond to Truckenbrodt 's  4 
linear theory with m = 15. It should be noted that some of Gersten's published results are taken 
from earlier work (Ref. 9) involving a linear theory due to Scholz 1° for rectangular wings; for the 
sake of uniformity these results have been ignored. The comparisons between the dashed curves 
of a~l and m~t and the points × ) from the present calculations for m = 15 are most satisfactory 

for the rectangular wings. 
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Less satisfactory is the lack of convergence of a n in Fig. 3, as m is increased. There is, however, 

an analytical explanation, that the expansion of go in powers of [z - z' I is not valid at the wing tip 
where the loading is not differentiable; the treatment of slender-wing theory in Section 7 avoids 
this difficulty. The approximation in equation (10) becomes increasingly inaccurate as the wing tip 

is approached, especially when the tip chord is non-zero. Since the outermost collocation station 

= cos [Tr/(m+ 1)] approaches ~7 = 1 as m is increased, there is probably an optimum value of 
m for which the solution is closest to what would be obtained on the basis of Gersten's mathematical 

model without the approximation implied by equation (10). The authors consider that m = 11 is 
the wisest choice for wings of moderately low aspect ratio, for which the results of the non-linear 
theory become important. 

The dashed curve of a n for delta wings in Fig. 3 is taken from Gersten's results for slightly 
cropped tips. But the apparent discrepancies between his curves and the results of the present 
method for swept wings are mainly due to the differences in the method of calculation, mentioned 
in Section 4.2 and to be discussed further in Section 6.2. 

By equation (40) the ratio of incremental non-linear' to linear lift is 

f ~ -  a11°~2- ( an] ~, (68) 
al~ \ al / 

where c~ is in radians. The ratio f~ is plotted against ~ (in degrees) for various rectangular, delta 
and gothic wings in Fig. 5. An incidence of 15 ° and aspect ratio A = 1 may be typical of the take-off 
and landing of future slender aircraft; then, whatever the type of planform, about one third of the 
lift force acting on the aircraft may well be associated with non-linear effects of flow separation. 

The spanwise loadings and distributions of centre of pressure are calculated from equations (41) 

and (42) for four wings at ~ = 0, 10 ° and 20 ° in Figs. 6 and 7. It will be seen later that these results 
are of greater validity for rectangular wings than for swept wings, when the rolling-up of vortex 
layers has a marked effect on the spanwise load distribution, if not on the total lift and pitching 
moment. It is found in Fig. 6 that the calculated spanwise loading of the gothic wing is least affected 

by non-linear lift. In Fig. 7, on the other hand, all wings show a marked rearward movement in 
local centre of pressure as the flow separates. 

In Fig. 4 of Ref. 11, Thomas presents experimental data on non-linear pitching characteristics 
by plotting A2, the forward displacement of the centre of non-linear lift from the centre of linear 
lift, against x0, the linear aerodynamic centre. In the notation of the present method 

(¢ £ o  = X o - - -  = x t + ~  - 
a l  

~ = x 0 - x~ + a - - -  

a l l  a l l  / 
,(69) 

are particularly convenient parameters that may be evaluated from Tables 5 and 6. The quantity 
A~/l, where l is the chordwise extent of the planform, is plotted against xo/l in Fig. 8 from the 
theoretical results for the eleven planforms. Although these results for rectangular wings are virtually 
independent of m, those for the gothic and delta wings (A = 1) differ significantly for m = 7 and 
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m = 11. The longitudinal characteristics range from extreme stability for the most slender 
rectangular wing to a slight pitch-up for the delta and ogee wings about a rearward linear aerodynamic 

5 
centre. Corresponding experimental data are examined in Section 6.5. 

6. Comparisons with Experiment and Appraisal of Method. 
Before we consider the experimental data for the various types of planform, some general remarks 

may be helpful. It will appear that, provided leading-edge separation occurs well before maximum 
lift, the measured lift shows non-linear characteristics in accord with t h e  present method. In 
practice this proviso sets an upper limit to aspect ratio, that is particularly restrictive when the 
leading edge is rounded and the wing is thick. The experimental data will be subdivided into four 

groups, denoted by different symbols 

(i) from round-nosed, thick wings (0) 

(ii) from sharp-edged, thick wings (V) 

(iii) from round-nosed, thin wings (A) 

(iv) from sharp-edged, thin wings ( x ) 

The last three groups provide experimental lift curves in good agreement with the present method, 
while the points (O) from the first group usually lie closer to the linear theoretical curve. Except 
as stated in footnotes, the experimental data correspond to Reynolds numbers between l0 G and 

6 x 106, based on aerodynamic mean chord. 
The pitching moment, referred to the aerodynamic quarter-chord axis from equation (30), is a 

sensitive quantity that can seldom be estimated to close percentage accuracy; when linear theory 
is considered to be applicable, C~ is subject to significant effects of wing thickness. However, the 
present method will be seen to predict satisfactorily the non-linear trends. Often the displacements 
from experimental points (O) to points (V, A or x ) correlate with the displacements from the linear 

to the non-linear theoretical cuf.ves. 
Since the basic mathematical model of Fig. 1 has no physical justification, an appraisal of the 

present method cannot be divorced from experiment. Each type of planform is used to illustrate 
distinct facets. For rectangular wings the efficacy of the method extends to the spanwise distributions 
of lift and chordwise centre of pressure (Section 6.1). Results for a constant-chord swept wing 
(Section 6.2) serve to illustrate the differences between Gersten's original method and the present 
adaptation. The method can be applied to arbitrary planforms, and the curved-tip wings of Section 6.3 
are the most general that we consider. For delta wings the calculated spanwise distribution of lift 
is seen to be unreliable, while the total lift and pitching moment are in satisfactory agreement with 
experiment (Section 6.4). Section 6.5 gives particular attention to the prediction of the centre of 
non-linear lift and the aerodynamic centre of wings with unswept trailing edges. 

6.1. Rectangular Wings. 
Gersten's mathematical model was originally conceived for rectangular wings 9 (1957). As 

explained in Section 4.1, the present method is then essentially the same as those of Gersten in 
Refs. 9 and 2, except that Multhopp's linear theory has replaced those of Scholz 1° and Truckenbrodt 4 
respectively. We have varied the numbers of spanwise and chordwise terms, and the results in 
Section 5 are found to be dependent on the former, but hardly affected by the latter. 
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The solutions in Table 6 include aspect ratios A = 4, 2 and 1. As the upper diagram of Fig. 5 
suggests, for A = 4 the non-linear terms are quite small up to incidences associated with maximum 

lift. For A = 2 the stall is delayed, and in Fig. 9 the curves of C L against a and C m are compared 
with experimental data from Refs. 12 and 13 for thickness/chord ratios t/c = 0.092 and 0. This 

evidence favours the present calculations for m = 11 rather than m = 7. The non-linear lift and 

the trend in pitching moment are well predicted up to an incidence ~ = 14 °. The  same remarks 

apply to the rectangular wing of aspect ratio A = 1 in Fig. 10, except that the theory now holds 

good up to c~ = 20 °. The points(O)  from Ref. 12 for round-nosed, thick wings lie between linear 

and non-linear theory; on such wings only partial flow separation would be expected before the 
slope of the lift curve begins to decrease. 

The calculated and measured spanwise distributions of normal force coefficient CNZ are plotted 

in Fig. 11 for A = 1 and c~ = 7.8 ° and 19.4 °. The  points (O) lie closer to linear theory except 

near the tip, While those (A) for the thin wing of Ref. 13 straddle the results of the present method 

for m = 7, 11 and 15. One feature that commends the full curve for m = 11 is that it gives the 

correct spanwise location of the peak value of CNL near the tip. The  much sharper peak for m = 15 

is unrealistic and reveals the manner of the divergence of an, discussed in Section 5. I t  is unwise 

tO use the present method to satisfy flow conditions as near the tip as ,7 -- 0.981, where the 

approximation of equation (10) exaggerates the deficit in downwash velocity at the wing. It  will 

be seen in Section 7, that slender-wing theory can be applied satisfactorily to the mathematical 
model without  this particular approximation, 

The calculated and measured spanwise distributions of Xep, the local centre of pressure, are 
given for A = 1 and various incidences in Fig. 12. The only important  discrepancies are near 

~7 = 0, where for c~ = 14.5 ° and 19-4 ° the measured values from Ref. 13 exceed the calculated 
ones by 0.06. Just as for the spanwise loading in Fig. 11, throughout  the span the present method 

gives a marked improvement on linear theory. Moreover, in Fig. 12b the distribution of Xe~ is 
less sensitive to the choice of m than that of CNZ in Fig. 11. 

6.2. Constant-Chord Swept Wings. 
The present method of calculation for non-rectangular wings is described in Section 4.2. This  

differs from Gersten's procedure which amounts to a direct double differentiation of the expression 
in square brackets in equation (36) for ~7 > 0. For a wing of constant chord and sweepback equation 
(36) with N = 3 becomes 

1 0 ~ 
2~A an~ [}'J~@) + ~JI($) + ,~Zq($)] (70) 0~11 ~-- 

and equation (37) becomes 

- ½ c o s  = - - 
X 

½ - ½A~/tan A,  (71) 
c 

where c and A are now independent of ~7. Therefore in the present notation Gersten would calculate 
for any value of 

1 0 r/~71 ~t~l ~K1K ] }] 
a n  - 2~A ~ [_[ 0~ 11 + ~-~ 4 + ~ 1~ - ½A tan A(TJI' + t~J~' + K~KI'_ (72) 

1 + KI' + 

+ t A  tan2 A{7 ,Z l"  + + (73) 
A 
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The  differences arise, because linear theory fails to represent the central kink of a swept wing. 

A rigorous linear solution would lead to an expression in square brackets in equation (72) that by 

symmetry  would vanish identically at ~7 = 0. Our present method in Section 4.2 is an at tempt to 

minimise cumulative errors f rom this defect of linear theory by insisting that first derivatives with 

respect to y should be replaced by zero at ~7 = 0. 

We now simulate Gersten 's  method by admitting non-zero values of fo' and fo' in Section 4.2. 

Thus,  for wings of constant chord and sweepback equations (65) would give 

1 I('~-~)/:~ ~- ] 
- -  ~_~ ( ' ~ T ( - - 1 / 2 )  ~ t - -  f"IJ' tan A (74) 

%1(%, q~) 2zrA L ~ 0 ~"'~ J~ '  
where 

with 

f t  / 

L 3 ~  I 

(m-1)12 
E ~(~/~ ~ -f.2, tanA 

n = O  

( m -  1)/~ 

~(1/',.) t ~ ~ _ fp~ tan A 
n - -  0 

[v = O, 1 . . . .  ½(m-1)]  

= 
l 2 tt tt zt f.~, = ~A [(./1),I~ (q~p) + (/~l).Jx (~s)) + (K1);K x (~bz,)] 

I t t t 

LI ,  = [ ( r l ) . /1(~/9) "JF (#1).J1(~/)) -F ( g l ) . K l ( ~ p ) ]  

and the functions of qS~ in Table  4-. As for rectangular wings, Gersten 's  differentiations in 

equation (73) follow from the interpolation polynomial of equation (45); apart f rom minor numerical 

differences this would appear to be consistent with %1(%, 6~J) as given above. Th e  major effect of 

using Gersten 's  method or equation (74) in place of our present method in Section 4.2 is to 

introduce large changes in the distribution of %1 along the centre section. There  are minor differences 

for v @ 0, since f0' is no longer zero, as defined in equation (54) and the first term of the summation 

in equation (74) contributes a little. 

T h e  implications have been examined for A = 2 and A = 45°; in Fig. 3 the non-linear lift 

according to our present method with m = 11 is given by all = 1.93 and Gersten 's  corresponding 

value with m = 15 is a l l =  1.08, reproduced f rom Fig. 8 of Ref. 2. Since a direct comparison for 

the same m is not available, we have constructed from Mul thopp ' s  linear solution for m(N) = 1i(3) 

and equation (74) what  is to all intents and purposes a solution of 'Gers ten 's  theory (m = 11)' giving 

C r = 2.292~ + 0.77~ ~ 
, ( 7 5 )  

C,, = 0-202~ - 0.72~ 2 

where ~ is in radians. Just as for rectangular wings, the lower value all = 0 .77 for m = 11 would 

be expected. Similarly the non-linear pitching moment,  given by - mll -- 0.72, compares with 

the values - mll  = 0.51 from our present method with m = 11 and - roll = 0 .87 from Gersten 's  

calculations with m = 15 (Fig. 4). 

In Fig. 13, C~r and C,,~ from linear theory and the present method are compared with two sets 

of measurements On constant-chord wings with A = 2 and A = 45 °. As usual, the round-nosed 

thick wing from Part II  of Ref. 14 gives lift coefficients that li~ well between linear and non-linear 

theory.  T h e  value al1 = 1.93 from the present method supplies the non-linear lift measured on the 
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sharp-edged thin wing ~ at incidences below the onset of the stall. The points ( x ) on the graph 

of C L against C m are approximate only, but they undoubtedly show a similar but more marked 

non-linear trend than the present method. 'Gersten's  theory (m = 11)' from equation (75) appears 

to give insufficient non-linear lift, but the curve of C L against C m is very satisfactory. Gersten 

gives further comparisons with experiment in Fig. 11 of Ref :2  for a wing with d = 1 and A = 45 °. 

So large is the increase in his value of all with decreasing aspect ratio that excellent predictions of 
lift and pitching moment are obtained. 

The  measurements of pressure distribution in Ref. 14 provide local normal-force coefficients 

Cs-L which are plotted against ~ in Fig. 14. The round-nosed thick wing of moderate sweepback 

has only a part-span leading-edge vortex at c~ = 17.3 °, and it is found that the spanwise distribution 

of CNL follows close to linear theory except at the outermost station ~7 = 0.87. The  present 
non-linear theory does not distinguish between CNL and CLL as defined in equation (41). The curve 

of larg e dashes labelled 'Gersten (m = 15) ' ~  is in close agreement with the result of 'Gersten's  

theory (m = 11)' derived from Multhopp's  linear solution and the quantity %1 in equation (74); 
the differences near the tip closely resemble those in the spanwise loadings of the rectangular wing 

for m = 15 and m = 11 in Fig. 11. The  full curve from the present method probably represents 
fairly well the separated flow over the outer half of the wing. The increase in C~v L near the centre 

section is directly attributable to the mathematical model; this extra lift would have to be 
redistributed to satisfy a better physical model of the free vortex layers. 

6.3. Gothic and Ogee Wings. 

Gersten's non-linear theory, as formulated in Ref. 2, is restricted to wings with straight edges. 

The extension of his method of calculation to wings o f  curved planform would simply involve the 

inclusion of terms in d2c/&7 ~ and d~xJd@ Without  any modification the present method (Section 4.2) 

has been applied to gothic and ogee wings; a worked example for a gothic wing is se t  out in 
Appendix B. 

Table 6 includes the solutions for gothic wings of aspect ratio A = 1.5, 1.0, 0.75 and for the 

ogee wing defined in equations (67). Results for all three gothic wings have been calculated with 

m = 7; in order to make  comparisons with available experimental data, these results have been 

interpolated and extrapolated with respect to A. Another solution for A = 1 with m = 11 confirms 

that for gothic wings the non-linear lift, as estimated with m = 7, is smaller than the preferred 
value with m = 11. 

Experimental values of C L for thick wings of gothic planform 15 are plotted against incidence in 

Fig. 15 to compare with linear and non-linear theory. For A = 1. 092 the points (O) for the elliptic 7 

nosed section are much higher than linear theory and in fact agree with the present method (m = 7), 

whereas the points (V) for the sharp-edged section are 15~  higher and much closer to what would 
be calculated with m = 11. Values of CL/A ~ and o/A, obtained by the slender-wing theory of 
Smith 16 for the A = 1 gothic planform of his family I I I  are taken from Table 3 of Ref. 16 and used 
to provide a further theoretical curve in Fig. 15a; this lies considerably higher than the present 
method or any of the measured values. The effect of a body on the sharp-edged wing is to reduce 

e The experimental data are due to K. Jacob; these are taken from Fig. 15 of Ref. 3 and correspond to a 
Reynolds number 0"65 × 106. 

*~ This is derived from Fig. 27 of Gersten's thesis (Institiit fiir Str6mungsmechanik, T. H, Braunschweig, 
Bericht 59/30). 
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the measured C L by about 8%. For the higher aspect ratio A = 1.732 the non-linear theoretical 
contribution to the lift is smaller, and this is confirmed by the experimental points ( + )  for the 

two sharp-edged wings with body. 
For the gothic planform A = 1, Fig. 16 shows that the non-linear lift curves for m = 7 and 

rn = 11 agree satisfactorily with experimental results from Ref. 17 for a sharp-edged thin wing ( x ). 
Measured values (V) for a sharp-edged thick wing is show that the thickness effect is not important 

on CL, but gives a consistent decrease in C m over the incidence range. The values of C m from 
experiment and the present method (m = l l )  show a similar non-linear trend. For the more slender 

gothic planform A = 0.75, Fig. 17 shows very satisfactory correlation between non-linear theory 

and experiments on a sharp-edged wing19; calculations for m = 11 would improve the theoretical 

lift curve and be unlikely to impair the excellent comparisons for C L against Cm. In Fig. 18, 

experimental results from Ref. 20 for the ogee wing (A = 1) indicate that the present method 

again gives a good estimate of C z. Measured values of C m for the sharp-edged thick ogee wing are 

displaced from non-linear theory to the same extent as those for the gothi c wing in Fig. 16. The 

slightly destabilizing (pitch-up) trend indicated by both non-linear theory and experiment for the 

ogee wing in Fig. 18 contrasts the corresponding stabilizing trend of C m for the gothic wing of the 

same aspect ratio. 
As we have already seen in Fig. 5, the calculated ratio of non-linear to linear lift increases with 

wing slenderness. This is confirmed in Fig. 19 by the consistent correlation between calculated 
and measured values of C L against ~ for gothic wings of three different aspect ratios. The measured 
values 17 have been corrected for lower-surface bevel to give zero lift at zero incidence. The 
experimental points for A = 1 are also plotted as Wing 2 in Fig. 20a and show much better 
agreement with the present method for m = 11 than with the lower curve for m = 7. 

6.4. Delta  Wings. 

The theoretical and experimental results for delta wings present a general picture similar to that 
for the curved-tip wings of Section 6.3. There is a remarkably close resemblance between Figs. 20a 

and 20b for the lift on gothic and delta wings of aspect ratio A -- 1. Ref. 17 provides experimental 
results for thick wings (A and C), for thin wings (2A and 8A) with symmetrically bevelled edges, 
and for thin wings (2 and 8) with flat upper surfaces where corrections for lower-surface bevel 
give zero lift at zero incidence. The values lie systematically near the theoretical curves for m = 7 
and m -- 11 and help to establish the general applicability of the present method. Likewise we may 
compare Fig. 19 with Fig. 21, where the theoretical lift curves for three different aspect ratios, 
interpolated or extrapolated if necessary, are again supported by experiment (Ref. 17, Fig. 32). 
For the delta wings in Fig. 21 the calculations correspond to m = 11, and the comparisons are 
significantly better than for the gothic wings in Fig. 19 where m -- 7 is used. Decrease in the 
aspect ratio of delta wings from 1.6 to 1.0 is seen to give a marked increase in non-linear lift. 

Further comparisons in Figs. 22 to 24 include experimental results for the four types of wing 
section (Refs. 15, 17, 21 to 248). While the measured values of C L for round-nosed thick wings 
(O) coxrelate better with linear theory, the other experimental results (V A × ) all lie close to non- 
linear theory. It would appear from Fig. 23 that for a round-nosed thick wing the effect of a body 
is to increase the measured lift coefficient, and perhaps to stimulate leading-edge fl0w separation. 

* The experimental data from Refs, 24 and 26 correspond to a Reynolds number 0,.7 x l0 G, based on 
aerodyna _rgi¢ ~ean chord. 
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The opposite tendency was observed on a sharp-edged gothic wing with and without body in 
Fig. 15a. 'Comparisons of C,~ against C z are also made in Figs. 22 to 24 for three delta wings 
(A = 1.5, 1-456, 1.0). The measured values of C m for round-nosed thick wings (O) appear 
considerably to the left of linear theory, while for other sections (V A x ) they tend to the right of 
linear theory and lie fairly close to the results of the present method for m = 11; the curve for 
m = 7 in Fig. 24 is less satisfactory. 

The additional curve of C z against ~ in Fig. 23 is calculated for t/c = 0 from an empirical 
expression for delta wings due to Bergesen and Porter 25 (1960) 

CL -- p A  +12 + O" 0925e 2 - 0. 0146e - (0. 529c~- 0. 034) , (76) 

where p is the ratio of wing semi-perimeter to wing span and 

=  /tan-i(IA ) 

This formula is based on a flow investigation of the leading-edge vortices from a sharp-edged 

delta wing of aspect ratio A = 1, in which an attempt was made to correlate the non-linear lift 
with measured loci of the vortex cores. In fact the magnitude of the non-linearity in C L was shown 
to be closely related to the vertical displacement of the vortex cores from the wing surface, but to 

be independent of their spanwise location. Unless this were so, Gersten's mathematical model 
could hardly be expected to yield useful results for swept wings. In Ref. 25 the formula (76) is 
claimed to predict the experimental lift curves accurately for sharp-edged delta wings of various 
thicknesses with aspect ratio in the range 1 ~< A ~< 2. For t/c = 0 and A = 1.456 it underestimates 
the non-linear lift, as given by the present method and the measured values from Ref. 22. 

Values of C L against c~ are plotted in Fig. 25 for a more slender delt~ wing (A = 0.7), and good 
agreement between experiment (Ref. 26 e) and the present method is still found. For this aspect 
ratio it is interesting to compare the present method with the slender-wing theories of Mangler 
and Smith2~; Brown and Michael 28 and Kfichemann 29, that take into account the leading-edge 
vortices. Like the values from Ref. 16 for the gothicwing in Fig. 15a, the theory of Brown and 
Michael, on which  Ref. 16 is based, overestimates the lift; on the other hand Kfichemann's 
slender-wing theory underestimates C L. The model used by Mangier and Smith is the most elaborate 
and realistic physically. As seen in Fig. 25, the curve from the present method is slightly below 
that of Ref. 27, with the experimental points between them. 

Typical distributions of spanwise loading, as calculated by the present method, are shown in 

Fig. 6. No confidence can be placed in the large and unrealistic increases in loading near the centre 
sectior/ of swept wings. Although the spanwise loading on delta wings by the present method is 
not checked against experiment, Fig. 26 shows how widely the distributions for an A = 1 delta 
wing differ from the best available theoretical results from Fig. 6 of Ref. 27. There remains unsolved 
the theoretical problem of estimating satisfactorily the non-linear spanwise loading for wings of 
arbitrary planform. 

6.5. Aerodynamic Centres. 

As discussed in Section 5, Fig. 8 is a convenient representation of the pitching characteristics 
predicted by the present method. For gothic, ogee and delta wings the chordwise extent of the 
model is simply % and the locations of the centres of linear and non-linear lift are represented 

See footnote on opposKe page. 
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respectively by 2olc r and 21/q., as defined in equations (69). Some of the available tabulated 
measurements of C L and C,~ for sharp-edged thin and thick wings have been analysed to give the 
values of 2o/C r and 21/c ~ in Table 7, where the sources of data are quoted. In Fig. 27, the quantity 
A 2 / c ,  = (2  o -  21)/c r is plotted against 20 /% and different symbols are used to indicate the type of 
planform and whether the values are derived from the present method (m = 11) or from experiments 
on thin or thick wings. In the analysis of experimental data presented in Ref. 11, an approximately 
linear relationship is indicated between the quantities A2 and 20; the straight line in Fig. 27 is taken 
from Fig. 4 of Ref. 11 and corresponds to planforms with streamwise tips (e.g. gothic and 'ogee 
wings). The present analysis supports the linear relationship between A2 and 20. 

All the results for gothic wings in Fig. 27 indicate an appreciable nose-down pitching moment 
due to leading-edge separation, while the experimental results for thin delta wings show nose-up 
pitching characteristics of similar severity, again in accord with Ref. 11. The smallest movement 

in aerodynamic centre occurs on the ogee wing; the optimum design might be achieved with a 
planform having an unswept trailing edge and a theoretical centre of linear lift in the range 

0.55c r < 20 < 0.60% 
An empirical approach has been used by Devenish and Fry a° to provide methods of predicting 

the aerodynamic centre 

xa~ = x o - c a C  L (77) 

of slender configurations with sharp leading edges. For flat-plate wings of aspect ratio A = 1 with 
an unswept trailing edge xa~ corresponding to C L = 0.8 at low speeds is given in Fig. 2 of Ref. 30 

simply as a linear function of g/c,. For CL = O. 1, x ~  is obtained similarly from Fig. 5 of Ref. 30, 
apart from a correction dependent on tip shape; this correction is very small for gothic and ogee 
wings, but delta wings require special treatment for C L = 0.1. Figs. 2 and 5 of Ref. 30 are restricted 
to the range 0.4 < g/c~ < 0.7, but we have extrapolated the straight lines in Fig. 28 and make 
comparisons with results of the present method (m = 11) for four wings of aspect ratio, A = 1. 
By equations (77) and (40) 

x,~ x 0 ' ~(rn 1 + 2m11~ ) 
c~ c,~ cr(a~ + 2an~ ) (78) 

where al, ml, all and mll are given in Table 6, x 0 corresponds to the aerodynamic mean quarter - 
chord axis in equation (30)and ~ is regarded as a function of Cr, The full and dashed lines for 
C L = 0.8 and 0.1 respectively show a satisfactory correlation with values of xae/c r from equation (78) 
for gothic, ogee, delta and square planforms. 

7. A l t e r n a t i v e  T r e a t m e n t  f o r  S lender  Wings .  

The results of the present method for rectangular wings, as discussed in Section 6.i, suggest 

that the calculations fail to converge as m, the number of spanwise stations, increases. This 
divergence can be attributed to the approximate expansion in I z - z' I for the upwash at the wing 
surface induced by an elementary planar vortex sheet inclined at the angle ½~ to the wing. When 
the simplifying assumptions of slender-wing theory are combined with Gersten's mathematical 

model of Fig. 1, the approximate expansion becomes unnecessary. An alternative treatment without 
collocation is then possible, and the results restore confidence in Gersten's mathematical model for 
rectangular wings. The treatment can be used to obtain closed expressions for the lift and pitching 

moment on any slender wing having a straight trailing edge. 
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Linearized slender-wing theory involves two-dimensional solutions for the Velocity potential;in 
transverse sections x = constant. We suppose that the trailing edge is unswept .and that the local 
semi-span s(x) satisfies as/Sx >. O. The resulting integral equation relates A@, the discontinuity in 
velocity potential across the wing at the transverse section, to the upwash distribution w ( y )  at the 

wing; by equation (7) of Ref. 31 

f . 
[A~] 2 ~(~) w(yl)v/[{s(x)}~ - Y12] dy 1 . (79) 

ay ~V[{,(x)}~ - y~] J-+(x) y - y l  

In the linear problem w ( y )  = - Ua; since A~# vanishes for y = + s(x), equation (79) gives for 

all x(0 < x < cr) 
• , ( y )  = 2 u ~ / [ { s ( ~ ) ?  - y2]. (8o) 

The corresponding lpad distribution is 

2 8(AO) 4~s(x) as (81) 

.Equation (81) is taken as a first approximation to the wing loading in the alternative treatment 

of the non-linear problem. The model of separated flow will then give an upwash velocity w(x ,  y ,  z )  

which is formulated quite simply for rectangular and delta wings in Sections 7.1 and 7.2 respectively. 

At the wing surface w will take values Ws, say, that differ from the quantity - Uce imposed by the 
boundary condition (12) on a wing at uniform incidence. We therefore add to the linear solution a 

non-linear contribution corresponding to w = - Uc~ - w,; this, it is assumed, can be computed 
approximately from the linear integral equation (79). Thus the non-linear solution for w = - Ua 

is identified with the linear solution for w = - 2 Ua - zo,, 

a 2 y ( ~ )  - 2 u ~  - w ,  
[ a , ]  1/[{~(~)} ~ y d ]  dyl (82)  - -  ~ | - -  . 

8y rr%/[{s(x)}2 _ y2] O-s(x) Y -- Y:t 

Th e  total lift can be expressed as 

L = p U  A O ~ d y ,  
- - 8  

where s -- s(cr) is the semi-span of the wing and A~ t is the value of Aq) from equation (82) at the 

trailing edge. Hence 

% - 2pU2s~ - A - ,  2 u s s d  , (83) 

where from equation (82) 

A * , _  f v  I I l l  - 2°~ + ~'(y*) V(s2-j12)dyl] dy 2 (84-) 
2 U s  -~ ~ r s f ( s ~ - Y ~  2) ~ Y2 - Y ,  

with at(yl)  as the value of - '  Ws(y~) / U at the trailing edge. When the order of integration is changed, 

equation (84) becomes 

Aqa~ _ 1 f'~ s 2 _ y ~ y  _ ~/{(s ~_yz)(s2_y2)} 
2Us  2rrs 3 - ,  [ -  2a + ~z(y,)] log, s= Y~Y 7 ~ { ( s 2 - y , = ) ( s 2 - y 2 ) }  @1 

1 y s 2 s 2 2 2 
2~ V,(s~._yZ) + j eq(y,) log~ - Y*Y - ~/{( -Yl  )(s - y  ) } .  (85) 

= 7- ~ -~ s 2 - - 7 ~  + ~ ~  a y l .  
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By equations (83) and (85) 

A y 
CL = 7rAo~ - ~ -~ o~,(yl)!/(s 2 -  yl~)dyl 

A f8  w~(CuYl)V(s2_yl~)dyt.  = lrAo~ + -~ ~-~ 

The pitching-moment coefficient about the axis x = x o is 

A fo,x, dydx 
c ~  = ~ Jo J-,(~)(Xo-~) ~ L 2Us J " 

Integration by parts gives 

(86) 

= ~-S (Xo- c~) 2Us .r-s(~) 
S 0 

_ ( x o - C ~ )  c L  + _ _  ~ dx + 
c ~ o 

A f . ~ s ( x )  ws(x, yl) - -  ~' !/[{s(x)} z - y12]dyldx. (87) 
+ cs~ o .]-s(z) U 

When ws(x, Yl) is replaced by - ~U in equations (86) and (87), the expressions for C L and C m 
become consistent with linear slender-wing theory. 

7.1. Slender Rectangular Wings. 

The linear solution in equation (80) becomes 

Aa) = 2Uav ' ( sZ-  y~), 

which is independent of chordwise position. Gersten's mathematical model is now a single vortex 
sheet from the leading edge at an angle ½~ above the wing surface. In the (x, y, z) system of 
co-ordinates defined in Fig. 1, the two-dimensional solution of Laplace's equation, which satisfies 

*(y,  +_ O) =" + U ~ V ( s ~ - y  ~) for lY] ~<s/, 
J = 0 for  lYl ~>s 

is 
a)(y, z) = U a [ -  z + ~/'(rlr2) sin ½(01 + 02)], (88) 

where 
rl 2 = ( s - y ) ~ + z  ~,sinO 1 = z/r 11 

J r~ ~ (s + y) 2 + z ~, sin O~ z/r2 
D 

It follows that the induced velocity in the z-direction at any point (y, z) is 

w(y, z) =DO)__ = Uc~ I _  1 +  [z[(r~ +r~)~ ] . (89) 
~z 2~¢/2 rlr~ ~/ (rl r ~ _ y2 + s 2 + z~) 

Now at the wing surface 

z =  - x s i n ½ ~ =  -½~x+O(~Z) ,  

and to this order of accuracy the upwash normal to the wing surface is 

ws(x, y)  = w(y, -½~x) .  

28 



By equation (89) 

where 

with 

~,(~, y) = u 4 -  ~ + l~(n, ;)] ,  (90) 

~(pl+p2) 2 

2~/2 PlP2Pa 

p12 = ( l _ v ) 2  + ~2 

Pa ~ = PiP~ -- @ + 1 + ~" 

= x/c~ 

= y / s  

= ~c~xls = ~ / A  

F(V, ~) 

(91) 

At the trailing edge ~ = 1; by equations (86), (90) and (91) the non-linear lift coefficient is 
given b y  

A2 = ~  7r+ F ~/, ~/(1-~)2)d7/ . (92) 
--1 

Similarly by equations (87), (90) and (91) the pitching-moment coefficient for rectangular wings 

about the axis x = x 0 = ¼c~ reduces to 

0 --1 

Hence 

n~ - 4 + ~ " +  F(n, ~)V(1-n~)d~Td 
0 --Z 

= - 4 ~ -  + 2-A + F(~/, ~)%/(1- ~12)&Td~. (93) 
d O  --1 

Values of CL and C m are obtained by numerical integration of equations (92) and (93). If the 
integrand is tabulated at the Multhopp positions ~ = % = sin {mr/(m + 1)}, then 

f 
l 

F(v, g)V(1 - v~)a~ ~(g) = -1 

Thus 

[~ (m-1)12 ] 
_ 2~ F(0, ~) + y, F(~ , .  ~)(1-~7,?) 

m + l  

A-- F - - ~  w + I  

A--~ = -2 ~. - + I (  ~)d~ dO 

(94) 

Calculations have been made with m = 7 and m = 15, and the values of Cz/A 2 and Cm/A 2 are 
given in Table 8 for ~/A <~ 0.4. The more accurate calculations for m = 15 hardly differ from 
those for m -- 7. 
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The values of Cr~/A ~ are plotted against a/A and against C,~/A ~ in Fig. 29. Early attempts at 
analysing the non-linear effects for low-aspect-ratio wings were made on the basis of cross-flow 
drag theory. For example, Flax and Lawrence az (1951) suggest empirical formulae for the lift and 
pitching moment on rectangular wings  with sharp leading edges. W h e n  the linear solution for 
slender wings is inserted, these empirical formulae give 

A i+ 3 

(95) 

It is seen from the curves plotted in Fig. 29 that the values given by equations (95) compare quite 
well with those of the present theory. 

The  slender-wing theory can be used to indicate how the me thod  of Section 4.1 diverges as 
m increases. Consider the approximate upwash as'given inSect ion 2.3 by an expansior~ in IZ - Z ' I ,  
and apply equation (9) on the basis of slender-wing theory. For a slender rectangular wing, the 
linear load distribution is concentrated at the leading edge x = 0 and 

3 [Aq3(x,y)] = 0 for x > 0 { U l ( , ,  y )  = V ,  

Therefore equation (9) is replaced by 

w(y, z) = w0(y ) -- ½1zl ~ [ZXgP(y)], 
oy- 

(96) 

wher 9 Aq~(y) is the linear solution in equation (79). Thus 

y )  = - 1 + ' 

which diverges at the wing tips. Moreover according to equation (86) the  lift coefficient would 
also diverge. Thus the combination of the expansion in equation (96) with exact slender-wing 
theory Would be erroneous. Nevertheless by equation (89) it is apparent that w(+s, z) is finite,.  
and that the approximate expansion in z holds for points away from the tips. For this reason a 
collocation method can give a satisfactory solution, unless the s 0 M n g  points lie too close to the 
wing tips. 

7.2. Slender Delta Wings. 

The linear solution in equation (80) becomes 

where s(x) = ¼Ax. In Gersten's mathematical model the plane x = constant (0 < x < cv) contains 
trailing vortex elements corresponding to part of the planform 0 < x t < x. A typical element gives 
a discontinuity 

~ ( M , ) =  ,~ 2 ,¢[{,(~O)~-y ~] 
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across the plane z = -½sxl ,  the wing being represented by z = -½~x. The corresl~onding 
complex velocity potential in the Z = y + i z  plane is 

8 W =  8 0  + i 8 ~  - 
U A s  is(xi)  

4 ~ / [Z l  ~ - {s(&)} ~1 
8X 1 } 

where Z 1 = Z + i½s&.  Therefore in the plane x = constant the complex potential is 

Since 

W = • + i T  - U A s  f *  i s (&)  
4 o W[Zi2~(xi)} ~] d x l .  

w ( y ,  z )  - ~z  - ~y ' 

(97) 

it follows that at the wing surface 

w+(x, y)  = w(y,  - ½s~) 

where Z 1 

Where 

It can be shown that 

- 4 Dy Im 

= y - i ½ a ( x - & ) .  This can be written as 

iS(X1) dXl] {~/[Z12_ {$(x1)}2]} ' 

w.&, y) = - Us ~ Im ~/{(n_i~)~ _ ~2} , 

= *(*3k(*)  = **/* 

= y l , ( x )  J ½ s ( x -  Xl) 2 s  (1 - ~) 
- s(x)  - A 

(98) 

Im {5/{(~-7~)~ - ~2}} 

where 
p l  2 

p2 2 

p8 ~ 

_ v ' 2  ~ G  

PiP2Pa 

= ( 7 - g ) ~  + ~ ] 

= (7 + ~)~ + ~ ) 
= P1P2--'~2 + ~2 + ~2 

By equations (86), (98) and (99) the non-linear slender-wing theory gives a lift coefficient 

. f 1 1 C n = r r A s -  A s  

Integration by  parts leads to 

where 

- -  d~] d~ .  

c~ s [  
A S - ~  ~ - 2  

a ( ; ,  ~ ,  s l A )  - - -  
PlP2P8- 

(99) 

(100) 

(101) 
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The easiest way to show that equation (101) gives the correct'linear solution is to write 

2V~ 
- t53 = (PIP2 + V2 _ ~2 _ ~)~/~ ; 

Pa 

then, as a / A  --> 0, ~ = 0 and 

g(~, ~) = V ( s ~ _  ~ 

= 0  

when ~ < 

when ~ > 
and hence 

I f  ; 1 CL = Ao~ ~r - 2 ~1 d~d~ 
o V ( 1  - ~2) . V ( ~ 2  _ ~) 

= Ac~ ~ r -  2 d~ = ½~rAd~. 
o V ( U - ~  ~) 

The non-linear pitching-moment coefficient for the delta wing is given by equation (87) with 
x o = ½% ~ = §c~; by equations (98) and (99) it follows that 

1 
3 Cr, + ~rAox - C.~= 4 -2 

fer f (@) V(1--~]2)~ If: 1010203 ~1 3 A a  1 2 ~ %/2 ¢ , ~  d d~Tdx. (102) 
2Cr 0 --I 

Since s(x)/s = x/c r and the integrations with respect to ~, ~7 are independent of x, it follows 'by 
comparison of equations (100) and (102) that 

3 1 3 
( c ~ ) .  -~-.ao~ d~ = -  eL. (lO3) c~= 4 c ~ + ~ a ~ + ~  0 ~ :* 

Values of C2: are obtained by numerical integration of equation (101) with the order ofintegration 
changed. If for a given value of o~/A, the function J(~, ~, c~/A) is tabulated at 

for integral values o fp  and n up to ½(m+ 1), then 

CL o~[ 2 ~  f(~+')' 2 [(,,,+,),2 1 - -  = %/(1 - ~ )  J ( ~ ,  % ,  o~/A)dndp 
A 2 ~ zr ( m + l )  ~ ~0 ~0 

and the integrations are effected by use o f  Simpson's rule. The function J was calculated for 
m = 15, but it was necessary to subdivide the interval in n in the neighbourhood of n = p; at worst 
for o~/A <~ O. 10 and p = 7, J had to be calculated at sub-intervals of 1/8. Thus CL/A  2 has been 
calculated for ~ / A  <~ O. 30; the values are given in Table 8, together with Crn/A 2 as given by 

equation (103). 
In the upper diagram of Fig. 30 the results of the present slender-wing theory are seen to give 

a much lower estimate of non-linear lift than the theory of Mangler and Smit.h2V; perhaps this can 
be attributed to the fact that the rolling-up of vortices from a slender delta wing will influence the 
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vertical as well as the spanwise location of the vorticity. All the theoretical results of C~/A 2 against 
CL/A 2 for slender delta wings collapse on to the linear curve in the lower diagram of Fig. 30. The 
results of the present method for finite aspect ratios A = 0.6538 and 1 are also shown, and there 
is a consistent trend from marginal pitch-up to neutral longitudinal stability as the planform 
becomes slender. 

8. Concluding Remarks. 

The present investigation enables us to make a critical assessment of Gersten's 2 non-linear theory. 
There are two special simplifications inherent in the theory. The first introduces the mathematical 
vortex model of the flow illustrated in Fig. 1; there is no physical justification for this model, and 
its adoption rests on eventual comparisons between calculated and measured forces. The second 
simplification involves the expansion of w in powers of ]z - z' I in equation (7); this approximation 
becomes increasingly suspect as the wing tip is approached. Since the numerical solutions are 
obtained by collocation, this difficulty is avoided by restricting the number of spanwise stations 

~1 = ~1~ = sin [n~r/(m+l)]. The theory only applies to incompressible flow; an extension to 
compressible flow would certainly involve an empirical reduction in the angle .~al between the 
plane of the wing and each elementary vortex sheet (Fig. 1). 

For rectangular wings the present method is no more than a reformulation of Gersten's theory 
in terms of Multhopp's 5 lifting-surface theory. For straight-edged swept wings important 
modifications to Gersten's theory have been introduced in Section 4.2. The discussion in Section 6.2 
illustrates the differences between Gersten's original method and the present adaptation. While 
Gersten has not yet formulated his method for wings of curved planform, the present method 
is applied to such wings with little extra effort. 

Most aerodynamic research groups will have access to a high-speed digital computer and 
mechanized programmes for linear lifting-surface calculations including Multhopp's theory. The 
non-linear solution is given in matrix form in equation (63). Given the basic matrix IX -1] and the 
linear solution [A-1]{~l}a, the non-linear increment can be calculated and checked on a desk machine 
in about 0.01 N2(m+ 1) ~ hours, e.g. 2 days' computation when re(N) = 11(3). A worked example 
is given in Appendix B. 

In general the calculated lift curves are in good agreement with experimental results, provided 
that either the thickness is small or the leading edge is sharp. For round-nosed thick wings the 
measured lift lies well between linear and non-linear theory, as fully separated flow develops only 
at high incidences. Although the pitching moment is found experimentally to depend on wing 
thickness, on all wings the pitching-moment curves show the same non-linear trends as experiment. 
For thin wings (tic ~< 0.05) the present method gives a decisive improvement on linear theory in 
all the cases considered (Figs. 9, 10, 13, 16, 17, 22, 23, 24). 

For rectangular wings the non-linear lift becomes significant at incidences below maximum lift, 
provided that the aspect ratio A < 3, say. The comparisons with experiment show that the present 
method gives realistic estimates of the spanwise distributions of lift and local centre of pressure on 

a thin wing of square planform (Figs. 11 and 12). Some lack of convergence near the wing tip is 
discerned in Fig. 11, as m is increased up to 15. 

On the untapered wings, the non-linear lift is associated with a marked nose-down pitching 
moment about the linear aerodynamic centre. Planform taper reduces this effect and even reverses 
it for delta wings which show an appreciable nose-up instability. Theoretically and experimentally 
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the longitudinal characteristics of the ogee wing come nearest to neutral stability, which might be 
expected for a planform whose theoretical linear aerodynamic centre lies between 0.55 and 0.60 

root chord (Fig. 27). 
For a delta wing of aspect ratio 0.7 the present method predicts a lift curve in good agreement 

with experiment and with the slender-wing theory of Mangier and Smith (Fig. 25). However, 
Gersten's second simplification in equation (7) precludes the application of the present method as a 
slender-wing theory (Section 7.1). Nevertheless it is explained in Section 7 how a slender-wing 
theory can be developed on the basis of Gersten's mathematical model without his second 
simplification, so as to avoid the divergence in upwash near the wing tips. This divergence does not 
appear to upset the general collocation method, if the number of spanwise terms is restricted to 

m = 11 so that the upwash is only calculated for 171 ~< 0.966. 
There are other possible sources of error in the present method: 

(i) the unrealistic representation of the singularities at flow separation (Section 2.1), 

(ii) the choice ½a for the angular displacement of the trailing vorticity from the wing surface, 

(iii) the lack of provision for the rolling-up of the vortex sheets into concentrated vortices, 

(iv) the unsatisfactory treatment of the centre section of swept wings by linear theory, as it 

affects Section 4.2. 

The success of the method for predicting the load distribution on rectangular wings suggests that 
the first source of error may be unimportant. The choice of angle 1~ is justified empirically by the 
comparisons between calculated and measured total lift andpitching moment for a range of planforms. 
The third and fourth sources of error are believed to be important for swept wings and to be 
responsible for the discrepancies illustrated in Fig. 26. There remains unsolved the theoretical 
problem of estimating satisfactorily the non-linear spanwise loading on non-slender, non-rectangular 
wings. Further development of the present method to incorporate the rolling-up of the elementary 
vortex sheets appears possible, and this might well reduce any uncertainties associated with the 

centre section. 
The present work envisages the extension of the non-linear theory to the problem of unsteady 

flow past a wing of arbitrary planform in slow pitching motion about a high mean incidence. It 

follows from equation (40) that the pitching stiffness derivative is given by 

~ - m 1 + 2m11~. 

The extended theory (Ref. 6) also determines the pitching damping derivative as a linear function 

of o~ 
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a 1,  a l l  

A 

Ct  

c~ 

CLL 

Q 

f 

f , , f , ,  

L ]  

f t 

F~n 

i , j ,k , l  

I1, J~, K1, L1 

/1', etc. 

/1" , etc. 

J 

l 

/1,/11 

L 

LIST  OF SYMBOLS 

Linear, non-linear lift defined in equation (40) 

Aspect ratio of planform (-- 4s2/S) 

Local chord of wing 

dcl t,7 

Geometric mean chord (=  S/2s) 

Aerodynamic mean chord in equation (29) 

Root chord of wing 

Lift coefficient ( = L/½p U2S) 

(Lift per unit span)/½pU2c = 4sy/c 

(Pitching moment  about x = Xo)/½ pU~S~ 

(Normal force per unit span)/½pg2c 

Function defined in equation (36) 

(af/a~)~2oo~st., (a2f/a~2)~=oo.~t. 

3 

s_ [aflO(- ½ cos ¢)],,-oons~ ' c  [af/a(-½ cos ¢)],,=oons~. C --  " 

(af/a )x=oo.s . 

Function defined in equation (91) 

Factors for double differentiation in equation (47) and Table 1 

Differentiation factors in equation (53) and Tables 2 and 3 
[q is explained in equation (51) and the table in Section 4.2.] 

Influence functions corresponding to y,/x, K, )t, e.g. equation (18) 

Functions of ¢ in equation (35) and Table 4 

Functions of ¢ in equation (50) and Table 4 

Functions of ¢ in equation (59) and Table 4 

Function defined in equation (101) 

Non-dimensional wing loading in equation (15) (= Ap/½pU 2) 

Linear, non-linear wing loading defined in equation (13) 

Lift force on wing 
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m 

m l ,  ?~'~ 11 

M 

n 

N 

Ap 

$ 

S 

t/c 

Zl, V, gO 

U 

Wo 

w~ 

W 

X, J ,  Z 

X',  y ' ,  Z '  

XO 

A~ 

Xge 

x I' 

~t 

Xc~) 

x , Y  

z(x, y) 

LIST OF SYMBOLS--continued 

Number of collocation stations across the wing span (odd integer) 

Linear, non-linear pitching moment defined in equation (40) 

Mach number of free stream 

Integer (see %) 

Number  of terms in chordwise loading 

Lift per unit area 

Semi-span of wing 

Local semi-span of slender wing 

Area of planform 

Thickness/chord ratio of root section 

x, y, z-components of velocity perturbation 

Velocity of free stream 

Upward induced velocity according to linear theory 

Upward induced velocity in equation (90) or (98) 

Complex potential in transverse plane x = const. 

Rectangular co-ordinates in Fig. 1 

Co-ordinates of planar vortex sheet 

Aerodynamic quarter-chord pitching axis in equation (30) 

Linear aerodynamic centre in equation (69) 

Centre of incremental non-linear lift in equation (69) 

Aerodynamic centre in equation (77) 

Leading edge of wing referred to root 

Aerodynamic mean leading-edge ordinate in equation (30) 

Local centre of pressure in equation (26) 

Co-ordinates for influence functions, e.g. equation (18) 

Surface of thin wing 
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o~ 

gl~ ~11 

)'1, etc. 

)'11, etc. 

F 

0 

A 

P 

P1, P2, P3 

$,$' 

• $~ 

q~ 

Aq~ 

n 

P 

t 

vn 

LIST OF SYMBOLS--continued 

Incidence of wing (in radians unless otherwise stated) 

Unit incidence, incidence distribution in equation (33) 

Value of - ws/U at the trailing edge 

Functions of spanwise position in  wing loading l 

Values of) ' ,  etc., corresponding to ~ = al 

Values of )', etc., corresponding to c~ = c~11 

Value of )'1 at ~7 = ~ 

Value of 711 at ~ = % 

Strength of vortex sheet 

In Section 7.1, see equation (91); in Section 7.2, see equation (98) 

Non-dimensional spanwise ordinate (=  y/s) 

Sin [mr/(m+ 1)], sin [u~r/(m+ 1)] with [n[, I vl = 0, 1 , . . .  ½ ( m - l )  

Angular spanwise ordinate (=  cos-l~) 

Local angle of sweepback in equation (49) 

Angle of sweepback of trailing edge 

Integer (see ~) 

Density of free stream 

In Section 7.1, see equation (91); in Section 7.2, see equation (99) 

Angular chordwise ordinate in equation (37), (16) 

2~rp/(2N+ 1) with p = 1, 2 . . . .  N 

Velocity-potential perturbation 

Discontinuity in • across the wing 

Stream function in transverse plane x = const. 

Suffix denoting value at collocation station ~/ = % 

Suffix denoting value at chordwise location ~b = q~v 

Suffix denoting value at trailing edge 

Suffix denoting value at collocation station ~ = ~7~ 

Double suffix denoting influence of station ~ on station ~?~ 
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APPENDIX A 

Upwash Field for Small ( z -  z') 

Let q)(x, y, z) be the velocity potential of a vortex sheet in the plane z = z' and of strength 
I'(x, y). Then by Laplace's equation the upwash gradient 

~w OzaP 0~0 ~2cb 

~z az 2 Ox ~ ~y~ 
(A1) 

There are certain restrictions on r(x, y), such that the derivatives ~w/Oz and ~w/Oz ~ exist on each 
side of the sheet. Let ~u(x, y) and q~z(x, y) denote 6p on the upper and lower surfaces of the sheet 
respectively. Then 

. . . . .  2 -  (A2) F = ~x 8x Ox ' 
and hence 

d9 = ½ f ~  r(Xo, y)dxo = - ¢z. (A3) 

Therefore from equations (A1) to (A3) the upwash gradients at the upper and lower surfaces are 
given by 

(~w) I ~ P  1 ~ I f l  P(x°'y)dx°] = (~w) 
~-z ~ -  2Ox 2~yZ ~o - ~-z z" (A4) 

If w 0 denotes the value of w in the plane z = z', then in the neighbourhood of the vortex sheet 

. ( . , y , z )  = w(x,y,z')+ g ;  
q~ 

= W o - ½ l z - z ' [  (AS) 

by equation (A4). Let I?(x, y) = 0 for x > xt; t h e n  in the wake of the vortex sheet equation 
(A5) becomes 

w(x, y, z) = Wo - ½[z z'[ ~ ~ P(xo, y)dxo . (A6) 

If, however, P(x, y) = 0 for x < x', then upstream of the vortex sheet the contribution of order 
[z- z'[ disappears. 
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APPENDIX B 

Worked Example for Gothic Wing (A = 1) 

We take m(N) = 7(3), i.e. 

n'/T 
span-vise stations ~7 = % = sin ~- (n = 0, 1, 2, 3) 

chordwise stations ¢ = ¢~ - 2~rp 7 (p = 1,2,3)  

The,gothic planform is defined by 

Then 

X l = 

C = 

S = 

tan A 

3 g[1-  ~/(1-[~l)]  ] 
/ 

2c~g~(1-1~71)1 J 

l r d x  ~ l dc( 27) ] 
7 L d  + ~  1 - c o s  

= 8c 1 + cos 

(B1) 

0.00000 
0.38268 
0.70711 
0.92388 

(x,)./e 

0.05358 
0.32146 
0.68821 
1.08615 

1.44642 
1.17854 
0.81179 
0.41385 

( rA 

0.91133 
0"84373 
0"64843 
0.35329 

(~.)~ 

-0.03580 
+0.01434 
+0.04420 
+0.05966 

(~,01 

-0.19904 
-0.04596 
+0.09498 
+0.15337 

P 

2 
3 

27rp 
COS - -  

7 

+0.62349 
-0.22252 
-0.90097 

(X~)o/g and Co/g are defined in equation (22) for an interpolated wing. (Y~)I, (/z~)l and (Kn) 1 are given 
by the linear solution for ~ = 1. 

= ~ [(r~)ddG) + (~ ,hgdG)  + ( ~ A G ( G ) ]  

L = ~ [(r~)dl'(G) + (~.hJ?(G) + (K.hG (G)] , 

S2 f ,, # ,, 
] '  = ~E [(r.h i (G)  + (~,,)~J~. (G)  + (~ .hG  (G)] 

where the functions of 6~ are given in Table 4. 
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= 0  ' F o r v  , fo  = 0 a n d f o ' =  0. 

F o r u =  1 , 2 , 3 ,  
3 

n = 0  

g 

X' = ~ G(fl, g) f~ - f~ t an  A~ 
~ = 0  

w h e r e  G(q) is g iven  in T a b l e  2, q = 1, q'  = ½, and  --~Tb 

t a n A ~  = - 8 G  l + c o s  

1 
( % h i  = ~ d , ; ,  G )  - 2 ~ A L " ,  

w h e r e  
8 

G ( a " ) f "  ? '  t an  A~ w i t h  q" = 0.  
n = 0  

v p 

0 1 
1 1 

2 1 
3 1 

, 0 2 

1 2 

2 2 
3 2 

0 3 
1 3 

2 3 
3 3 

tan A v 

1-54973 
2-24986 
4-41327 

0-74216 
1.07744 
2-11349 

0-09453 
0-13724 
0-26920 

L 

0.41327 
0.43548 
0.29714 
0.11487 

.79635 

.44296 

.46031 

.49317 

5.47661 
4.48302 
2.54252 
0.79874 

L 
1.2229 
1.4607 
1.3734 
0.9932 

2.5110 
2.4027 
1.8849 
1.0863 

2.8564 
2.6436 
2.0288 
1.1048 

Z 
1.455 
1.568 
1.602 
1.536 

0.656 
0.526 

+0 .353  
- 0 . 0 8 9  

0.080 
0.096 
0.151 
0.168 

L, 

0.0000 
- 2 . 5 6 5 2  
- 3 . 6 5 8 8  
- 5 . 6 4 6 9  

0.0000 
- 4 . 2 2 0 4  
- 5 . 6 3 9 3  
- 8 . 0 4 1 6  

0.0000 
- 5 . 1 9 5 6  
- 7 - 2 1 5 4  
- 9 . 9 2 1 6  

L, 
0.000 

- 2.536 
- 4.129 
- 11.442 

0.000 
- 1.411 
- 2.713 
- 6.212 

0.000 
- 1.188 
- 2.853 
- 6.970 

I 

L,, 

- 13.026 
+ 1.103 

3.616 
37.042 

- 2 1 . 0 1 8  
- 3.450 
- 3.813 
- 3.409 

- 2 3 - 9 8 7  
- 6.536 
- 7-914 
- 15-903 

(%)11 

+2 .073  
- 0 . 1 7 6  
- 0 . 5 7 6  
- 5.895 

3.345 
0.549 
0.607 
O. 542 

3 . 8 1 8  

1.040 
1.260 
2.531 

(~]g)ll, (~,)11 and  (K~,)I 1 are given  b y  the  l inear  so lu t ion  for  a = c~11. 

0 
1 
2 
3 

1. 924 
1.298 
0.916 
0.595 

- 0" 257 
- 0 . 2 4 1  

- 0 . 2 4 1  
- 0 . 2 9 7  

+0 .071  
+0 .183  
+ 0 . 3 9 0  
- 0.726 

By equa t ions  (29) a n d  (30) t he  a e r o d y n a m i c  q u a r t e r - c h o r d  p i t c h i n g  axis is 

w h e r e  
Xo = ~ + ~g, 

~ = 0 .375g,  = 1. 125g. 
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T h e  c o e f f i c i e n t s  

C L = alo~ + a11c¢ 2 

Cm = ml°~ + r o l l  c~2 

a r e  e v a l u a t e d  f r o m  e q u a t i o n s  (27) a n d  (31) .  

a 1 = 1 .4364  

- m  1 = O. 0099 

~'~ = ( 7 . ) 11  

m~ = ( ~ , ~ ) n  

a l l  = 2 .385  

- m l ~  = 0"438 

4 4  



T A B L E  1 

Values of F~ from Equation (47) 

m = 7  n =  0 

- 2 1 . 0 0 0 0  
+ 13-5140 
- 2-8284 
- 1 1 - 7 2 0 6  

n = l  

+ 2 5 . 2 3 4 6  
- 2 7 - 2 3 0 4  
+ 19-6368 
+2 0 -4 8 5 3  

n = 2  

- 5-6569 
+ 16.5754 
- 4 0 - 0 0 0 0  
+ 19.1117 

n = 3  

+ 1-7934 
- 3 .5147 
+ 26 .5027 
- 100.7695 

q~ 
~ n  

r a = l l  " 

0 
1 
2 
3 
4 
5 

n = O  

- - 4 7 . 6 6 6 7  
+ 2 9 . 8 0 0 0  
--  7-6980 
+ 2 .8284  
+ 2 .6667 
- - 4 9 . 3 9 5 9  

n = l  

+ 57-6782 
--  57 .9402 
+ 38.1604 
--  10.2137 
- 3"4376 
+ 100"1401 

n = 2  

- -  13.8564 
+ 34.6446 
- 64 '4444  
+ 48"9898 
- 6-9282 
- 1 0 2 - 5 2 6 8  

n = 3  

+ 5 .6569  
- - 9 . 0 9 7 4  
+ 4 1 . 3 6 9 2  

- -93"3333 
+ 7 9 " 1 9 6 0  
+ 9 2 - 2 3 5 8  

//, z 4 .  

- 2 .6667  
+ 3-7350 
- 10.0074 
+ 62-2254 
- 177-3333 
+ 94-2449 

n = 5  

+ 1 .1096 
- 1-4735 
+ 3-3232 
- 12-8803 
+ 121.0132 
- 4 9 6 . 7 2 6 2  

m =  15 v n = 0  

0 --  85"0000 
1 + 52"5178 
2 --  13"5140 
3 + 6 .0534 
4 - 2-8284 
5 - 0 .6244  
6 + 11.7206 
7 - 1 2 4 . 0 1 9 7  

n = l  

+ 103.0772 
- -  100-9393 
+ 63-3323 
- -  18-4492 
+ 7 .9844  
+ 0"0367 
- -  22-8904 
+ 2 5 1 . 5 0 1 9  

n = 2  

--  25 .2346 
+ 59.8663 
--  102.2111 
+ 70 .7570 
- -  19.6369 
+ 5"0979 
+ 20-4853 
- -261 .9681  

n = 3  

+ 10"7753 
- -  16.3048 
+ 64"1680 
-- 123-2002 
+ 91-5975 
-- 23-3587 
- -  12"4616 
+279"0197  

n = 4  

- 5 . 6 5 6 9  
+ 7.3951 
- 16.5754 
+ 79.1040 
- 168.0000 
+ 135.8645 
- 19.1117 
- 2 9 7 . 2 8 9 3  

n = 5  

+ 3 .2144  
--  3 .9411 
+ 7 .1659  
- -  19.8095 
+ 110.4785 
- -267 .2321  
+ 2 3 6 . 6 2 5 3  
+ 2 7 4 . 7 7 3 8  

n = 6  

--  1-7934 
+ 2 .1304  
--  3 .5147  
+ 7 .9605 
--  26 .5027 
+ 180.7915 
- - 5 3 7 . 7 8 8 7  
+ 2 9 7 . 7 5 3 9  

n = 7  

+ 0-8112 
--  0-9492 
+ 1.4966 
--  3 .1149 
+ 8 .7554 
--  37 .5274 
+ 369"9658 
- -  1 556-6293 



T A B L E  2 

Values of (~ (53)for m G,~ from Equation = 7 

q =  - ½  n = 0  

- 5 . 1 0 9 7  
- 0 . 7 6 0 2  
+ 0 . 3 9 7 8  
- 1 .2262  

n = l  

+ 8 . 9 8 2 8  
- 1 .8687  
- 2 . 9 8 0 7  
+ 7 . 1 9 6 0  

n = 2  

- 5 .0273  
+ 3 . 1 8 7 6  
+ 1 .2977  
- 1 8 . 5 7 8 6  

n = 3  

+ 0 . 9 5 5 4  
- 0 .4745  
+ 1 .1454  
+ 13 .8519  

q = O  v n = O  n = l  n = 2  n = 3  

- 5 . 1 0 9 7  
- 0 . 7 0 2 3  
+ 0 . 2 8 1 3  
- 0 . 4 6 9 3  

+ 9 . 7 2 2 9  
- 2 . 3 1 7 0  
- 2 - 2 8 1 3  
+ 2 . 9 8 0 7  

- 7 . 1 0 9 7  
+ 4 . 1 6 4 8  
- 0 .1165  
- 10 .0547  

+ 2 . 4 9 6 6  
- 1 .1454  
+ 2 . 1 1 6 5  
+ 7 . 5 4 3 3  

q = ½  v n = O  n = l  n = 2  n = 3  

- 5 . 1 0 9 7  
- 0 . 6 4 8 8  
+ 0 . 1 9 8 9  
- 0 . 1 7 9 6  

+ 10 .5240  
- 2 . 7 6 5 4  
- 1 .7460  
+ 1 .2346  

- 1 0 . 0 5 4 7  
+ 5 . 4 4 1 6  
- 1 .5307  
- 5 . 4 4 1 6  

+ 6 - 5 2 4 0  
- 2 - 7 6 5 4  
+ 3 . 9 1 0 8  
+ 1 .2346  

q = l  v 

0 
1 

2 
3 

n = 0  

- 5 . 1 0 9 7  
- 0 . 5 9 9 4  
+ 0 . 1 4 0 6  
- 0 " 0 6 8 7  

n = l  

+ 11 .3910  
- 3 .2137  
- 1 .3364  
+ 0 . 5 1 1 4  

n = 2  

- 14.2195 
+ 7 . 1 0 9 7  
- 2 . 9 4 5 0  
- 2 -9450  

n = 3  

+ 1 7 . 0 4 7 9  
- 6 . 6 7 6 2  
+ 7 . 2 2 6 2  
- 5 .0740  

q =  1½- n = O  

- 5 . 1 0 9 7  
- 0 . 5 5 3 8  
+ 0 " 0 9 9 5  
- 0 . 0 2 6 3  

n = l  

+ 12-3296 
- 3 -6620  
- 1 .0228  
+ 0 -2118  

n = 2  

- 2 0 . 1 0 9 4  
+ 9 .2893  
- 4 . 3 5 9 2  
- 1 .5938  

n = 3  

+ 4 4 . 5 4 8 3  
- 16 .1177  
+ 13 .3524  
- 11 .3826  

4 6  



T A B L E  3 

Values of G~from Equation (53)for m = 11 

q =  - ½  n = O  

- 9 " 4 6 7 9  
- 0 . 6 2 7 8  
+ 0 - 1 2 8 5  
- 0 . 0 7 0 6  
+ 0 . 0 9 2 2  
- - 0 . 4 3 0 0  

n = l  

+ 2 3 . 7 7 6 9  
- 5 .2970 
- 1 .6394 
+ 0 .6848 
- 0-8092 
+ 3 .6146 

n = 2  

- 3 1 . 1 2 8 0  
+ 10-4864 
- 2.8938 
- 3.7491 
+ 3-3950 
- 13-8737 

n = 3  

+ 2 8 " 3 4 7 7  
- 7-2660 
+ 6-2185 
- 0-2687 
- 10-0706 
+ 3 2 - 1 6 5 8  

n = 4  

- 14.4626 
+ 3-3519 
- 2-1986 
+ 3-9318 
+ 5-2803 
- 5 2 - 0 7 0 9  

n = 5  

+ 2 .4927 
- 0-5533. 
+ 0-3320 
- 0.4641 
+ 1.9243 
+ 3 2 . 8 8 9 0  

q = O  v 

0 
1 
2 

3 

4 
5 

n = O  

- 9 . 4 6 7 9  
- 0 . 6 0 6 4  
+ 0 . 1 1 1 3  

- 0 . 0 4 9 9  

+ 0 . 0 4 6 1  
- 0 . 1 1 1 3  

n - - 1  

+ 2 4 . 6 1 5 7  
- 5 .5744 

- 1.4699 
+ 0.5013 

- 0 .4189 

+ 0.9685 

n = 2  

- 35.9435 
+ 11.6960 

- 3.5605 
- 3.0611 

+ 1.9601 

- 4 .1463 

n = 3  

+ 4 0 . 0 8 9 8  
- 9.9255 

+ 7.6161 
- 1.6829 

- 7 .1210 
+ 11.7735 

n = 4  

- 2 8 . 9 2 5 1  

+ 6"4753 
- 3.8081 

+ 5"5605 
+ 1.8162 

- 2 6 . 9 5 3 9  

n = 5  

+ 9 .6310 
- 2 .0650 

+ 1.1110 
- 1.2680 

+ 3 .7174 

+ 18.4694 

~ _ _  1 2 P 

0 
1 

2 
3 
4 
5 

n = O  

- 9 . 4 6 7 9  

- 0 " 5 8 5 8  
+ 0 - 0 9 6 4  
- 0 . 0 3 5 3  
+ 0 - 0 2 3 0  
- 0 - 0 2 8 8  

n = l  

+ 2 5 . 4 8 4 0  

- -  5"8518 
- 1.3178 
+ 0 .3670 
- 0-2168 
+ 0-2595 

n = 2  

= 4 1 ' 5 0 4 0  
+ 1 3 . 0 4 5 2  
- 4.2271 
- 2 .4994  
+ 1.1316 
- 1 .2392 

n = 3  

+ 5 6 . 6 9 5 5  
- -  13.5585 
+ 9 .3278 
--  3.0971 
--  5 .0353 
+ 4"3094 

n = 4  

- 5 7 . 8 5 0 2  
4 1 2 . 5 0 9 4  
- -  6.5958 
+ 7 .8637 
--  1.6479 
--  13.9524 

n = 5  

+ 3 7 . 2 1 1 5  
- 7 .7068 
+ 3 .7174 
- 3.4641 
+ 7.1815 
+ 4 .0499 

q = l  v 

0 
1 

2 
3 
4 
5 

n = O  

- -9 -4679  
- -0 -5658  
+ 0 . 0 8 3 5  
- - 0 . 0 2 4 9  
+ 0 . 0 1 1 5  
- -0"0074  

n = l  

+ 2 6 - 3 8 3 0  
- 6-1292 
- 1-1815  
+ 0-2687 
- 0 .1122 
+ 0.0695 

n = 2  

- 4 7 - 9 2 4 6  
+ 14-5501 
- 4.8938 
- 2-0407 
+ 0-6534 
- 0-3703 

n=3 

+ 8 0 - 1 7 9 5  
- 18.5213 
+ 11.4242 
- 4.5113 
- 3-5605 
+ 1-5774 

~ ' t = 4  

- 115.7004 
+ 24.1662 
- 11.4242 
+ 11.1210 
- 5-1120 
- 7 .2223 

n = 5  

+ 143.7739 
- 28.7620 
+ 12.4388 
- 9.4641 
+ 13.8737 
- 10.3696 

q =  1½ 

0 
1 

2 
3 
4 
5 

n = O  

- 9 . 4 6 7 9  
- 0 . 5 4 6 6  

+ 0 - 0 7 2 3  
- 0 . 0 1 7 6  
+ 0 " 0 0 5 8  
- 0 . 0 0 1 9  

n = l  

+ 2 7 - 3 1 3 7  

- 6-4066 
- 1.0593 
+ 0 .1967 
- -  0-0581 
+ 0 .0186 

n = 2  

- 5 5 - 3 3 8 6  
+ 16-2285 
- 5-5605 
- 1 .6662 
+ 0-3772 
- 0 .1107 

n=3 

+ 113-3910 
- 25-3005 

+ 13.9917 
- 5.9255 
- 2 .5176  
+ 0-5774 

n = 4 

- 2 3 1 . 4 0 0 8  
+ 46.6856 
- 19.7873 
+ 15.7274 
- 8.5761 
- 3.7385 

n = 5  

+ 555.4998 
- 107.3411 
+ 41 .6210 
- 25 .8564 
+ 26.8019 
- 24 .7892 

47 



T A B L E  4 

Values of Functions in Equations (44), (50) and (59) 

N G 

2~/5 
4rr/5 

2~/7 
47r/7 
6~/7 

2w/9 
4w/9 
6w/9 
8rr/9 

1.044106 
4-115468 

0-427255 
2-380465 
4-401862 

0-210852 
1-354976 
3-176927 
4-523097 

J~ 

3.072474 
6.248371 

1.457471 
5.259814 
6.276326 

0.765568 
3.723990 
5.920841 
6.281186 

G 

0.258623 
0.240151 
0.002696 

0.156345 
0.373655 
0.108253 
0.000804 

L1 

+0.112451 
+0 :003130 '  
-0 .086603  
-0 .001068  

N p G zl' Z' G' G' 

2 1 2v/5 4"41539 9"95959 - -  - -  
2 2 4~/5 6"20212 0"89806 - -  - -  

3 1 2~/7 3"35886 10"15436 + 1"26418 - -  
3 2 °4~/7 5"54025 6"06389 -0"95510  - -  
3 3 6~/7 6"25336 0"34374 - 0 ' 1 3 1 8 8  - -  

27r/9 
4~'/9 
67r/9 
8~'/9 

2-68184 
4.76214 
5-92084 
6.26909 

9.08153 
9.24654 
3.46410 
0.16501 

+ 1.56216 
-0 .23533  
-0 .86603  
- 0 . 0 6 5 4 4  

+0 .74836 
- 0 . 8 9 8 7 4  
+0.43301 
+0.08495 

N G 

27r/5 
4rr/5 

2~'/7 
47r/7 
67r/7 

~ /9  
47r/9 
67r/9 
87r/9 

5-5055 
1.2997 

8.3061 
3.1899 
0.9130 

10.9899 
4.7670 
2-3094 
0-7053 

j,, 
/ 

- 8.4117 
- 13.6104 

+ 8.2057 
- 18.4381 
- 10.2324 

+23.3904 
- 1 2 . 4 4 5 8  

- 1 8 . 4 7 5 2  

- 8.1234 

K( 

--5.7480 
- 1.1385 
+3 .6966  

- 2 . 0 3 0 8  
- 5 . 8 4 7 6  
+2 .3094  
+3 .1114  

LI" 

- 1 2 : 4 2 3 2  
+ 4.5447 
+ 2.3094 
- 7.2808 
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T A B L E  5 

Details of Eleven Planforms 

Wing d 

Rectangular 1, 2, 4 
Constant chord 2 
Gothic 0"75, 1, 1.5 
Ogee 1 
Delta 0"6538, 1, 1.5 

AT 

0 
45 ° 
0 
0 
0 

I 
~/e 

1"00000 
1"00000 
1'12500 
1"23810 
1'33333 

cr/c 

1-0 
1.0 
1-5 
2-0 
2-0 

~dg 

0 
0.50000 
0.37500 
0.76190 
0.66667 

~o/~ 

0.25000 
0"75000 
0-65625 
1-07143 
1-00000 

Tip shape 

c # O  
c # O  
c oc X/(1-~/) 
c oc v ' ( 1  - 7 )  

c < (1 - 7) 

T A B L E  6 

Sohttions for Lift and Pitching Moment 

Wing 

Rectangular 

Constant chord 

Gothic 

Ogee 

Delta 

A 

1-00 
1-00 
1-00 
1 "00 
1-00 
2.00 
2"00 
4'00 

2'00 

0"75 
1 '00 
1 '00 
1 "50 

1 "00 

0" 65~ 
1 "00 
1 "00 
1-50 

m(N) 

7(2) 
7(3) 
7(4) 

11(3) 
15(3) 
7(2) 

I5(2) 
7(2) 

11(3) 

7(3) 
7(3) 

11(3) 
7(3) 

11(3) 

11(3) 
7(3) 

11(3) 
11(3) 

a I 

1-458 
1-462 
1-460 
1.461 
1.461 
2.479 
2- 475 
3.579 

2.292 

1.115 
1.436 
1.426 
1. 998 

1. 392 

0. 922 
1.338 
1- 327 
1- 829 

i __ Y/I 1 

I 
- 0 . 1 1 7  
- 0 . 1 2 4  
- 0 '  125 
- 0 '  122 
-0 .121  
--0.105 
-0 .099  
-0 .075  

- O- 202 

0- 009 
0-010 
0-037 
0- 007 

0.162 

0.158 
0.179 
0.206 
0.247 

al l  

2"60 
2"66 
2-66 
3-17 
3 "53 
1 "75 
2-36 
0 '94 

1 "93 

2'59 
2"38 
3 '09 
2'01 

2'74 

3 '67 
1 '85 
2'47 
1 '42 

- -  I H . 1 1  

0"55 
0"55 
0-55 
0-66 
0-74 
0"32 
0"44 
0-15 

0"51 

0"55 
0"44 
0"42 
0"29 

0"27 

0"48 
0'07 
0"28 
0'09 

49 
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T A B L E  7 

Centres ~Lmearand  Non-LinearL~fi,om E~erimentalData 

! 
Wing A t/c ~o/C r 21/cr Source of data 

Gothic 17 (Wing 1) 

Ogee 

Delta (rounded tips) 

Delta (pointed tips) 

0"75 
0'75 
0"75 
1 "00 
1 '00  
1 '00 
1 . 2 5  

1 '00 

0"76 
1 "13 

1 "00 
1 "00 
1 - 0 0  
1 "33 
1 "67 

0 
0.050 
0.082 
0 
0.082 
0.120 
0 

0.062 

0 
0 

0 
0" 082 
0.120 
0 
0 

0"475 
0"50 
0"50 
0"475 
0"49 
0"495 
0"46 

0'64 

0"49 
0.535 

0"605 
0.60 
0.645 
0.595 
0"585 

0.555 
0"54 
0"55 
0"52 
0'54 
0"535 
0'52 

0'63 

0'53 
0'54 

0'55 
0'54 
0'67 
0.525 
0.505 

Ref. 

ReL 

Ref. 
Ref. 

17 (Wings 2 & 2A) 

18 (Wing A) 
17 (Wing 3) 

Ref. 19 

Ref. 17 (Wing 12) 
Ref. 17 (Wing 11) 

Ref. 17 (Wings 8 & 8A) 

Ref. 17 (Wing C) 
Ref. 17 (Wing 9) 
Ref. 17 (Wing 10) 

* Unpublished results @om A. V. Roe and Co., Ltd. 

T A B L E  8 

Sohttions by Present Slender-Wing Theory 

0d 

0-025 
0-050 
0-100 
0.200 
0"300 
.0'400 

0.0419 
0.0885 
0.1911 
0.4221 
0"6784 
0.9524 

m = 7  

Rectangular Wings 

0-0174 
0.0327 
0.0610 
0.0875 
0.1144 

m = 15 

CL/A  

0.0423 
0.0887 
0.1909 
0-4221 
0.6784 
0.9524 

C,,dd 2 

0 . 0 1 7 7  
0.0332 
0.0613 
0.0879 
0.1148 

CL/A  

0.0833 
0.1742 
0.3785 
0.6081 

Delta Wings 

m = 15 

C,,/A" 

-0-0208 
-0-0436 
--0-0946 
--0.1520 
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(a) Flow over delta wing 
Z 

Y 

Wing at incidence 

Elementary vortex sheets 

Section of rake 

(b) Wakes for various wings 

FIG. 1, Vortex model of flow over wings with 
leading-edge separation. 
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2 -5  
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2 ' 0  

I . S  

l ' 0  

0-S 

+0"Z  
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ml 

-0.2 
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// 

/ 

/ 
// 

Y 

Rectangular wings o Ogee wing 

Constant-chord wing - - - -  Delta wings 

---- Gothic Wings t, Gothic wing 
b 

- 0 , 4  o 

Fro. 2. 

o.s l.o A l.s z.o z.s 

Linear lift and pitching-moment 
slopes. 
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0.5 

0 
O - ~  m=7 

m =11 ~Present method 
x m =15 

- -  - -  Gersten's mel.hod(Ref.2) 
4 .01 .  

3 • 0 '~ 
all r 

Z-5 

Z-0 

I-5 NX 
\ 

I - 0 ~,.~ 

o4 

0 
o 0.5 m.o 1.5 A z.o z.s o,~ i.o A 1,5 z .o  

Fro. 3. Non-linear lift coefficient (=  anc~2). 
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- -  - -  Gersten's method('Ref.2) 
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Fro. 4. Non-linear pitching-moment 
coefficient (=  m11o~). 
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= 
Non-llnear part of C L 

L{near part of C L 

I '0 
A = I /  

f) Rectangular Wing= ( ' m = l l ) ~ J  

0'5 ~ A = 2  

, / /  A =4 
0 ~ ' ~  

Delta Wings (m=l l )  

/ I-0 j 

° j j - ~ -  
0.5 / 

Gothic Wings (m =7) 

A=0,75 I '0 j 

J A= t.o~_. / /  
0.5 - t f / /  

0 ~  
0 ° 50 lO ° = 15 ° 20 50 

FIG. 5. Ratio of non-linear to linear 
theoretical lift. 

2.0 

A=I 
1'5 

C C ~.1. - - - _  

~ C  L ' ~ 

0.5 

, \ 
\ 

t 

0 
0 

2,0 

1.5 

C CLI" 

~Ct. 

1,0 

0.5 

A 

0"Z 0.4 TI 0.0 0.8 
. . . . .  : : o . ~  

=2o°J 

& 
\ 

\ 

0,2 0.4 ~ 0.6 0-8 i.O . 

Present method (re=It) 

L 

0.2 0.4 71 0.6 O-B 0 O-Z 0,4 ~ 0.6 0.8 1.0 

FIG. 6. Calculated spanwise loadings on 
various wings. 
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