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Summary. 
A numerical method of solving the integral equation connecting the lift and downwash on a wing 

oscillating harmonically in a supersonic flow of any Mach number is described. The integral equation 
is replaced by a matrix equation connecting the values of the lift and downwash at sets of points on the 
wing, and the generalised aerodynamic forces acting on the wing are found simply as a matrix product. 
Comparisons are made between aerodynamic derivatives calculated by this method, and theoretical 
and experimental derivatives from other sources. 

Section 
1 

2 

3 

LIST OF CONTENTS 

Introduction 

The Integral Equation 

The Approximation of the Lift and Downwash Distributions 

3.1 The approximate lift 

3.2 The choice of lift points 

3.3 • The choice of downwash points 

The Numerical Solution of the Integral Equation 

4.1 Approximation to the lift on the wing 

4.2 The logarithmic singularity 

4.3 The chordwise integration 

4.4 The spanwise integration 

4.5 Solution of the integral equation 

Determination of Generalised Forces 

Matrix Formulation of the Problem 

6.1 Solution of the integral equation 

*Replaces R.A.E. Technical Report No. 65 078 - -  A.R.C. 27 107. 



6.2 The matrix equation connecting lift and downwash 

6.3 Evaluation of generalised forces 

7 Results 

7.1 Calculations on an ogee wing 

7.2 Calculations on a symmetrical tapered wing 

7.3 Calculations on a wing with cranked leading edge 

7.4 Calculations on a delta wing 

8 Conclusions 

Symbols 

References 

Appendix A The logarithmic singularity in the influence function i~(~', tl', tl) 

1 

f P~(~) d~ Appendix B Evaluation of the integrals (~b- q~rs) 2 

- 1  

Tables 1 to 5 

Illustrations- Figs. 1 to 14 

Detachable abstract cards 

1. Introduction. 
For many years the methods available for the prediction of the aerodynamic forces on oscillating 

wings in linearised supersonic flow were all subject to certain restrictions. For example, methods existed 
for delta wings and for planforms whose edges were supersonic; in other cases results could readily be 
found only under some limitation in frequency or for rigid-body oscillations. Recently, with large digital 
computers available, attention has turned towards methods of general application which can be used 
with no restriction on either Mach number, frequency, nature of planform or shape of the mode in which 
the wing distorts. These methods usually consider the known distribution of downwash on the planform 
and attempt to find the lift by numerical solution of an integral equation involving the downwash. Lifting 
surface theory, of the type suggested originally by Multhopp and extended to general unsteady flow by 
Richardson, is the basis of the approach considered in this report. 

Multhopp's lifting surface theory 1 was originally devised for steady subsonic flow; the first extension 
to unsteady flow was that of the Multhopp-Garner theory 2, valid for low frequencies in subsonic flow. 
Richardson 3 proposed an extension of the Multhopp theory to cover unsteady flow at any frequency 
parameter and also for any Mach number. The actual applications of the Multhopp-Richardson method 
to subsonic, transonic and supersonic flow have been carried out separately, and the present report 
deals with a modification of the method applied to supersonic flow. This modified method has been used 
in programmes written for the Mercury digital computer, and these are described in a separate report 4 
which gives details of the actual numerical work. 



The method employs the integral equation which expresses the downwash in terms of the lift. This is too 
intractable for analytical solution and numerical methods have to be used. Two sets of points are chosen 
on the wing; at one set the lift (which is not known) is evaluated and at the other set the downwash 
values (which are known) are taken. The integral equation can then be replaced by a matrix equation 
connecting the lift values at the points of the one set with the downwash values at the points of the other 
set. From this matrix equation the lift values, and thence the generalised aerodynamic forces, can be 
found. 

2. The Integral Equation. 
Take Cartesian co-ordinates x, y and z fixed relative to the wing so that the x-axis lies in the wing mean 

plane and is in the direction Of the airflow of velocity V, the z-axis is downwards and the y-axis is directed 
to starboard (see Fig. 1). x, y and z are referred to a reference length ~, the wing mean chord. Other 
reference lengths could be chosen, but the mean chord has advantages when derivatives are the end 
product of the calculation. Then, if the wing oscillates with angular frequency co, the associated frequency 
parameter being v = co~/V, the integral equation connecting downwash V d vt w(x,y) and lift p V 2 e ~vt 
l(x,y) is 

_ ±  ((K(x'- x, y'-  yl l(x,y) dx 
w(x',y') = 4~ J J  (y,_ y)2 

S 
(1) 

where (see, for example, Watkins and Berman 5 or the slightly different form given by Richardson 3) 

(X + MR)/(fl2IY]) 

2X ~- ivM2X~ fMRv' +i lrle_,  f 
K(X,Y) = ~ - e x p l  f12 fcos L ~ -  J ~/(1 + z 2) 

(X - MR)/(fl21 r ] )  

_ _  e-iWWldz 1 (2) 
ifX>filY I and Y 4= O, 

K(X, Y) = 2 e-';x if X > fll Y[ and Y = O, 

K(X, Y) = 0 if XG fll Y], 

where R = ~/(X 2-f12Y2) and f12 = M 2  1. The integration in (1) is taken over the whole wing; t is a 
reduced time. 

In view of the form of the kernel K(X,Y) in (2), only that part of the integral taken over the area of the 
wing cut off by the forward Mach cone through (x',y',0) need be considered. The area is shaded for the 
wing of Fig. 1. 

The singularities of the function K(X, Y) are considered "in Ref. 5; near the forward Mach lines through 
(x',y',0) it becomes large like a multiple of 1/R. 

It is more convenient in discussing (1) to use wing co-ordinates { and t/defined by 

x-~ (v )  = ½~c(,7) 1 
and ) (3) 

y = s~/, 

x = ~(y) being the equation of the wing mid-chord line, gc(t/) being the local chord and sO the semispan. 
{' and t/' are defined similarly. The integral equation (1) then becomes 

W(~,,//,) ~ 1871;S ~ (1/'--//) 2c(q)&l f K(x'-x,y'-y)l(~,rl)d~ (4) 
q~(¢'m') - 1 

3 



where 

~(~',r/',r/) = min {~l(~',~',t/), 1), 

and ¢ = ~ l ( ~ ' , t ] t , t ] )  is the equation of the reversed Mach lines through (x',y'); for planforms having no 
swept-forward part of the leading edge these cut the leading edge or tips at two points where ~/= ~l(¢',t/') 
and ~/= t/2(~',t/' ) (see Fig. 2). Mote  complicated planforms, for which part of the leading edge is swept 
forward and where the reversed Mach lines through a point may cut the leading edge at four or more 
points, may be dealt with using a form of (4) containing additional limits in t/. They are not considered 
specifically in what follows. 

3. The Approximation to the Lift and Downwash Distributions. 
3.1. The Approximate Lift. 

The lift distribution has singular behaviour near the edges of the wing in certain circumstances. Near 
a subsonic leading-edge it becomes infinite like l/x/(1 + 4), and near a subsonic trailing edge it contains 
terms involving x/(1 - 4). There is no singularity at supersonic edges. 

Thus, when considering the lift along a chordwise section of the wing a functionJ(¢) is used which takes 
these singularities into account; this function is defined by 

j(~) = 1&/(1 +4) 

~/(1-¢)  

1 

(subsonic leading edge, subsonic trailing edge) 

(subsonic leading edge, supersonic trailing edge) 

(supersonic leading edge, subsonic trailing edge) 

(supersonic leading and trailing edges) 

(5) 

Similarly, in the spanwise variation of lift, the function x/(1-tff)  is used to account for the singular 
behaviour at the tips ~ = _ 1. These functions do not account for singularities other than those at leading 
and trailing edges. 

For numerical solution of the integral equation (4), the values of the lift at a set of points on the wing 
are taken as unknowns and the lift at points between is interpolated, taking into account the singularities 
in lift mentioned above. The position of these lift points is considered first. 

3.2. Choice of  Lift Points. 
Suppose the chordwise lift distribution 1(4) at any spanwise station is approximated at m points 

41 . . . . . .  ~,, by a function [(~)J(~) in such a way that [(0 is a polynomial of degree ( m -  1), and 

[(¢~)f(~) = l(~). ( .  = 1 . . . . .  m) (6) 

Consider the effect of adding t (t ~< m) points ~,, + 1 . . . . . .  ~m +t to the set ~ 1 . . . . . .  ~m and approximating to 
l(~) at the (m+t)  points ~ . . . . . .  ~m+t in such a way that 

l , ( ~ ) f ( ~ )  = t(¢~), ( .  = 1 . . . . .  m + t), (7)  

where 7t(~) is a polynomial of degree (m+ t -1 ) .  If 

¢(~) = ( ~ - ¢ 0  . . . .  ( ~ - - ~ m )  

4 



then 

/t(4)-i(~) = ¢(4)N(Q 

for some polynomial N(4) of degree (t--l), since it(4) and [(4) agree at the points 41,. . . . . .  4,.- S o  

1 1 

I I = o,.. 
- i  - i  

(8) 

The left-hand side of (8) is the difference in pth moment between the two approximate lift distributions 
l(4)J(4) and Tt(4)J(Q. If ~b(4) is now chosen in such a way that 

1 

f 4~¢(~)M) = o, 
- 1  

(q = 0 . . . . . .  m -  1), 

then the right-hand side of(8) will be zero whatever the function N(4), that is whatever the choice of additional 
points 4,~ + t,. . . . . .  4,, +t- These relations imply that ~b(4) is the mth degree polynomial of the set orthogonal 
with respect to the weight function f(4) over the interval ( -  1,1) (see, for example Hildebrand 6, page 271) 
and the points 4~ . . . . . .  ,4,, are its zeros. Equation (8) then gives 

1 

f 4.{i,(4)- 1(4)}J(4) d4 = 0, 
- 1  

(p = o . . . . . .  ( m -  t)), 

so the approximate lift distribution i(4)J(~) has 

the same lift as any approximation obtained by approximating at any m additional points, 

the same lift and moment as any approximation obtained by approximating at any (m - 1) additional 
points, 

and so on, up to 

the same lift, moment , .  . . . .  , ( m - l f f  moment as any approximation obtained by approximating at 
any one additional point. 

In this sense, the approximation found by fitting values to I(4) at the zeros of the appropriate orthogonal 
polynomial is the best possible. 

With this choice of ¢(4), define interpolation functions 

h~(~) = (~ _ ~)  ¢ , (~) j (~) ,  (e = 1 . . . . . .  m), (9) 

which will have the property 

f 0 if ~ ~: ? 
h~(~) \ 1 i f a  = 7- 



The functions h~(~) have the property 3 that 

1 

f h=(~) p(~) d~ = 2H= p(~), (10) 

where 

H~ = ½ f h~(~) d~, (11) 
- 1  

for polynomials p(() of degree m or less in ~. The lift distribution l(~) is then approximated by 

~(~) h~(~). 
c t = l  

An exactly similar argument may be used to provide a choice of spanwise position for the points at 
which the lift is to be evaluated. Across any section for which ~ -- constant the lift l(t/) may be approxi- 
mated by a function 2(t/)x/(l -q2 ) ;  [20/) being an (n- 1) 'h degree polynomial] which agrees with the true 
lift at n points q l . . . . . .  q, so that 

l(t///) = ~ ( ~ ) , / ( 1 - ~ ) ,  (Z = 1 . . . . . . .  ~). 

If the points t/l, • . . . .  t/n are chosen to be the zeros of the n 'h degree polynomial 

~,(t/) = ( n - ~ )  . . . . .  ( t / - t / . )  

bf the set orthogonal with respect to the weight function x/(1-t /z)  over the interval (-1,1) ,  then the 
approximation to the lift will be the best possible in the sense just described for the chordwise lift distri- 
bution, with the proviso that here we are considering the spanwise moments of lift. Interpolation functions 

with the property 

O(t/),/(1 - t / ~ )  
gP(t/) = ( t / -  t/~) ~ / ( t /~k/ ( :  - n~)'  (fl = 1 . . . . . . .  n), (12) 

= f 0 if fl • 7 
g~(t/~) 

1 i f f l  = 7 

can also be defined, so that the spanwise lift distribution can be approximated by 

l(t/p) g//(t/). 
/ / = 1  



3.3. Choice of Downwash Points. 
These are also chosen on the basis of two dimensional theory. 
In two-dimensional steady flow, the downwash and lift for various leading and trailing-edge conditions 

are related by an integral equation of the form 

1 

w(4) = f Ko(~-  4') I(4') d4'. (13) 

- -1  

The exact form of the integral and of the kernel K0 has been set out in Ref. 3. K0(4-  ~') has a singularity at 
4 - 4 '  = 0 and can be shown to have me property that lbr any positive integer p 

1 

f 4' vj(~,) Ko(4_ 4') d4' = Rv(4), 
- 1  

(14) 

where Rp(Q is a polynomial in 4 of degree p. From (13) ~ind (14) it follows that 

1 1 

- 1  - 1  

(15) 

If l(Q is of the form J(4) x (a polynomial of degree rn or less in 4) then it follows from (13) and (14) that 
w(4) is a polynomial in 4 of the same degree. 

Now suppose that, as in Section 3.2, we have approximations l(4)J(Q and/l(OJ(4) to the lift distribution 
which agree with l(Q as shown in equations (6) and (7); note that l~(4)J(~) approximates to l(O at only one 
point more than does I(4)J(4). Then, by virtue of the remarks follow!ng (15), the corresponding downwash 
distributions w(4) and wl(~) are polynomials of degree ( m -  1) and m respectively. Further, 

1 1 

- 1  - -1  

(16) 

from (15). The two approximate lift distributions have the same lift, moment . . . . . . . . .  , ( m -  1) th moment 
and so 

1 

fx { ~ l ( - Q - ~ ( - 4 ) }  ~vJ(Qd~ = 0, (p = 0 . . . .  , m - l ) ,  (17) 

since the left-hand side of (16) vanishes for these values of p. Since { ~ i ( - 4 ) -  w(-4)} i s  a polynomial of 
degree m, it follows from (17) that 

wl( - 4 ) -  w( - 4) = constant x ¢(4). 

The two downwash distribution w1(4) and w(4) will thus have the same values at the points - 41,-. . ,  - 4,~ 
which are the negative of the zeros of the orthogonal polynomial ¢(4). This suggests that these points 
will give a suitable set for evaluation of the downwash; they are denoted by ~, (r = 1, . . .  ,m), and are 
taken as the downwash points in our calculation. 

7 



It should be noted that, from (17) the two approximate downwash distributions will also agree in their 
first m moments with respect to the weight functionJ(~). 

A similar argument applied to the integral equation 

1 I l(t/') w(.) = ~ ~ a . '  
- 1  

which connects lift and downwash in slender wing theory gives a choice for the spanwise downwash 
points. These are in fact ql . . . . . .  t/,, and are the same as the lift points. 

4. 7he Numerical Solution of the Integral Equation. 
4.1. Approximation of  the Lift on the 14qng. 

The solution of (4) may now be considered. With a set of points for evaluating the lift now chosen 
according to Section 3.2, an approximation i(~,t/) may be taken to l(~,t/), where 

m 

p ho({) 
c(,7)q(~,,7) = ~(,1) ~I= 

a = l  

(18) 

Here 

n 

_Xp. go(.) 
P~(,)-/_.-~o c o ,  

f l = l  

(19) 

and 

P,0 = H~ Gp eft/p) l({=,t/p) 

1 

- 1  

(20) 

(21) 

The P=, are used in place of the actual lift values l({=,~/p) at the lift points ({=,t/0) since, for reasons which 
will appear later, they are fundamental in the discussion of the generalised forces. 

Equation (18) and the integral equation (4) give 

m q2(U,q') ZI,  1 ~(.) °(4 ,~ ,~) ,  (22) w(~',~')- 8~ ~ _ - ~  a~ 
a = l  ~/l({',vt') 

where 

~M(U,q' ,n) 

i~(~',tl',tl) = H--~ h~(~) K(x' - x , y ' -  y) d~. (23) 



4.2. The Logarithmic Singularity. 
By developing K into a series and integrating term by term, it may be shown that i~(~',t/',t/) has a 

singularity of the type ( 7 -  t/,)2 log It/-t/'l when t / -  t/' = 0; in fact 

i~,(~',t/',t/) = L,(~',t/') ( t / -  t/,)2 log Jr/-- t/'l + i*(~',t/',t/) (24) 

where 

S 2 

L~(~',t/') -- H~{c(t/,)} 2 

2 i(M 2 + 1)v c(t/') h,, (~') + 4(M 2 - 1)h~(~') 

~t 

+ v2(c(t/')} 2 f e -~i'c(~'l (¢'-¢)h~(~) d~ 
- 1  

(25) 

and i,*(~',t/',t/) contains only logarithmic terms such as ( t / -q ' )  4 log I.-t/'l, (t/__/~,)6 log It/-t/'l etc. The 
derivation of the term L,(~',tf) is due to Minhinnick and is given in Appendix A. 

The logarithmic term in (24) clearly needs special attention, since i,(~',t/',q) occurs in the integtands 
on the right-hand side of (22). This term can be dealt with by using the method of Mangler and Spencer 7. 
Thus, when later dealing with the numerical solution of (22) we will write 

l - t / 2  , , __t/,)2 
P,(~l)i~(~',t/',t/) = P~(t/') ,1 |  7---~__,21L~(~ ,rl ) (~1 log [t/--t/'[+ 

V\i--q / 

{ } + P~(t/)i~(~"t/"t/)-P~(tl') ~ 1 - - ~ )  L~(~',r/')(t/_t/,)2 log It/-. 'l (26) 

The term within the curly brackets on the right of (26) has no singularity of the type ( t / -  tl') 2 log It/- t/'l" 

4.3. The Chordwise Integration. 
The numerical solution of the integral equation may now be considered, and we first take the chordwise 

integral of (23). 
If the upper limit of the integral in (23) is unity, i.e. if the chordwise integral is taken between leading 

and trailing edges, the only singularity in the integrand arises from h,(~). If, however, the upper limit is 
~l(~',t/',q) (corresponding to the Mach line) the singularities in the integrand arise from both h,(~) and K. 
A co-ordinate ( is introduced so that ( = - 1 at the wing leading edge and ( = 1 at the trailing edge or 
Mach line, whichever is further upstream at the chordwise section being considered. In fact 

1 - ~M(~',t/ ' ,t/) + 2¢  
((~,q ,~ ' ,q ' )  = (27) 

1 + ~(~',t/',t/) 



A function k(() containing the singular terms of h,K in (23) may then be defined by 

1 - ( (Limits of (23) at a subsonic leading edge and a subsonic trailing edge) 

1A/( 1 _ (2) (Limits at subsonic leading edge and the Mach line) 

l/x/(1 - 0  (Limits at superionic leading edge and Mach line) 
k(C) = 

x/( 1 - 0  (Limits at supersonic leading edge and subsonic trailing edge) 

1 (Limits at supersonic leading edge and supersonic trailing edge) 

l/x/(1 + 0 (Limits at subsonic leading edge and supersonic trailing edge) 

The way in which these singularities may be achieved for different planforms is shown in Fig. 3. 
With the change of variables from ~ to ( equation (23) becomes 

(28) 

1 

&(~',tl',~l) = ~ + ~M(~',q',rl) h~(~) K(x' - x,y' - y) d( 
- 1  

and a Gaussian integration formula which takes the appropriate singularity k(() of hJ~) K into account 
may be used to approximate to iJ~.',q',r/). In fact 

1 , ,  Vg~ 
i,(~',rt',tt) - ~ l+~M(~,q,~ J~)K(x ' -x ,y ' -y  ~=~ 

2 = 1  

(29) 

for a p-point integration formula, where W~ and (z are the Gaussian weights and zeros in the integration 
formula appropriate to the singularity k(0. Also, since a p-point Gaussian integration formula is exact tor 
polynomials of degree (2p- 1) or less (see, for example, Hildebrand 6, page 319) (29) would be exact were 
Kh,(~) of the form k(() (polynomial in ( of degree {2p- 1)). This provides an estimate of how good a 
chordwise representation of K is provided by the number of integration points taken. 

4.4. The Spanwise Integration. 
The integration of (22) can now be performed approximately. (26) and (22) give 

where 

{ l-t/2 '~L '~', '" 
uJ~',~?',J?) = PJ~?)iJ~',tf,~?)-P~(tf) ~ ~ ,1 -2~  ; ~( tl ) (t 1 -t/ ') 2 log It/- r/' I. 

(30) 

(31) 

10 



The first integral within the brackets on the right of (30) is a principal value integral to which we wish 
to approximate; the numerator has no (q-t / ' )  2 log 17-t/'l term so we may hope to approximate to it 
reasonably by a polynomial fitted at q points in the interval (ql,72). If a variable 

~b - (32) 
t /2-71 

. 

is defined so that 42 = ( -  1,1) corresponds to ~/= (th,t/2), a suitable set of points at which to fit a poly- 
nomial to u~(~',t/',t/) is the set of zeros of the qth Chebyshev polynomial. This is the set of points 

( 2 q 2 2 7 + 1 )  ~ = c o s  re , (y = 1 , . . .  ,q).  ( 33 )  

A set of interpolation polynomials based on these zeros may also be defined such that p~(q~), a polynomial 
in ~b of degree ( q -  1), satisfies 

f 0 if g 4= 5̀ 
p~(~ba) 

1 i f  ~, = ,5. (34)  

u~(~',q',q) may then be approximated by the expression 

where q7({',7') corresponds to q~7 in (32). It follows that 

72 1 
U i i l t ~" ~(~ ,7,7) 2 f u~(~,,7,7) 

dO, 
71 -- 1 

which is an exact equation, and hence that 

72 q 1 

d7 - 7 2 -  ~(¢ ,7',q,(~',7')) ( 4 , 7 ) 2  aq,, 
7z 7 = 1  --1 

(35) 

1 

which is approximate. The integrals f (~_(~,)2PT(~b) d~b can be evaluated exactly, as shown in Appendix B. 

- 1  

This provides a method for evaluating the first integral within the brackets on the right-hand side of 
(30); the remaining integral 

72 

f (1 --72) ~ log It/-7'1 d7 
*/z 

can be found numerically for any particular value of 7'. 

11 



4.5. Solution of the Integral Equation. 
A set of mn lift points (~,qp) at which the lift distribution is evaluated has been chosen over the wing 

by the method of Section 3.2. We may also choose a set of mn points (~,,~/~) at which the downwash is 
evaluated by the method described in Section 3.3. If m chordwise and n spanwise stations are taken we 
get, over the whole wing, sets of lift and downwash points as shown in the example of Fig. 4; in view 
of the remarks of Section 3.3, the spanwise positions of the lift and downwash points are the same. 

To obtain the downwash at any particular point (~,t/,) combine the equations (19), (22), (26), (29), 
(30), (31) and (35) and substitute (~,t/~) for (~',r/') to get 

-87zsw(~,,t/~) = ~ ~ P~aC~a(~r,r/~) (36) 
~=i II=l 

where 

q P 

= G~(,7~(~,,7,)-,7,(5,,I~))Z_j ~ U~ k(~,) x 
~,=1 ~=-1 

1 

P~(¢) de + x K(x~-x,~,ar,  y ~ - y ~ , , ) j  ( ~ - j 2  
- 1  

+ 6 ,  G ~ )  I~-~sl d~ - 
nl( 

n2(~r,n,)-ndS,n3 =~ n - n r , ,  ~ lo ' f p,(¢)d4~ (37) 

The H~ is included in the double summation since the lift singularity k(0 may have different forms at 
different spanwise positions. A simplification occurs during the substitution, as (19) gives 

P~(,Ts) = P=2Q,  

since the spanwise positions of the lift and downwash points are the same. 
Taking (36) for each of the mn downwash points we have a set of ran equations for the mn unknowns P~. 

5. Determination of Generalised Forces. 
Suppose that the wing deforms harmonically in j modes Zl(x,y) . . . . . . .  Z~(x,y) in such a way that the 

displacement of a point on the wing is cZ(x,y), where 

J 

Z(x,y) = Z q .  Z.(x,y) 
u = l  

12 



and q, is a generalised co-ordinate. In a small displacement 6ql, • . . . .  6q~ the virtual work done by the 
airforces is 

- -  p V 2 ~3 ei~t ~,, 6q, l(x,y) Z.(x,y) dx dy. 
S 

The negative sign occurs since lift and displacement are measured in opposite directions. Comparing 
with the expression 

J 
p g  2 ~3 ei.,t ~,, Q. (~q,, 

U=I 

for the virtual work, where pV 2 ~3 e~t Qu is the generalised aerodynamic force in the U th mode, we get 

Qu = - f f l(x,y) Z,,(x,y) dx dy. (38) 
S 

Now, if q. = qu e~'t and we write 

J 

/(x,y) = F, c/v l~(x,y) 
V = I  

then (38) gives 

J 
Q. = ~ Q,,o yt,, (39) 

v = l  

where 

Q,v = - f  f l~(x,y) Z,(x,y) dx dy. 
S 

(40) 

The expressions (18) and (19) may be used to provide an approximation l~(x,y) to I~(x,y). Substituting 
these in (40) and changing the integration to one in ~ and ~/we have as an approximation to Quv 

m n i i 

Q.v -- -- ~ -  dr/ h.(~) Z,,(~,t/) d~, 

= = - - 1  - - 1  

(41) 

where the P~.v are the values of P,p occurring in the equations (18) and (19) for lv(x,y). Now (see, e.g. 
Richardson 3) for polynomials q(~/) of degree n or less in t/ 

1 

I gp(tl)q(tl)dt = 2Gpq(t/p). 

- 1  
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So, in view of this together with (10), we may make in (41) the further approximation of assuming Zu(~,q) a 
double polynomial of degree m in ~ and n in q; the double integral on the right-hand side of (41) will 
be approximated by 

4H= G~ Z u (~-~,~lt~) 

and we obtain 

m /1 

Z..i '~.(~=,n~). 
~=i /~=i 

(42) 

The remark made in section 4.1 about the P,¢ being used instead of the lifts at the points (~,tb) is now 
clarified; in (42) it is the P~a,v which multiply the displacements Z,(~,qa) in this expression. 

6. Matrix Formulation of the Problem. 
6.1. Solution of the Integral Equation. 

Generally, the lift and downwash distributions will have no particular symmetry. However, an 
asymmetric lift and downwash distribution can be split into a symmetric part, consisting of a downwash 
:½{w(x,y)+ w(x , -y )}  with a corresponding lift ½{l(x,y)+ l (x , -  y)}, and an anti-symmetric part, consisting 
of a downwash ½{w(x ,y ) -w(x , -y )}  and lift ½{l(x,y)- l(x ,-y)} .  In these symmetric and anti-symmetric 
distributions the lift and downwash on the starboard half of the wing only need be considered. 

Equation (36) gives the downwash at any of the mn downwash points on the wing in terms of the mn 
unknowns P~ ;  attention will thus be restricted to the downwash points on the starboard half-wing. 

It is convenient at this stage to confine discussion to the case in which the number of spanwise lift and 
downwash stations is odd; that is there is a station at the wing centre-line. Discussion for even n would, 
basically, merely mean omitting the terms relevant to this centre-line section in what follows. 

There are ½m(n + 1) lift and downwash points on the starboard half-wing; the ½m(n + 1) equations which 
follow from (36) may be written 

- 8rcs W = CP (43) 

where W is a column matrix of ½re(n+ 1) elements and P a column matrix of mn elements defined by 

and P'W'= (w(_ ~l,q~(.+l 0 ........ w @.,,q~(.+l) ........ w @t,q) ...... _ w (~m,q.)) t (44) 

= ( P l l  . . . . . .  P=I . . . . . .  P l & ( n +  1) . . . . .  Pm,~(n+l)  . . . . .  P in .  . . . .  P m n )  
\ / 

respectively. In (43), C is a ½m(n + 1) by mn matrix having C~p(~,~/s) as the element in its {½m(2s-n-  1)+ r} 'h 
row and "m(/~- 1) + e} th column. C can be regarded as made up of submatrices, namely 

C= (Co- Coo Co+) (45) 
C+_ C+o C++ 
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where the two suffices relate to the position of the lift and downwash points respectively, and + ,  0 and 
- refer to points on the starboard, side, centre section and port side of the wing. C o+ and C o_ are 
m by ½re(n- 1) matrices, C+ + and C+ _ are ½re(n- 1) by ½re(n- 1), C+ 0 is ½re(n- 1) by m and Coo is m by 
m. The symmet ryof  the problem implies that 

Co+ = Co- L (46) 

where L is a ½m(n- 1) by ½m(n- 1) matrix of the form L(0 ........ 0i) 
0 . . . . . . . .  I0 

0I . . . . . . . .  0 
I0 . . . . . . . .  0 

the unit matrices in L, of which there are ½(n- 1), being m x m, 
Now, for symmetric lift and downwash 

P = JP, (47) 

where 

P'=(PI,~( .+i)  . . . . . .  Pm,~C.+l) . . . . . . . . . .  P1.. . . . . .  P.,~), (48) 
\ / 

and P concerns only lifts on the starboard half-wing and centre-line. In (47) J is a mn x ½m(n + 1) matrix 
of the form 

J =  /0  . . . . . . .  0 I \  

0I . . . . . . .  0 
I0 . . . . . . .  0 
0I . . . . . . .  0 

O . i l l l l i O I  / 

the unit matrices being again m x m. (43) and (47) give 

P = - 8ns(CJ)- 1 W: (49) 

For  anti-symmetric lift and downwash 

P = K P  (5o) 

where 

P' = (Pl.~(.+a) . . . . . .  Pm&(n+3)  . . . . . . . . . .  P1.. . . . . .  Pro.)  

and P concerns only lifts on the starboard half wing; K is a mn x ½m(n- 1) matrix of the form 

(51) 
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,,_-/ 0 . . . . .  0 - I  
0 . . . . .  - I 0  

- I 0  . . . . . . .  0 
00 . . . . . . .  0 
I0 . . . . . . .  0 

0 . . . . . . .  I0 j 
/ 

/ 0 . . . . . . .  OI 

(43) and (50) give 

- 87zs W = C K  P. (52) 

The first m rows of C K  and hence the first m elements of W here will vanish on account of (46); this cor- 
responds to the vanishing of the downwash on the centre-line in anti-symmetric motion. So if 

= (C+_ C+ o C++) (53) 

and 

W ' =  ( w  ~1,t/~(.+3)) . . . . . .  w @m,t/_~(.+ a)) . . . . . .  w @l,t/.) . . . . .  w @re,t/,)) (54) 

then (52) gives 

P = - 8rcs (CK)- i W. (55) 

Equations (49) and (55) provide the required lift values for given symmetric and anti-symmetric downwash 
distributions. 

6.2. The M a t r i x  Equation Connecting Lif t  and Downwash. 
The expression (37) for C~a (~r,r/s) is complicated; however the matrix C of (45) may be regarded as 

the sum of two matrices 

C = C + C i  

where C contains only terms arising from the double sum on the right of (37) and C 1 contains only terms 
involving the Kronecker delta. Then, if 

and 

(57) 

(5a) 
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the term C~p (~,,q~) arising from (37) which contributes to C can be written 

C~¢ (~,t/~) = (h~i . . . . . .  h~) M~ Nr~ R~ g~l / '  (59) 

) 
Equation (59) is strictly true only when there is no variation of the lift singularityJ(~) in the integration 
region considered. The equations whenJ(~) does vary follow simply from those in this section, but have 
been omitted to save additional complication. In equation (59) Mr~ is an m x q matrix given by 

M,~ = t/z({,,q~)_,~(~,,t/~) ) " : ' "  

. .  

where K~ ~ (for i = 1 , . . . . ,  m) is the p x q matrix in which the element in the 2 th row and T th column is 

(~r~,~,) , K ( x ~ -  xr~.a~, Y~-  Y,~,~)f(~rs,l~) i- 1 

N,~ is the q x q diagonal matrix whose 7 th diagonal element is 
i 

• 2 { 1 + ~M({.,t/~,t/~,,)} X/(1 -- t/.~,,) f p,(¢)d~) ( ¢ -  C J ~  
- 1  

and Rr~ is the q x n matrix 

R , s = / l t l r ~ , l  . . . . . . . . . . .  t/~s,~- i I (61) 

Define 

H =  / h i i . . : . . h l m ~  

1 qr,.q . . . . . . . . . .  ~r,,q- 1 

h m l . . "  , h m m  

G = t g l ,  . . . . .  gin ~ 

g n l "  • " • • gnn 

(62) 
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Then from (59) and the form of the matrix C (and hence of C) it follows that the elements of the 
m x n matrix 

HM,~N,sR~sG', (63) 

taken row by row and extended to become a 1 x mn row matrix, give the elements of the row of C which 
corresponds to the point (~,,t/~). The rows of C can then be built up of row matrices such as the one 
which follows from (63). 

The matrix Ct can be built up separately by using the terms involving 6os in (37); no particular simpli- 
fication is available beyond the fact that the terms of C1 for which ~ ~e s are zero. 

6.3. Evaluation of Generalised Forces. 
The equation (42) can be written 

where 

Q.v - - 2s z . P .  (64) 

Z. = (Z.(~,,ql) . . . . . .  Z.(~.,,~/t) . . . . . . . . . .  Z.(~t,~/.) . . . . . .  Z.(~,.,q.)), (65) 

and P~ is P of equation (44) for the mode v. 

In view of (47) and (49), (64) may be written 

Q.. - 327zs 2 Z. (Cd)-1 W~ (66) 

for symmetric lift and downwash and in the form 

Q.~ - 32rcs 2 2 ,  (CK)-~ W~ (67) 

for anti-symmetric lift and downwash, from (50) and (55). Z. and Z,  are defined by 

and ...Zu@,,,rl.~,,+3) ...Z.(~l,q.)...Z.(~m,rl.) ) (68, 

2.= (Z.  @t,r/~r,.+s))...Z. (~.,,r/~r,.+a~ ...Z.('~,q.)...Z.('m,q.), (69) 

and Wo and W~ are given by (44) and (54)'where we take w.(~,q) to be the downwash due to Zo(~,q). 

Now, on a wing oscillating harmonically with deflection shape Z~(~,rl)e ~vt, the boundary condition 
for the downwash w.(~,~/) given by the ctcndition of tangential flow at the surface is 

w~(~,n) = ~ z~ + ivZo 
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and (66) and (67) then give 

where 

Q.o - 32rosa z . ( c J ) -  ~ (z_~,,~ + ivZ_'~) 

Q.v # 32rosa Z.(CK)- t (=Z;,x + ivZ_') 

(symmetric) t 

(anti-symmetric) 

and _Zo, ~ and =Z~,~ are defined similarly by replacing Zv(¢,q) by ~-~ Z~ on the right of (71). If 

(C J ) -  1 = A + iB 

( C K ) -  ~ = L + i M  

then (70) may be written 

1 
- -  , - -  t • - -  t - -  ! 32ns 2 Q.~ - Z .AZ_~,~-  vZ.BZ_o + t(Z.BZ_v,x + vZ.AZ_o) 

1 
= ' = ' " = ' vZ.LZ__o) 32r~s~Q. ~ - Z.LZ__o,~-vZ.MZ=v+t(Z.MZ=~,~+ = ' 

(symmetric) t 

(anti-symmetric).. 

(70) 

(71) 

(72) 

(73) 

It should be noted that the matrices Z. and Zu are found by evaluating Zu(~,t/) at the lift points (~.,t/p), 
whereas the matrices _Zv, _Z .... __Z v and __Zv.~ are found by evaluating Zo(¢,r/) and its derivative at the down- 
wash points (~,,~/s)- Finally, if 

Z = I 2= z =  il)j __Z= ZI 

zj 
and _Z~, =Z x are similarly defined in terms of_Zv, x, =Zo,x then (73) may be written 

1 
327~s2 Q = Z A Z _ ' -  vZBZ_' + i(ZBZ_'~ + vZAZ_') (symmetric) t 

(anti-symmetric) 
1 

32rcs2 Q = ZL=Z'- vZM=Z'+ i(ZMZ__ + vZLZ__') 

where Q is the (j x j) matrix of generalised force coefficients Q.v. 

(74) 

(75 /  
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7. Results. 
7.1. Calculations on an Ogee Wing. 

Derivatives have been found for an ogee wing of aspect ratio 0.924 oscillating at low frequency in 
pitch and heave at Mach numbers in the range 1-4 to 2.6. The planform, shown in Fig. 5, has its leading 
edge specified by the equation 

y = s(1.2x o - 2"4Xo 2 + 2'2Xo 3 + 3Xo 4 - 3xg), 

where x0 = ~ X/Co, and c o is the root chord. In the Mach number range in question the leading edge is 
wholly subsonic and the trailing edge wholly supersonic. This planform was chosen because of the 
availability of experimental results. In a series of wind tunnel tests s on a cambered model, Thompson 
and Fail found derivatives at low frequencies for pitch and heave. The experiment was such that the 
reduced frequencies in pitch and heave were different. The derivatives were assumed not to vary with 
frequency, since this was small, so the calculations here have also made this assumption and have been 
taken only at the pitching frequency of Ref. 8. The tests were carried out for a range of mean incidences 
and the resulting derivatives referred to body axes. Since the theory used here is linearised, and so that 
the direct comparison may be made, we restrict our attention to the zero mean incidence results of Ref. 8. 

The ogee planform of Fig. 5 has also been tested in steady flow over the same Mach number range in 
a series of wind tunnel experiments performed by Taylor 9. In addition to the cambered shape tested by 
Thompson and Fail, Taylor tested a plane ogee wing having the same planform. 

The theoretical values of the derivatives are given in Table 1 and are shown in Figs. 6 to 10 together 
with the experimental results. The derivatives are defined by 

L i f t =  p V 2 S e'*t. [( L~ + iv o L~) ~o + ( Lo + zv o Lo) O o ] (76) 

and 

Moment = p V2 Sc°ei~t [ (Mz + iv°M~) 6z° +(M° + iv°M~)O°l A (77) 

where S = wing area, Vo = WCo/Vand the moment is measured relative to an axis distant 0.71 c o from 
the apex on the root  chord. This definition, which differs from that conventionally used in flutter, is 
chosen to agree with Ref. 8 since the results given there are not suitable for conversion to a more 
conventional notation. 

The variation of Lo with Mach number is shown in Fig. 6. The theoretical values are a little low when 
compared with the unsteady experimental results of Ref. 8. However, it will be noted that agreement 
with the zero frequency results of Ref. 9 for a flat plate wing is very good, particularly at the lower Mach 
numbers; further, the zero frequency results for a flat plate wing are lower than those for a cambered 
wing. Hence it may be expected that agreement will be rather better than indicated by comparison with 
the v + 0 results of Ref. 8, if not quite as good as the agreement with the v = 0 results of Ref. 9 might lead 
one to hope. It should also be remarked that the 8 per cent loss in Lo due to frequency at M = 1.4, 
shown by the experimental results of Ref. 8, is rather more than would be expected from linearised' theory, 
for which our results are valid. 

The comparative variation of - M o  with Mach number is shown in Fig. 7. Agreement is rather better 
with the zero frequency results, both for the cambered ~ind plane wing. However, the values of - M o  
are small, being measured for an axis near the centre of pressure, and the plot tends to exaggerate the 
very small differences which exist. 

The variation of L~with Mach number is shown in Fig. 8. At vanishingly small frequency this derivative 
would be the same as L o. The theoretical results satisfy this requirement, but it can be seen that the 
experimental values exhibit some scatter. This apart, the same remarks apply as were made about L o. 
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The variation of - M ~  with Mach number is shown in Fig. 9. Agreement is again good, allowing for 
the experimental scatter and the smallness of what is being plotted because of the closeness 
of the reference axis to the aerodynamic centre. 

Fig. 10 shows the variation of -Mo. Agreement is excellent. No plot has been made of 10, since the 
experimental derivatives are in some doubt, so for this derivative no independent check can be provided. 

It should be emphasised that, where derivatives are calculated in this report, it has been necessary to 
select in advance certain values of (m,n,p,q) which specify the number of lift and integration points; the 
selection of these is discussed in detail elsewhere 4. In general, when finding derivatives, their acceptability 
is determined either by comparison with existing results or with a repeat calculation using an increased 
number of points. The derivatives presented in this and the following sections have been found using 
only one set of (m,n,p,q) as specified in the tables. Since agreement with known results'has been satisfactory, 
no repeat calculations using more points have been made. In general when calculations are made by the 
method of this report and agreement is not thought satisfactory, it is necessary to make a repeat calculation 
using more points. 

7.2. Calculations on a Symmetrical Tapered W~ng. 
We now revert to the conventional definition of flutter derivatives, namely 

Lift =pV2Se 'v' [(lz+ivl~)Zo+(lo+iVIo)Oo ] 

and 

(78) 

r -] 
M o m e n t =  pV2S~e 'vt I(mz+iVm~_)Zo+(mo+ivmo)Oo] , (79) 

the moment being measured relative to an axis through the wing apex. 
Derivatives have been found at M = 1.102 and M = ~/2 for the symmetrical tapered planform of 

taper ratio 0.27 and aspect ratio 4.33 shown in Fig. 5. This planform has been used in a series of tests 
and calculations carried out under the aegis of the National Physical Laboratory 1°. Direct comparisons 
at M = 1.102 are available from the exact theory of Lehrian 11, valid for hexagonal wings oscillating at 
low frequency in supersonic flow, and by the method of Allen and Sadler ~z. This is a supersonic theory 
valid for general frequency, planform and Mach number and is based on the integral equation which 
gives the downwash in terms of the velocity potential. This equation is solved to give the velocity potential 
at the vertices of a fine mesh. Derivatives calculated by this method have been given in Ref. 12. 

Values of derivatives calculated at M = 1.102 by the method of this report for v = 0.019, 0.19 and 
0.38, from Ref. 11 for v ~ 0  and from Ref. 12 for v = 0"19 are given in Table 2, the results from Refs. 11 and 
12 being converted to the notation used here. At this Mach number the Mach lines from the apex and 
from the foremost point of the tips are as shown in Fig. l la. The local lift has a discontinuity in its 
derivative when a Mach line is crossed, whereas the assumption has been made in Section 4.1 that the 
lift distribution can be approximated by a sum of chordwise and spanwise polynomials having no such 
discontinuity. It is seen from Fig. l la that for nearly all chordwise sections there are two such discon- 
tinuities in the lift while for nearly all spanwise sections (that is, those having constant 4) there are four 
such discontinuities. The accuracy with which the derivative can be found will reflect on' the validity 
of the continuity assumptions of Section 4.1. 

The variation of the various derivatives with frequency parameter is shown in Fig. 12. It will be noted 
that all derivatives vary considerably with frequency parameter since the Mach number is close to unity. 
In particular, for very small frequency parameters the damping derivatives 1 o and (-too) are large and 
negative, indicating a very severe instability at these frequencies. It will be seen that agreement between 
the derivatives calculated by the method of this report and the other derivatives is in all cases good. 
The method of Ref. 11 is exact, and the closeness of agreement with results from this is a measure of 
the accuracy obtained in our calculations. Results from Ref. 12 are, like those of this report, approxi- 
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mations to the exact solution and should be treated as such in making comparisons. The largest 
discrepancy is between the two values of lo at v = 0.19 which occurs, as remarked above, in a region 
where the derivative varies very rapidly. Expressed in terms of the value at v-~ 0 the discrepancy between 
the two approximate values of the derivative at v = 0.19 is only 4 per cent, while the discrepancy between 
each approximate value and the unknown exact value may be as low as 2 per cent. Referring to the 
absolute error in the derivatives which it gives for this wing, Ref. 12 suggests that an upper bound for 
these errors would be 5 per cent, and this combined with a comparable discrepancy in the results here 
could more than account for the differences which exist. 

For  M = x/2 values of the derivatives are given by Garner, Acum and Lehrian 13. In addition to values 
based on Lehrian's exact theory ~,  Ref. 13 gives derivatives calculated by computer programmes based 
on the method of Hunt 14. In this method a mesh is placed over the wing; for sufficiently high supersonic 
Mach number the velocity potential can be expressed directly in terms of the downwash, and this enables 
the velocity potential to be found at the vertices of the mesh. Hunt's method has been mechanised by 
Wicks ~s for the Deuce computer as Bristol Aircraft Programme BAC 11, and has been mechanised for 
the Pegasus computer by Hawker Aircraft. Hawker have developed a separate programme tor infinitesimal 
frequency. One of the conclusions of Ref. 13 is that the Hawker Pegasus programme is marginally 
preferable to the Bristol Deuce programme. 

Values of the derivatives calculated at M = ,]2 by the method of this ieport for v = 0'019 and 0.19, 
from Ref. 11 for v-~0 and from Ref. 13 (that is, the Bristol and Hawker programmes) for v~0,  v = 0"095 
and v = 0-19 are given in Table 3; the results from Refs. 11 and 13 are converted to our derivative 
notation. At M = ~/2 the Mach lines from the apex and from the foremost point of the tips are as shown 
in Fig. 11 b; it will be seen that they do not interfere. 

The variation of the main derivatives with frequency parameter is shown in Fig. 13; the Hawker 
results for v- ,0  are obtained by a completely different programme from those for v = 0"095 and 0.19 
and are consequently not continuously joined to these. Agreement between the derivatives calculated 
by the method of this report and the other derivatives is in all cases good. The greatest discrepancy is 
for Io when v is small; although the exact comparison at the same frequency cannot be made, this deriva- 
tive appears to be of the order of 4 per cent too low. However, it should be pointed out that this disagree- 
ment is rather less than that between the Bristol and Hawker lo derivatives for the higher frequency 
parameters. 

7.3. Calculations on a Wing with Cranked Leading Edge 
Derivatives have been calculated at M = ~/2 for the wing with Cranked leading edge of aspect ratio 

4-58 shown in Fig. 5, which was also used in the series of tests and calculations already referred to 13. 
At this Mach number the Mach lines from the apex and the leading edge discontinuity are shown in 
Fig. 1 lc. The Mach lines interfere, and at some chordwise sections there are two discontinuities in the 
local lift curve slope while for nearly all spanwise sections there are four such discontinuities. 

Derivatives calculated by the method of this report for v = 0.01793, by exact theory la for v ~ 0  and 
by the Hawker Pegasus programme and Bristol Deuce programme for v = 0"08965 are given in Table 4, 
the results from Refs. 11 and 13 having been converted to our notation. It will be seen from Table 4 that, 
in the limited range of frequency parameter we are considering, there is little variation of the derivatives. 
If we make the direct comparison between our results and the exact results of Ref. 11 it will be seen that 
the maximum disagreement is one of I per cent in l 0. 

7.4. Calculations on a Delta Wing. 

Calculations have been made on a delta wing of aspect ratio 1.5, shown in Fig. 5, which oscillates in 
an airstream of Mach number 1-01. Standard methods 16 exist for calculating derivatives on delta wings 
with subsonic leading edges in supersonic flow, and derivatives based on Ref. 16 for v ~ 0  are given in 
Table 5 together with derivatives calculated by the method of this report for v = 0.15 and 0.3. At M = 1-01 
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it is not possible to obtain exact comparisons at our frequency parameters from Ref. 16 since the series 
used there does not converge with sufficient rapidity. 

Fig. 14 shows the variation of the derivatives with frequency parameter, and it will be seen that 
agreement is very close. 

8. Conclusions. 
A method for finding the generalised forces on wings oscillating in supersonic flow has been described. 

This has been programmed for the Mercury digital computer, and from calculations which have been 
carried out good agreement is shown with both experimental and theoretical results over a wide range 
of Mach numbers. 
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LIST OF SYMBOLS 

Aerodynamic derivatives 

Lz, L~, Lo, Lo, Mz, M~, Mo, Mo are defined by equations (76) and (77) 

l~, l~, lo, lo, m., m~, too, mo are defined by equations (78) and (79) 

Primes are used to denote particular examples of variables, for example x', y', 4', ~', except where they 
obviously indicate differentiation and matrix transposition. 

A,B 

c(~) 

Co 

C 

C, CI 

f(~) 

op(,) 
G 

Gp 

h~(~) 

H 

H~ 

i~(~',~/',r/) 

J 

K 

K(X,Y) 

Ko 

l(x,y) or/(~,~/) 

p V2e ivt [(x,y) 

I.(x,y) 

1 (¢~) 
L 

L~(~',t/') 

Matrices defined by (72) 

Local chord = ~c(~/) 

Mean chord 

Root chord 

Matrix of quantities C,p(~r,~s), defined by (45) and preceding text 

Defined by (37) 

Matrices defined by (56) and immediate text 

Matrix defined by (53) 

Function which takes into account the chordwise singularity in lift; defined 
by (5) 

Interpolation function for spanwise lift distribution, defined by (12) 

Matrix of coefficients of interpolation functions defined by (62) 

Defined by (21) 

Interpolation function for chordwise lift, defined by (9) 

Matrix of coefficients of interpolation functions defined by (62) 

Defined by (11) 

Defined by (23) 

Folding matrix, defined following equation (48) 

Function which takes into account the singularity in the chordwise integration, 
defined by (28) 

Folding matrix, defined following equation (51) 

Kernel function, defined in (2) 

Kernel function for two dimensional steady flow - see equation (13) 

Reduced lift 

Lift 

See following (38) 

Approximation to l(~,~/), defined by (18) 

Matrix defined by (72) 

Defined by (25) 
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LIST OF SYMBOLS--continued 

m 

M 

M 

n 

N~s 

P 

pMo) 

P, P~ P 

P 

P,(tl) 

P~p 

q 

q,, 

9. 

9.. 

Quv 

R 

Rrs 

s 

s 

S 

t 

u~(~',~',~) 

V 

w(x,y) or w(¢,~) 

Vei~tw(x,y) 

w,W 

w~ 

Number of chordwise lift and downwash points 

Mach number 

Matrix defined by (72) 

Matrix defined by (60) 

Number of spanwise lift and downwash points 

Diagonal matrix - see text preceding (61) 

Number of chordwise integration points 

Interpolation polynomial satisfying (34) 

Column matrices of values of P~ defined respectively by (44), (48) and (51) 

Matrix of coefficients in pr(~b) defined by (88) 

Defined by (19) 

See (20) 

Value of P.a which arises in the approximation to lv(x,y ) 

Number of points used in spanwise integration 

Generalised co-ordinate 

Matrix of generalised force coefficients, defined by (75) 

Generalised force corresponding to co-ordinate q. is p V 253 e ivt Q. 

Generalised force coefficients - see (40) 

Suffix associated with chordwise variation of downwash point 

~ / ( x Z - f l 2 Y  2) 

Matrix defined by (51) 

Semi-span = s5 

Suffix associated with spanwise variation of downwash point 

Wing area 

Reduced time 

See (31) 

Airspeed 

Reduced downwash 

Downwash 

Column matrices of values of w(~,q) defined respectively by (44) and (54) 

See text following (69) 

Gaussian weights associated with a p-point integration formula for k(0 
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LIST OF S Y M B O L S ~ c o n t i n u e d  

x,y,z 

XLE 

Xrs 

Xrs,;4, 

X 

Y~ 

YFS,7 

Y 

z , ( x , y )  . . . z j ( x , y )  

Z. ,Z . /Z .  

~Zv,x 

z,z,_z,_z 

~(¢,n,~',q'.) 

,71(~ ' ,~ ' ) ,  ~ 2 ( ~ ' , ~ ' )  

!1 

"¢0 

~r 

Cartesian co-ordinates, referred to 6 as reference length 

x = 2(y) is the equation of the mid-chord line 

Value of x at leading edge 

Value of x at a downwash point (~,,r/~) 

Value of x at an integration point 

~--- N ' - - X  

Value of y at a downwash point (~r,~/s) 

Value of y at an integration point 

= y ' - y  

Modal deflection shapes 

Row matrices whose elements are the modal deflections evaluated at the lift 
points. Defined by (65), (68) and (69) 

Row matrices whose elements are the modal deflections at the downwash 
points; see (71) 

See (71) and following text 

Matrices defined by (74) 

See (74) and following text 

Suffices associated with chordwise and spanwise variation of lift points 
respectively 

= x / (M2-1)  

Suffix associated with spanwise variation of integration points 

Variable for chordwise integration, defined by (27) 

Gaussian zeros associated with weight function k(~) 

Spanwise co-ordinates of downwash and lift points respectively 

= rT , (¢r ,~s )  

Intersections of ~ = ~t(~',rl',q) with leading edge or tips - see Fig. 2 

Value of q given by (32) when ~b = q~r 

Suffix associated with chordwise variation of integration points 

Frequency parameter = e)UVbased on mean chord 

Frequency parameter = COco/Vbased on root chord 

Wing co-ordinates defined by (3) 

Chordwise co-ordinate of point at which lift is evaluated 

Chordwise co-ordinate of downwash point 
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LIST OF SYMBOLS- ,cont inued 

~1(~',~',~) 

~M(~',~',~) 

P 

~brs 

~(~) 

q ~ ( ~ )  • 

(.0 

Value of ~ given by (27) when ~ = (z, q = qrs,~, 

Equation of reversed Mach lines through (~',q') is ~ = ~l(~',t/',t/) 

min {~l(~',t/',t/), 1} 

Density 

Defined by (32) 

Value of ~b given by (32) for point (~r,r/~) 

Tlae polynomial of degree m of the set orthogonal tof(~) over (-1,1) 

The polynomial of degree n of the set orthogonal to x/(1 _q2) over ( -  1,1) 

Angular frequency 
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APPENDIX A 
(see section 4.1) 

The Logarithmic Singularity in the Influence Function i~(~',~l',rl) 

The (r/-t/')21ogl~/-t/'] term occurring in the term i,(~',t/',r/) of equation (23) was derived by 
I. T. Minhinnick in an unpublished note; the following treatment of this singularity is based on 
Minhinnick's. 

Watkins and Berman 5 give as an expansion for the function K(X,Y) of (2) 

K(X,Y)= e-ivx{ 2X 
2iv y2 v 2 y2 X 

R fl2R 

[X+ R "~ 1 v2y2 log +0(V 3) ? 
\TN-j ) 

which, expanding e-ivx as a series where convenient, gives 

X 2 + y  2 v2(2M2-1) X y  2 V2X 3 v2y2e_i~XlogfX+R'] 
K(X, Y) = 2 X _  2iv - -  f12 R R R R \ flly] ,] +o(v3). (80) 

We consider the coefficient of y2 log Y in the expansion of 

x'-fllrl 

I(x',Y) = x !  f(x) K(x ' -x ,Y)  dx (81) 

for some function f(x), the integral being taken between wing leading-edge and Mach line. (81) gives 

I(x',Y) = 

X I - - x  

;L {2xa,v X2+ 2,  2M21,X 2v2X3 } i xx, ~/(X 2 _ f12 y2) dx + 

X ' - - X L E  

+v2y2 f f (x ' -X)e- 'VXl°gx+x/(Xfl2-f i2y2) dx + 

pit I 

~¢, X r 

,v2 21og, ,{ ;s,x,e,VXdx I S x, e i  dx},o,v3, 
x L~ x'-13iN 

(82) 

N o w f ( x ' - X )  may be expanded as a Taylor series 

f ( x ' -  X) = f(x') - Xf'(x') + ½X2f"(x ') + . . . . .  (83) 

and the first term on the right of (82) may be written 

x '  --XLE 

x/(X2 fl2y2) 2X-2iv(  X 2 + -  , f12 (2M2-1) XY2-v2Xa  
EL ) 

+ 1X2 " x' + '( f ( ) . . .  (84) 
d 
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while the second may be written 

v2y 2 log 

x 
j~ Xt -- XLE 

0 

+ 

X' -- X L E  

t~IYl 

(85) 

In the second integral of (85), e-i 'Xf(x '-X) has been written as a series and integrated term by term. 
The integrals in (84) and (85) are all o f  the form 

x" ; LE X" dX 
J ,=  x/(X2 f12y2), 

IqYI 

which satisfy the recurrence relation 

j n + l  ^2y2 

with 

and 

jo =Iog{(X'--XLE)-t-4{(X'--XLE)2--fl2Y2}} 

J1 = ,/f(x'-xL02- 2Y2}. 

Since x ' -  x L E > 0 for small ]YI, the only singularity of Jo at Y = 0 arises from the term - l o g  [YI" There 
is no singularity in J1 at Y = 0. Hence, from the recurrence relation, the integrals Ja, Ja, Js . . . . .  cannot 
contribute to a logarithmic singularity in I(x',Y); the terms Jo, J2, J4, ---. do contribute and give rise 
to terms 

-loglY I in Jo 

~ f12y21og [Y I in J2 

and so on. 

~fi*Y4 log IY] in J ,  

Since the first term of (85) does not contribute a y2 log [y[ term to a logarithmic singularity, the terms 
which do contribute to the y2 log [Y[ term of (82) via (84) and (85) may be singled out.They give 
a contribution 

{iv (M 2 + 1)f(x')+ (M z - 1)f'(xl) } y2 log [Y[. 
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There remains the third term of (82), which gives rise to a term 

x J 

v 2 y2 log, I YI I f ( x )  e-,~x dx 

x LE 

and the Coefficient of y2 log ] Y[ in I(x', Y) is, from (82), thus 

x t 

iv(M 2 + 1)f(x') + (M 2 - 1)f'(x') + :,2 I f (x )  e-i~(x'- ~) dx. 

x 
LE 

(86) 

So, from (23) and (86), the result (25) for L,(#',q') follows on replacingf(x) by h~(#)/H,and changing the 
variable from x to #. Since we are expanding for small [Y[, the upper limit in (23) becomes 4'. 

APPENDIX B 

(see Section 4.4) 

1 

Evaluation of the Integrals - -  2 aq~ 
- I  

Wehave defined q interpolation polynomials p~(q~) of degree ( q -  1) by (34). If 

pr(d~) = Prl + P,2 4)+ . . . . . . .  + P~q ~ aq-1 

then, in matrix form 

i I PI(4') @I _ (4 ,_4r32  d 
= - 4 , r s )  2 

(87) 
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where 

P = 

The integrals in the column matrix on the right of (87) may be evaluated as follows. Let 

1 

I,  = ( 4 _ ¢ , 3  ~. 

- 1  

(88) 

Then the I ,  satisfy a recurrence relation 

I, - 2q~ I,_ ~ 2 
(7 odd) 

(y even) 
} ( 7 . - > 2 )  

with 

The solution of this recurrence relation for 7 ~ 2 is 

I,  - 1-~b,Z~ q-? ~b~- log 

+ . . . . . . . .  +. 

- - 1 + 2 ( 7 - 1 )  q~r~-= + ~(~-  3) q~g-4 + 

2 
,_-Z~ (7 even) 

(y odd) 
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TABLE 1 

Theoretical Derivatives for a Pitching and Heaving Ogee Wing 

m = 5 ,  n =  10, p = 5 ,  q =  11 

M 

1"4 

1'8 

2.2 

2'6 

~0 

0.14 

0"12 

0"11 

0"10 

L ~ 

-0 '0011 

-0 '0007  

-0 '0004  

-0 '0002  

go 

0"7356 

0"6679 

0"6140 

0"5717 

- M z  

0"0000 

0"0000 

0"0000 

0"0000, 

- M o  

0"0207 

0"0172 

0.0134 

0-0108 

L~ 

0.7358 

0.6681 

0.6141 

0.5718 

Lo 

0.7249 

0.6246 

0.5488 

0.4885 

-M~ 

0"0207 

0"0172 

0"0134 

0"0108 

- M  o 

0-0409 

0"0337 

0"0293 

0"0258 

TABLE 2 

Theoretical Derivatives for a Symmetrical Tapered Wing, M = 1.102 

Method v 

rhis report, m = 4, 
= 10, p = 4 ,  

7 =  10 

Reference 11 

Reference 13 

0"019 
0'19 
0'38 

~ 0  

0'19 

0"0028 
0'1941 
0'2612 

0 

0'2013 

10 - -  m z 

3'5362 0'0025 
2'8831 0'1578 
2"1287 0'1128 

3"5173 0 

2"89 0'1570 

- -  m o 

2"5630 
1'9127 
1.2986 

2.5746 

1.87 

le  l o - -  m e 

3"5344 --4"7869 2.5611 
2'7382 --2"8551 1"7690 
1'8275 0"0381 1'0330 

3'5173 --4.7964 2"5746 

2"74 --3.05 1"73 

- m  0 

-4.2577 
-2.1504 

0.7564 

-4.3957 

-2 .13  
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TABLE 3 

Theoretical Derivatives for a Symmetrical Tapered Wi~tg, M = x/2 

Method 

1 
l'his report m = 4, n = 8 
0 = 4 ,  q = 8  ) 

Hawker programme for v ~ 0  

Hawker programme for 
v # 0  J 

BAC programme } 

Reference 11 

0-019 
0-19 

~0  

0-095 
0-19 

0.095 
0.19 

~0 

0"0004 
0"0333 

0 

0-0090 
0-0348 

0"0085 
0"0331 

0 

lo' 

1"8974 
1-8620 

1-8964 

1-9020 
il-8876 

1-8807 
1"8671 

1-8928 

- -  m z 

0.0003 
0.0310 

0 

0-0086 
0-0331 

0.0081 
0.0315 

0 

- -  m o 

1"4617 
1-4229 

1"4730 

1-4854 
1-4692 

1"4740 
1"4590 

1.4678 

1-8972 
1.8412 

1-8964 

1-8963 
1-8653 

1-8755 
1-8466 

1-8928 

lo 

0-5339 
0-5655 

0-5570 

0-5280 
0.5416 

0.5568 
0.5688 

0.5558 

- n h  

1.4614 
1.4014 

1.4730 

1.4795 
1.4454 

1-4685 
1-4376 

1-4678 

- -  m 0 

0.4732 
0.5104 

0.4913 

~0.4748 
0.4908 

0.4955 
0.5095 

0.4895 

TABLE 4 

Theoretical Derivatives for a Wing with Cranked leading Edge 

Method 

This report m = 4, n = 8, 
p = 4 ,  q =  8 

Reference 11 

Hawker  programme for 
v # 0  

BAC programme 

0.01793 

~ 0  

0.08965 

0.08965 

0.0003 

0 

0.0087 

0"0083 

1.9409 

1.9349 

1.9383 

1.9194 

- -  m z 

0'0003 

0 

0"0088 

0.0084 

- -  m o 

1.5987 

1.6037 

1.6141 

1.6045 

I~ lo 

1.9407 0.5982 

1.9349 0.6042 

1.9325 0.5791 

1.9140 0.6003 

- -  ms 

1.5985 

1.6037 

1.6077 

1.5983 

- -  m 0 

0.5816 

0.5797 

0.5652 

0.5786 

TABLE 5 

Method 

This report,  m = 3, n = 7 
p = 3 ,  q = 7  

Reference 17 

Theoretical Derivatives for a Delta Wing, M = 1"01 

0-15 
0"3 

--*0 

l z  lo - m z  - -  m o  1~ Io - m s  - m ~  

0"0027 1"1350 0"0041 1-5531 1.1149 1-9821 1"5206 3.0034 
-0"0057 1"1276 -0 .0104 1"5451 1"0919 2"0950 1"4893 3'1903 

0 1-1718 0 1-5624 1-1718 2"0100 1-5624 3"0149 
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V 

FIG. 1. Wing planform and co-ordinate system 

by 

I I 

FIG. 2. Integration areas for equation (4) 
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FIG. 3. Chordwise integration limits and values of k(() for various planforms 
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FIG. 4. Lift and downwash points for a delta wing with subsonic leading edge, m = 3, n = 7 
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FIG. 5. Wing planforms used in derivative calculations 
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(o) SYMMETRICAL TAPERED WING 
M = I.IO2 

(b) SYMMETRICAL TAPERED WING 
M=J2  

(c) WING WITH CRANKED 
LEADING EDGE 

M = J 2  

FIG. 11 (a to c). Mach line interference on wings with supersonic leading edges 
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