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Summary. 
Various analyses are presented for orthotropic and isotropic panels from which several elastic stability 

characteristics can be obtained. The loadings considered are biaxial in-plane compression and lateral 
loads which are dependent on the panel deflections (typically aerodynamic loadings). The panels are 
assumed to be resting on an elastic foundation to increase the generality of the problem. 

The analyses are valid for panels whose edges experience no lateral deflection but which are in general 
elastically restrained against rotation. 

The application of the analyses to particular configurations is shown and for certain isotropic panels 
correlation with experiment is found. 
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Detachable Abstract Cards 

I. Introduction. 
The static stability of rectangular orthotropic panels has been the subject of many investigations when 

the loadings are in the plane of the panel. Corresponding analyses which include deflection - dependent 
lateral loadings are less widely known and the purpose of the present Report is to indicate possible 
theoretical approaches to the problem. 

The present Report relies heavily on the theoretical approach adopted in Refs. 1, 2 which contain 
vibration and flutter studies for flat rectangular orthotropic panels with various degrees of rotational 
restraint. 

In so much that the inclusion of deflection - dependent (e.g., aerodynamic) lateral loads may lead to 
static aeroelastic phenomena (e.g. panel divergence), reference is also made to a previous paper by the 
present author (Ref. 3). 

2. Analysis 1. 
The configuration to be analysed consists of a flat rectangular orthotropic panel of length a, width 

b - Fig. 1. Uniform in-plane forces N~, Nv, (positive in compression) and N~r are applied to the panel 
although subsequently the in-plane shear will be discounted since the method of analysis adopted does 
not permit its inclusion. The panel is supported in such a way that there is no lateral deflection along the 
edges which are considered to be elastically restrained against rotation. The elastic restraint stiffness is 
assumed to be constant and equal on opposite edges. 

The governing differential equation for the present problem is adapted from Refs. 4, 5 and is applicable 
to a plate with a small initial curvature. 

Dx 04w 
1 - v x vy 0x ~ 

( v,o ] o,w o,w 
b2 DxyO 1 - v x v y / ~ - ~  1--v~vy 0y 4 

Ox 20y------~-bKw+Nx-~xz+2Nx, o--~y+ Nr~y2 = p. (1) 

The term in F was introduced in Ref. 5 to include the effects of warping restraint of the transverse stiffeners 
m the y-direction which produce the orthotropicity. The above equation implicitly assumes that the 
principal axes of the panel are parallel to the geometric axes shown in Fig. 1, (for a more general formula- 
tion see Ref. 6). 

The boundary conditions which the solution to equation (1) must satisfy are 

1-vxv r 0x 2 + 0 x ~ = 0 a n d w = 0 a t  x ~ a ;  (2) 

O, a'w_oOw__ = { = } 
1-v~vy Oy z +vy~-y O a n d w = O a t  YY bO (3) 



where 0x and O r are the spring constants per unit length of the rotational restraints acting at the boundaries. 
An alternative form of the governing differential equation which may be deduced from equation (1) 

is, 

04w 04w 04w 06w 
D1 ~-~x4 + 2Dx2 ~ +  022 -~y4- EF Ox 2 Oy" 

. 02~ _ 
+ NX ~x2 + 2 Nx r OZw 02~ 

+ Kw + 

(4) 

The form of the lateral pressure loading p is taken to represent both subsonic and supersonic flow con- 
ditions, and'in a simplified form this may be written 

O~ 
P = P1 w-P2-x--, (5) tTg 

where it is assumed that for subsonic flow the lateral load depends on the local displacement ~, and for 
0~ 

supersonic flow on the local streamwise slope ~x" These assumptions will be discussed later in Sections 

4 and 5. 
Substitution of eqn. (5) into eqn. (4) yields 

I 04 04 04 I 06w 
D, l~-~x4+2D12~+O22~-~y4 w - E F  ox 2 oy-'-'--~-t-Kw+ 

I 0 z 02 02 ] _ O~ 
+ Nx~x2+2Nxyo--~y+N,.~y2j~=Plw-l'2~x. (6) 

In general a product solution of the form 

(7) 

(8) 

Ogw 06w 
will not satisfy eqn. (6) since the terms ~ and ~ prevent the functions X and Y from separa- 

 a  owovor  olut o  

and. Y ( ~ ) a r e  assumed functions which satisfy the boundary conditions on the edges y = O, b - see 

eqn. (3), and Xo is also initially known or specified, then X is to be determined from the 

ordinary differential equation which results when eqns. (7) and (8) are substituted into eqn. (6) which is 
/ \ 

multiplied by r ( b )  and integrated with respect to y. This procedure is essentially the first stage then 
\ / 

of a Galerkin-type analysis. The resulting ordinary differential equation is 



I 2 a4 1 a2 XiV C ± on a Xi i -~ XC2 -EF-~  XiiC 2 + KXCo a4 + Dll 0 ~- ~ '12 ~-~ C1+D22 

+ I Nx ii a i , a2 X Co+2N~r~X C3 +Ny-~XC1 1 a2-p1XC°a4+P2XiC°aa+ 

I i i  - a . a2 1 + N~X°Co+2N~r-~X'oC3+Ny-~XoC1 a2-p1XoCoa*+P2X~Coaa = 0 

where the primes denote differentiation with respect to x/a and 
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0 
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0 

1 1 
Y Y 

0 0 

(9) 

(10) 

where these primes denote differentiation with respect to y 
b" 

Thus 'by se l ec t i °n° fappr°pr ia t e func t i °n s f ° rXo(X) ,Yo (b ) ,Y (b )  the problem reduces to 

finding the exact solution of eqn. (9) which satisfies the following boundary conditions 

X(o) = X(1) = 0 "} 

ii i ti i = f (I1) X(o-q,:X(o) = X ( 1 ) + q x X ( 1  ) 0 

aO~ 
where q~ = ~ is defined as the rotational restraint coefficient. For simple supports qx = 0 and for 

clamped supports qx = o0 
For the case when Xo = Yo = 0 eqn. (9) may be written as 

where 

XiVq-  7~2 a Xii--~,~ X i -  7~ 4 n x = 0 
(12) 

a2 I o12 cl Er~ 2 C2 ] = ~ kx+2 . 
Dll n2Co Dllb2"Ir2-C0 (13) 



,~ = P2 aa 
Dii 

a4 [ D22 C2 4 
B = --~-7 Dii'n*Co 

kx = N~b2/n2D11 

kr = Nyb2/z2D1, • 

(K-Pt )b  't C1 ] 
n ¢ Dll ~-k£~-Y-Coo 

(14) 

(15) 

(16) 

(17) 

It should be pointed out here that for the given problem the integral C3 is zero so that the form of 
2 in eqn. (14) consists only of an aerodynamic term (supersonic) and N,,y [eqn. (9)] is not retained. 

The general solution to eqn. (12) is 

X ( x )  = Algn:/" + A2em2X/"-b Aaem3x/" + A4e ''x/" (18) 

where mj (j = 1,2,3,4) satisfies the auxiliary equation 

m 4 + 7 ~  z Am2+2m-rc4B = 0 (19) 

and the roots of this equation are assumed to be 

ml = af i t5  

m 2 = ~ - -  it5 

(20) 

These forms were justified in Ref. 7 which showed the following relationships to follow as a consequence, 

2 2 2 "~ (21) 

Eqn. (23) may be written as 

e2 __2 _ a 2 _  re2 "~ (22) 
= 4 a  -2 

(24) 



where 

S 1 ~ 7~2A 
2 

,[ S 2 = 4 n4B[-  - -  (25) 

and hence a can be determined for any given values of 2, .4, B. Using eqns. (21) and (22) values of 5 and 
e can then be evaluated and complete results for the four roots m i can be found by eqn. (20). 

Application of the boundary conditions eqns. (11) to (18) leads to 

1 1 1 1 

ml ( m l - q x ) ,  m2 (m2--qx),  m3 (ma--qx) ,  m4 (m4-qx) 

eml em2 ema em4 

mx (ml + q~)e ''~, m2 (m2 + qx)e m2, m3 (ma + qx)e m3, m4 (m4 + q,:)e m4 

h i  

A2 

A3 

. A4 

(26) 

and the condition for a non-trivial solution is that the determinant of the square matrix should be zero, 
i.e. 

F (ml m2 ma m4 qx) = O. (27) 

Thus this method of analysis requires that: (') (a) Spanwise mode Y ~ is chosen and corresponding values of C1/Co and C2/Co determined 

using eqn. (10). Values of these parameters were obtained in Ref. 1 by the use of beam vibration modes for 

the mode shape Y ( b )  • The modes chosen satisfy similar boundary conditions to those for X ( x )  

boy 
in eqn. (11) but with qx replaced by q, defined by qr = D£~22 ' Thus the resulting values for C1/Co and 

CJCo have been fourid in Ref. 1 for the first four modes, as functions of qy; see Figs. 2a, 2b. 
(b) For assumed values of 2, .4 and B the four roots ml to rn4 are obtained and, for a given value of 

qx the condition that F (ml m2 ma me qx) -= 0, eqn. (27), can be checked. 
(c) For corresponding values of ~., .4 and B which satisfy eqn. (27) and knowing Cl/Co and C2/Co 

from (a) the critical values of k~, ky, PI and P2 may be determined for a given panel with known values 
of Dll, D22, D12, F, K. 

The typical form of the solutions is shown in Fig. 3 for the most general case. It is seen that for an 
assumed value of ,4 the variation of 2 with B to satisfy eqn. (27) forms a stability loop. For varying .4 
there are a series of such loops, any point of which represents a stability condition. Clearly for each value 
of .4 there are generally two values of B for each value of 2 but at one value of 2 = 2c, these two values 
of B reduce to one viz. Bc,. 

Table 1 presents corresponding values of 2c,, Be, and ,4 and is taken directly from Ref. 2. A range of 
values of qx is considered. 

If the possibility of supersonic flow is not to be considered then 2 = 0. The corresponding values 
of ,4 and B for stability are given in Table 2 which has been adapted from Ref. 1. 
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3. Analysis II. 
As an alternative approach to the 'semi-exact' approach in Section 2, a more approximate method 

can be adopted based on the Galerkin method. 
Thus if eqn. (6) is rewritten (with Wo = 0) as 

O' ~ 04 04 ] 06w 
D l l ~ x 4 + 2 D 1 2 ~ + D 2 2 ~ y 4  w-EF ox2c3y-----~-FKw+ 

[- 02 02 02 -] Ow 
+ L Nx~x2+ 2Nx'o--~Y+N'-~Y 2 J w - P ,  w+ P2-~x = 0 (28) 

then if an approximate mode is assumed, in the form 

w = 2 2 A m n F m ( x )  Gn(Y) 
m n 

(29) 

and substituted into eqn. (28), that equation will not be satisfied identically and there will be a net error 
~b. The Galerldn method requires that the following series of integrals be evaluated and that the resulting 
stability determinant formed by the coefficients of A.,. be equated to zero. 

fa fb OW (30) 

• nrcy 
If, for example, Fro(x) = sin mrCXa and G.(y) = sm --~--, which would correspond to a panel with simply- 

supported edges, the following set of equations is obtained (cf. eqns. (12) to (17)) 

a 2 D12_2_2_ a4 D22n 4 m2 a2 .2 m4+2~-~ - - , , ,  . -r~-~ . . . .  k 
Dzl b Dxl ~ b2 yn k 

a4 mZr14~2a21 
+(K-PO-g--~zz+ EF Da 1 b4 A,.. 

"2aa Lmn. , ,+2~ZA,s(b)  kx, P,n., , 0 
r ~ P S 

(31) 

Where 

L,..,.~ r~O "2-m 2) 4=Oil  n = s  "=Ootherwise. 

I { } 1 Pr..rs=n2(r2_m2)(s2 n2 ) ~ 0 i f  m i r o d d  ' n±s odd ; = 0 otherwise. 

The functions L,..,,s and P,..,,s represent the supersonic aerodynamic and shear coupling terms re- 
spectively. It should be noted that supersonic aerodynamic coupling exists only between streamwise 
modes with m ± r  odd whereas the subsonic aerodynamic term is a direct stiffne.ss term. 
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The term kxr Nxya2 ' 
- -  D11/r2 is the non-dimensional shear stress term which in the subsequent study of this 

section will be neglected (as in Section 2). 
A study in which k~ was retained is reported in Ref. 8 and the effects of the shear term were seen to 

be most significant for panel flutter. For static stability in the presence of aerodynamic forces it is ex- 
pected that shear would continue to be most significant in determining the stability boundaries. 

Provided a sufficiently large number of terms are included in the analysis the stability boundaries 
obtained should approximate to those obtained by more exact methods. Table 3 presents typical results 
obtained from Ref. 9 in connection with a study of the effects of damping on panel flutter - they can be 
considered here also for our present purpose. It is seen that the results in Table 3 provide stability loops 
of the type discussed in Section 2 and illustrated in Fig. 3. 

Thus the analyses of this and the previous section have led to values of A, B, and 2 which satisfy the 
given general stability problem. These values enable the buckling loads of orthotropic panels to be 
determined for large ranges of length-width ratio, orthotropic stiffness ratios, inplane loadings, lateral 
aerodynamic loadings, foundation stiffness and boundary conditions. 

It is clear from the definition of B that the effect of a subsonic lateral loading P1 is destabilising in a 
comparable way to ky. Conversely the foundation stiffness K is stabilising. Further the stability loops 
of Table 3 (Fig. 3) show that supersonic lateral loading is stabilising. 

4. Isotropic Panels in SuperSonic Flow. 
From the form of the stability loops in Table 3 (see Fig. 3) it is clear that the supersonic lateral loading 

). is stabilising since 2 increases as B increases and B is proportional to the compressive loading ky. This 
stabilising influence of the supersonic airflow over the panel, on the static stability of the panel has been 
noted previously. Caution however is advised in applying this result since it is well known that supersonic 
airflow can initiate the phenomenon of panel flutter. A discussion of panel flutter with relevance to the 
effects of length-width ratio, inplane loadings etc. is contained in Ref. 10 and Figs. 4, 5 show some 
typical stability boundaries for isotropic panels in supersonic flow from that report. That there are 
static and dynamic areas of instability in the region of the pure buckling loads is clearly seen. 

By definition 2 -- P2a3/D11, and for high supersonic Mach numbers (M) the accepted value of Pz 

is that given by Ackeret's formula viz. P2 = 2 q / x ~ -  1 (flow on one side of panel only) where q = 
dynamic pressure. 

5. Two-Dimensional Panels in Incompressible Flow. 

5.1. Infinite Length Isotropic Panels. 
For a two-dimensional isotropic panel on an elastic foundation, eqn. (4) reduces (with Wo = 0) to 

a~w t~2w 
D -~-~x4 + Kw + Nx ~x 2 = P . (32) 

Ref. 11 has considered the dynamic stability of such an infinite length panel (i.e. a = 0o) for the case of 
N x = 0 and on the assumption of a travelling wave type motion. It was shown that in practice a static 
instability (divergence) would occur first and from a similar analysis with the Nx term retained (Ref. 3) 
it can be shown that the appropriate static stability criterion is 

q o = ½ I D ( P ) 2 + K ( ~ ) 2 - N x  I ( P ) ,  and 

3°0 ) (33) 



If Nx = 0 the simple result obtained is 

qD = 0.878 K ÷ D + 

and the obvious result is seen that with K = 0 the divergence speed is zero. 

5.2. Finite Length Isotropic Panels. 
For  a two-dimensional isotropic panel of finite length Dugundji et alii (Ref. 11) have extended the 

previous analysis by Flax (Ref. 12) which was for a panel not on an elastic foundation. A panel of infinite 
length simply supported at a spacing a in the x direction has for its deflection curve, 

w~x) = A., sin --mrcx ," (34) 
a 

The corresponding aerodynamic pressure (Ref. 12) is 

i.e. 

p = p U  2 A m s a n - -  (35) 
a 

P l = p U Z ( m z c / a ) i n e q n . ( 5 ) , t h e n  

substitution of eqns. (34) and (35) into eqn. (32) leads to the following static stability criterion 

2qa 3 m a - IVm z + K (36) 
0 .  - -  - -  m 

where 

_ Nx a2 Ka  '~ 
N = ---~--ff, K ~-~4D" 

The minimum dynamic pressure for divergence (static instability) occurs when 

3m 4 -  eVm 2 = K" (37) 

i.e. when 

m e + 1 2 - -  (38) 
6 

for 

N =  0 mc,- '-0.758K q/o (39) 

in which case 

3 
QD - 2qDa .,_ 1.756 K 3/4 . (40) 

D 

It can be shown that when~N = 0 and K < 14 then me, = 1. 



Alternatively if K = 0, divergence always occurs in the lowest mode, m = 1, and 

2qDa 3 
~o = - x - b  - =  1 - ~ .  (41) 

Therefore for K r positive (i.e., Nx compressive) the divergence dynamic pressure qo is reduced; conversely 
the static buckling load is reduced when there is a subsonic airflow past the panel (an opposite effect 
was noted for supersonic flow in Section 4). 

When both N'and K" are zero the simple result is obtained (Refs. 12, 13). 

2qoa___~ a 
Qo = D = rca-'-31. (42) 

The above results were obtained for an infinite panel simply supported at a streamwise spacing of 
'a'. For a single simply supported panel of chord 'a' mounted on a rigid wall or even for such a panel 
with clamped ends the aerodynamic pressure distribution is unlikely to be that given in eqn. (35). To 
analyse these two configurations Richardson (Ref. 13) assumed a chordwise distribution of sources 
on the panel and solved the aeroelastic problem by an iterative procedure. The result obtained for these 
single panels were 

Qo = 40 (simple supports) "] 
and ~ (43) 

Qo = 178 (clamped ends) 

To assess the accuracy of the assumed theoretical aerodynamic pressure distributions Sykes (Ref. 14) 
has conducted simple pressure measurement tests on a single half sine-wave model and on a half sine-wave 
of an 'infinite' array of sine waves. 

The first set of tests showed similar effects as observed in Ref. 15 that the pressures are significantly 
lower, over the forward quarter-wave of the single half wave model, than predicted by eqn. (35). From 
the second set of tests results showed excellent agreement with eqn. (35). 

In his subsequent analytical approach to the static deformation problem of the single simply supported 
panel Sykes assumed that the deformation mode could be represented by 

w = AI sin ~x.-kZ2 sin 2zc___fx (44) 
a a 

with a corresponding pressure distribution of 

For a continuous sinusoidal surface fl~x~ and fz¢,,) would be sine functions but in Ref. 14 the functions 
fwere  determined from the above-mentioned pressure distribution tests. For a two-dimensional isotropic 
panel with F = K = Nxy = Ny = 0, Wo = 0, one obtains from eqn. (4). 

d4w d2w 
D ~x4 + Nx ~x2 = P . (46) 
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If large deflection effects are considered the corresponding equation for the initial deflections w~, under 
the initial compressive loading N~ only is 

d4wi 1 d 2 w l  
D--~-x4 +N~ --d~x2 = 0 • (47) 

Subtracting (47) from (46) leads to the well known equation 

d4[ l d 2 w l d 2 W l  
D~x 4 w-w1 +Nx~x2-N~-~x2 = p (48) 

The configuration being studied is shown in Fig. 6. The panel is subjected to an incompressible airflow 
on the upper surface only and to static air pressure on the lower surface. The panel edge members are 
capable of relative movement in the streamwise direction which is restrained by an elastic spring of 
stiffness k. The problem is to determine the variation of panel deflection with airspeed and under the 
given compressive loading N~. The analysis closely follows that of Ref. 16 which considered the corre- 
sponding supersonic problem of panel flutter. 

If A is the relative movement of the panel edges towards each other when the aerodynamic forces act, 
then 

1 N~ - N~ = kA (49) 

and if lateral deflections are not excessive we may write 

m ~ _ (gx_Nx)_~_ .  a I I a  V ( d w ~  L \ / 2  (dWl~2 1 

o 

therefore 

- \dx)  l ax 
o 

(51) 

where 

~ = [ l +(Eh/ka) l -~ (52) 

Eqns. (48) and (51) are to be solved for the boundary conditions 

W(o ) = W(a ) = 0 

d2w d2w 
dx 2 (o) = -~x 2 (a) = 0 

(53) 

Hence, using eqns. (44) and (45), with the measured functions fl,  fz, in a two mode Galerkin analysis 
and with 

7~X 
wl = B1 s i n - -  (54) a 

yields the following expression for A 1 for example, 

1! 



where 

which from eqn. (51) 

Ba (1 - S ) ( 4 -  S -  ff;(-.421 (~) 
A I = (1 - S -  ~k z -  "896 Lg) ( 4 -  S -  ~ Z -  "421 Q)-"00447 ~2 (55) 

S = ~1 (see eqn. (36)) ~? = 2qaa/naD 

1 -~ ~ ~ ~ ~W-JV Z = ~ N ~ -  = 

- 3(1-v2) I B~-(A~ +4A~)] 
h 2 

Therefore for given values, of the parameters ~, B~, N'x it is possible to evaluate A~, A 2 and hence N~ 
from eqn. (51) and to examine the panel static deflection as a function of airspeed. 

If a single degree of freedom analysis using A 1 and f l  only is pursued the result is 

A1 = Bt (1 - S)/(1 -S -~kZ-0 -896  Q) (56) 

where 

3(1--V2) I 2 2 ]  
Z -- h T B1-Ax • 

Iff t  is made equal to sin nx the corresponding result for a simply supported panel in the infinite array 
a 

is 

A1 = B1 ( 1 - S ) / ( 1 - S - ~ z - Q ) .  (57) 

For divergence, A1 --* oo which occurs if there is no spring restraint, i.e., ~k = 0, when the denominators 
of eqns. (55), (56) and (57) are zero, viz. when (if S = 0); Q = 1.11, 1-12, or 1.0 respectively. Thus for the 
finite panel aerodynamics the critical dynamic pressure is higher than for the assumed sinusoidal pressure 
distribution of the infinite panel array. 

The application of eqns. (55) - (57) to an experiment was attempted in Ref. 14 and the results are shown 
in Fig. 7. The theoretical and experimental results show similar trends. 

It is not surprising that in Ref. 14 or in Refs. 17 and 18 panel divergence was not experienced since 
very large deflection effects due to plate and aerodynamic behaviour could be introduced. However, the 
results of Ref. 18 are of interest in that at certain airspeeds the panel, which had some initial curvature, 
experienced significant and increasing deflections, appearing to have the form of a divergence - see 
Fig. 8. 

From a series of such curves for different tensile loads an attempt was made to estimate the correspond- 
ing critical dynamic pressures qo. These are shown in Fig. 9 and are seen to follow a linear variation 
which when extrapolated predicts the buckling load in the absence of an airflow. This linear relationship 
has been shown theoretically in eqn. (41). 
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6. Three-Dimensional Panels in Incompressible Flow. 

6.1. Orthotropic Panels of  Finite Aspect Ratio. 

For a panel of finite aspect ratio with simply supported edges, the assumed mode of deformation is 

w = Am, sin mzcx sin nny (58) 
a b 

and eqn. (12) becomes (with F = K = 0) 

with 

and 

m 4 -  A m z - B = 0 (59) 

A = - ~  k ~ - 2 n  2 
L 11 ] 

(60) 

-a4  VD22n 4 P l b 4  ] 
B = -~ [_ - -~-  ~'*D11 kyn2 " (61) 

Eqn. (59) yields the results shown in Table 2 for q~ = 0. Since for a two-dimensional panel there is little 
error in assuming that 

the same assumption will be made here for the three-dimensional panel. This should yield a conservative 
result - see Fig. 7. From eqn. (59) 

where 

m4f14 I - 7  2 b2 [N~{'D22"~½m2+Ny'n2+2qb2m-]r~a J (63) 

a f D22"] TM 
fl = -~ \Or1  xl , d = 0 1 2 / ~  , q = ½pV 2. 

Eqn. (63) reduces for an isotropic plate with Ny = 0, to eqn. (36)- (with K = 0). The form of(63) is identical 
to that used by Wittdck in Ref. 19. 

It remains to find the values of Nx, Ny and q which combine to produce instability. Following the 
procedure of Ref. 19it  is now assumed that the values of Ny and q are known and the critical value of 
N~, is determined from eqn. (63) rearranged, thus, 

= m 2 f12 n 4 b 2 N~ f12 n 2 2qf12 b 4 
b 2 Nx - ~  + 2dn2 -~ m 2 7r 2 D22 m 2 

7g 2 ~ 022 " ~ram 
(64) 

1 3 



Differentiating (64) with respect to n gives 

I / z clrn 2"x b 2 ONx 2f12n 2 - n  + - - ~ - -  ~ ) 

~Z 2 ~ D22 On = m ----g- 

which was obtained in Ref. 19. Hence if 

b2 Nr 1 
~2 D22 

(65) 

(66) 

the minimum Nx occurs when n = 1 and eqn. (64) may then be written, 

b 2 Nx --~ .~.2 m2 f12 [ 1 b2 Ny 2qb4m ] 
= 2 d + p + m  7~ 2 D22 7~a ~2 ~ D22 

(67) 

If the square-bracketed term is greater than zero, i.e. the following inequality is satisfied 

I Ny+ 2q D22 7zb2m I ~2D22 ----S- < ~ (68) 

then eqn. (67) may be written as 

,69, 
with 

bZNx 
rc 2 2 D12 

DllD22 1 2 q - -  
~2D22 7~a 

0[°22( b4o)11,4 
y = ~  ~ 1 2 q - -  (71) 

7z2D22 7~a 

Ref. 19 has shown that eqn. (69) yields a stability curve identical with that for an isotropic plate under 
biaxial loading provided the definitions of eqns. (70) and (71) are considered. Therefore the conclusions 
of Ref. 19 apply here, viz. a single curve relating the parameters ~ and ~ serves to specify the buckling load 
Nx in each of the following cases (i) orthotropic plate with all edges simply supported subjected to com- 
pressive forces N x and N r on its edges and a subsonic airflow of dynamic pressure q across one surface. 
Ny and q are known and related by inequality (68)./~ and 7 are given by eqns. (70), (71). (ii) The same as 
(i) but with the ends (x = 0, a) clamped and the sides simply supported. 

It is of interest to examine the purely aeroelastic behaviour of the finite aspect ratio panel and for this 
purpose eqn. (63) will be used with Nx = N r = 0. Thus 

2q b 4m me 2dm2n2 4 
7z a aD22 = - ~ + T + n  (72) 
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and it is clear that the minimum q occurs when n = 1. Minimising q with respect to m yields the con- 
d i t ion  

m2~ (d 2 + 3) ~ - d 
- - .  ( 7 3 )  f 1 2 -  3 

Hence for a given orthotropic plate the critical divergence dynamic pressure qo can be obtained. 
For the isotropic plate the appropriate results are 

m2cr = a2/3b 2 (74) 

2qDba/r~aO = 16 x/~/9-"-3.08. (75) 

a 2 
The similarity in form between eqns. (75) and (41) should be noted. From eqn. (74) me, < 1 when b 2 > - -  

3 

but since the lowest permissible value of m is unity then for quite small values of panel aspect ratio 

the value m = 1 would apply and the corresponding result from eqn. (72) for the isotropic plate is 

a 2 ) 2  
2qoa 3 1 + ~-~ (76) 

~)/~ = ~3 D -- 

It is clear that when b ~ ~ i.e. a two-dimensional panel, eqn. (76) reduces to give the same result as eqn. 

(41) viz. 

~)o = 1. (77) 

In comparison the result shown in eqn. (75) obviously only applies for very low aspect ratio panels where 
b z < a2/3. Actually as only integer values of m are acceptable the result shown in eqn. (75) is a lower 
bound on the value of qo and only reached asymptotically at large values of a/b or at values of a/b yielding 
an integer value of m from eqn. (74). 

6.2. Isotropic Panels of very Low Aspect Ratio• 

For a panel of very low aspect ratio with simply supported edges the assumed mode of deformation 
is taken in Ref. 20 as 

• ~ y  
w = A sin -~-. e-  i2~x/! (78) 

where I is the longitudinal wavelength• 
A more precise formulation of the aerodynamic problem is given in Ref. 20 than was assumed in 

Sections 5.2 and 6.1 for both the compressible and the incompressible flow cases and an aerodynamic 

integra! Fff])was obtained which had to be evaluated numerically for various values of t / =  ( _ ~ ) 2  

( 1 -  M2). The limiting value of t/--. 0 corresponds to very low aspect ratio theory. For divergence in the 
absence of in-plane loads the criterion obtained was 

2qDb a _ 1 2 ] 
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The corresponding aeroelastic stability boundary of qDb3/2n2D ,,, M is shown in Fig. 10 for very low 
aspect ratio panels. At M = 0 the curve shown yields the result 

2q°b3 -'- 4'45. (80) 
~z3D 

Thus the approximate aerodynamic theory used in Section 6.1 and leading to eqn. (75) has given a 
conservative result compared with the more precise theory of this Section which gives eqn. (80). This 
conservatism was anticipated in Section 6.1 in view of the results shown in Fig. 7. 

If the above, single, low aspect ratio panel is one of an infinite array in the spanwise direction it is 
found from Ref. 20 that the corresponding divergence condition for M = 0 is given b y  

2qb3-n3 D [ + ( ~ 1  ) 2 1 ~ [ ( ~ _ b ) 2 + 2 + ( ~ _ ~ ) 2 1 . 1  (81) 

The minimum value qD occurs when = ~ in which case 

2qob3/Ir a D -'- 5'4. (82) 

Thus the critical dynamic pressure is higher than in the corresponding single panel case. 
It may probably be reasonably inferred from these results that where the panel being analysed (in the 

more general case of Nx ~ 0, Ny =p 0 and q :p 0) is simply supported and part of an infinite array then 
the results quoted in previous sections are conservative in that the destabilising effect of the lateral 
subsonic aerodynamic pressures would not be as severe as given. 

7. Conclusions. 
Alternative methods of analysis have been given by which the static stability of orthotropic panels 

subjected to in-plane loads and lateral aerodynamic pressures may be determined. 
It has been shown that the inclusion of both supersonic and subsonic aerodynamic forces involves 

no great additional complexity. 
Supersonic loading has been shown to be stabilising but subsonic loading was destabilising. 
Comparisons have been made where possible with existing solutions in the literature and also with 

some experimental data. 

8. Acknowledgements. 
Acknowledgement is made to the Director, NASA Research Centre, for making available the data 

shown in Table 3. The data shown in Tables 1 and 2 are likewise taken from NASA TN.D. - 3500 and 
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Panel dimensions in x and y directions respectively 

Parameters defined in eqns. (13), (15), (60), (61) 

G eneralised co-ordinates in displacement function of x, eqn. (18), etc. 

Generalised co-ordinates in displacement function of x, y, eqn. (29) 

Generalised co-ordinate for initial displacement function, eqn. (54). 

Integrals defined in eqn. (10) 

~ D ~ 2 / ~  

Flexural and twisting rigidities of orthotropic panel relative to x - y  axes 

Flexural rigidity of isotropic plate = EhS/12(1- v 2) 

Young's Modulus 

Pressure functions, eqn. (45) 

Modal functions of x, y 

Panel thickness 

Nxb2/• 2 D1 ~ - dimensionless stress resultant in x direction 

NrbZ/re2 D11 - dimensionless stress resultant in y direction 

In-plane elastic spring stiffness of panel edge members, eqn. (49) 

Parameter defined in eqn. (69) 

Elastic foundation stiffness, eqn. (1) etc. 

Ka4/Tr4D dimensionless foundation stiffness parameter 

Longitudinal wavelength of very low aspect ratio panel, eqn. (78) 

Generalized supersonic airforce terms, eqn. (31) 

Mode numbers 

Mach number 

Midplane stress resultants (positive for inplane compression) 

N x a2 /~z2 D ; N'~ a2 /~z2 D 

Lateral pressure loading 

Shear coupling terms, eqn. (31) 

Assumed subsonic and supersonic aerodynamic pressure coefficients, eqn. (5) 

Dynamic pressure; divergence dynamic pressure 

Rotational restraint coefficient along x, y edges of panel 

2q aa/~zaD, dimensionless dynamic pressure 

7~3 QD 

1V', dimensionless initial compressive load 
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Tensile load in x-direction 

Airspeed 

Initial deflection before loading 

Initial deflection under initial compressive loading N'x, eqn. (47) 

Additional deflection due to lateral and in-plane loading 

w + Wo = total deflection 

Streamwise and lateral co-ordinates (Fig. 1) 

Displacement functions in w in x, y directions 

Displacement functions in Wo in x, y directions 

Normal panel co-ordinate (Fig. 1) 

Parameters in eqns. (20) to (23) 

(a/b) (D22/D 11) ~:, eqn. (63) 

Parameter defined in eqn. (71) 

Warping restraint parameter, eqn. (1) 

Spring constants per unit length of edge rotational restraints 

Poisson's ratio 

Supersonic aerodynamic pressure parameter, eqn. (14) 

Air density 

Relative movement Of panel edges, eqn. (49) 

Parameter defined in eqn, (52) 

Parameter defined in eqn. (55) 

(1-  M 2) (Tzb/l) 2, parameter defined in Section 6.2. 

Panel mass per unit area 

p//2r~tr 
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TABLE 1 

Static Stability Solutions for Supersonic and Subsonic Flow. 

- 3 (  
-21  
-11  

- 2  
- 1  

0 
1 

2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

or 

4119 
2608 
1330 
794'6 
697"1 
603"1 
512'6 
426"0 
343 "3 
264"9 
190"9 
121"8 
57"98 

0 
51"27 
94'54 

127"5 
145"5 
137"3 
99"85 
51"01 

0 
49"67 
96'08 

137"7 
172"7 
!99'0 
212"8 
208 "2 

qx = 0  

Bcr 

190.5 
113.5 
53.50 
30.05 
25.75 
21.80 
18.00 
14-30 
10.75 

7.500 
4.375 
1.375 

- 1-412 
- 4  

- 6"400 
- 8"625 

- 10.69 
- 12.75 
- 16.25 
- 22-50 
- 2 9 . 3 7  
- 3 6  
- 42.40 
- 48-55 
- 54-50 
- 6 0 . 3 9  
- 66.25 
- 72.60 
- 8 1 . 0 0  

I 
I 

or 

4348 
2839 
1560 
1022 
923 "4 
828'2 
736"5 
648"3 
563"8 
483"0 
406"3 
333"9 
265"8 
202"4 
144"1 

91"17 
44"08 

3"373 
30"27 
56"07 
73"14 
80'73 
78"58 
67"60 
49'96 
28"40 

5"411 
17.04 
37'48 

qx = 40 

B .  

215.0 
134.5 
71-00 
45.50 
41.00 
36"50 
32.20 
27.90 
23.75 
20.02 
16.25 
12"50 

9-000 
5-625 
2.250 

- 0.900 
- 4-062 

- 7.170 
- 10-30 
- 13-60 
- 17.00 
- 2 1 - 0 0  

- 2 5 - 6 9  
- 3 1 . 2 0  

- 37-45 
- 44-30 
- 5 1 . 5 6  

- 5 9 . 1 6  
- 67-05 

II qx = ° °  

i I ! 2c, I 

4470 
2949 
1655 
1 1 0 7  

1006 
908 "6 
814.5 
723.8 
636.6 
553.0 
473.3 
397'6 
326"1 
258.9 
196.5 
138.9 

86.74 

40'27 
0 

33.48 
59.51 
77.40 
86.54 
86.74 
78.60 
63.69 
44.20 
22.34 

0 

Be, 

226.0 
144.0 

78.50 
51.50 
46-50 
41.69 
37-20 
32.49 
28.25 
24.00 
19.75 
15.75 
12.00 
8.250 
4.750 
1.250 

- 2 . 2 1 7  

- 5 . 6 1 4  
- 9  

- 12.50 
- 16.00 
- 19.85 
- 24.10 
- 29"00 
- 34.70 
- 4 1 . 2 0  

- 4 8 . 3 2  
- 55.97 
- 6 4  
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Mode 
Type 

S1 

A2 

$3 

A4 

TABLE 2 

Static Stability Solutions for Subsonic Flow only. 

2 

- 6 0  
- 2 0  

- 4  
0 
4 
5 

5 

qx=O 
Mode 
Type 

61 $1 
21 

_ _ J  

_ _ /  

6 
8 

10 
12 
13 

13 

20 
25 

25 

30 

-1( 
- 2 x  

-3: 
-3( 

-3¢ 

-8i 
1 .  

14, 

22, 

qx = 40 

B 

-55 .56  
-3 .32  

- . 7 6  
.690 

3.980 
8-892 

9.054 
9.500 

11.01 
12.32 
14.134 
16.716 
18"876 

19-836 
20.34 
25.84 
31.44 

31.28 
33"92 
47.56 

52 
68.92 

74.08 
96.20 

100-6 
123.6 

+63.140 
8-096 
5.187 
3.511 

- .430  
-7 .136  

-7 .280  
-9 .340  

- 16.41 
-22 .66  
-31 .55  
-44 .89  
-57.08 

- 6 8 . 5 4 \  
-73-43 

-129"6 
- 192"7 

- 191"3 
-234 .6  
- 4 8 3  

-593"3 
--1064.0 

- 1253 
- 2 1 3 4  

- 2 3 4 6  
-3591  

dode  
Yype 

A2 

$3 

A4 

$5 

A6 

$7 

q x  ~ (3(3 

Z B 

-38.480 
-2 .034  
-0 .076  
+0.613 

4.000 
10.000 

10.000 
10.232 
11.048 
12.096 
14.024 
16-092 
20.000 

20.000 
20"460 
25.780 
34.000 

34.00 
36'08 
52"00 

49.020 
7.646 
5.233 
4.371 
0 

-9 .000  

-9-000 
-10-160 
- 14.270 
- 19"610 
-29 .660 
-40.880 
-64 .000 

-64 .00  
-68 .57  

- 125.70 
-225.00  

-225 .0  
-261-3 
-576-0  

52.00 -576 .0  
74.00 - 1225.0 

74-00 - 1225.0 
100.00 -2304.0  

100.00 
130.00 

-2304.0  
-3969.0  

Am refers to asymmetric mode of mode number  m having ( m -  1) lines of zero deflection. 

Sm refers to symmetric mode of mode number m having ( m -  1) lines of zero deflection. 

22 



TABLE 3 

Static Stability Solutions for Supersonic and Subsonic Flow. 

t o  
%0 

A 

-10.89 

-21.78 

0 
100 
200 
300 
340 
343.3 

0 
300 
600 

1200 
1400 
1420 

0 
1000 
2000 
2600 
2800 
2850 

!2855 
t 

q x = 0  

B 1  B 2 

1"00 16"00 
1"51 15"87 
3"16 15"39 
6"57 13"42 
9"70 11"81 

10"75 10"75 

11"89 59"56 
13"34 60"02 
17"79 61"32 
38"03 64"69 
52"02 62"42 
58"2 58"2 

22"78 103"12 
32"48 108"13 
63"55 122,23 
97"22 131"76 

115"21 131~18 
124"59 126"40 
125"49 125-49 

] 

71 

9"4 

- 1 . 6 8  

-25.5 

qx=  43 

2 B1 Bz 

15.55 0 
2 
4 
6 
8 
8.5 

0 
200 
400 
600 
710 
715 

0 
1000 
2000 
3000 
3200 
3300 
3310 

- 1 2 . 1 9  

- 1 2 . 1 8  

- 12.15 
- 12.09 
- 11.95 
- 1 1 . 8 3  

4.57 
5.81 
9.78 

17.66 
28.01 
29.23 

27.66 
36.54 
64.44 

118.76 
136.74 
151.02 
156.0 

- 1 1 . 4 8  

- 11.49 
-11-52 
- 11-58 
-11-71 
- 11.83 

39-07 
38.98 
38.51 
36.51 
30.45 
29.23 

131.10 
135.66 
148-73 
165.22 
165.35 
160.62 
156-0 

-5-17 

- 2 7  

0 
20 
40 
60 
80 
82 

0 
400 
600 

1000 
1100 
1125 

0 
1000 
2000 
3-000 
3700 
3900 
3925 

q x  = 0 0  

B1 B., 

-37-11 
-36-94 
-36.38 
-35-31 
-32.91 
-31.60 

12.39 
15-87 
27.34 
38-00 
47.21 
52-00 

35-69 
43.53 
67.76 

111.55 
161.29 
185.99 
195.0 

-25.63 
-25.79 
-26.31 
-27.32 
-29.62 
-31.60 

63.88 
64.14 
64.01 
61-97 
57.87 
52.00 

159-86 
164.08 
176.42 
195.10 
205.81 
201.17 
195.0 
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FIG. 4. Stability boundaries for isotropic panels of infinite aspect ratio in supersonic flow. (Ref. 10). 
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Stability boundaries for isotropic panels of finite aspect ratio in supersonic flow. (Ref. 10). 

I N I T I A  L D E F L E C T I O N  
F P A N E L  

I , ,w,(x) N~. '  ~" 

2 
, ~, {x) 

H " H 

.777~ 

¢) CONDITIONS UNDER COMBINED END 
LOAD AND AERODYNAMIC PRESSURE LOADING, 

Fro. 6. Forces and displacements of single simply-supported panel. (Ref. 14). 

26 



12 

A! 
B, 

II 

I 0  

9 

8 

I.O 

7 

6 

3 

2 

EQN. 57 
/ 

QN. 55 

0 

FIG. 7. 

I 2 3 ~  4 S 6 
Q 

Variation of panel deflection ratio with dynamic-pressure parameter. (Ref. 14). 
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