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Summary 

The object of a blade-to-blade method is to calculate the blade surface velocity distribution and the 
outlet angle for a given three-dimensional cascade. These give the heat drop or work done and indicate 
whether shock waves are likely to occur. A boundary layer calculation can then also be done to estimate 
the profile loss and to see if separation is likely and how much laminar flow there might be. Most methods 
available at present can only deal with special cases such as two-dimensional compressible flow or 
three-dimensional incompressible flow. The nearest alternative approach to a complete method, using 
a through flow method, has a longer run time and cannot find the outlet angle. 

A new method is described in this report for calculating the compressible flow in a three-dimensional 
cascade of blades. This uses the 'stream line curvature'  technique with tangential quasi-orthogonals, 
and the shapes of the stagnation streamlines are determined iteratively to satisfy the condition of 
periodicity in the tangential direction. This condition is also sufficient to determine the outlet angle. 
The calculation includes all effects of compressibility, change of annulus area and change of radius, 
enabling deviations due to velocity ratio and Coriolis forces to be found. Comparisons of theoretical 
predictions with those of other theories and with experiment for particular cases show good agreement. 

A new design method for calculating the blade shape required for a prescribed velocity distribution 
is also outlined as a simple extension to the analysis method. 

These methods can be applied to cascades in steam, gas and water turbines, gas circulators, com- 
pressors and pumps with axial, mixed or radial flow. 

* Replaces A.R.C. 32 878. 
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1. Introduction 

The solution of the problem of calculating the compressible inviscid flow through a three-dimensional 
cascade, defined by the intersection of an arbitrary meridional stream surface of varying thickness with a 
blade row is usually attempted by one of two main approaches, the matrix method, or streamline curva- 
ture. There is wide agreement on the general equations of momentum, continuity, etc., governing the flow 

"and the methods differ in the numerical techniques used for solving the equations and applying the 
boundary conditions. A recent paper by Smith and Frost 1 (1970) has described the 'matrix' method in 
which the flow equations are combined into one equation for the stream function, in the form ofa Poisson's 
equation of which the right hand side is determined iteratively as the calculation proceeds. The unknowns 
are the stream function values at points on a non-uniform grid covering the flow field. The method as 
published does not find the outlet angle, although this is not a fundamental limitation and further develop- 
ment may enable it to do so. Solutions published so far have been verified only for two-dimensional 
cases with stream surface thickness variation although as it stands the method should be able to include 
change of radius effects for fixed or rotating blades. A disadvantage at present is the long run times but 
this is probably mainly due to using a computer that is too slow and has inadequate storage, and it is 
expected that run times will be reduced. A more important limitation is that the form of the equation 
for the stream function prevents calculations with any supersonic flow, and the convergence of the 
method would also be expected to be significantly worse at high Mach numbers. There is at present, 
no very obvious way round this Mach Number limitation, although one may of course be found. 

The other main approach for solving the equations is the 'streamline curvature' technique. This 
appears in two forms, one using normals to the flow, Jansen z, and Bindon and Carmichael 3, (1970) 
and the other using quasi-orthogonals, Katsanis 4's (1964), (1965), Wilkinson 6 (1970). The methods 
using normals have, as far as is known, only been used for two-dimensional cases, but are for a number 
of reasons probably less good than the quasi-orthogonal methods. A quasi-orthogonal, or q-o as it will 
be referred to, is a fixed line which is in practice nearly always straight, but is not necessarily so, and 
which goes from one wall to the other of the channel confining the flow. All of the mass flow therefore 
Crosses it and this is used to satisfy the continuity equation by adjusting the velocity level along the q-o' 
to give the correct mass flow. The velocity distribution along the q-o' is given by the velocity gradient 
equation which is derived from the equations of momentum, entropy and energy. As all of the terms on 
the right hand side of the velocity gradient equation are not known, an iterative procedure is used to 
solve the equations simultaneously. It has been shown in Wilkinson 6 (1970) that the method can include 
supersonic flow in patches which occupy up to half the channel and by Bindon and Carmichael 3 (1970) 
that the method can be extended to isentropic supersonic flow for the 'normals' method. 

In Wilkinson 6 (1970) a two-dimensional method was described in which q-o's approximately normal 
to the flow were used. A difficulty was encountered in deciding on the correct shape for the upstream and 
downstream stagnation stream lines (s.s.1.). Although the flow goes through an infinite cascade the 
method only considers the flow through one channel, defined within the blade row by the suction and 
pressure surfaces of adjacent blades and outside the blade row by the s.s.l.'s. In Katsanis 5 (1965) and 
Wilkinson 6 (1970) the s.s.1, shapes must be estimated, but it is shown in Wilkinson and Allsopp 7 (1969) 
that this can cause considerable errors, particularly for compressible flow. The reason for this can easily 
be seen by considering a nozzle blade Fig. 10 for which over the last half of the suction surface, where 
the Mach Number is highest, the channel is formed by the suction surface itself on one side and the 
s.s.1, from the trailing edge on the other. At high Mach Numbers small variations in channel width due 
to errors in the s.s.1, shape have a large effect, an area reduction of only 4 per cent being sufficient to 
raise the mean Mach Number from 0.8 to 1.0. Apart from difficulties with choking, the load at the trailing 
edge will not reduce to zero and the velocity gradients along the blade surfaces will be incorrect. There 
is no simple way of estimating the s.s.1, shapes as these depend on the blade shape, the Mach Number 
on annulus area changes, which make the s.s.l.'s curve, and on relative vorticity or Coriolis force effects 
for a rotating blade row. However, it is possible to determine the s.s.1, shapes by using the condition 
of periodicity. This condition is simply that for an infinite array of blades, all flow parameters are periodic 
in the tangential direction with a wavelength equal to the pitch of the blades. Two points at the same 



axial or meridional stations on the 'suction' and 'pressure' stagnation streamlines are in effect the same 
point and should have the same velocities and other flow parameters. This condition has been given 
by Smith and Frost (1970), among others, where it is used as a part of a two-dimensional stream line 
curvature method although no information is given there on how the s.s.l, shapes are found, and the 
published examples do not verify its successful operation. 

This report will show the derivation of the velocity gradient equation in the most suitable form for 
tangential q-o's. The stability and accuracy of the solution will be analysed and an expression for the 
optimum damping factor derived. A new method will be given for iteratively determining the shapes 
of the stagnation streamlines, and also of the outlet angle by means of a Kutta-Joukowski condition. 
The methods for finding first and second derivatives and of smoothing will also be discussed and recom- 
mendations made. Finally, a number of comparisons of the method with other theories and with experi- 
ment will be shown for special cases which indicate the accuracy of the new method when applied to 
general compressible flow blade-to-blade cases with change of radius and annulus area and fixed and 
rotating blades. 

Also a new design method will be suggested in which the procedure for calculating the stagnation 
streamline shapes will be extended to modify the blade shape as well as to obtain a prescribed suction 
surface velocity distribution. 

2. Equations and Method of Solution 

2.1. Velocity Gradient Equation 

An equation for the gradient of relative velocity W in the 0-direction to give the velocity distribution 
along a tangential q-o' is required. Consider a cylindrical coordinate system (z, r, 0) fixed in space and 
a coordinate system (z, r, 0') rotating with the blades at angular velocity o), where ~o is positive in the 
0-direction, Fig. 1. 

The momentum equation is 

1 d(Vor ) 1 Op 

r dt pr 00" (1) 

The entropy equation is 

Os Oh 1 Op 

T 00 - 00 p 00" (2) 

Eliminating p between (1) and (2) 

1 d(Vor ) T Os 1 Oh 

r dt r 00 r 00 '  
(3) 

h can be replaced using Euler's turbine equation for points on a streamline 

h~l - o~rVol = h~2 - corVo2 = I 

o r  

h, = I + oorV o (4) 

and the energy equation 

V 2 
h~ = h + ~ - .  (5) 
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F r o m  (4) and (5) 

V 2 

h =  I + c°rV° 2 (6) 

Also, from the two coordinate  systems 

O = O '  + o ) t  

00 00' 
= r z i  + o)r 

(7) 

o r  

Defining a meridional  velocity Vm by 

it follows that  

or f rom (8) 

where 

F r o m  (6), (8) and (11) 

V 0 = W 0 + mr. (8) 

V~ = V 2 + V f, (9) 

V 2 = V 2 + Vo 2 (10) 

= V~ + W 2 + 2o~rW o + co2r 2 

= W 2 + 2corWo + coZr 2, (11) 

W 2 = V 2 +  Wo z. (12) 

~ 2 r 2  W 2 
h = I + - -  (13) 

2 2 

It  will be assumed (i) that  there is uni form inflow so that  0I/~0 = 0, (ii) that  the flow is within a meridional  
s t ream surface which is a surface of revolut ion so that  

0r  
- -  ~ 0~ 
00 

and (iii) that  tangential  en t ropy gradients  may  be neglected, Os/O0 = 0. Assumpt ion  (ii) is the usual one 
of neglecting s t ream surface twist. Assumpt ion  (iii) neglects en t ropy  gradients due to losses within the 
bounda ry  layers. It  does not  prevent  as/Om being non-zero  and in fact losses of  this type will come in 
via the cont inui ty equat ion,  in the form of reduced pressure and density and hence in increased velocity 
level, and it is impor tan t  to put them in to get the right velocities and enthalpy changes. 



With these assumptions (13) gives 

1 Oh 1 OW 2 

r a0 2r ~0 

and (3) becomes 

W O W _  1 d(Vor ) _  1 d(Wor + wr 2) 

r 30 r dt r dt ' 
(14) 

since V0 = V0(z, r, 0, t) and W 0 = W0(z, r, 0'), it is convenient to express the total derivative in terms of 
partial derivatives with respect to the rotating coordinate system (z, r, 0') to avoid time dependence. 
Therefore 

w0v  w0 aw0 W c~W aWo + + 2wV~ + - - -  + V~ (15) 
r 30 - V ' o r  r r 00' a z"  

From the definition of distance m along the meridional stream surface implied by (9) 

a a a 
cqm cos a~zz + sin ~ 

o r  

v Z v L v L 
Om = Oz + Or 

and (15) becomes 

w0v~ WoaWo WOW aW° + + 2wV, + - - - - .  
r 0 0 - V ~  ~m r r 00' 

Similarly, defining distance along a stream line, s, by 

ds z = d m  2 + r 2 dO '2, 

w_d  +Wo a 
ds = V" om ~ -  O0 --~ 

and 

w aw wdWo wov  
r O0 - ds + r +2wV~ (16) 

where dWo/ds is the convective derivative of W o along a streamline. Noting that dm/ds = cos fl = V,, /W 
(16) can be written 

w aw v, aWo WoV. 
r aO - -~m + r + 2wVr. (17) 



Equation (17) for the velocity gradient can be shown to be the same as that given by Katsanis s (1965) 
and may also be found from the condition of zero absolute vorticity about an element of the meridional 
stream surface 

Equation (17) may also be written 

8 W -  c ° s o 0  f l { ~  + 2o)r J-ram} . (18) 

If used in this form, determination of the right hand side involves 'double differentiation' in the sense 
of Wilkinson 6 (1970). Since the distribution of W is found as ~ result of an iteration, W 0 can only be found 
from this by 

with fl from 

Wo = Wsinfl, 

dO 
tan fl = rd---~m. 

This involves numerical calculation of dO/din followed by a second numerical differentiation of W0. 
This 'double differentiation' process was shown in Wilkinson 6 (1970) to be rather inaccurate and to 
involve a particular and hidden smoothing process which may be neither necessary nor desirable. More 
flexibility is obtained by making the second derivative d20/dm 2 appear directly in the equation. 

Since 

dO 
Wo = I'm tan fl = V,.r~m m 

2 dO 
Wor = V.,r ~ ,  

and (18) becomes 

aw  fd(Vmr dO 2 d20 a}  
8---0- = cos ( dm d m +  Vmr -dmgm z + 2cor . (19) 

Equation (19) is the form of the velocity gradient equation used. Numerical differentiation is considered 
in Section 2.5. The procedure with equation (19) is to start with the value of W~,NM on the midstream line 
from the previous iteration and to integrate numerically in both directions using the trapezium rule to 
find the velocity distribution from suction to pressure surface. After this it is necessary to adjust the 
velocity level to satisfy continuity and this is done by adding a constant AW at all of the streamlines. 
It is not necessary to recalculate OW/O0 until the iteration is complete and a new set of stream lines has 
been found. 

2.2. Continuity and Losses 

Considering the meridional stream surface to have a thickness Ar = Ar(m), Fig. 1, the mass flow 
crossing any q-o' considering one flow channel only, is 

f0 ~/¢ 
M N = pWcos fl cos c~Ar. r. dO, 

1 
(20) 



where subscripts 1 and N indicate the suction and pressure surfaces, or their associated stagnation 
streamlines, respectively. In front of or behind the blade row 

27r 
ON - 01 - 

N B  

where N B  is the number of blades. Within the blade row 

27r 
Ou - Oa = N B  - Ot (21) 

where 0, is the local tangential thickness of the blade in radians. 
Total enthalpies along a streamline are found by (4) or, in relative quantities 

o~2r 2 
h ,~= I + 2 - hit(m) (22) 

then 

W 2 
h = ht. 2 (23) 

It is useful to work in terms of relative quantities as losses may be estimated approximately from 
fixed two-dimensional cascade tests as a loss coefficient which is the relative total pressure loss divided 
by the outlet relative dynamic pressure. At any point, assuming a perfect gas, 

1 h \~/(~-i) 

~ r%od 
(24) 

where subscript ref indicates reference values, say at inlet, and Apt r is the loss in relative total pressure 
which must be estimated from loss correlations or boundary layer calculations. 

The total pressure loss through the whole blade row is usually input as a loss coefficient non- 
dimensionalised with respect to relative dynamic pressure at outlet. This loss must be distributed in some 
way through the channel and the simple assumption is made that it varies linearly in terms of distance 
along the mid-stream line from zero at the leading edge, i = M L  to a maximum at the trailing edge 
i = M T  and is constant at zero and the maximum in front of and behind the blade row respectively. 

The relative total density then follows from the gas law 

7 Ptr 
P t r -  (7 - 1)J hr, (25) 

and the static density from the isentropic relation 

P =  Ptr = Pt~ 1 -- 
r r 

(26) 

Equations (22), (24), (25) and (26) enable the static density to be found and substituted in equation (20) 
to find the mass flow. 

Equation (20) is more conveniently written 

MN = M N _1 f f N  
cos a.  Ar. r .  (0N - 0a) - (ON 0a) pWcos  fl dO, (27) 
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since all of the quantities in the denominator of 3A N are known as functions of z and MN can be found 
at the start of the calculation for each q-o'. 

In general a given W distribution in (27) will not give the correct MN and an increment AW at all 
points along the q-o' must be added. To find A W we need 

d m  N 

dW 

which is approximately 

dMN d(p W)N M 
dW "" cos flNm dW 

From (26) 

_ W 2 ( 2 - y ) / ( 7 - 1 )  

or, alternatively, in terms of p 

cosa.p 2 -  7-z5 

(28) 

where subscript NM indicates the mid-stream line. 
Equations (27) and (28) are used to find AW and the iteration process repeated until AW is negligible. 
For  q-o's on which Mach Numbers near or above 1.0 may be reached it is advisable to evaluate 

d(pW) 
dW 

at all points on the q-o, and use 

dMN 1 fjN ,, d(p W) ,40 
dW - (On - 01) cos P---d-W ~'"" 

1 

This is because if the q-o' intersects a supersonic patch at a high angle, the velocity could be subsonic 
at both ends and supersonic in the middle without it being choked. For  highly inclined q-o's then the 
Mach Number on the mid-streamline may not be a good enough guide to whether it is choked or not, 
and the exact expression for dMN/dW given above should be used. 

For  choking dMN/dW = 0 and from (28) 

(29) 

The speed of sound is given by 

a 2 = (y--  1 )h=  h r . ( y -  1) 1 - . 
r 
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Therefore 

a*2 = h t ( 7 -  1)[ 1 ~  ?TT-~] 

and therefore 

W .2  
Mr~e2 : 7 : 1"0. 

This shows that choking occurs approximately at a relative Mach Number of 1.0 on the mid-streamline, 
and that supersonic flow on less than half the q-o' can exist without choking the q-o' as a whole. This 
enables the method to deal with supersonic patches. There are of course two possible distributions of 
W that satisfy equation (27), except actually at choking. These are the subsonic and supersonic values. 
Either can be found using equations (26), (27), and (28), the one that appears depending on whether the 
initial WNM taken is less than or greater than W* from equation (29). This assumes that the supersonic 
flow is isentropic, which will only be true in the absence of shock waves. Supersonic q-o's will only exist 
following a sonic throat and the extent of the supersonic region will depend on the downstream pressure. 

2.3. Stability and Convergence 

In order to ensure convergence and minimise the number of iterations required it is necessary to 
determine the optimum damping factor. In Wilkinson 6 (1970), Katsanis 5 (1965), and Katsanis ~ (1964) 
the change in streamline position between one iteration and the next was multiplied by a factor less than 
1.0 to prevent divergence of the calculation process. Wilkinson 6 (1970), explained the reason for this 
and gave an expression for the optimum damping factor in the two-dimensional case with q-o's roughly 
normal to the flow. This stability analysis was extended to axisymmetric cases in Wilkinson 8 (1969). 
However in applying this to multi-stage turbomachines it was found necessary to damp the change in 
velocity gradient instead of the change in streamline position and the same procedure will be followed 
here. 

The simple flow model for the stability analysis is shown in Fig. 2 where the exact solution is a uniform 
helical flow about a constant radius cylinder. The coordinate system in the meridional stream surface 
is usually (m, 0') but another useful non-dimensional one is (4, 0') where 

= f !dm. (30) 

This gives a conformal transformation of the flow in the meridional stream surface, which generally has 
double curvature, onto a flat plane in which all flow and geometrical angles are preserved. 

The exact values of ~W/O0' in Fig. 2 are zero and a perturbation will be assumed of the form 

OW 4 ( z 27r 
A-~-  = K . ~  q.qN - q )cos~- (m - m o) 

where q = 0' - 0'~, and K is a constant. 
Since it was found in Wilkinson 6 (1970) that the phase of the error component had no effect on the 

result, we will take m = m o at q-o' zero. 
Then at q-o' zero, 

3W K ~2N(q.qN -- q2). A ~ - ~ -  = . 
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Integrat ing,  

t'q OW 4K[ q2 ~ )  
w = w~ + J o / ' 5 ¢  = w~ + ~ q ~ -  . 

Neglecting the small var ia t ion in fl f rom ql to qN a s t ream function ~ is defined by 

o r  

put t ing 

where, 

Then  

F r o m  (31) and (33), 

= p W cos fir dq 

_ f q p W  
= r cos  ~p  Jo - ~ -  aq, 

pW _ 
~- w + ( w -  W)~ = (1 - e )W + ~ w  

P 

= 1 d(pW) 
d W '  

= (a - e ) W q  + e w @ .  

_ 4~K[ q3 q~) 
= (1 -- ~)Wq + gWlq + -~-ulqN- ~ - i-2 " 

To satisfy continuity,  put i~ = WqN at q = qN, f rom which 

W t = W -  KqN 
3 

Th6refore 

and 

ff=(W--- 

0--~ = W 

KqN~I 4~KI q3 q41 ] 

I K~qN ' 4~K[ q2 q3~ 

x +--ff~q.Y--y) 

(31) 

(32) 

(33) 

(34) 
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The position of the mid-streamline, q; = WqN/2 is found by approximating to the 0 distribution near 
q = qN/2 by 

0q, 

from which 

qN ~ --  I[Iq./2 
q - - ~ 2 - +  (C~qq)q./2 (35) 

From (34) and (35) the mid-streamline is at 

qN 5 K6q 2 

q = 2-  + 48--W-- '  

so the displacement from the correct position is~(K~q2/W). There are similar displacements at neighbour- 
ing q-o's with the same wavelength and waveform as the velocity gradient error, and the new velocity 
gradient can be calculated from the streamline shape by equation (19) which, for this case, reduces to 

aW fl~r2dO dVm 2d20) 
a0 = cos [ dm dm + Vmr -~-~m2; (36) 

or, neglecting the first term, considered below. 

t~W - -  2 d20 
~0 = c ° s 2  ~Wr 

the calculated streamline positions are used to find d20/dm 2 and hence the new OW/aO from this equation. 
For the calculated streamline displacements 

d20 5 k K~q z 
dm 2 - 48 h 2 W 

where k = k(2/h) depends on the numerical differentiation method used, see Wilkinson 6 (1970), and new 

aW 5 ._[rqNl 2 
- K .  ) cos2 8. 

This is the new ~?W/OO on the mid-streamline and compares with the original value of K. 
Change in dW/O0 due to the iteration is therefore 

- K ( 1  - 4~k~ cos 2 flA2), 

and since the correct change is - K  the initial error can be reduced to zero by factoring the calculated 
change by 

1 
f = 1 - ~k~ cos 2 flA 2 (37) 
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where 

A - r(ON - 01) 
h 

From equations (28) and (32) it can be shown that 

1 2 = - -  M r e  I • 

By considering the whole range of error components with wavelengths from 2/h = 2 to oo it was shown 
in Wilkinson 6 (1970) that the optimum damping factor was bigger than that required to reduce the most 
unstable component to zero, and applying the same reasoning to this case gives the optimum factor as 

1 
f '  = (38) 

1 -~6kmi,(1 - M~I)cos2flA TM 

The convergence limit factor can be derived from (37) as 

2 

fc = 1 ~gkmi,(1 2 - -  - -  M r e l )  COS 2 f l A 2 ,  (39) 

but use o f f '  from (38) will always ensure convergence since f '  < f~. 
Equation (38) is the same as equation (35.33) of Wilkinson 6 (1970) except for the extra cos 2 fl term. 

However, compared to a set of q-o's normal to the flow A is sec 2 fl times as large, so the second term 
of the denominator is sec z fl times as big and f '  is smaller. This shows that having q-o's inclined to the 
flow is less stable than having them normal to it. 

The neglect of the first term on the right hand side in equation (36) is not without consequences for 
compressible flow since Vm will vary with ft. An error component in streamline position will cause equal 
and opposite changes in Vm at i = - 1  and + 1, the amount depending on fl and M r e  I.  The quantity 
dVm/dm will then no longer be zero, but the whole term r2(dO/dm)(dVo]dm) will have the same sign as 
the second term and add to it, making the iteration process less stable. This is only significant for high 
Mach Numbers and high deflections, and rather than complicate equation (39) with more terms, it has 
been found empirically to be sufficient to damp the change in slope, dO/dm between iterations by the 
additional factor 0-5. This has worked well for the cases tried so far but if other cases cause difficulty then 
further investigation of this term may be necessary. 

The number of iterations required is a function only of the damping fac torf '  as in the two-dimensional 
case, Wilkinson 6, (1970). To reduce the velocity error to e times its initial value 

I n  
ITS -- 

ln(1 - - f ' )  

or, fo re  = 19/o 

-4.61 
ITS = (40) 

In(1 - f ' )"  

2.4. Stagnation Streamline Shapes 

The main reason for having tangential rather than 'normal'  q-o's becomes apparent when considering 
the stagnation streamline shapes. Corresponding points on the suction and pressure surface s.s.l.'s at 
the same meridional station are at the ends of the q-o's. The shape of the s.s.l.'s can readily be changed 
by adding an amount 6; to all of the 0 ordinates on q-o~. Considering an initial s.s.1, shape the calculation 
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method described above enables all of the velocities in the channel defined by the blades and s.s.l.'s to 
be found. For q-o's outside the blade row it is then necessary to find a set of increments 6j to correct 
(W/,N - Wi,1) to zero. 

At q-o'i this is approximately equivalent to changing c~W/OO~,uM by 

aw (w~,~- w~,~) 
A~Oi,NM -- (Oi, N -- Oi,1) 

b (41) 

Equation (19) gives 

3W t~ ~d(V,.r 2) dO 
OO,,N~t = COS pi'NM]. -~m dm 

2 d2 0 dr 
2o~r-- [ . + V,,r ~ + dmji,N m 

This will be differentiated to find the effect of a change 6, in the 0 values at q-o)'. 

0 [ c~W ] aCOSfli,N M. , (d(V~r 2) 0 [ dO ] + V. r2 0 { d20 It  
~(~jlOOI,NM]-- ~ j  {'''}AFCOSpi'NM~ ~m a~Ad~i ,UM ] m c36jldm~,nM].[ (42) 

O cos fli,NM _ sin fli,NM 3fli'sM 
36j 06j 

But fl = tan-1 tan fl and tan fl = r(dO/dm), therefore 

a/3 1 

06j 1 + tan 2 fl 
Otanfl 2 0 IdO~ 

- c o s  

Therefore 

_ f 2 o o l a o l )  0 C O S  fli,NM - -  sin fl cos # r - -  - -  
36j l c~6j~dm]; i,NM 

and equation (42) becomes 

C~6jlOOi.NMj = COS fl --sin flr~o- + ~ ] ~ ( d - m m ]  + Vmrz c~aAdmZl J Ji,~4 (43) 

From the numerical differentiation formulae given in Section 2.5 the general form for dO~din is 

dO 1 
dm i = h'- 7 ~ ki.jOj" 

Therefore 

3[dO 1 kij 

similarly . (44) 

0_[ 01 <, 
~aA dm~/ ~' 
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The condition of periodicity at q-o'i then becomes 

0(aw) (w,,1 - w,,N) 
~j 8 j . ~ - j  ~ i -- (Oi,N -- 0i, 1) 

(45) 

and from equations (43), (44) and (45) 

hZ (W~'I - W~'N) (46) 
~(Aiki j  + l~,j). 8J=r2(Oi. N _ 0i 1)" V,,i cos fii j 

where 

h, 1 ( OW d(r2V~) I 
A i - r 2 " ~ i  -sinfl'r'~+ dm ], (47) 

Equation (43) has been non-dimensionalised to give equation (46) so that the coefficients and right hand 
side are of order 1.0 to avoid any possible inaccuracies in solving the equations. 

Figure 3 shows the values of i and j for the leading and trailing edge s.s.l.'s. The choice of positions for 
the quasi-orthogonals will be discussed in Section 2.5. 

Considering first the leading edge s.s.1, the unknowns are the 8j for j  = 1 to ML, where M L  is in front 
of the leading edge. Equation (46) must be satisfied for q-o's 2 to ML, but at point 1 not only is d20/dm z 
very difficult to find accurately but in any case it is necessary to satisfy the condition of a specified inflow 
angle. Assuming that the current slope is (r dO/din) 1 and that the required slope is tan ill, then, using a 
parabola through 3 points, 

do 
--(-1"561 + 2 8 2  - -  0 "583 )  = tanfll  - rldm 1 

o r  

- 1.561 + 26z - 0-563 = h l t a n  fll - hx d O  (48) 
r dm 1" 

Equations (48) for i = 1 and (46) for i = 2 to M L  give M L  simultaneous linear equations for the q-o's 
shifts fij at j = 1 to ML. The equations are solved to give the new streamline shape. 

For the trailing edge s.s.l, the unknowns are the 6j for j  = M T  + 1 to M. Point M T i s  at the trailing 
edge and so cannot move. Equation (46) can be applied as it stands to the q-o's i = M T  + 1 to M - 1. 
For q-o' M the curvature d20/dm 2 would again be difficult to find accurately but in any case the remaining 
equation is used to introduce a trailing edge loading condition. There is therefore no equation for the 
q-o'M, although 6M is found by solving for the periodicity condition at the other points and serves to 
determine the outlet angle. At the trailing edge, i = MT, equation (45) could be applied directly and would 
correspond to equal velocities on a tangential line at the trailing edge. A more general condition may be 
just as easily applied however in which equal velocities occur on a line making an angle ~b to the tangential 
direction, Fig. 4 where ~b may be any specified value. 

In Fig. 4 the velocities at points A and B may be written approximately in terms of the velocities at 
points on neighbouring q-o's and of the geometry. Assuming that the suction and pressure surfaces are 
nearly parallel to the trailing edge, 

{0, } 
As = r ~  cos fl(tan fl - tan(fl - q~)) (49) 

MT 

15 



Approximating to velocities near i = MT,  

AsOWMr, 1 Wa ~- WMr,1 + ~?s + - -  
As 2 02WMT, 1 

2 Os 2 

and 

AsOWMr,N Wn = W M r , N -  OS + - -  
As 2 O2W~r,N 

2 (~S 2 

and putting 

OWMT, I 1 
Os - 2h (WMr+I ' I  - WMT-I ' I) '  

02Wgr,1 1 
0s 2 - hg(W~r_l,t  - 2WMr,1 + WMT+I,1) 

etc., and equating velocities at points A and B, requires 

As 

As 2 ) / 1  As21 
+(WMT+I,1 + WMT-I,1- WMT+I,N -- WMT-A,N) .~ / [1-  ~-] t5o) 

The existing value of(WMr,N -- WMr,1 ) will usually differ from this and equation (50) can be used to find 
the correction required 

AOW A(W~v,u- W~r,1) 
O0~v (OMr,N -- OMr, x) 

and this forms the right hand side of equation (45) for the trailing edge q-o. 
The choice of a trailing edge condition has been the subject of much discussion but in reality it presents 

little problem either conceptually or numerically. It is shown in Chapter 5 of Thwaites 9 (1960) that for 
viscous flows, either attached or separated the steady lift condition involves the shedding of equal and 
opposite amounts of vorticity into the wake from the separation points on the suction and pressure 
surfaces. This implies equal velocities at the edges of the boundary layers at the separation points on the 
two surfaces. For a rounded or blunt trailing edge the condition, Fig. 4 

WA = WB (51) 

which was used to give equation (50) is equivalent to specifying the separation point positions on the two 
surfaces. For a blunt trailing edge chamfered off at an angle, the corners seem obvious separation points, 
and this is very useful for dealing with the common steam turbine practice of chamfering off tangentially 
so that ~p = 0. For rounded trailing edges it is probably more reasonable to put q9 = f12, making the 
line joining A and B normal to the mean line. However it is encouraging to find that the value of q9 chosen 
is not at all critical. In Figs. 8 and 9 for a blade with a fairly thick rounded trailing edge and a highly 
curved camber line near the trailing edge, varying q~ from 0 to 60 degrees caused the theoretical outlet 
angle to change only from 51.8 to 52-5 degrees. This might be compared with an outlet angle from the 
exact solutions for this section of 51.0 degrees with a rear stagnation point specified at a point at which 
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the tangent to the surface makes an angle to about 35 degrees to the 0-direction. However this implies 
that the stagnation streamline has an angle of 35 degrees to the axial giving a kink in the flow direction 
and less load near the trailing edge than with either of the streamline curvature cases so it is not strictly 
comparable. Nevertheless the agreement is still fairly close and the insensitivity of the outlet angle to 
q~ has been shown. A number of o ther  comparisons for turbine cases with experiment in Figs. 10-17 
show very good agreement confirming the soundness of this approach. Because of its physical basis the 
assumption (51), leading to equation (50), may be expected to work for blunt trailing edges cut off at 
any angle, and for rounded or sharp trailing edges. 

Summarising then for the trailing edge s.s.l, there are M - M T  - 1 equations (46) for i = M T  + 1 
to M - 1, and one equation (46) with the right hand side derived from equation (50) instead of (41) for 
i = MT. These are solved for the M T  - M unknowns 6 j , j  = M T  + 1 to M, to give the new trailing edge 
s.s.1, shape. 

It is found with both leading edge and trailing edge s.s.l.'s that the rate of convergence is improved 
if the calculated shifts 6j are multiplied by about 1.5. It is however found at high Mach Numbers that 
very small errors in slope, which occur until the s.s.l.'s reach their final positions, can restrict the flow 
area and cause spurious choking. It is better to slow the movement of the s.s.l.'s down to avoid this and 
this is done in the program by factoring the calculated 6j's by 

1.5~/1 2 - -  M r e I , 1 , N M  

for the leading edge s.s.1, and by 

1.5~/1 2 - -  M r e I , M , N M  

for the trailing edge s.s.l. 
One further point of importance concerns when the streamlines should be shifted during the course 

of the calculation. There are two iteration loops, the inner one of which corrects the solution of the 
equations of motion for given s.s.1, shapes and the outer one of which corrects the s.s.l, shapes. The inner 
loop has an accuracy tolerance specified in the input data of A W / W  = e say. It is obviously not worth 
doing all of the iterations required to get the error down to e with the initial incorrect s.s.l, shapes, so a 
lesser accuracy is in fact required for the early s.s.1, positions until the streamlines approach their final 
shapes. On the other hand if the solution for given s.s.1, shapes has errors that are too large, the correction 
to the s.s.1, shapes will contain a significant component due to the remaining numerical errors in the 
solution and the convergence of the s.s.1, shapes may be reduced. Without having done an exhaustive 
investigation of this, a reasonable compromise was taken to be to use a tolerance which is e factored by a 
function of the number of streamline shifts, varying from 5e for the initial s.s.1, shape and reducing to 
after about 10 s.s.1, shifts. The function used is 

4.3731 
e p = e  0 . 6 2 7 + p + 1 ]  (52) 

where p is the number of stagnation streamline shifts. A plot of ep/e ~ p is shown in Fig. 5. 

2.5. Numerical Differentiation and Smoothing 

It is necessary in evaluating the right hand side of equation (19) for OW/~O to calculate d(Vmr2)/dm, 
dO/din, dr/din and d20/dm 2 where the quantities V, nr 2, 0 and r are known at points on the q-o's at unequal 
intervals of m. It is perhaps not always appreciated that since this is the only information the program 
has about the curves any numerical differentiation method will introduce smoothing. It was shown in 
Wilkinson 6 (1970) that if a trigonometrical interpolation method is used to fit a general curve through a 
set of points which may be thought of as a sum of Fourier components of wavelengths 2, then the accuracy 
of the numerical approximation to the derivatives of the Fourier components will be a function of 2/h, 
where h is the point spacing. In particular at high 2/h most methods are accurate but as 2/h reduces there is 
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at some stage a rapid fall in accuracy and at 2/h = 2 or less no methods are really adequate.  A decision to 
use a particular number  of points to define a curve, such as a blade surface shape, therefore implies that 
the shape does not  require the presence o f  Fourier  components  with 2 less than about  2 or  3 times h. In 
fact it may  be decided that the min imum significant wavelength is more  than 2 or  3 times h and the un- 
wanted contr ibut ions to the derivatives at these wavelengths, due to small errors in input coordinates say, 
may need to be suppressed by further smoothing. The smooth ing  and differentiation formulae may be 
combined to give a single differentiation method of  the form 

and 

dy 1 N 

(53) 

d2y 1 N 

dx 2 = - ~  ~ g,,Y,. 
n =  - - N  

The correct choice of the coefficients f ,  and g, is therefore governed by the number  of  points to be used 
on the blade, usually about  15 for the cases considered so far, and by the min imum 2 needed to define 
the blade shape. These give a min imum significant 2/h from which a suitable differentiation method can 
be chosen on the basis of the (2/h)1o values given in Wilkinson 6 (1970). 

In order to give a rather more flexible formula than was possible with the examples in Wilkinson 6 
(1970), a general smoothing process was introduced. The formulae for equal intervals of  the argument  
will be considered first. For  a quart ic through 5 points 

d2y 1 
dxg - 12h 2 ( - y - 2  + 16y-1 - 30yo + 16yl - Y2). (54) 

This has kmi n = - 5 . 3 3  and (2/h)~0 = 3.35. A c o m m o n  smoothing  process replaces Yo by the ordinate 
of the least squares parabola  through 5 points. This is equivalent to 

Yo '=  1~(2 - -Y-2 + 4y_ 1 + 6yo + 4Yl -- Y2) (55) 

where .'= means 'is replaced by '  and the y's may be dy/dx, d2y/dx 2 or any other quanti ty to be smoothed.  
Considering the 2/h = 2 component  with Y0 = 1, YI = Y-1 = - 1 ,  Y2 = Y-2 = 1, etc., equation (55) 
gives Yo '=  - ~  a change of -34-. A formula with no smoothing  can be written as 

Yo ' = ( ' " 0 x y - 2  + Oxy-I + lXyo + Oxyl + 0 x y 2 . . .  ) (56) 

and any linear combinat ion of equations (55) and (56) represents a smoothing process. Putt ing Yo := PYo 
for a range of p gives the formulae in Table 1. 

Method  

A 
B 
C 
D 
E 
F 
G 

1 

¼ 
0 
1 

S n 

n - 2  - 1  0 

(0 0 1 
1 4~ ( - 1 4 42 
1 3-~ ( - 1 4 26 
1 2--~ ( - 1  4 18 
1 

64 ( -- 3 12 46 
I IT ( - 1 4 10 
1 1-~ ( - 1  4 6 
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These coefficients may be used in the form 

N 

yo:=  ~ s~y. (57) 
n =  - N  

when applied to sine curves of a range of 2/h they reduce the amplitude of the 2/h = 2 component to p 
times its original value and leave the 2/h = oo component unchanged, with intermediate values of 2/h 
having an amount of smoothing between p and 1, Fig. 6. If method F, with p = 0, is applied to equation 
(54) the expression 

d2y 1 
dx~ - h-g(0-00694y_4 - 0 .11 l i ly_  3 + 0.44444y_ 2 + 0 .11l i ly_  1 - 0.90278y0 + .. .) (58) 

is produced which is the same as method 6 of Wilkinson 6 (1970) where it was obtained by 'double differ- 
entiation'. This shows that a continuous progression between the methods of Wilkinson 6 (1970) can be 
obtained by interpolating in the smoothing process. 

A quite general 5 point smoothing formula can be derived without reference to least squares parabolas 
by noting that there are 3 coefficients involved and so any 3 reasonable conditions will determine them. 
One of these is that for 2/h = oo the process leaves the curve unchanged or, with 

then 

If we also specify 

then 

and 

and the third condition could be 

Therefore 

y o , = a y - 2  + by_ l  + cyo + by1 + ay2 

2a + 2b + c = 1. 

Yo '= PYo for 2/h = 2 

2a - 2b + c = p 

1 - - p  
b -  

4 

y o , = q  at )~/h = 3 say, 

- a - b + c = q .  

1 + 2 q  
C - -  - -  

3 ' 

b _ l - P  
4 

(59) 

(60) 
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and 

1 - q  1 - p  a -  
3 4 

Not all combinations of p and q are equally suitable and a curve of Yo/Yo orig ~ 2/h over the range from 
2 to ~ should be calculated to avoid going above 1 or below zero. 

The choice of a particular amount of smoothing is a compromise between the loss of accuracy involved 
with too much and the reduction in Ikmi.l and hence in the number of iterations required, equations 
(40) and (38). Experience with about 15 q-o's on the blade, and of blade shapes typical of steam turbine 
applications, has shown that it is reasonable to use a smoothing formula equation (57) with p = 0.25 
and q = 0.443, giving, from (60) 

yo '=  -0.00174y_ 2 + 0.1875y_1 + 0.62847y 0 + . . . .  (61) 

This expression is also shown in Fig. 6. When combined with equation (54) it gives kmin = -1 .66  and 
(2/h)10 = 8.2. The argument for having these particular values of p and q is as follows, p is small but 
greater than zero. If p equals zero then the analysis works perfectly well for finding the flow with given 
stagnation stream line (s.s.1.) shapes but the simultaneous equations cf. (46), for finding ~ become un- 
satisfactory. The values of l~,j in (46) are then the coefficients in equation (58). It is simpler to think of the 
equivalent formula for parabolas with double differentiation. 

dZy 1 
dx~ - h 2(0"25y-2 + 0 y - I  - 0"5y° + 0yl + 0"25y2)" (62) 

This may easily be seen to split the points into two sets of odd and even numbered q-o's which do not 
affect each other through this equation. It is only at the end of the range at point M - 1 where a different 
formula has to be used that y~ is affected by y_ 1 or y+ ~. This connection is not however strong enough 
to prevent the solution of equation (46) l~rom producing two fairly independent sets of 6j with consequently 
a large 2/h = 2 component  in the shape and a large error in outlet angle. Also, as the formulae (58) or 
(62) cannot 'see' 2/h = 2 component  the waviness is not corrected out at the next streamline shift. Putting 
p = ¼ seems sufficient to prevent this phenomenon and ensure smooth stagnation streamlines. It is of 
course possible to use one formula for the flow solution and another to give ki, J and ll.j for the s.s.1, shape 
solution but this was found to give a final solution in which periodicity was not quite achieved and 
could not apparently be made as accurate as required, however many streamline shifts were done. 

For p = ¼, kmi n occurs at about 2/h = 3 instead of 2 and is therefore proportional to q. Reducing q 
makes kmi n less negative but increases (2/h)1o. The value q = 0.443 with (2/h)1 o = 8.2 gives good results 
and no improvement was obtained with a higher q, although more iterations were of course required. 
If more complex blade shapes than those tried so far are encountered then it would be easy enough to 
increase q and calculate new values for the coefficients and kmi n. 

This program is at a fairly early stage in its development and the recommended numerical methods 
may well be changed in detail as time goes on. 

In order to find ki. j and li. J in equations (44) and (46), equation (61) was applied to (54) giving 

dZy 1 
dxg - h  -~(0'00014y-4 - 0"01794y-3 ÷ 0"20198y-2 ÷ 0"35127y-1 - 1'07090y° + ' ' )  

and to avoid having too many special end-of-range cases this was approximated by 

d2y ,,, 
dx 2 - (0-20212y_z + 0.33333y_1 - 1.07090y o + ...), (63) 
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changing the coefficients so that k at 2/h = 2 remained the same. In the main program the smoothing 
process, (61) was applied as a sub-routine to both first and second derivatives after they had been cal- 
culated from equations (64) below and (54), 

which, after smoothing becomes 

dy 1 
dx ° - 12h(Y-z - 8y-1 + 8yl - Y2) (64) 

dx o =  (-0"00014y- 4 + 0.01678Y_3 - 0.07263y_z - 0-40452y-1...) 

~ ( - -0 .04774y_2  --0"40452y_1...), 

changing the coefficients so that the slope of a straightline was still correct. 
At the  end ofthe range, for dy/dx 

dy 
~(-1 .5y l  +2y2  -0 .5y3)  

dxl 

and 

(65) 

dy 1 
- -r(-0.5y I + 0.5y3) , (66) 

dx2 n 

(dy/dx)i, i = 3, 4 . . . .  is given by (64). Then (dy/dx)2 was smoothed by 

giving 

y2 ,=0 .25y1  + 0.5y 2 + 0-25y 3, 

dy = 
dx 2 (--0.60417yl + 0.33333y2 + 0.125y 3 + 0.16667y4 - 0-02083y5). 

(67) 

For d2y/dx 2, 

(68) 

d2y d2y 1 
dx~ - dx~ - -~(Yl - 2y2 + Y3) (69) 

(d2y/dx2)i, i = 3, 4 . . . .  was given by (54). Then, applying (67) to these 

d2y 1 
dx~ =~-(0.72917yl - 1-1666y2 +0.125ya + 0.33333y4-0.02083y5). (70) 

Analogous expressions for dy/dXM_ l, d2y/dx2-1 can readily be derived from (69) and (70). 
Summarising then, derivatives in the main programs are found by equations (64) and (54) with end-of- 

range values by (66) and (69) and these are then both smoothed by equation (61) with (67) for end of 
range values. The i = 1 and M values are not smoothed. For finding the s.s.l, shapes with equation (46), 
the kid and lij values come from equations (65) and (63) with end-of-range values from (68) and (70). 
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Since the q-o's are generally at unequal intervals ofm some modification to this procedure is necessary, 
and this also involves the choice of the best positions for the q-o's. In Section 2.4 and Fig. 3 one q-o 
was taken to be at the trailing edge, i = M T  and one just in front of the leading edge. Equations (38) 
and (40) show that for roughly equal rates of convergence on all parts of the blade A cos/~ = 
[r(ON - O0]/h cos fl should be constant or, since ON -- 01 is fairly constant h/r = A~ should be pro- 
portional to cos ft. But this corresponds approximately to equal spacing along the mean line, Fig. 3, and 
this forms a simple rule for finding a reasonable q-o distribution. It is best to have the actual leading 
edge half way between two q-o's so the mean line length is measured in the (m, 0), or (4, 0) plane and 
divided by { M T  - M - ½} to give the q-o spacing along the mean line. This q-o spacing is continued 
along the upstream and downstream s.s.l.'s usually with a gradual increase going away from the blade. 
The s.s.l.'s will usually fair into the mean line curve unless a very 'off-design' incidence is being considered 
and so m~ will usually be a smooth function of q-o number i. It is then possible to use the equal interval 
formulae for derivatives above by using 'parametric differentiation' Wilkinson 6 (1970). 

a; ay/a  
dm dm/di 

and 

dm d2y dy d2m 

day di di 2 di" di 2 

dm 2 (dm/di) 3 (71) 

However, to avoid errors due to lack of smoothness in m ~ i, particularly in finding dZy/dm 2, the 
input coordinates z~, r~, 0~,10,, and Ar~ are all smoothed twice with respect to i using equation (55). This 
reduces discrete errors to ¼ of their input values and 2/h = 2 components to ~th. It is necessary to 
prevent the kink in the s.s.1, at leading edge and trailing edge from affecting the section shape during the 
smoothing process, so the values of the coordinate being smoothed are maintained unchanged at 
i = ML  + 1 and M L  + 2 and at i = M T  - 1 and MT. This preserves the shape of the blade at leading 
and trailing edges. At input the tangential thickness coordinate 0 t is put equal to zero on the leading 
and trailing s.s.l.'s and suddenly increases to or decreases from a non-zero value at leading and trailing 
edges. The smoothing process will however introduce non zero values in the form of a small cusp at 
each end of the blade. The cusps carry no load, as the periodicity condition ensures equal velocities each 
side of them, and merely serve to divide the flow. 

There is no particular necessity for 0t to be zero on the s.s.l.'s and if it was desired to represent a thick 
wake, a non-zero value of 0t behind the trailing edge would do this. As programmed such a wake would 
have zero load on it in the tangential direction. The program could easily be modified to have zero load 
normal to the wake or to have a normal load which was a function of an input wake momentum and of 
the calculated wake curvature, the wake development and curvature being calculated as part of the 
program. 

A fundamental limitation with streamline curvature methods is their inability to give an accurate 
potential flow solution in the leading and trailing edge regions, where there is a right-angled kink in the 
wall shape as the stagnation streamline meets the wall. In terms of a Fourier analysis of the streamline 
shape through the kink, all wavelengths down to )~/h = 0 would be needed for exact representation. 
With a finite number of q-o's in the kink region, there is never enough information present to fully define 
the shape and this manifests itself in the fact that all numerical differentiation methods neglect contribu- 
tions from components with 2/h less than about 2. With smoothing, of course, even. higher wavelength 
components are ignored. Some error in estimating curvatures, and hence velocity gradients, in the 
stagnation regions is therefore inevitable and a choice must be made in which improving the accuracy 
by having more q-o's and a more accurate differentiation method is traded against the reduced stability 
and hence greater number of iterations required for higher A and [kmi,[. The introduction of a small cusp 
could easily be avoided but is thought to have a generally beneficial effect. The degree of error caused 
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by smoothing out the stagnation regions with the present numerical coefficients can be seen in Figs. 8 
to 17. For steam turbine applications where flow near the leading edge of nozzles is not very important, 
and where impulse blades generally have thin leading edges, this degree of agreement is probably quite 
acceptable in the leading edge region. At the trailing edge the real flow is probably more like the smoothed 
out streamline curvature approximation, due to the boundary layers, wake and separations, than the 
idealised potential flow model with a stagnation point, and good agreement on loading and outlet angle 
is obtained. For compressor cascades or large off-design incidences a more accurate version of the 
program might be required and could easily be produced using the methods outlined above. 

2.6. Starting Values 

In order to start the calculation off, some initial values of parameters appearing on the right hand side 
of equation (19) must be specified. To find the overall velocity level a zero velocity gradient aW/90 = 0 
is assumed and a flow angle r(dO/dm) is required. An initial 0 distribution is needed also for d20/dm 2 and 
it was at first thought that the streamlines could be spaced uniformly along the q-o's. This worked well 
enough at low Mach Numbers but not at higher mass flows where spurious choking was often predicted 
at, or just before, the trailing edge q-o. This was because the uniform spacing approximation results in a 
slope dO/dm that is slightly too high near the trailing edge, with a consequent reduction in effective flow 
area. The Mach Number is so sensitive to area near M = 1 that this was often sufficient to cause choking 
to be indicated. The cure for this was to space the streamlines uniformly along normals to the flow and 
then interpolate back to find the positions along the q-o's. As this is not quite as straightforward as it 
sounds a brief description of the method will be given. 

The mid-streamline for uniform spacing was found from 

Oi,NM = (0i,1 + 0i,N)/2 

and differentiated to give ri(dO/dmi,NM) = dO/d~i,NM. The normal through the point i, N M  is then 

O = a ¢  + b  

where 

- 1  
a - -  

dO/d~,NM 

and 

b = Oi,NM --  a¢NM. 

The intersections of this normal with the suction and pressure surface streamlines, j = 1, N, were then 
found. In Fig. 7 in the 4, 0 plane a set of quasi-normals are found, numbered from KF to KB where KF 
is found by 

(01'/q - -  81'1) sin 2[fll,NM[, 
~rV /> 41 + 4 

where 

fl tan-1 dO 
dm" 
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Similarly K B  follows from 

~KB ~ ~M (OM'N -- OM'tsin21flM,NMI. 
4 

For any q-n i, K F  <~ i <~ K B ,  at intersection with the suction surface (or s.s.1.). 

~'i,1 ~- ¢i,NM + (Oi,N -- Oi,1)si n 2[3i,NM. 
4 

This locates the set of 4 points along the suction surface nearest to the intersection point, two either 
side of ~'i.~. The coefficients C1 to C 4 of a cubic through these points are found, by solving simultaneous 
equations, as 

0 = C 1 -J- C 2~  -{- C 3~  2 --{- C 4~  3. 

Then, for equal 0 at the intersection of the q-n and the cubic, 

f(~) = (C 1 - b) + (C  2 --  a )~  .-q-- C 3~  2 + C 4~  3 = 0 

and this is solved for the accurate ~'~.1, starting from the approximate ~'~,1 above, by Newton's method, 
and 01, is found. 

A similar procedure is used to find ~I.N, 01,N on the pressure surface (or s.s.l.). With the ends of the 
quasi-normal known, the intermediate streamline positions are found by linear interpolation for uniform 
spacing. This gives ~i,~, 01,~ for K F  <<, i <~ K B ,  1 <<, j <~ N defining the uniformly spaced streamline 
positions on the quasi-normals. It is now necessary to interpolate back to find the corresponding 0i,~ 
values along the q-o's. For the triangular regions at either end of the channel the streamlines are still 
left spaced uniformly along the q-o's. These regions are defined by 

~i ~< ~KF,j, j = 1 to N 

and 

~i >/~D.j,  j = 1 to N. 

For points not in the triangular regions, for each (i,j) the set of 4 points (~14, 01j) along the jth stream- 
line is found such that 2 are either side of ~i and 4-point interpolation used to find 0id. 

3. Data for Computer Program 

A large drawing of one blade is required on which the initial shapes of the stagnation streamlines are 
drawn in. For a three-dimensional cascade it is probably best to draw the blade in the transformed 
(3, 0) plane. Selection of positions for the quasi-orthogonals was discussed in Section 2.5, and summarising 
this, 

(a) One q-o should go through the mean line at the trailing edge. 
(b) The leading edge should be half way between two q-o's. 
(c) Divide up the mean line length between q-o's M L  and M T  with equally spaced q-o's. 
(d) Continue this spacing for the q-o's along the stagnation streamlines, but with a gradual increase 

going away from the blade. 
(e) The stagnation streamlines must extend sufficiently far up and downstream of the blade so that a 

region of substantially parallel uniform flow is reached. 
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(f) The total number of q-o's allowed, as programmed, is 30, but this could be increased if required. 
This means that 12 to 15 can be on the blade. 

(g) At the trailing edge, Fig. 4, the point (MT, N) (or (MT, 1)) may be off the actual blade and it is 
necessary to draw in an approximate fairing line from the pressure surface to the s.s.1, as indicated 
and take the point as being on that. 

Either two- or three-dimensional cascades may be input and are indicated by putting IDIM = 2 or 3. 
For  IDIM = 2 the 0i,1 and Oti ordinates are input as dimensional quantities in inches and divided by the 
constant radius rl within the program. For IDIM = 3 the 0~,1 and 0, values are in radians and are true 
angular coordinates. 

The maximum number of streamlines allowed including suction, 1, and pressure N, surfaces is 9. 
This could be increased if required but 7 streamlines are usually sufficient. 

N must be odd. 
All data cards use input formats and these must be strictly observed. 
The data required is set out as follows. 

(2) Title 
(Any characters from columns 2 to 66) 
M N ML M T  
(All format I5) 
IDIM 
(I2) 
Zl rl 01,1 0,1 Arl 

(All F10.3) 

(z, r, Ar in inches. 0, 0 t in inches, IDIM = 2 / 
or in radians IDIM = 3) 1 

Z M 
¢ (degrees) 
(F10.3) 

(4) RPM 7 
(F10.3) (F10.3) 

(1) V:, Vo, 
(All F10.3) 
NEXT 
(I2) 

rM OM,1 Ot M ArM 

TOL NB ITS JUMPS 
(F10.3) (I5) (I5) (I5) 
ht, p,  loss coeft. 

t =  finished = 01: new V~l' V°~' etc" repeat fr°m ( 1 ) l  
= 2, new geometry, repeat from (2) ] 
= 3, new 95, give new 95 value only ] 
= 4, new RPM, ~, etc., repeat from (4) [ 
(V~,, V01 in ft/sec, htl in Btu/lb, Pt, in lb/in2)/ 

NB is the number of blades. For a two-dimensional case this must fit in with r to give the right pitch 
from 

27~r 
s =  

NB 

or 

s. NB 
r - where s is in inches. 

2~ 

Any convenient values of NB and r may be used. Also any constant Ar may be used for the two-dimen- 
sional case. 
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For the three-dimensional case it is only the ratios of Ar from one q-o to another that matter and any 

convenient magnitude can be used. 
T O L  is the estimated remaining velocity error required, divided by the mean velocity, taking the 

maximum of this ratio for all q-o's. A value of 0.005 has been found reasonable. 
ITS is the maximum number of iterations that will be done for any streamline shape and prevents 

the program running indefinitely if it does not converge for some reason. It can be found approximately 
from equation (40), otherwise a value of about 50 can be used. 

J U M P S  is the maximum number of stagnation streamline shifts that will be done, although the pro- 
gram will probably converge with less. About 15 shifts are usually enough. 

V._, and Vo, with dr~din, from the geometry, and the RPM and r~, define the relative and absolute inlet 
angles and these will be preserved during the calculation. The inlet angle does not depend on the initial 

s.s.l, shape. 
For a range of inlet mass flows or Mach Numbers  it is advisable to start with the highest and work 

down to lower Mach Numbers. This is to take advantage of (a) the ability to space the trailing stagnation 
streamline well away from the back of the blade and (b) the initial streamline spacing, uniform normal 
to the flow, which is close to the correct spacing for sonic flow. Both of these things minimise the possibility 
of spurious choking being predicted, and simple sums based on passage areas should enable the critical 

mass flow to be estimated beforehand and avoided. 
The streamline shifting method can cope with large changes in inlet angle and to change the incidence 

it is usually sufficient to put NEXT = 1 and change ~ ,  and Vol without having to change the whole 

geometry. 
For dry steam a good approximation to its properties is obtained by using 7 = 1.3 and (h t - 835) 

instead of h t. The calculated ht values in the program output should then have 835 added to them. 
The output includes values of all geometrical and flow parameters over the whole grid. The pressure 

coefficient S is one used by NASA and is 

Si i P,~ - Pl,j (72) 
" - 

where subscript 1 refers to q-o' 1. 
The velocity ratio V / V  2 is also output and this is actually 

V) _ W~.j 

i,j WM,NM" 

Note that this non-dimensionalises relative to a velocity on the last q-o '  and that, whilst this represents 
a mean trailing edge value in two-dimensions, it does not in three-dimensions because of change of 
radius and annulus area. 

The program is in FORTRAN IV and on the IBM 360-75 run times with M = 30, N = 7 are about 
0-4 secs per iteration, and 0-14 secs per streamline shift giving an overall run time of about 20 to 40 secs. 
With the IBM 360-85 run times are expected to be about 40 per cent of those on the -75, giving overall 
times of 8 to 16 secs. This is per case, and each Mach Number  and incidence combination is a separate 
case, although for a range of these a new solution is derived from the previous one and the full time 

may not be required. 

4. Comparisons with other Theories and with Experiment 

The method should be applicable to a wide range of cases as it can deal with compressible or incom- 
pressible flow, changes of duct area in the flow direction, changes of radius and relative vorticity effects 
on rotating blades. It can therefore be used for axial, mixed flow, or radial flow turbines or compressors 
including steam turbines, gas turbines, axial and centrifugal compressors and gas circulators. A very 
extensive program of work would be needed to verify the method of all possible geometries in all these 
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applications and only a limited number of comparisons for cases relevant to steam turbines have been 
done so far. The particular cases considered are those with incompressible or compressible axial flow, 
for which exact or experimental results were available and with incompressible mixed flow with fixed 
and rotating blades for which almost exact solutions were available from the Wilkinson/Martensen 
singularity method Wilkinson 1°,11 (1967), (1969). 

Figures (8) and (9) show the 112 degrees camber cascade obtained by Gostelow lz (1964) by transforma- 
tion and a comparison between the associated exact solution and the streamline curvature solution. 
This has already been discussed towards the end of Section 2.4 where it was stated that the outlet angle 
in the s/lc. solution, with q~ = 0 would not be expected to be the same as the 'exact' value as the two 
Kutta-Joukowski conditions were not equivalent. If the s/lc. velocities, V/V2, are factored by the ratio 
of the Vz's of the two solutions so that they are non-dimensionalised on the same value of V 2 the two 
velocity distributions are then in almost exact agreement except at the leading and trailing edges. Near 
the leading edge the smoothing out process, due to the inaccurate differentiation method and the intro- 
duction of a small cusp, has prevented the stagnation velocity from being obtained and caused a more 
gradual transition from the upstream to blade surface velocities. In the trailing edge region there has 
also been some smoothing out and the extra load due to the higher turning angle appears here. Apart 
from this there is generally very good agreement between the two methods. 

Figures (10) and (11) show the blade shape and velocity distributions for a NASA section, Whitney 14 
(1967). There is generally good agreement including the back of the blade where the Mach Number 
is fairly constant at about 0.85. The outlet angle predicted is 0.5 degrees too high and this may also be 
reflected in a tendency for the load to be too high near the trailing edge. It is likely that there were not 
quite enough q-o's after the blade, as completely uniform flow had not been established by the last one. 
There was still a small variation in tangential velocity and this may have affected the final result. Another 
possible explanation is that viscous effects, due to the suction surface boundary layer displacement 
thickness being larger than that on the pressure surface at the trailing edge, may have caused the 'effective' 
blade shape to turn the flow slightly less. 

Figui~es (12) to (14) show some comparisons for compressible two-dimensional flow past a cascade 
of NACA primary series turbine blades Dunavant 13 (1956) at two incidences and Mach Numbers. The 
blade had 0 c = 80 degrees and was at a stagger of 38.4 degrees. The coordinates can be found in Dunavant 
and Erwin 13 (1956). 

In Fig. (12) some difficulty was caused by the experimental inlet and outlet Mach Numbers and flow 
angles not satisfying continuity for isentropic flow, as the s/lc. values must do. Addition of loss effects 
would make the discrepancy greater still. It may be that, due to the general increase in the flow velocity 
through the blade row, the side wall boundary layers have become thinner and this has reduced the outlet 
Mach Number. The experimental ½piV  2 = (V/2)pIM 2 for a given M z would then be relatively larger 
than theory and S would be reduced. However, scaling by the ratio of the theoretical/experimental 
½plV~ z values takes the theoretical S curve only about half-way towards the experimental values in 
Fig. 12. There must therefore be some other error. It must be noted that (a) for the given outlet Mach 
Number the theory satisfies continuity while the experiment does not, (b) the theory gives the experimental 
outlet angle to 0.1 degrees, (c) since the change in tangential momentum is reflected in the load on the 
blade the theoretical load must be correct, (d) the shapes of the theoretical and experimental S .,~ x /c  

curves are very similar. It is concluded that the experiment contains some unknown error in the non- 
dimensionalising quantity ½plV~- A suitable value can easily be found to make the theoretical and 
experimental curves almost coincident. 

This tendency for the theoretical S values to be higher than experimental ones is also shown in Figs. 
(13) and (14), although to a lesser extent the outlet Mach Numbers being rather different in the latter. 
The inlet and outlet Mach Numbers and angles from experiment are nearer to satisfying continuity 
but presumable ½p~ V~ is still too high. The outlet angles are predicted very well and the shapes of the 
curves are in good agreement. There is a tendency for the theoretical curve to dip before the trailing 
edge on the suction surface, particularly in Fig. 14, which does not seem to appear very much in the 
experiment, although there are no pressure tappings over the last i0 per cent chord and S might actually 
rise toward the trailing edge. This might also be due to the higher theoretical outlet Mach Number. 
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In general, with some fairly reasonable scaling, the theoretical pressure distributions show good 
agreement with experiment and the outlet angles are predicted very well. 

The comparisons so far all deal with axial flow, over a range of Mach Number.  Three-dimensional 
flow effects have two main forms, change of annulus area and change of radius of the meridional stream 
surface, and either or both of these may be present. There are no exact solutions or test data on the com- 
pressible three-dimensional cascade case and the best available comparative predictions are those for 
incompressible flow from the Wilkinson/Martensen mixed flow analysis method Wilkinson ~°'11 (1967), 
(1969). This method uses singularities to give an almost exact solution. A case was therefore run on both 
the streamline curvature and singularity methods for a section derived from, but not the same as, the 
NASA primary series turbine blade. The (z, r, O) coordinates for points on the blade are given in Table 1. 
The meridional stream surface had 45 degrees flare and was defined by 

r = 78.6 + z 

where the leading edge is at z = 0 and the axial chord is 7.86 ins giving a 10 per cent increase in radius 
from leading to trailing edge. The annulus area, defined by Ar also increases according to 

Ar = Ari. e 1 + 

This corresponds to a hub/tip = 0.5 and conical meridional streamlines from an origin at ( - 39.3, 39.3, 0). 
The upstream and downstream limits of the region of interest were taken as z = -4 .18  to + 11.53 and a 
relative inlet angle of 0~ = 10 degrees was used at z = -4 .18  for both fixed and rotating blades. For 
the latter the rotational speed parameter, o~r~/V,,l, at z = -4 .18  was 1-0. The streamlines are not straight 
either upstream or downstream due to the changing radius and annulus area but 02 was the flow angle 
at z = 11.53. A plot of the blade shapes and predicted streamlines is shown in Fig. 15 for the transformed 
plane (4, 0) in which all angles are preserved relative to the meridional stream surface. In this case where 
the flow was on a cone the surface could have been 'unwrapped '  and plotted without distortion but this 

would not generally be so. 
Also the z = constant lines would have been arcs of circles and it would not have been as easy to see 

the flow angles. 
Figures (16) and (17) compare the predictions of the streamline curvature and the singularity methods 

for fixed and rotating blades. There is close agreement for velocity distributions and outlet angles in both 
cases, with the usual smoothing out error near the leading edge. There is a 30 per cent annulus area 
increase in both cases, so this large effect is evidently allowed for successfully and the relative vorticity 
effect can also be seen to be large by comparing the loadings in the two cases. Although only for one case, 
this does confirm that the program is including correctly the effects of annulus area and radius change 
for both fixed and rotating blades. 

Taking this in conjunction with the earlier comparisons for compressible flow in axial cases it seems 
reasonable to conclude that the method works successfully for turbine cascades of the type illustrated 
for general three-dimensional compressible flow cases. It should also be applicable to a wide range of 
other cascades including axial, mixed and centrifugal compressors but further comparisons would 
be necessary to verify this. 

5. A New Design Method 

The design or 'inverse' problem, in its usual aerodynamic form, is to calculate the blade shape that 
will give a specified velocity distribution on one or both surfaces. The method developed in Section 2.4 
for adjusting the stagnation streamline shapes to give a specified, zero difference between the velocities 
at the ends of a q-o', can readily be extended to obtain specified blade surface velocities. 
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Consider a case where the solution for the flow through'the channel with the initial s.s.l.'s has attained 
sufficient accuracy to make it worthwhile shifting the s.s.l.'s to make them more periodic. We now con- 
sider shifts cSj for all q -o ' s j  = 1 to M. The periodicity condition for i = 2 to M L  and M T  + 1 to M - 1 
is still equation (45) and that for i = M T i s  found from equation (50). The ki, ~ and Ii, J values now have to 
be calculated for 6j's on the blade as well. 

On the blade if the required suction surface velocities are W~,~, i = M L  + 1 to M T -  1, then a change 
of ~ W/aO on the mid-streamline is required given approximately by 

aw -2(w'~,1- w~,l) 
A OOi,NM ~ (Oi, N - -  0i, 1) (73) 

from which, by comparison with equation (41) a new right hand side for equation (46) can be found. 
This gives M - 1 equations for the M unknown 6 i values, but in fact one of the 6fs is not needed 

since a uniform translation due to adding 6 to all q-o's will have no effect. Without loss of generality, 
therefore, one of the 6fs a t j  = 1 or M L  or MT,  say, is set to zero and the remaining M - 1 equations 
solved to give the new blade and stagnation streamline shapes. This would replace the procedure for 
finding the s.s.l, shapes alone and, apart from the extra time needed to deal with about 30 simultaneous 
equations instead of about 7 before, the whole calculation should not take much longer than the analysis 
method. 

This design method has not yet been programmed although it is a relatively simple modification to 
the existing program and could easily be done if there was a demand. The main drawback to the prescribed 
velocity distribution methods is that the outlet angle cannot be specified as well, but comes out as a 
derived quantity from the calculation. It would be necessary to try several velocity distributions of the 
desired type to find the one giving the right outlet angle, and this might be a useful 'light-pen' exercise. 
The other approach to designing blade shapes uses the fact that the outlet angle can be estimated fairly 
accurately from the opening/pitch rule, for turbines at least, and so it is possible to draw several different 
blades with the same outlet angle. The velocity distributions can be found by the analysis method and 
geometrical variations introduced to obtain the best design. The latter approach, which could also be 
done by light pen, is probably more satisfactory, although the P.V.D. method may be useful in some 
applications, or as a way of eliminating velocity peaks or adverse pressure gradients on sections that are 
nearly good enough. 

6. Conclusions 

6.1. A new method has been given for calculating the compressible flow through a three-dimensional 
cascade defined by the intersection of a meridional stream surface with a blade row. The effects of changing 
annulus area and radius for fixed and rotating blades are included. The streamline curvature technique 
is used with tangential quasi-orthogonals, and the upstream and downstream stagnation streamline 
shapes are determined iteratively to satisfy periodicity in the tangential direction. A Kutta-Joukowski 
condition suitable for thin and thick trailing edges is used to find the outlet angle. 

6.2. The method has been shown to be in good agreement with other theories and with experiment 
for special cases and, by implication, should be applicable to a wide range of flow cases including axial, 
mixed and radial flow in turbines, compressors, fans, circulators and pumps from incompressible to 
choked flow. 

6.3. A new design method has been suggested and outlined for finding the blade shape to give 
a prescribed suction surface velocity distribution for a given tangential thickness distribution. This 
should have the same range of application as the analysis method. 
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LIST OF SYMBOLS 

Aspect ratio of streamline curvature grid element, equation (37) 

Compressibility function, equation (32) 

Damping factor to correct initial error to zero, equation (37) 

Optimum damping factor, equation (38) 

Convergence limit damping factor, equation (39) 

Numerical differentiation coefficient, equation (53) 

Gravitational acceleration 

Numerical differentiation coefficient, equation (53) 

Static enthalpy, or point spacing interval 

Total enthalpy 

Enthalpy functiom equation (4) 

Mechanical equivalent of heat 

A constant 

Numerical differentiation function, Wilkinson 6, (1970) 

Numerical differentiation coefficient equation (44) 

Numerical differentiation coefficient equation (44) 

Mach Numben or mass flow, or number of quasi-orthogonals 

Distance along meridional stream surface, equation (9) 

Factored mass flow, equation (27) 

No. of q-o' just in front of leading edge 

No. of q-o' through trailing edge 

No. of streamlines 

No. of blades 

No. of mid-streamline 

Pressure 

Tangential distance measured from suction surface 

Radial coordinate 

Radial thickness increment between two meridional stream surfaces 

Pressure coefficient, equation (72) 

Entropy, or distance along streamline in meridional stream surface 

Numerical smoothing coefficient, equation (57) 

Absolute temperature 

Time 

Absolute velocity 
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Subscripts 

1 

2 

M 

m 

N 

N M  

f 

rel 

t 

z 

0 

Relative velocity 

Cartesian coordinates 

Axial coordinate 

tan- l(dr/dz), Fig. 1 

tan- 1 r(dO/dm), Fig. 1 

Ratio of specific heats 

Change in position, in 0-direction, of quasi-orthogonalj 

Tangential coordinate 

Relative tangential coordinate 

Blade tangential thickness coordinate 

Wavelength of error component 

Transformed meridional coordinate, equation (30) 

Density 

Trailing edge cut-off angle, Fig. 4 

Stream function 

Angular velocity of blade row 

Upstream, suction surface or first quasi-orthogonal 

Downstream 

Last quasi-orthogonal 

In the meridional direction 

On the pressure surface 

On the mid-streamline 

In the radial direction, or relative to coordinate system moving with the blades 

Relative to coordinate system moving with the blades 

total or stagnation value 

In the axial direction 

In the tangential direction 
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TABLE 1 

Coordinates of modified NASA primary series blade used in 45 ° flare 
test case. Number of blades = 93, 01 = 10 ° (relative) oJrt/Vml = O, 1.0. 

0 
0.330 
1.010 
1.688 
2.338 
2.947 
3.514 
4.048 
4.552 
5.028 
5.480 
5.909 
6.330 
6.746 
7.140 
7.500 
7.860 

78.60 
78.93 
79.61 
80.29 
80.94 
81.55 
82.11 
82.65 
83.15 
83.63 
84.08 
84.51 
84.93 
85.35 
85.74 
86.10 
86.46 

Osuet 

0-0182 
0.0232 
0.0252 
0.0245 
0-0219 
0-0181 
0-0134 
0.0079 
0.0020 

-0-0044 
-0-0112 
-0.0182 
-0.0257 
-0.0333 
-0.0406 
-0-0473 
-0.0541 

Opres 

0.0182 
0-0155 
0.0133 
0.0107 
0.0075 
0.0034 

-0.0012 
-0.0062 
-0.0112 
-0.0164 
-0.0217 
--0.0271 
-0.0326 
-0.0385 
--0.0443 
-0.0501 
-0.0562 

Ar 

0.1000 
0.1008 
0.1026 
0.1043 
0.1060 
0.1075 
0.1089 
0-1103 
0.1116 
0.1128 
0.1139 
0.1150 
0.1161 
0.1171 
0.1182 
0-1191 
0.1200 
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FIG. 10. Nasa TN D-3751 stator mean radius cascade. 
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