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Distance for Jet-Lift VTOL Transport Aircraft 

inSteep Approaches 

BY E.  HUNTLEY 

The University of Sheffield 

Reports and Memoranda No. 3732* 
December, 1971 

Summary 

Optimal landing transition manoeuvres are studied for jet-lift VTOL aircraft in which the range of engine- 
tilt is sufficient to allow approach angles up to 20 degrees. The optimal use of incidence, thrust vector angle 
and thrust to control the transition is studied using simple physical arguments. All the natural constraints 
such as incidence, engine tilt, maximum permissible decelerations, minimum permissible lift engine thrust, etc., 
can thus be taken into account and simple rules formulated for the optimal strategy. It is shown that provided 
control programs are formulated as functions of aircraft speed, flight path shape and the control program 
can be dealt with as separate problems. 

It is known that for minimum distance transitions the optimum path shape involves selecting a let-down 
speed V* at which the deceleration function for horizontal flight is a maximum. The optimal manoeuvre is 
then to decelerate horizontally to V*, to lose height at this speed and to conclude the transition with a further 
horizontal deceleration to the hover point (i.e., the 'stepped manoeuvre'). However, for the minimum fuel or 
time transition the ideal is to use the same stepped manoeuvre but to select the let-down speed as high as 
is compatible with considerations of the danger of high rates of descent near the ground and the need to avoid 
obstacles near the airfield. 

* Replaces A.R.C. 33 388. 
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1. Introduction 

In a previous report 1 the problem of minimizing landing transition distance for a jet-lift VTOL aircraft was 
studied, the aim being to ease the pilot's problem of judging distance to the hover point, perhaps in conditions of 
poor visibility. A second aspect of this study concerned the desirability of accuracy in achieving the hover in 
order to reduce to a minimum any final corrections which are known to be very expensive in fuel. The theoretical 
approach adopted was an unsophisticated one making no use of modern optimal control theory unlike other 
contributors to this subject, (Refs. 2-5 for example). Instead, following an approach instigated by Lean, 6 
the optimal profiles were obtained using simple physical arguments. This meant that full account could be 
taken of the various, very important, constraints on the state and control vectors, normally difficult to include 
in numerical optimization algorithms, thus obtaining a clearer idea of the role they play. 

In this report the study is taken further to include fuel and time optimisation. The calculated results presented 
are based on data reasonably representative of a VTOL transport aircraft of 100 000 lbs AUW, with high lift 
devices in the landing configuration giving a CL = 0.5 at zero incidence. Since this configuration is sufficiently 
different from the smaller aircraft studied in Ref. 1, results for minimum distance transitions are presented but 
with little discussion. The emphasis is on transition paths to minimize fuel used. It is assumed that the aircraft 
has to lose both height and speed and perhaps has to circumvent obstacles; mean flight path angles up to 
- 15 degrees are covered. 

Besides the effects of the obvious constraints imposed on incidence (by the stall) on thrust vector angles 
(by built-in engine tilt) and on minimum lift engine thrust setting (by engine response) some discussion is 
also included on the significance of the restriction on longitudinal acceleration imposed by the passenger. 
A final section concerns the effect of lift-loss on the topics discussed. 

2. Method of Analysis 

2,1. Neglecting Lift-Loss 

Consider the general jet-lift aircraft configuration having both propulsive and lifting engines. The propulsive 
engines are assumed fixed relative to the aircraft and their idling thrust Tp is assumed sufficiently small for its 
effect on normal acceleration to be neglected. Referring to Fig. 1, Tdenotes the thrust of the lifting engines and 
~b represents the angle of rotation of the lift-engine thrust vector relative to the normal to the aircraft datum 
such that positive angle gives a decelerating component of thrust. Flight path angle y is positive when the 
flight path is inclined upwards. 

The pitching degree of freedom is ignored, it being assumed that instantaneous rotation of the aircraft to 
any desired pitch altitude is possible. The equations of motion are then 

m l ? =  - W s i n y -  T s i n ( a + q ~ ) - D +  Tpcosa (1) 

and 

r n V ~ =  - W c o s y  + T c o s ( c ~ + ¢ ) + L  (2) 

Assume that the aircraft is controlled on a straight flight path (so that ~ = 0) by the use of engine thrust, whilst 
incidence and thrust vector angle are held constant. Then 

Wcos ~ - L 
T = cos (~ + ~b) (3) 

For the aerodynamic forces assume that 

L = ½pvZSCr.(O~) 

and 

D = ½pV2SCo(~) + meV , 

3 
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where me is the engine mass flow linearly related to lift engine thrust so that 

me " =  mo + k T, 

Equation (1) gives the acceleration of the aircraft along the flight path and a deceleration function f(V, 7) 
may then be obtained in the form 

f(V,7) = A + BV + C V  2 -~ DV s in g units, (4) 

where 

A = [tan (e + ~b)cos ~ + sin y - Tv/W], 

B = mo/W + k cos ~ sec (0t + 4~), 

C = [CD(e) - CL(e)tan (a + (o)]pS/2W 

and 

D = - kCL(CO sec (c~ + ~))pS/2W. 

Using the constants listed in Table 1 the deceleration function could be evaluated for a range of incidences, 
flight path angles and thrust vector angles. 

Knowing f(V, y), the transition distance s, measured along the flight path, for a change in speed from V 1 
to V2, could be determined by numerical integration using 

s = f2q gf(Vv, y) dV. (5) 
2 

The fuel F used in the same manoeuvre is given by 

[ fV~(s . f .c . ) r  . 
F - 3600.1v, g - ~ , ~ d v ,  

where s.f.c, is the specific fuel consumption in lb/lb thrust/hour. 
If s.f.c, is assumed independent of thrust, then a fuel parameter F' can be defined by 

F ' ~  3 6  F _ (v2 T / W  dV. (6) 
(s.f.c.) w Jr, ~ ( v , ~ , )  ' 

where F/W is now the fuel used expressed as a percentage of aircraft weight. 
[Data shown in Fig. 13 are assumed typical for the type of lift powerplant under discussion. The assumption 

of linear variation of fuel with thrust used above is seen to be reasonable for this analysis, provided we include 
the constraint that T / W  should be greater than 0-3 when the lift engines are alight]. 

Finally, the time taken in the manoeuvre is given by 

'l 1 dV. (7) 
t = 2 gf(V, y--~ 

2.2. Including Lift-Loss 

Available data* on lift loss were found to collapse into a curve which could be approximated by the parabola: 

y = -[0.485 - 3.359 x 104(x - 0.0038) 1] 

* This data was kindly provided by Mr. A. A. Woodfield, of R.A.E., Bedford. 



iliii: ~! 
in which 

and 

y A AL/T and x A pV2/T, 

( or AL/W = y(T/W) and x = --~- /~-~] ]. 

Including lift-loss the equations of motion become 

ml2 = - W s i n ~  - r s in (~  + ¢) D + Tpcosc~ (1) 

mV~ = - W c o s y  + Tcos(c~ + ¢ )  + L + AL. (8) 

Previously with AL = 0, we could solve equation (8) with ~ = 0 and substitute for T in equation (1). Now 
with AL ~ 0, we have a non-linear equation in T/W to solve, namely 

(T/W) 0.485)+ x ] w /  W -  - ( c ° s y - L / W ) = 0 "  

This could be solved without difficulty for most speeds by the Newton-Raphson method. Knowing T/W, 
the deceleration function was then given by 

f(K~') = siny + ~ s m ( a  + ¢) - -~cos  a + L2 W _  ,~0 + + k W v 

Transition distance, fuel and time for straight line transitions could then be determined as before using equations 
(5), (6) and (7). 

2.3. Accelerations Felt by Passengers 

During the earlier study t it became apparent that with the normal ranges of a and ¢ available, quite large 
decelerations could be achieved leading naturally to very short transition distances. Some attempt was made to 
make the solution more realistic, taking account of the opposition by pilots and passengers to excessive de- 
celeration, by imposing an arbitrary limit on f(V, ~) and discussing suitable control programs under that 
assumption. However, the treatment left much to be desired. 

The problem concerns the identification of just what it is that the passenger appreciates when the vehicle is 
subjected to a longitudinal deceleration when in one of several possible attitudes. It is necessary to analyse 
how these two parameters combine in order to be able to specify what deceleration the passenger will accept. 
The passenger feels through his seat cushion and seat belt a total force which may be resolved into components 
perpendicular to and parallel to the aircraft datum respectively. If the aircraft decelerates with deceleration 
gf(V, ~), the passenger is then subjected to the acceleration gf(V, ~) along the flight path and the vertical accelera- 
tion g. We may assume that he is not particularly concerned about the magnitude of the normal reaction of the 
seat (provided flight path curvature is small) but is sensitive to fore and aft accelerations which tend to throw 
him against his seat belt. 

The combination of the two external forces then give, along the axis of the aircraft, the acceleration 

o r  

g sin (F - c~) + f(V, ~,)g cos c~ 

g cos c~ (f(V, ~) + sin F) - g sin ~ cos F, 

(denoting - ~  by F, for convenience). 



If as usual we approximate f(V, 3') by f(V, 0) + sin ~,, then 

a/g = f(V, O) cos a - cos ? sin c~. 

Thus the longitudinal acceleration as felt by the passenger is very weakly dependent upon the flight path angle; 
on the other hand a large value of ~ significantly reduces the acceleration experienced. 

As we shall see when we discuss the results, there are aerodynamic reasons why ~ is restricted to be small 
at certain speeds. One way of relieving the constraint in this case would be by tilting the seat backwards through 
an angle e. The corresponding value of the fore and aft acceleration is then 

a 
- = f(V, 0) cos (ct + e) - cos 3' sin (~ + e). 
g 

Whilst it is conceivable that the seat tilt could be engineered for the passengers it is however, unlikely that 
it would be a feasible proposition for the pilot. 

3. Numerical  Results for Aircraft Without Lift-Loss 

Using the data of Table 1 and equations (3) and (4) the thrust/weight ratio and deceleration function in 
various straight-line transitions were determined. Fig. 2 shows the results for the horizontal transition for 
four incidences and five thrust-vector angles. As illustrated in Ref. 1, the T/Wfunctions for other flight path 
angles differ only marginally from those shown and the deceleration functions for inclined flight paths are 
well approximated by 

f(V, 3') = f(V, 0) + sin 3'. 

For  the higher incidences the deceleration functions are seen to intersect at a point. Since this implies that 
f(V, 0) is independent of ~b it does of course correspond to the speed at which T / W  = O. 

If we are to choose a control program of ct and/or ~ against V, it is necessary to specify a maximum acceptable 
value off(V,  0). Taking for illustration a/g = 0-25 as the maximum value of forward deceleration that the 
passenger is prepared to tolerate, we have 

f(V, 0)max = 

0-25 + sin 

COS 

This gives values of 0-25 at a = 0 and 0-458 at a = 12 degrees. These are shown in Fig. 2 labelled ~ = 0. 
If one assumed that seat tilt of amount e = 10 degrees were feasible, then 

f(V, O)m~ = 
0.25 + sin (c~ + e) 

cos (~ + e) 

This gives the values in Fig. 2 labelled e = 10 degrees. 
Clearly if there is no problem in building into the design any desired amount of engine tilt then this passenger 

toleration constraint applies and we see that there is substantial benefit in choosing a large value of ~, other 
things being equal, since the pilot can then make use of higher deceleration values. Even allowing for that 
however, there seems to be little case for thrust vector angles greater than, say, 20 degrees; ~ = 15 degrees is 
probably sufficient in most circumstances. 

Suppose now that ct and ~b are kept constant at specified values and equations (5), (6) and (7) used to obtain 
transition distance, time and fuel. The results for various glide path angles shown in Fig. 3 are for transitions 
from V 1 = 275 fps (163 knots) down to zero speed. In the top figure are shown points at which the manoeuvre 
must be started in order that the aircraft should arrive precisely at the hover point with zero speed. For  a 
given control program these points are seen to lie on a straight line called the starting line. From the programs 
chosen it is apparent that flight path angles up to - 15 degrees are feasible with tk = 15 degrees, provided the 
value off(V, 0)max chosen is that applying to e = 10 degrees. 

Corresponding results for time and fuel usage are shown in Figs. 3(b) and 3(c). The interesting point is that 
in each case these points also lie on a straight line as glide path angle 3' is varied. For  want of a better term, and 



by analogy with the distance result, we shall call these the 'time starting lines" and 'fuel starting lines' res- 
pectively. These figures provide a very clear picture of the effect of losing height and speed simultaneously on 
the time and fuel used in straight line transitions with constant values of a and qS. The fuel used is typically 
of the order of 0-5 per cent of the aircraft AUW assuming a specific fuel consumption of 0-6. 

Fig. 4 shows similar figures in which the effect of incidence is explored keeping ~b constant at 15 degrees. 
As far as distance and time are concerned, there is little to choose between a = 4 degrees or 8 degrees, but with 
regard to fuel it is clearly beneficial to use the higher incidence. (More use is made of aerodynamic lift and less 
of thrust and so the program is more economical in fuel.) 

The constant a = 8 degrees program is however not feasible since it requires zero thrust at V = 275 fps. 
Even when fully throttled back the lift engines will have a residual thrust of around 10 per cent AUW and 
in practice it has been found that the smallest amount of thrust desirable is nearer to 30 per cent AUW for 
reasons of engine behaviour and response (Fig. 13). If this constraint is to be incorporated into the calculations 
for ~ = 8 degrees it means that in the initial phase of the transition, incidence must be allowed to vary. We 
therefore define an incidence program ~app = 8 degrees in which incidence increases from 4 degrees to 8 degrees 
progressively as speed falls from 275 fps to 225 fps and remains constant at 8 degrees thereafter. 

Referring again to Fig. 4, the lines passing through crosses are the new starting lines. It is apparent that 
distance and time of transition are each reduced by this modification but that fuel consumption is very slightly 
increased. Even so, it is still more economical in fuel to use the higher incidence program. 

In the earlier paper 1 it was shown that if f (V, 0) is chosen to be sensibly constant then the transition distance 
is independent of the transition path. This is clearly desirable since it makes for accuracy of the transition. 
For example, consider the two control programs shown in Fig. 5, both of which provide an approximately 
constant value of 0.4 g for the deceleration function. In Program 1 incidence is kept constant and thrust vector 
angle progressively increased; in Program 2, q~ is kept constant and incidence is increased. The corresponding 
deceleration functions and thrust/weight functions are illustrated. 

It is found that with regard to the results for transition distance, time and fuel there is virtually nothing to 
choose between these two quite different control programs. This clearly demonstrates the cardinal role played 
by the level flight deceleration function f(V, 0). 

4. Transitions with Variable Flight Path Angle 

Having established results for transitions with flight path angle held constant we may next consider the 
question whether significant performance benefits may be achieved by suitably varying the flight path angle 
as a function of speed. It is known that for minimum distance transitions the optimal shape of path is the 
so-called 'stepped approach' in which the aircraft decelerates to an optimal let-down speed V*; it loses all 
its height at this speed and then completes the deceleration horizontally. The optimal speed V* is that at which 
f(V, 0) has a maximum value. We now seek to extend this analysis to include fuel and time optimisation. 

4.1. Formulation as a Line Integral 

4.1.1. Fuel usage 
The rate of fuel utilisation is given by 

dF / s.f.c.I 
= ~3600] T 

where F is in lbs mass. Consequently along an elemental arc, length ds, of the flight path we have, writing 
F' for 36(F/W)/(s.f.c.) per cent, 

T/W 
dF' = - -  ds. 

V 

Since we can closely approximate the deceleration function by 

it follows that 

f(V, V) = f(V, O) + sin 7, 

VdV  dh 
,is = g f (v ,  o) + g ds 



and 

VdV dh ) 
a s =  - + " 

Now, in the (V, h) plane join the initial point (V1, hi) to the final point, the origin, by an arc C. 
Then 

[T/WdV T/W ,, ] 
r =  - fc + v  a"J" 

where we assume T/Wis independent ofy. To evaluate the integral we must prescribe the function h(V) defining 
C and passing through the correct end points. It follows that 

F'= T/WdV v, T/W dh 
=o gf(V,,O----~ + =o Vf(V,O)dV dV' 

and F' is the sum of two terms which may be denoted by F 1 and F 2. F~ is independent of the choice ofh(V) and 
represents the fuel used in a horizontal transition. In order to minimize F' therefore we have to choose h(V) 
in order to minimize the integral 

f f '  (T/W) dh 
F~ = =o vf(v, o) clv dV. 

Introducing normalised co-ordinates ~ = V/V~ and q = h/h~, in the (~, q) plane, let C now denote the arc 
joining the point (1, 1) to the origin. 
Then 

F'= FI + F 2 ,  

where 

1/1 f l  T(~)/W ,. Vlb ' 
F, = g J ¢ = o ~  ag = g 

and 

hlg ( '  T(~)/W dl 1 de =~lgb2(C);  
F2 = -V-~-~ J¢=o Cgf(¢,O)d¢ 

b2(C ) is clearly a function of d11/d¢, specifying C. Hence, 

- V1 IF' 
hi gb2(C), - ~b l )  

or 

h -  112 F' V2 bx 
gb2(C) g bE(C)' (9) 

dropping the subscripts on h and V. 

Equation (9) implies that if we fix the deceleration function f(V, 0) by choice of control programs for a 
and ~b and if we fix the arc C in the (¢, q) plane, then there is a simple linear relationship between the fuel used 
and the height lost. This explains the straight 'fuel starting lines' discussed in Section 3. 



4.1.2. Transition time 
For the evaluation of transition time we have 

dV 
dt - g f ( E Y ) =  gf(EO) + g s i n y  

g dh 
= gf(V, O) + -~ d--t" 

Hence 

d t  = 
dV dh 

gf(Eo) vf(v,o) 

and 

(v ,  dV ~r,, 1 dh dV 
t~=jv=ogf(v,o) + Jv=o vf(v,o)~ 

= t f ,  1 -1- t f ,  2.  

tf,~ is independent of the Choice of h(V) and represents the time taken in a horizontal transition. We have to 
choose h(V) to minimize 

f~ " ~ 1 dh 
tI'2 = =o Vf(V,O) ~-~dV" 

Again, introducing normalised co-ordinates (4, r/) we may conclude that 

t f  = t f ,  1 + t f , 2  

where 

5 f '  i Vl 
~ - - C  1 tI ' l  g de=of(C, O) d~ g 

and 

h l g [  1 1 dr/ 
t~,~ = -P[J¢=o Cgf(¢,O)~d~ =. c~(C). 

Here c2 is a function of dr//d~, defining C. 
Consequently, solving for hi ,  

__ v , / t  v , )  hi gc2(C)  - gCl 

o r  

h = m 
V V 2 ct 

gc2(C) t~ g c2(C)' 

upon dropping the subscripts on h and V. 
Thus exactly the same conclusion can be made for minimum time optimisation as was made for distance 

and fuel, namely that for a specific deceleration function and specific flight path shape there is a simple linear 
relationship between the time taken and the height lost. 



4.2. Optimal Shape of Transition Path 

Having established in Section 4.1.1 expressions for the fuel-used for any specified shape of path we can now 
easily determine the path having the smallest fuel cost. In Figs. 6(a) and 6(b) typical thrust (T/W) and de- 
celeration (f(~, 0)) programs are shown for illustration. These are for the cases ~b = 15 degrees combined 
with incidences of 4 degrees and 8 degrees. Concentrating attention for the present on the a = 4 degrees results, 
in Fig. 6(c) is shown (T/W)/gf(¢, 0). This function when multiplied by 1/4 (Fig. 6(d)) gives finally the function 
(T/W)/¢gf(~, 0) shown in Fig. 6(e). 

Now to evaluate b2(C) this must be multiplied by dq/d¢, some prescribed function of ~, (Fig. 6(f) and (g)), 
and the result integrated over the range (0, 1). In other words, the integral is a weighted average of (T/W)/ 
~gf(~, 0), the weighting factor being d~l/d~. 

If one took as a typical choice of C the arc shown in Fig. 6(f), then dq/d¢ is a triangular shape having a mean 
value of 1.0 (as it must). The value obtained for ba(C ) is then relatively large, being around 0.18, because of 
the large value of the integrand in the range 0 ~< ~ ~< 0-5. Now if instead one seeks the smallest possible value 
of ba(C) this is achieved by taking d~l/d~ to be a delta function at ~ = 1 (i.e.) V = V~. The integral is then 

T/W I 
b2(C) = Cgf(~,0)]¢: 1 

The delta function in drl/d ~ corresponds to a step in the function r/against ~ and hence dq/d~ = 6(~ - 1) 
means that the aircraft loses all its height at constant speed V 1 and thereafter decelerates at constant (zero) 
height. Now although this is the mathematical optimum it is not realistic in that it involves a steep descent 
at high speed immediately after lighting the lift engines. What is more feasible is the 'stepped approach',  in 
which the aircraft decelerates horizontally to a satisfactory intermediate speed, V* say, at which speed the 
aircraft loses height, and the manoeuvre is completed by a level decelerating transition from V = V* to zero. 

Thus the 'practical optimum' scheme mathematically implies a delta function in dq/d~ at ~ = (* (or a step 
in the r/v. ~ profile at ~ = 4*). Now delaying the let-down inevitably involves a fuel penalty as may be inferred 
from Fig. 6(e). However, this figure also defines the trade-off between the fuel penalty and the increased safety 
as measured by the smaller value of ~*. Supposing for illustration that ¢* = 0-5 is accepted as a safe let-down 
speed, then since 

T/W ~=~* 
b z ( C ) -  ~gf(~,0~ 

one obtains the value bz(C ) = 0.I0 for ~* = 0-5 as compared with the value b2(C ) = 0.02 for ~* = 1-0. 
Consider now the alternative control program a = 8 degrees. Taking into account the minimum thrust 

constraint, we see from Fig. 6(a) that V = 225 fps is the highest speed at which T/W >1 0.3 so that 225 fps 
is the maximum let-down speed for this case. Thus ~* = 0.82 and b2(C) is calculated to be 0-030. However, 
a practical scheme with 4" = 0.5 as before gives a slightly lower value of b2(C ) than is given by the a = 4 degree 
program. 

It is apparent upon inspection that since T/W is very weakly dependent upon both a and ¢ in the region of 
4" = 0-5, the smallest value of b2(C) at this speed is obtained by selecting a control program which gives a 
maximum value o f f ( l ,  0) at ~*. In that case, bearing in mind the overall limitation on deceleration with regard 
to passenger comfort, it appears that for this aircraft a constant incidence of 8 degrees would be very suitable. 

4.3. Fuel Costs 

For  the various shapes of transition path considered and the data of Fig. 6(a) and (b), the resulting fuel 
costs were evaluated and are sho~vn in Fig. 7. As was shown in Section 4.1.1 all the curves are linear in h. Con- 
sidering the results in Fig. 7(a) for the 4 degree incidence case it is apparent that the true optimum implies 
only a small increase in fuel usage with height lost. The other cases, namely the constant-~, the 'practical 
optimum" and the 'typical C', all show significant increases in fuel costs with height. The 'practical optimum' 
is better than the other two but the constant-~, approach is not so very much worse. In all cases a fuel cost of 
less than 1 per cent of AUW is incurred for a transition from 2000 ft and a speed of 163 knots. 

The results for 8 degree incidence, shown in Fig. 7(b), are in all cases superior to those for 4 degree incidence. 
The optimum in this case corresponds to zero lift-engine thrust during a let-down at a speed just less than F 1. 
The only other point of interest is that the constant-~ approach in this case is superior to the stepped transition 

10 



labelled "practical optimum'. However, there is clearly some other value of 4" > 0-5 for which a stepped transi- 
tion would again be superior. 

The overall conclusion from this analysis of minimum fuel transitions is that amongst the best feasible 
shapes of path the fuel usage is not  over-sensitive to path shape. On the other hand, by judicious selection of 
path shape, worthwhile reductions in fuel costs can be achieved without compromising safety and subjecting 
the passengers to unduly high decelerations. Clearly there is no unique optimum because it all depends upon 
the weight one attaches to the conflicting requirements. However, the approach formulated here does allow the 
designer to understand more clearly the implications of his decisions. 

It  would appear that the use of  high incidence is beneficial, both from the point of view of fuel minimisation 
and passenger comfort. In that case there may be little to choose between a stepped transition with ~* = 0-5 
and a constant-? approach. 

Recently there has been a great deal of discussion regarding the noise associated with the operation of VTOL 
aircraft into urban sites. In an attempt to alleviate the nuisance, a proposal has been made that aircraft could 
be required to perform the transition horizontally at altitudes between 1000 ft and 2000 ft and then to perform 
a long vertical descent. The fuel costs for such a manoeuvre from a height of 1000 ft are presented in Fig. 8(a). 
The two parameters involved in the vertical phase are the acceleration/deceleration parameter Ang and the 
maximum rate of descent. For  the sake of comparison, take V* = 137 fps in a stepped manoeuvre so that 
the maximum rate of descent is of the order of 40 fps. If one compares the fuel used in this manoeuvre with 
the fuel used in a vertical descent at 40 fps (with An = 0-2 g), then it appears that the latter is of the order of 
60 per cent more expensive in fuel. If a descent from 2000 ft were contemplated then the long vertical descent 
would appear to be a particularly uneconomic proposition. 

4.4. Transition Time 

There is not very much which needs to be written regarding the results for time minimization apart from the 
fact that, as in the minimum fuel problem, the let down speed V* should be as high as possible compatible 
with safety requirements. Minimum time problems have been studied in the past by Hacker, 2 Briining 3 and 
others but the main motive has really been the conservation of fuel and that has been studied explicitly here. 

However, it is perhaps worth drawing attention to the simplicity of the present approach which contrasts 
rather markedly with the complexity of  the analysis using a straight application of the Maximum Principle. 

5. The Effect of  Lift-Loss 

For  all the results presented so far it was assumed that lift-loss due to interference between the lifting-jet 
and the free stream could be ignored. The magnitude of the lift-loss can vary considerably with aircraft con- 
figuration. To assess its significance in the present study the lift-loss function marked 'basic curve' in Fig. 9 
was assumed. This shows the lift-loss parameter AL/Tas a parabolic function ofpV2/T. The shape of the curve 
for pV2/T > 0.0076 was unknown so it was arbitrarily assumed that AL = 0 in that region. 

Theresul t ingdecelerat ionandthrustfunct ionsareshowninFig.  10forth = 15 degrees and several incidences. 
Results for the aircraft with no lift-loss are included for comparison. 

The first noteworthy observation is the magnitude of the effect. At a given speed the aerodynamic lift is 
reduced, requiring more thrust to compensate and leading to increased deceleration. 

The second point to note concerns the discontinuities in all the functions (except those for ~ = 0 degrees). 
These were carefully investigated and shown to be real--assuming the lift-loss data to be correct. The explana- 
tion of the effect is given in the Appendix. It could have important implications from the handling point of 
view and if the form and magnitude of  the lift-loss function were substantiated this would require further 
investigation. 

It is possible, however, that the lift-loss expression used gives too large a value for the lift-loss for some 
configurations. The calculations were therefore repeated with the lift-loss function unchanged in shape but, 
with the ordinate AL/Thalved in magnitude (the 'revised curve' in Fig. 10). The resulting thrust and deceleration 
functions still showed discontinuities bm they were very much reduced in size and it is probably safe to conclude 
that a lift-loss function of this revised magnitude would probably not provide a significant handling problem. 

Whatever the situation is on that score, from the performance point of view, with which we are concerned 
here, the inclusion of lift-loss makes no qualitative difference to the results. This may be verified by referring to 
Fig. 11 for there it may be seen that transition distances, time and fuel used for constant-7 approaches all 
follow the pattern with which we are now familiar. Since for a given setting of the control (~ and ~b) the de- 
celeration function is increased by lift-loss there is a reduction in distance, time and fuel. However, the main 
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point is that whatever the details of the assumed lift-toss expression, the form of the results must remain un- 
changed and probably most of the qualitative judgements will still apply. 
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APPENDIX 

Detailed Analysis of Lift-Loss 

When computing the deceleration and thrust functions shown in Fig. 10 for aircraft with lift-loss, difficulty 
was at first experienced for certain values of speed, in getting the Newton-Raphson process to converge. 
Further, it appeared in some cases there were two possible solutions for a given speed. 

Upon reflection it became apparent that if one imagined progressively decreasing the speed, until p V2/T 
was just reached (point A in Fig. 9), then any further decrement in speed would lead to an equilibrium point 
not near A but much nearer to the minimum point B. 

For a clearer appreciation of this it is better to replace the normalised (basic) lift-loss plot of Fig. 9 by the 
set of curves, shown in Fig. 12(a), of AL/W against pV2/W for several T/W ratios. Then for any given speed, 
AL/W against T/W is obtained as in Fig. 12(b). 

Consider the aircraft trimmed at a given speed with no lift-loss (NLL) so that 

L 
0 =  c o s ( a + ¢ ) + ~ -  1. 

N L L  

Now suppose that the lift-loss arises as if imposed by some external agency and adjust T/W to retrim. 
Then 

W =  WNLL+ c o s ( . + ¢ ) + ~ - - I ,  

so that 

AL AT 
W = w c o s  (~x + ¢). 

We know AL/W as a function of T/W, shown graphically in Fig. 12(b), which we may denote by I(T/W). So we 
have to solve the equation 

I(T/W) = A T / W  cos (~ + ¢) 

for AT/W. 
In Fig. 12(b) we draw the line 

- -  = - c o s  (~  + ¢) 
W W ~L~. 

through the point (T/W)NL L. This line will intersect the curve at the point D, at which point the lift-loss is 
compensated for by the increase in thrust. Hence the point D is the trim condition with lift-loss. Now because 
of the curvature of the function I(T/W), the point C is unstable in the sense that a slight reduction in speed lead- 
ing to an increase in (T/W)NL~. means that the trim condition jumps from the region of C to the region of D. 

If the lift-loss formulation is correct in this region of parameter space, there are clearly some conditions of 
(T/W)NLL which could lead to two solutions of the problem and the discontinuities in thrust. It is entirely 
possible of course that the formulation of lift-loss is not a good approximation in this region in which case 
the effects discussed here could be spurious. Also if account is taken of the additional constraint that minimum 
usable thrust/weight ratio is c. 0.30, then it appears that the constraint operates at just the sort of speed at which 
this lift-loss feature appears. So, the lighting of the jet-lift engines and the setting up of a trim condition must be 
combined with the compensation for the lift-loss function and the latter will not then appear as a separate 
problem to the pilot. 

Lastly, the fact that this feature occurs at such low thrust levels implies that there is a paucity of data in this 
region and one can have correspondingly less confidence in the form of the lift-loss function in this area. How- 
ever, wind-tunnel research into the magnitude of such lift interference effects is being done within Industry 
and the Research Establishments and re-examination of the problem with improved data will be feasible at a 
later date. 
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TABLE 1 

Aircraft Constants 

mass 

weight 

wing area 

wing loading 

propulsive thrust 

engine mass flow constants 

m slugs 3110 

W lb 100 000 

S ft 2 1000 

W / S  lb/ft 100 

Tp lb 1000 

m o slugs/sec 74-60 

k slugs/sec/lb 1 O- 3 

Aerodynamic coefficients Cr. = 0-5 + 4-5 ~c 

C o = 0-075 + 0.0763 C~. 

16 



Vertical 
Di r~eet io~ 

of ~ot~.~ 
~101"1 

L 

Vertical 
T 

orizontal 

W 

~ V~ Horizontal 

ngen t 

Forces Accelerations 

FIG. 1. Force-acceleration diagrams. 



O0 

0"6 

f(v,o) 
0"4  

O-Z 

w I 

at) ~ = Z 0 ~  

f I I 

I00 Z00 300 
V f p s  

1 " 2  | ! 

TIW ~ 
0"8 

0"4 

I I 
1GO 200 300 

V fps 

(a) decelerat ion functions 
I 

=.4o ~ . 0  °' 
. - .  0_°- 

constraint  

I I I I 

0 I00 200 300 0 I00 200 300 
V f p s  V fps  

(b) thrust/weight functions 
! I I I 

oo - o 

I t ! 

0 I00 ZOO 300 0 I00 ZOO 300 
V fps Vfps 

_c--_0 

0 I 0 0 ZOO 300 
V f p s  

i 0 
ZO o 

1 " ~" ~ ~ r  ~ ' I  

0 I00 ZOO 300 
Vfps 

FIG. 2. Deceleration and thrust/weight functions for level flight; no lift-loss. 



Height 
103ft 

I 

Vl= Z7S fp s (163 knots ) 

I Z 3 4 5 
(a) distance x, 103ft 

0 

5 ~ y =  -Z 0 o 

_++..~~__._+_..+_..--~].+ . . . -  ^ i +  + ~ o - . . ~ - - ~  y = _ + -  
~ ~  +-" _..+ ~ .. .-.  +_...+-. + + 

, 0 / 0 / ; "  O "  " "  o ~  T "  ~ v O -  ~ I 

10 ZO 30 40 50 
(b)  t ime  t f , s e c  

0 
0 s.f.c.:O.5 ~ /  Y= 

1~'~ °''~''- / ~ - I  5" 

x 0  ~ j J ~ - _ _ L o ~ "  1 _. . ,  

0 10 Z0 30 40 F t 50 
0 0.ZS 0.50 0.75 
I ,  I I I 

F IW Olo 

(c) fuel used,  p e r c e n t a g e  of a i r c r a f t  w e i g h t .  

FIG. 3. Trans i t ion  distance,  t ime and  fuel for cons tant -?  approaches ,  var ious  thrus t -vec tor  angles.  
(No passenger  acce lera t ion  constraint . )  

19 



2 

Hzight 

10 3 f t  

I 

- 2 0  o j 
V 1= 275 fps (163 knots) 

~ ~  ~ -,~ 

~ ~ ~ ~ . - ~ - -  ~ s ~ -  ~ _ , - , :_s o , 

0 3 4 5 I Z 3 
I~ , X ,10 f t  

(a) d,stanc¢ 

I 

h 
I ~ ~ / / ~ - - - - . - ~ ' ~ < ' ~  " " - 

0 I0  20 30 40 50 
t f ,  see 

(b )  t ime 

s . f .c . :  0-5 ~app=8 o ~ ~ c . / -  - 20 ° 

/ ~ 9 . 5 : ~ ' ° 7 ~ " - -  - , = -  

0 I0 ZO 30 40  F" 50 
0 0 .25 0.50 0"75 
I I i I 

F/W °/o 

{¢) fuel uscdj percentage of aircraft weight. 

FIG. 4. Transition distance, time and fuel for constant-7 approaches, various aircraft incidences (no passenger 
acceleration constraint). 

20 



IS 

4o I0 
o 

5 

0 

I i 

I 
I 

I00 200 
i V fps 

(a) cont ro l  program 

3C 

~o 
~0 

15 

I0 

5 

0 

l ! 

I 

I 

I 

I 

I I 

I00 200 5(~ 
Vfps 

(a) control  program 

0"4 ' ~ ~ ~ , ~ I ~ ~  

f (%0) 

0-2 

I'Z 

I I 

I00 ZOO 300 
Vfps  

(b) decelerat ion function 
! ! 

0-8 

TIW 

0"4 

I 0 200 
Vfps 

(c) thrust  program 

300 

Program I 

0"4 

f(v, ol 

O.Z 

0 

I'Z 

0"8 

T/W 

0"4 

| I 

| ! 

I00 ZOO 300 
Vfps  

(b) deceleration function 

I I 

I I 

I00 200 300 
V f p s  

(c)  thrust  program 

Program Z 

FIG. 5. Feasible control  programs for f(V, 0) - 0.4. 

21 



I '0 

T/W 

0"5 

0- I  
TIW 

gf (~',0) 

0-05 

0"4 

T/w 
~'gf ((,o) 

0"2 

0"4 
T/W 

0-2 

~ °  

~. ~.o 

! 

(c) 

~0£=4 0 

1¢) 

(g) 

.0 

0 4 F .~  = 4o " 

I [ 
o iF 

(b) 

4"0 

~ 2"0 

I 
o ~ 

(d) 

× 

"0 

,0 

/ 

"0 

2"0 ~ 1 . 0  
7.o . 

0 ~" 1.0 
( f )  

Typical contour C 

,0 

J" (-)dE 
0 

[:::> b2(C) 

FIG. 6. Schema for the evaluation of b2(C ) for minimum fuel transition paths. 

22 



6O 

-0"75 F' 

F/W o/o 

4O 
0"50 

0-Z5 ZO 

0 
0 

j 

/ to 

I I 

60 

F I 

40 

20 

I ! 
1000 ZO00 0 1000 Z000 

he ight ; f t  h e i g h t / t  

Ca) oc=4 ° Cb) ==80 

Condi t ions:  ¢ = l S e j  Vz=Z75 fps  , s.f.c.=0.5 

Nota t ion  : F ~ ( 3 6 / s . f . c . )  F/W, 

FIG. 7. Fuel costs as a function of height lost, for various shapes of transition path. 

F / W %  

(s.f.c.=0.5 ] 

- I -5  

- I ' 0  

120 

80  
¢ 

F 

40 
- 0.5 

-0 
0 

(a) 

~ .hl=lOOOft 

Ig 
vet t i  cal ~ , . _ ~  
phase 

ZO 40 50 
Max. rate of descentsf ps 

hor izon ta l  t r ans i t i on  
+ ver t i ca l  descent 

IZO 

80  

F ~ 

40 

hl=lO00 f t  
= = 4  0 

¢ =15' 

~ >  V=V~ 
h 

I I 

0 I00 200 275 
V ~ f p s  

(b)stepped t ransi t ions with 
var ious let -down speeds 

FIG. 8. Comparative fuel costs for stepped transition paths and long vertical descents. 

23 



-0"1 

AL 
T 

-0"2  

-0"3 

-0"4 

- 0  "5 

103pV 2/T 
I 2 3 4 5 6 7 
| l I I ! I I 

i 

/ \ \  /// 
\ o.,,v- " /  

8 
I 

I I I I i I I 

A 

FIG. 9. The lift-loss as a function of thrust and speed. 

24 



0"6 

t (V 0 0 ) 
0"4 

0"2 

I I 

o¢=0 

/ ¢=10 

¢=0 

I - 2  

0-8 

T/W 

0"4 

- - W i t h  lift-loss 

. . . . . .  Without l ift-lo= 
i I 

100 200 300 
Vfps 

(a) 

t ! 

0¢=40 

¢=0 

I r 

0 100 200 
Vfps 

Deceleration functions 

300 

[ I 

¢=0 ~ .  

[ I + 

0 100 200 
Vfps  

0 100 200 300 
Vfps  

I ! 

\ 
\ 

\ 

Vfps I 
10 0 200 

FIG. 10. 

300 

(b) 
I t 

V / w  = 0.5 \ 

t V fps i 
0 I00 200 300 

Thrus t /we igh t  functions 

I ! 

i V f  ps = 
0 I00 200 300 

j V fps f \ 
0 I00 ZOO 

The effect of lift-loss on deceleration and thrust /weight  functions for level flight; ~b = 15 degrees 

O0 



Height 
Io 3 f t  

V 1=275 fps (163 knots) 7 = _ 2 ~  

- No ta t l on :  ~=4~ ~ = l S ° i s  wr i t ten (4,15 } 

I 2 3 4 5 6 
x 103 f t  

(a) d i s t ance  

50~J~7---20 ° 
I o 

0 I0 20 30 40 50 

( b ) time 

FIG. 11. 

s.f.e.--.0.5 5 0 ~ . ~ ~ ' " 2 0  ° o 

40 

0 10 20 30 F ' 40 50 
0 0.25 0.50  0-75 
a I I I I 

F/W °/o 

(c) fuel used, percentage of a i r c ra f t  we ight .  

Transition distance, time and fuel for constant-7 approaches, including the effect of li•loss. 

26 



X 

103pVZlW 
Z 3 4 S 

I I I / '  J I 
6 
I 

-0-!  

AL 
W 
-0-2 

T/W= 0.25 

T/W=0-S0 

-0.3 

-0"4 
/W=l -0 

-0.5 
X 

(a) l i f t - loss  functions 

- 0 . Z  
AL 
W 
-0.4 

n T/W 
0"2¢" 0"4 0"6 0"8 I'0 

I \ 4 1 " ~  J i j ! 

( T / W I N ~  

PV ?/W= 0"00175~ V=271 f Ps ~ 

(b) cross-plot from Fig. IZ (a); section XX 

FIG. 12. Analysis of step behaviour in T/W at high speed due to lift-loss. 

27 



x~ 
a 

.~. 

g 

O 

a 

O 

P 

n 
O 

N ~.. 

g 
'-2 

10 

Fueb 
I b/hr. x 10 -~ 

\ 
"\ 

\ 

I I I I I I 

I 

, '1 \ I . -  
E-- \ 1  o ,  

~1 L I  

I / /  ' 
4 -  =a  

-Approx. tl i~%. +-- 1 1 " ~  " ~ / / ~  
id leP""  "_-o ~, / I 

I I I 1 I I I 
Z 4 6 8 I0 12 14 

T x 10 -3 lb. 

Fig. 13. D a t a  for a typical  lifting engine. 

0"50 

s . f .¢  
lb./ hr. / lb. 

0.45 

0"40 

0"35 



R. & M.  No.  3732 ~!~IL ~ 
. . ?  - 

© Crown copyright 1974 

HER MAJESTY'S STATIONERY OFFICE 

Government Bookshops 

49 High Holborn, London WC1V6HB 
13a Castle Street, Edinburgh EH2 3AR 

41 The Hayes, Cardiff CFI 1JW 
Brazennose Street, Manchester M60 8AS 

Southey House, Wine Street, Bristol BSI 2BQ 
258 Broad Street, Birmingham BI 2HE 
80 Chichester Street, Belfast BT1 4JY 

Government publications are also available 
through booksellers 

R. & M.  No. 3732 

ISBN 0 11 470825 8 


