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Summary 

The report presents the results of calculations of torsional flutter of unstalled cascade blades at zero mean 
deflection and subsonic Mach numbers. Three kinds of flutter are found. Subcritical flutter occurs when no 
acoustic waves Can propagate in the duct. The effect of increasing Mach number is highly favourable, and tends 
to suppress the flutter predicted by incompressible theory. Acoustic resonance flutter occurs when the blade 
frequency is very slightly less than the acoustic resonant frequency of the upstream and downstream ducts. 
It is critically dependent on this coincidence, and would give very small areas of flutter on a compressor per- 
formance map. Supercritical flutter occurs when some acoustic waves can propagate in the duct. It only occurs 
at Mach numbers close to unity, and is probably not of much practical importance. 

* Replaces A.R.C. 35 018 
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1. Introduction 

When attempts are made to calculate the aerodynamic forces and moments on compressor and turbine 
blades due to their vibration, it is usual to use a theory which assumes that the flow is incompressible and two- 
dimensional. A theoretical and experimental investigation of torsional flutter has been reported by Whitehead.1 
Whitehead 2 has also reported some calculations which allow for the compressibility of the fluid, but the very 
few results did no more than indicate that compressibility is important. More recently, Smith 3 has reported a 
very much better method of calculation, and it is this method which is used in the present study. The assumptions 
are that the blades can be represented by flat plates at zero mean incidence, that the flow is subsonic, isentropic, 
and two-dimensional, and that the Kutta-Joukouski  condition at the trailing edge is satisfied. 

It seems to be more appropriate to look at torsional flutter than at bending flutter under these assumptions, 
since incompressible theory has shown that bending flutter depends critically on the steady mean loading on the 
blades, whereas torsional flutter is less dependent on this effect. 

2. Method of Calculation 

If a cascade of blades is vibrating in torsion, about an axis position distant ~/c from the leading edge, then the 
moment coefficient is given by 

(CM~ ~ : CM~ -- ~ICF~ -- i ~ C M q  q" i2~2CFq. (1) 

The four complex coefficients CM~,, CF~,, CMq and CF~ are defined for an axis position at the leading edge. 
They are functions of the space to chord ratio (s/c), stagger angle (~), frequency parameter (2), Mach number (M), 
and phase angle between adjacent blades (~b). They have been calculated by the method given by Smith, 3 and 
throughout this investigation the number of points at which the upwash velocities are matched has been 4. 

It is assumed that all blades are identical, so that flutter will occur with a constant phase angle between each 
blade and the next. Since differences between blades are known to have a stabilizing effect, ~ this is the most 
pessimistic assumption. If it is also assumed that the mechanical damping is zero, then the condition for flutter 
is that the imaginary part of (CM~)~ is zero. Equation (1) can then be regarded as a quadratic equation for r/, 
which may or may not have real roots. If there are real roots, then this gives a range of axis positions for which 
flutter will occur. 

Flutter may occur at phase angles given by 

q~ = 2nm/N, (2) 

where N is the number of blades in the row, and m is any integer. Normally, N is large enough so that virtually 
any value of q~ can be obtained, but if the flutter is very critically dependent on ~b, then equation (2) may provide 
some effective constraint. 

It is therefore necessary to hunt for the most critical phase angles for flutter to occur. In order to assist in 
this hunting process, a computer program was written, using graphical input and output techniques. Results 
are presented on a screen which shows a plot of axis position (r/) against phase angle (~b). In order to input a 
starting value of ~b for the next hunt, an adjustable cursor is set up over that part of the diagram where, on the 
basis of previous results, the flutter is to be expected. If no real roots of equation (1) are obtained, then another 
try can be made. 

3. Results 

It has been found that three different regimes of flutter can be distinguished, and it will be convenient to 
discuss them separately. They will be called 'sub-critical flutter,' which occurs in a regime where any acoustic 
waves generated cannot propagate upstream and downstream, 'acoustic resonance flutter,' which occurs when 
a pair of acoustic waves is just on the verge of being able to propagate, and 'super-critical flutter' which occurs 
in a regime where at least one pair of acoustic waves can propagate. These three regimes can merge into each 
other, so that the distinction between them is not always clear cut. 



3.1. Sub-Critical Flutter 

This is an extension of the flutter found in incompressible flow. 
Fig. 1 shows results for a space-to-chord ratio of 1-0, a stagger angle of 45 degrees, and a position of the 

torsional axis at 58.8 per cent chord. This corresponds to one of the experimental arrangements used in Ref. 1. 
The interblade phase angle is 60 degrees, which is the most critical angle possible in a 12 bladed cascade. The 
imaginary part of the moment coefficient is plotted against frequency parameter. This is the part of the moment 
coefficient which can do work on the vibration, and if it is positive then flutter can occur when there is no 
mechanical damping. In fact in the experiments reported in Ref. 1 there was significant mechanical damping, 
and allowing for an average value of this gives the line shown as a flutter limit in Fig. 1. If the value of the 
imaginary part of the moment coefficient is above this line, then flutter is predicted. 

The results for the M = 0 line correspond to the incompressible theory. It is seen that as the Mach number 
is increased the points at which flutter is just possible move to progressively lower values of the frequency 
parameter. This corresponds to higher fluid velocities or to lower blade stiffness. The effect of Mach number is 
therefore highly favourable. 

Figs. 2, 3 and 4 show the results of a more general flutter investigation for three cascades. In obtaining these 
results, the 'most critical' phase angle has been found, and the mechanical damping has been neglected. The 
frequency parameter below which torsional flutter is just possible has been plotted against axis position. 

It will be seen in all three cascades that as the Mach number increases, the frequency parameter at which 
flutter appears is markedly reduced, so that the effect of increasing Mach number is highly favourable. 

It is also seen that the worst position for the torsional axis is around 50 to 70 per cent chord. 
This flutter is not sensitive to interblade phase angle, so that the effect of using only integral values of m in 

equation (2), rather than the most critical value of q~, is negligible. 
The optimum phase angles for sub-critical flutter have been plotted in Fig. 11, for the cascade illustrated in 

Fig. 4. In each case the lower value of qS/2n plotted in Fig. 11 corresponds to the higher value of r/plotted in 
Fig. 4. The optimum phase angles for the other two cascades are similar, and are therefore not presented. 

3.2 Acoustic Resonance Flutter 

As the Mach number of the flow through the cascade is increased, for given geometry, frequency parameter, 
and phase angle, then it becomes possible for successive pairs of waves to propagate in the regions upstream 
and downstream of the cascade. This is the 'cut-off' phenomenon reported by Tyler and Soffrin. 4 Of the two 
waves in each pair, one carries energy upstream and the other carries energy downstream. The cut-off con- 
dition is 

2(s/c) l 
- +_ (~b - 2~n) - c°s2 ~ - sin 4, (3) 

where n is an integer, chosen to put q~ in the range o ~< ~ < 2g. This condition can also be considered as an 
acoustic resonance of the annular duct, without blades, since at the cut-off condition the waves carry energy 
in a purely tangential direction, and no energy is dissipated down the duct. 

It has been found that very close to this acoustic resonance condition, torsional flutter can be predicted 
theoretically, and this has been investigated in detail in one cascade which corresponds roughly to the tip 
sections in a modern fan engine. The results are shown in Figs. 5 to 9. These figures show loops plotted in the 
phase-angle axis-position plane, and inside these loops flutter is predicted. It will be seen that the range of 
phase angle for flutter is very narrow. The constraint provided by the finite number of blades in an actual row 
is therefore likely to be substantial, since the allowable phase angles given by equation (2) may all be outside 
the region of flutter. 

In Figs. 5 to 9 the arrows pointing vertically downwards indicate the phase angles for the acoustic resonance 
condition, given by equation (3). It is seen that some of the loops show cusps at this phase angle. These cusps 
caused some difficulty in the development of the computer program, since simple procedures for finding 
maxima and minima fail at the cusps. The axis position for torsional flutter are largely forward of the blade 
mid-chord point (r/ = 0-5) and in some cases extend to axis positions far forward of the leading edge. However, 
no case has been found in which the axis position for flutter extended to minus infinity, which would correspond 
to pure bending flutter. 

Fig. 10, which has been obtained from Figs. 5 to 9, shows frequency parameter plotted against the most 
rearward axis position for which this type of acoustic resonance flutter is possible. As the Mach number in- 
creases, the critical axis position moves forward. 
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The range of phase angle for which this type of flutter occurs has been plotted on Fig. 11 (for M = 0.6, 
0.7 and 0.8), although the range is so narrow that it is difficult to show on this figure. The straight lines on the 
figure indicate the acoustic resonance condition, given by equation (3). The regions of acoustic resonance 
flutter are bounded by these lines, and lie at slightly lower frequency parameters. The flutter therefore occurs 
in a regime very close to the 'cut-off condition, but in which the acoustic waves just do not propagate. 

For a Mach number of 0.8 there are two lines for the acoustic resonance condition, which intersect at a 
frequency parameter of approximately 1.93. These correspond to the alternative signs in equation (3). At this 
point the blades are in resonance with two different acoustic modes. Figs. 7 and 8 show that the flutter regions 
are enlarged close to this point, and this also accounts for the kink in the M = 0.8 line on Fig. 10. 

Fig. 12 shows a similar region of acoustic resonance flutter, for a Mach number of 0.9. 

3.3 Supercritical Flutter 

As the flow Mach number approaches unity, the lines for acoustic resonance move to comparatively low 
frequency parameters, as can be seen in Fig. 12. It is then possible for torsional flutter to occur in a regime 
where one or more pairs of acoustic waves can propagate. This is referred to as super-critical flutter. It has only 
been investigated for one cascade at a Mach number of 0.9. At higher Mach numbers than this the linearization 
assumed in the theory becomes of dubious validity. 

Like sub-critical flutter, this kind of flutter is not sensitive to the exact value of the phase angle. The values 
of the optimum phase angle for flutter are shown on Fig. 12. The corresponding limiting axis positions are 
shown on Fig. 13, where it can be seen that the worst axis position is near the leading edge. 

4. Conclusions 

Armstrong and Stevenson 5 have stated that in order to avoid torsional flutter of stalled compressor blades, 
the frequency parameter should not be less than 1.6. This figure is commonly used as a design rule. Therefore 
practical blades will usually have frequency parameters greater than 1-6, at least at a part-speed condition 
where some stalling is to be expected, but at the design point frequency parameters somewhat less than this are 
sometimes used. 

For sub-critical flutter, the effect of Mach number has been found to be highly favourable, in that flutter is 
less likely as the Mach number increases. The effect is so strong that the flutter predicted by incompressible 
theory is likely to be completely supressed on practical blades if the Mach number is greater than 0.5. For this 
type of flutter, the critical axis position is near to or just aft of the mid-chord point, and the phase angle is not 
critical. 

Acoustic resonance flutter is predicted in a very narrow regime, where a pair of acoustic waves just fail to 
propagate in an annular duct. It occurs right in the practical range of frequency parameter, but is very sensitive 
to phase angle. It might be considered to be similar to the coupled flutter which occurs on aircraft wings, in that 
two or more degrees of freedom are involved, but here the degrees of freedom are one of blade motion and 
one (or more) acoustic resonances in the duct. Kaji and Okazaki 6 have shown that acoustic waves very close 
to the cut-off condition are almost totally reflected by a blade row. This suggests that the acoustic resonance 
flutter may be markedly affected by the presence of adjacent blade rows. Also, on practical blades, three- 
dimensional effects are likely to be important. There is also a substantial constraint on the flutter, due to the 
finite number of blades in a row. For these reasons the actual quantitative results presented here are not thought 
to be of great practical significance. But the qualitative result, that flutter may occur if the blade natural fre- 
quency is just below an acoustic resonant frequency of the duct, is thought to be a valid and important con- 
clusion. The critical axis position for this type of flutter is near the leading edge of the blade. 

Supercritical flutter only occurs at Mach numbers approaching unity. Here the linearization used in the 
theory becomes of doubtful validity, and three-dimensional effects would be expected to be important. In 
the one case calculated, the flutter was only found at frequency parameters rather less than those for practical 
blades. For  these reasons the calculation of supercritical flutter is not thought to be of great practical signifi- 
cance. 

Since the effect of compressibility on unstalled torsional flutter is substantial, it is unsatisfactory to use 
incompressible theory for design calculations. However, although theories now exist which can allow for 
compressibility and steady lift on the blades separately, there is no theory which can allow for both of these 
effects at the same time. The development of such a theory is highly desirable. 
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Blade chord 

Integer 

Integer 

Translational velocity of leading edge due to bending 

Blade spacing 

Moment coefficient due to torsion = T/npU2c2c~ 

Force coefficient due to torsion = F/npU2c~ 

Moment coefficient due to translation = T/rcpUc2q 

Force coefficient due to translation = F/zcp Ucq 

Moment coefficient for axis position ~/ 
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