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SI~MARY 

The modes of vibration of simple two-dimensional discrete vortices are 

examined and some analysis given for the acoustic radiation from such modes after 

a disturbance. The dominant radiation is shown to be of quadrupole type with a 

frequency proportional to the mean vorticity, and in a jet mixing region this 

frequency is expected to fall linearly with increasing vortex radius. Some 

speculations are made about the practical effect of forward speed on jet noise. 

* Replaces RAE Technical Report 76034 - ARC 36785 
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l INTRODUCTION 

The structure of turbulent shear layers has been the subject of much study 

in recent years, and there have been many observations of the existence of large 

coherent structures I-9'19 In jets these structures may carry most of the 

vorticity. They are small when first formed near the jet lip and then grow by 

amalgamation as they are convected downstream until they reach the end of the 

potential core. Thereafter they continue to grow in scale but slowly dissipate 

their energy through molecular viscosity. 

In the process of evolution at sufficiently large Reynolds number, 

turbulent diffusion will impose small-scale irregularities on the structure, 

which will progressively erode the coherence of the structure. Nevertheless 

some coherence may be expected to be retained throughout the noise-producing 

regions of the jet, and as a start the acoustic radiation from simple two- 

dimensional vortices is studied in the following sections. 

The results obtained follow closely on the analysis of Moore and Saffman I0 

in which they examine the stability of vortices with elliptic cross-section in 

a strain field. In section 2 the motion of an unstrained circular vortex is 

considered, its resonances are found, and it is shown that when disturbed the 

vortex radiates acoustic energy at its natural frequencies. The energy radiated 
6 per unit cross-sectional area is found to increase very rapidly (like a where 

a is the radius) with the size of the vortex. This result, however, is based 

on a presumption that the vorticity is kept constant as the vortex radius 

increases. If the mean vorticity falls, as it does for vortices growing in a 

jet, the result is greatly modified. 

A complete analysis is not given for a vortex in a strain field because 

of difficulties that arise through the velocity field being unbounded at 

infinity. Some qualitative arguments, however, are used (in section 3) to show 

the general nature of the acoustic radiation under these conditions. 

Section 4 consists of a general discussion in which the view is taken that 

the noise output of a jet could come largely from the disturbance of vortex 

structures, caused by general unsteadiness in the jet flow, and their resulting 

vibration at their natural frequency. It is shown that this has the 

characteristics of quadrupole radiation (or possibly higher poles from vortex 

harmonics, but these are small), and it is thought that similar results will 

hold even for the more complicated structures of a real jet. This section ends 
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with a speculation about the effects of forward speed on jet noise, which has 

long been known to contain puzzling features. It is suggested that some account 

should be taken of the fact that, when an external stream is added, the noise- 

producing vortices have to swallow part of the turbulent boundary layer that 

has separated from the outside of the nacelle. A very crude modification of an 

existing formula for the velocity dependence is offered. 

2 THE SOUND FIELD OF A SIMPLE VIBRATING VORTEX 

2.1 Natural frequencies of an unstrained . ~prt~x 

This analysis follows that of Moore and Saffman I0 for an elliptic 

vortex in a strain field, but is applied to a circular vortex without strain 

and is therefore rather simpler. Two-dimensional incompressible flow is 

assumed and the velocity ~(r,9) ÷ 0 as r ~ ~ , where (r,e) are polar 

coordinates. At equilibrium there is uniform vorticity m within a circle of 

radius a and zero vorticity for r > a . The circulation P outside the 

vortex is given by 

2 
r -- ~a ~ , r > a . (|) 

The perturbed velocity field ~ is written 

v(r,~,t) = U(r,0,t) + u(r,0,t) , (2) 

where u is a small time-dependent perturbation and U is defined by 

U = 0 
r 

~r 

U 6 = 2wa2 , r < r v 

U 0 -- 2~r ' r > r v 

(3) 

where 
V 

In the equilibrium state r = a 
V 

a r e a  bounded  by r v ½r~d 

0 

r (e,t) is the radius of the vortex core following the perturbation. 

and Ue(a,8 ) = r/(2~a) -- ~a~ ; in general the 

is constant. 
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We take u/(am) to be of 0(~) where ~ is a small quantity such that 

terms of 0(s 2) may be neglected. The time dependence of the motion following 

the perturbation is assumed to be such that we may write 

r v(8,t) = a{l + e°tf(8)} , (4) 

where f = 0(~) and where the real part of o will determine the growth or 

decay of the disturbance, and the imaginary part will determine its frequency. 

This displacement must be compatible with Ur(a,8,t) , which provides one 

boundary condition for ~ . The other could be derived from continuity of 

pressure, but it is more convenient to use 

v t continuous at r , (5) 

where _t is the unit vector tangential to r = r (e) ; condition (5) is 

equivalent to continuity of pressure in the present problem I0. 

From equation (4), 

D [r -a{! + e°tf(0)}] : 0 
Dt v (6) 

where D/Dr stands for the time rate of change following a particle. Now, 

D 
D--t rv = Vr(rv'e) 

= v (a,O) + -a) r (rv ~r Vr (a' 0) 

v (a,e) + 0(~ 2) 
r 

Ur (a, e) . 

, since (r - a) is 0(s) 
v 

AI so, D 8 8 1 
+ -  v e s o  t h a t  e q u a t i o n  ( 6 )  b e c o m e s  D-~----- T~ + Vr 8r r T~ ' 

~t 
Ur(a,e ) = aoeOtf(e) + ae r vef'(8) 

v 
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or 

eOtf '(e) + 0(e 2) Ur(a,e ) = aoeatf(e) + (7) 

The condition (5) requires continuity of (Ut_ + ut_) , and in both terms 

can be taken in the e direction; in the first term because U = 0 , and in 
r 

^ o( 2) the second term because the product of t r and u r is of . Since 

U(rv,0 ) = U(a,e) + ae=tf(e) ~r U(a,0) + 0(e 2) , (8) 

there follows from equation (3) 

u82 - Usl = e tf(e)r/~a + 0(e 2) , r = r v (9) 

where suffix I denotes values inside r = r and suffix 2 denotes values out- 
V 

side r = r . 
v 

A consistent inviscid approach in which ~ is uniform in the two regions 

requires that the perturbations neither create nor destroy vorticity, so that 

u I and u 2 may be derived from velocity potentials ~l and ~2 respectively, 

which will be defined later. The small areas crossed by the deforming boundary 

need not be considered in the analysis to 0(e) , since to this order the 

boundary conditions can be applied at r = a . Moreover, the area of the vortex 

remains constant in time, and we assume 

f(O) = A cos m0 + B sin m0 , (10) 

where m is a positive integer. Let ~2 and ~1 have the forms 
not (C cos me + D sin me)r e and (E cos me + F sin me)rne ct respectively. 

must satisfy 

These 

v2  1 i = + - - - -  + = 0 ( 1 1 )  
~r 2 r ~r r 2 ~02 

whence n = -+m . It follows that in order to avoid singularities at r = 0 and 

r ~ ~ , ~I and ~2 must be given by 



¢I = rm(E cos m0 + F sin me)e qt 

~2 = r-m(c cos m0 + D sin me)e ot 1 (12) 

We now obtain six linear homogeneous equations in the unknown coefficients 

A .. F from the boundary conditions (7) and (9): condition (7) applies to both 

~| and #2 ' which together with (9) gives three equations and in each of them 

the coefficients of sin me and cos me must vanish independently. If the 

coefficients A ... F are not all zero they can be eliminated to give an equation 

for the eigenvalues of ~ , 

r2(m- i) 2 

2 2 
a 

+ 4a2o 2 = 0 . (13) 

Whence 

= ± i(m - l)r  = ± i(m - l)m 
2:a 2 2 " (14) 

This result was first derived by Lord Kelvin (see Lamb II p.231). In terms of 

A , which characterises the amplitude of the disturbance, the other coefficients 

are given by 

B = ~ iA 

C = 
r m 

- 2~ B 

r a m 

D = 2w"--m A > (15) 

r 
B 

2vma m 

r 
F = - - A  , 

2~ma m 
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where the result (14) has been used in expressing the first of these. 

The various physical parameters can now be expressed in terms of m,~ 

and some arbitrary real amplitude A by taking the real part of the appropriate 

complex functions. There results 

(r v - a)/a = A cos (at - m0) , (16) 

which shows that the boundary of the vortex rotates with constant angular 

velocity a/m , and 

rA 
~] = ~-~ sin (at - m0) 

~2 = - ~ s i n  ( a t  - mO) 

(17 )  

with 

= r ( m -  1) (18)  
2 ~ a  2 

It is of interest, in passing, to note the values of the Reynolds stress 

components both inside and outside the vortex. These are (neglecting the small 

regions near r = a that are crossed by the deforming boundary), 

2 

2 _ p _  r <  a 
~rr = - OUr = 2 \ 2~a m ] 

2 

ffi - ~ \2~rm+i] r > a 

(19) 

m 

2 
uee = - PUe = Urr ' 

(20) 

m 

Ur0 = - OUrU 0 = 0 , 
(21) 

where p is the density and the overbar denotes a time average. 



In these results, as in Moore and Saffman I0, the mode corresponding to 

the eigenvalue m = I is lateral translation of the vortex without deformation; 

the modes for m > I involve an increasing number of nodes around the vortex 

periphery as m increases. 

2.2 The acoustic field 

In section 2.] the flow was assumed to be incompressible. We now allow 

the flow to be slightly compressible in the sense that we shall assume M 2 ~ 1 

where M is the maximum Mach number of the vortex flow. The basic flow is 

assumed to be homentropic and the perturbations are isentropic with, as before, 

a velocity potential ~2 in region 2. Then 

2 
-- C 

S constant 
(22) 

where p and p are the pressure and density of the basic state respectively, 

S is the specific entropy and c the speed of sound. Under the conditions 

postulated, the speed of sound depends on r and may be shown to have the form 

c2(r) = | + (Y - ]) M2 I c 2 ( a )  2 I - (a)21 = 2̂c say , (23) 

with 

M = U 8 (a)/c(a) . (Z4) 

The equations of continuity and momentum provide three equations in ~2 and 

the perturbations in pressure and density, which may be simplified into an 

equation for ~2 " In view of the result (]7), we try 

~2 = f(r) sin (st- m0) , (25) 

and the resulting equation for f then becomes 
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f"(r) + <I + M2a2~ I(c---~ r~) 2 1 m2} 
--r3~2 / f)(r) + ~ + &2 r2 f(r) = 0 . (26) 

This equation is too complicated to possess solutions in terms of standard 

functions, so we apply the assumption of low Mach number. Equations (3), (18) 

and (24) show that 

= 0(M) 
c(a) 

and ~2 = I + 0(M 2) , so that to 0(M 2) equation (26) becomes 

f"(r) + + 7 )  f' (r) + + - f(r) = 0 (27) 

This equation is still too complicated for standard functions to satisfy it (so 

far as the author is aware), but we may still neglect terms of 0(M 2) . The 

coefficient of f'(r) then becomes (I/r), since r > a , but the term in curly 

brackets needs to be treated more carefully. We introduce the wavelength 

which must be large compared with a . In fact 

% 2~c 0(M-I) , 
a (~a 

and ( 28) 

~a 2~a (M 3) = -f-+ 0 

It follows that when (r/h) = 0(I) or greater, the term Mma/r 2 is of 0(M 2) 

times ~/c(a) and may be neglected. On the other hand for small r , e.g. 

r/% = O(M ~) or less the term (Mma/r 2) makes a contribution at most of 0(M 2) 
2 

times that of the term m /r 2 . It follows that 

c---~+ 
a = ~ - + 0(M 2) (29) 

is uniformly valid for all 

of 0(M 2) and of 0(a/%) 2 

ordinary wave equation 

r > a . Thus under the approximation that terms 

are both negligible, equation (26) reduces to the 
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or 

f"(r) + I f,(r) + - f(r) = 0 
r 

(30) 

V2~ = - k2~ , 

where k 2 = e2/c2 is the square of the wave number in the radiation field. 

The above analysis justifies using equation (30) instead of the more complicated 

convected wave equation (23), although the 'exact' equation (25) is of some 

interest in itself, since it enables an estimate of errors to be made if desired. 

Since the e dependence is exp(- imO) in the whole flow region, the 

solution of (30) for outgoing waves that matches (17) is found to be 

r. _(2)._. i(=t-me)] 
-- ReLAI  t rje j (31) 

where H 
m 

real part. 

is a Nankel function, AI is a constant and Re stands for the 

For small kr(i.e, r ~ %) , equation (31) has the asymptotic form 

Al(m-l)! (~_r) -m 
~ - -- sin (~t - mS) kr ~ I (32) 

From equations (17) and (32) 

A = l~ ~,~a~m£ A 
1 2 m+l t " 

m. 

(33) 

In the radiation field for large kr , equation (3]) has the asymptotic form 

where 

and 

¢ "~ Re ! exp i(~t - me - kr + ~m~ + ~ 

ReF(r,e)e i=t , say , 

F(r,e) 
Be-i (me +kr) 

r ½ 

I 

B = A] exp i(~m~ + $~) 

(34) 

(35) 
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It is of interest to calculate the mean radial energy flux, per unit 

length of the vortex, E r , in the sound wave. This is, 

2~ 

= /-- 
E r P'Ur rd8 

0 

(36) 

where the acoustic pressure p' is given by 

~ (37) P' : - PO ~ : - ieP0~ " 

If the expression for p' is evaluated by taking the real part of the right- 

hand side of equation (37), the result for m = 2 agrees with that given by 

Howe 14 for a rotating elliptic vortex° From equation (34), in the far field, 

= ~(F(r,e)e i~t + F*(r,O)e -i~t) , (38) 

where the star denotes the complex conjugate. Equations (36) to (38) yield 

°0°/ E ffi - -  (- iF*F + iFF*)rde 
r 4 r r 

= wP0~kBB 

= 2P0=A ~ (39) 

After substituting from equations (18) and (33), there results 

E 
r 

(m- 1)Po r3 ~(k a)mA 12 
L2m+Im! aJ (4o) 

Since k = ~/c , the quantity in curly brackets in equation (40) also depends on 

, but it is more revealing to give the expression in terms of Mach number by 

equation (24). Then 
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(m- I)POP3 fMm(m - l)mA~ 2 

and in view of the factor of M 2m it is evident that at low Mach number, most 

of the energy flux is confined to the low modes. Moreover, if we compare 

vortices of different size but the same vorticity co , r is proportional to 
2 2m+4 

a m , and M to am , so that E is proportional to a Even for the 
r ° 

fundamental mode m = 2 , this implies that for a given size of non-dimensional 

6 disturbance the acoustic radiation per unit area is proportional to a , e.go 

one vortex radiates 64 times as much energy as four vortices of half the radius 

for the same non-dimensional disturbance A . 

The variation with Mach number is also of interest. If we assume that 

two jets of the same diameter but different Mach numbers contain vortices of 

the same size, then F is proportional to M , and for radiation by the 

fundamental mode E r is proportional to M 7 . This is the same power law that 

is deduced from Lighthill's theory in two-dimensions. For modes of higher 

order the analysis is invalid in that only the smallest powers of M have been 

retained in the solution of equation (25); qualitatively, however, it is to be 

expected that for such modes the radiation will depend even more powerfully 

on M . 

3 A VIBRATING VORTEX IN A STRAIN FIELD 

For the unstrained vortex it was possible to calculate a matched acoustic 

field thanks to the simple nature of the external flow. When a strain field 

is present, however, the external flow is more complicated and the same 

procedure will not be attempted. An alternative procedure might be to use 

Lighthill's method 15 and evaluate an appropriate integral over the source 

region. This, however, is also difficult, because the unsteady flow is coherent 

over the whole field, so that the source region is strictly unlimited, and 

certainly not compact. Instead of attempting to find the acoustic field in 

detail, therefore, we shall be content to make a qualitative comparison with 

the simple vortex on the basis of the nature of the integrand in Lighthill's 

formulation. This is dangerous, in general, because it takes no account of 

possible cancellations, but in the present example it is at least unlikely 

that there will be greater cancellation in the field of the strained vortex 

than that of the unstrained vortex. 
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The stability of a vortex in a strain field is fully treated by Moore and 

Saffmanl0o They use a pure strain field, in which the steady flow behaves like 

V 
X 

Vy 

_ eY 1 

"~ ex 

x,y + ® , (42) 

and also generalise the theory to include simple shear. In either case the 

equilibrium cross-section of the vortex becomes an ellipse of which the 

elongation increases with the strain or shear. For sufficiently large elonga- 

tion the vortex becomes unstable. Since the present interest of noise produc- 

tion is relevant to a vortex in a turbulent shear layer it might seem that an 

external shear flow would be the more appropriate. The viewpoint adopted in 

the present paper, however, is that the vorticity can be taken as concentrated 

in discrete vortices which are surrounded by potential flow, in which case 

each vortex is embedded in a straining irrotational flow. As a simple example, 

suppose the shear layer to be represented by an infinite row of equally spaced 

point vortices of constant strength, and consider a simple row in isolation. 

Then any one vortex is in the strain field of the others, which in the immediate 

vicinity of the vortex amounts to 

V 
X 

V 
Y 

= - ~VY/6 

J = ~vx/6 

(43) 

where V is the strength of the equivalent vortex sheet (i.e. for the complete 

array of vortices v changes by an amount V between y = ±~) and X = x/d , 
X 

Y = y/d where d is the spacing of the vortices, and terms of 0(X 2) and 

0(Y 2) are neglected. Then each point vortex could exist in equilibrium with 

the imposed flow with an elliptic structure like that derived by Moore and 

Saffman |0, provided that the size of the vortex is small compared with the 

spacing d . In practice vortices are not small compared with their spacing, 

nor do they have such a simple structure, but these assumptions may still lead 

to useful results. Moore and Saffman do not give the velocity distribution 

explicitly for the perturbed vortices, so it is given here in the Appendix 

together with other results that are needed; there are a few minor changes of 

notation. 
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Since the strained vortex has an elliptic cross-section it becomes 

convenient to express the velocities in terms of elliptic coordinates as used 

by Moore and Saffman (see Appendix). We now consider the acoustic radiation 

according to Lighthill's method, which gives the radiation in terms of an area 

integral (for our two-dimensional problem) usually expressed in rectangular 

coordinates. The integral is then rewritten in elliptic coordinates which 

enables the form of the results to be seen more clearly. 

3.1 Acoustic radiation 

For a fixed source frequency ~ , Lighthill's method in two-dimensions 

leads to an expression 13 for the far-field density fluctuation p'(~,~) of 

the form 

ikox f -ikOYrd Z 
p'(~,~) ~ (k0x)-½ e S(z,~)e , (44) 

where ~ and Z are rectangular coordinates, the integral over ~ extends 
over the source region, 

S is the source strength, 

k 0 is the wave number a/c , 

and Yr is the coordinate in the direction of ~ . 

S will have the form OVlV 2 (where [ is the velocity vector), and if we 

choose axes such that ~ = (x],O) , then equation (44) leads to 

P ( x l ' O ' a )  (kox)-  ½ - k~ f f  2 - ikoYl .  
, ~  ojjVle . aYldY2 (45) 

Where the wavelength is large compared with the size of the source region, 

k0Y 1 ~ 1 and exp(- ik0Yl) ~ 1 . This should be an acceptable approximation 

for region I, but not for region 2 both because of the phase changes and the 

departure of the external flow field from that assumed in section 3 above, as 

mentioned earlier. For region 1 the integral in equation (45) becomes, for 

the x I direction (i.e. in the direction of the major axis of the ellipse) 
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~0 27 

I I = f f (v~r 0 sinh ~ cos n -vnr 0 cosh ~ sin ~)2dnd~ (46) 

0 0 

It has already been assumed in the form of equation (45) that the integrand of 

equation (46) has a single Fourier component with frequency ~ , and this is 

true for the largest unsteady term, which derives from the product of the time- 

dependent part and the time-independent part in squaring the expression within 

brackets; v~ and v n are given in equation (A-6). There results 

44 
m r0AP 

IP'(X,0,~)111 = Ip'(y,0,e) Ii ] = c4(k0r) ½ fi($0) (47) 

where r is the distance away of the observer, and f1(~0) is a function of 

60 that can be evaluated, which, however, it is pointless to quote when we 

cannot complete the integration satisfactorily for the outer region. Here 

= 60 defines the equilibrium boundary of the vortex, as r = a did for the 

circular vortex. 

In region 2 the appropriate integration will be limited in practice by 

the spacing of the vortices, d . Equation (A-7) shows that it will also contain 

a term depending explicitly on the strain field e ; since, however, ~0 depends 

on e the final result for p' will have the form 

4 4 

, f d 

P = c4(k0r)½ 2 ' (48) 

which may be taken to incorporate equation (47). 

Apart from the strain ratio (e/u), equation (48) leads to a similar form 

for the acoustic output as before in equations (40) and (41). For the model of 

an infinite row of line vortices, the ratio e/m is determined by the size and 

spacing. From equations (42) and (43), 

~V 
e = 6--d " (49) 

Also Vd must equal the total vorticity in each line vortex, i.e. ~abm , where 

a and b are the major and minor axes of the ellipse; thus 

e ~2ab 
-- = (50) 
m 6d 2 " 
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As d reduces, e/m increases towards the critical value of about 0.15 at 

which the vortex becomes unstable, and at the same time the frequency 

reduces towards zero. The spacing corresponding to marginal stability is 

given by equation (50) with e/m ~ 0.15 and a ~ 2.9b , i.e. d ~ 2a Since 

in this model the ellipses are aligned with their major axes in the direction 

of the row (see Appendix) the critical condition is reached when the ellipses 

are just about touching each other (see also Moore and Saffmanl6). In a 

practical shear layer starting from a splitter plate the vortices would be 

expected to grow (on average) with distance from the splitter plate and are 

oblique to the direction of the shear layer, see e.g. Brown and Roshko 8, and 

D~mms and KUchemann 17. In addition, the vortex structure may be more stable 

than that of vortices formed from constant vorticity as here. Nevertheless, we 

should expect the same general properties to hold. 

4 GENERAL DISCUSSION 

The foregoing analysis suggests that stable vortices will vibrate at 

their resonant frequencies if disturbed, and that in doing so they will radiate 

sound at the same frequency. There is now much evidence that large vortices do 

develop in the mixing region of a jet I-9, and since there are many disturbances 

present in such a region it must be expected that sound will be radiated in 

accordance with their natural frequencies. In particular, at least at low 

Mach numbers, the fundamental mode of deformation will be dominant and the 

familiar quadrupo]e radiation will result. 

In a real jet the structure Of the vortices is complicated and, no 

doubt, subject to considerable scatter. For a round jet they may be nearly 

axisymmetric when they first form close to the lip of the jet, but if so they 

soon distort into unsymmetric three-dimenslonal shapes. It is hard to imagine 

such vortices having simple well-defined natural frequencies, but locally at 

least they may do so, and the picture of acoustic radiation from resonant modes 

may not be far from the truth on a local basis, which will merge into an over- 

all sound field through time averaging. It may also be noted that Michalke and 

Fuchs 21 have shown that axisymmetric modes are the most powerful in noise 

radiation from a round jet. 

The vortices themselves go through an evolutionary process as they are 

convected downstream, and this process will also emit sound. In a simple 

shear layer, they increase in size and spacing but decrease in number combining 
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with each other as they move downstream 8, and a similar development must be 

expected in the mixing region of a round jet. There, however, they must reach 

a maximum strength at the end of the potential core, since beyond this point 

there is little scope for further increase in strength and they must gradually 

weaken through turbulent diffusion and decay, although their volume continues 

to increase. 

The manner of growth of the vortices is a subject for argument. Damms 
17 

and K~chemann use an inviscid model with all the vorticity concentrated in a 

vortex sheet. The vortex sheet then rolls up into an array of vortex cores and 

each core continues to grow by winding in more sheet uniformly in time in a 

manner based on one of the Mangler-Weber solutions 18. This process cannot 

continue indefinitely, and it is supposed that when the cores become overcrowded 

the weaker ones become elongated and through turbulent diffusion merge into a 

thick sheet which then carries on feeding the stronger vortices that continue 

to grow. This is what appears to happen according to films taken of the Brown 

and Roshko experiments, but Damms and KUchemann also discuss other methods of 

vortex amalgamation such as vortex pairing observed by Laufer 7. Numerical 

calculations using point vortices also exhibit these effects 19. 

Moore and Saffman 15 discuss the process more generally. They argue that 

the amalgamation cannot be inviscid, in the sense of two regions of vorticity 

merging by combining their volume with the same mean vorticity, since this 

would violate the similarity law in which the size and spacing grow uniformly 

with x , the downstream distance. The violation arises because the circulation 
2 

around a vortex is proportional to ~r 0 (where ~ is the mean vorticity and 

r 0 the mean radius), so if r grows like x and ~ remains constant the 
2 0 

spacing must increase like x to preserve a constant mean velocity jump across 

the mixing layer. Alternatively, if similarity is preserved the mean vorticity 

must decrease linearly with x . 

In fact, this arises naturally in the model of Damms and KUchemann, since 

the average vorticity in the Mangler-Weber solution is inversely proportional 

to the distance from the centre of the core. Thus as the cores grow their mean 

vorticity reduces at the correct rate for overall similarity to be preserved. 

On the other hand, the loss of cores by elongation and subsequent enrollment 

into stronger cores offends against Moore and Saffman's stability result which 

suggests that such elongated cores should be unstable. As mentioned above, how- 

ever, other types of amalgamation cited by Damms and KUchemann might be possible. 
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Moore and Saffman argue that the vortices grow by ingesting fluid some 

of which is irrotational. They consider an array of initially circular 

vortices of constant vorticity and show that they will disintegrate if 

r > 0.3~ , where r is the radius and ~ the spacing of the vortices; this 

result is confirmed by numerical analysis. Thus, Moore and Saffman argue that 

vortices in a shear layer do disintegrate when they get too close to a more 

powerful neighbour, which then ingests the resulting mixture of rotational and 

irrotational fluid. 

This argument is not wholly convincing, however. In the first place, the 

films of Brown and Roshko's experiment and of Laufer's experiment show no sign 

of vortex disintegration taking place. In addition the stability limit found 

by Moore and Saffman applies to a vortex with a core of uniform vorticity, and 

the corresponding limit might be quite different either for a rolled-up vortex 

sheet or a smooth vortex with ~ ~ I/r . A solution for the stability of such a 

vortex (~ ~ I/r) is not quite so easy to find as for one in which ~ is 

constant since the velocity perturbations within the vortex are no longer 

irrotational. On general grounds, however, one might expect a vortex with 

initial vortlcity ~ I/r to be rather more stable in a strain field than one 

with constant vorticity, since the greater concentration towards the centre will 

tend to keep the central regions circular. This is also true of the rolled-up 

sheet which remains circular near its centre. 

One feature that is accepted here is that on average the mean vorticity 

of real vortices formed in a turbulent mixing layer is inversely proportional 

to the radius of the vortex. Equations (14) and (A-9) then imply that the 

natural frequencies of the vortex are also inversely proportional to its 

radius, although again this is not proved since the vortex structure is 

different from that of the analysis. If this result is accepted, the further 

inference follows that the frequency of the radiated sound will vary inversely 

as the vortex radius and hence inversely as the distance from the nozzle lip as 

long as the similarity behaviour remains approximately true. This is in general 

accord with observations. If it can be shown that vortices do disintegrate 

under the high strain fields of a typical jet, then this mechanism would deserve 

further study since it would clearly be accompanied by a radiation of acoustic 

energy. 

In section 2 it was noted that, for a vortex of constant ~ , the acoustic 

energy radiated per unit area is proportional to r~ , where r 0 is the radius 
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of the vortex. This result is considerably modified when applied to a 

particular vortex as it grows in the jet mixing region. In that case ~ is 
2 

proportional to r 0 instead of r 0 and the maximum Mach number M remains 

constant, so that equation (41) would give the result that the energy radiated 

(per unit length of a two-dimensional vortex) is directly proportional to the 

radius~ thus the energy radiated per unit area would actually fall linearly with 

r 0 as the vortex grows in size. This is a consequence of the vortex being 

diluted with irrotational flow as it increases in size. Equation (41) does not 

strictly apply to a vortex growing in this way, however, so these inferences 

should be treated with caution. 

An important practical consideration as regards jet noise is the effect 

of forward speed. This has recently been discussed by Cocking and Bryce 20 in 

relation to their measurements on a jet in a wind tunnel. In their discussion 

they introduce the relative velocity, Vre I = v. - v= , where v. is the jet 
J J 

velocity and v= that of the free stream° One crude approach to jet noise in 

flight is to argue that Vre I is all that matters in the mixing region, so 

8 Cocking that, for example, the acoustic intensity radiated behaves like Vre I . 

and Bryce argue that the length of the potential core increases in flight 

thereby increasing the volume from which noise is being radiated, and on this 

basis they derive different laws for the noise radiation depending on the 

assumptions used for the size of eddies. For example, if it is assumed that 

eddy volume ~ y3 where y is the radial width of the mixing region, they 

find 

6.5 1.5d2/c5 
noise ~ P0VrelVj (5]) 

where d is the jet diameter. Their experimental results show an even slower 

V 5 V 3 dependence on Vre I , roughly like rel j " 

We may speculate on the process of vortex formation when V is non zero. 

In practice there will be a thick turbulent boundary layer on the outside of the 

nacelle. The velocity gradients in the viscous inner part of this layer will 

be very steep and it is probably reasonable to assume an effective slip velocity 

V l say (the velocity at the edge of the viscous sub-layer) where V| is about 

0.6V~ The eddies may therefore be expected to form with vorticity that matches 

a velocity jump of Vj - V! (rather than V. - V ) but as they evolve they will 
j 
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ingest fluid from the outer turbulent boundary layer some of which will have 

weak negative vorticity relative to their positive primary vorticity. The 

distribution of this negative vorticity will be variable but since it seems 

hardly likely that it will re~oe the noise output, one might perhaps ignore 

it as a first approximation. The velocity terms in equation (51) should then 

be modified to (V~ - Vl)6"Sv. 1"5 which would perhaps give a slightly better j 
agreement with experiment. The subject is however, very complicated and needs 

further study. 

5 CONCLUSIONS 

It has been shown how stable vortices radiate sound in accordance with 

their natural frequencies when disturbed. At low Mach number the fundamental 

mode is the most important, and the radiation from this mode is typical of 

quadrupole radiation. It is also noted that the larger eddies radiate sound 

much more efficiently per unit area than do smaller eddies for the same mean 

vorticity, although this result is greatly modified if one compares vortices 

at different stages of development in the same mixing region since their mean 

vorticity reduces with size. 

A discussion of the process of eddy formation and growth (following 

Moore and Saffman) concludes that the vortices become relatively weaker as they 

grow and this results in a reduction of their natural frequencies, in accord- 

ance with observations of jet noise. A speculation as to the effect of forward 

speed suggests that Vre I should be replaced by Vj - V I where V 1 is the 

velocity at the edge of the viscous sub-layer in the turbulent boundary layer 

outside the nacelle. 
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Appendix 

THE STABILITY SOLUTION OF MOORE AND SAFFMAN 
]0 FOR ELLIPTIC VORTICES 

Elliptic coordinates (~,q) are used such that 

x = r 0 cosh E cos n 

J y = r 0 sinh ~ sin ~ . 
(A-I) 

In steady equilibrium the vortex boundary is defined by 

= ~0 (A-2) 

and within this boundary there is uniform vorticity m , with zero vorticity 

outside. Moore and Saffman show the vortex to be stable if the eccentricity of 

the ellipse is less than some critical value. In terms of ~0 ' the greater 

the value of ~0 the smaller the eccentricity and the greater the stability, 

with the critical value being given by ~0 ~ 0.36 . 

The perturbation of the boundary ~0 is defined by 

~v = ~0 + e°tf(n) ' (A-3) 

with 

h2f(~) = (A cos m~ + B sin mn)r~ (A-4) 

where A and B are constants and h is the line element of the elliptic 

coordinates given by 

h 2 = r~(sinh2~ + sinh2n) . (A-5) 

Inside the vortex (region I) the velocity components are then, 



24 Appendix 

v~ : 
~r_~ 0 sinh260 cosh2E sin 2n - cosh2~o sinh2~.sin 2n) 

h 2(sinh2~o + cash260) 

v 
h 

-I 
+ eat(mE sinh m6 cos mn + mF cash m6 sin mn) I 

J 

~< $0 

21 2 ~r 0 sinh260 sinh 26 cos n + cash260 

h 2(sinh2E0 + cosh2~o) 

sinh 26 sin2n) 

> (A-6) 

+ eat( - mE cash m6 sin m~ + mF sinh m6 cos mn~ 

J 

6 < 6 0 

Outside the vortex (region 2) they are, 

v 6 -- 
mr 0 26 

---fi- I- e ~ sin 2n + me (C cos mn + D sin mn 

~> '~o I 
v 
n 

F mr 0 26 

2~h h 
-4(~-~0)I e at-ra6 

! + e ~ cos 2~ + me (C sin m~ - D cos mn . 

~> ~0 
...... (A-7) 

The boundary conditions provide the relations for the constants A to F . 
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A{m tanh 2~ 0 - 2 cosh m~0(cosh m~ 0 - sinh mS0)} = 2 om B 

where b(~ 0) 

E = Be-m~0/m 

F = mbE/o 

2m~ 0 
C = - ½E(e - I) 

2m~0 ])/2a 
= - ~bE(e - 

2 -~0 (m+2) I 4~0 
me | +e 

4 cosh 250 

_ 2e 2mE0) 

(A-8) 

and for the frequency = , 

2 
=2 - O2 ~ I 2 2m~0 )2 

= = -4-- (m tanh 2~ 0 - I) - (cosh 2m~ o - sinh . (A-9) 

We have already noted that as t 0 increases the ellipse becomes more circular, 

and in the limit ~0 + ~ it is easy to see that equation (A-9) agrees with 

equation (18). The coefficients A to F have been made non-dimensional 
I0 

unlike the corresponding coefficients in Moore and Saffman . 
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SYMBOLS 

non-dimensional amplitude coefficients 

mean radial flux of acoustic energy/unit length of vortex 

Mach number - specifically the greatest Mach number in the vortex flow 

source strength (equation (44)) 

steady state velocity 

vortex radius; major axis of ellipse 

coefficients defined by equation (26) 

minor axis of ellipse 

speed of sound 

vortex spacing; jet diameter 

strain parameter (equation (42)) 

mode shape 

wave number 

mode number 

pressure 

radial coordinate; r 0 vortex radius; 

time 

time-dependent velocity perturbation 

time-dependent velocity 

circulation 

frequency given by equation (18) 

elliptic coordinate 

angular coordinate 

wavelength 

elliptic coordinate 

density 

rate of growth (equation (4)) 

velocity potential of disturbance 

vorticity 

r| vortex spacing 
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