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INTRODUCTION

One could easily Justify the study of the djstribution of
quadretic forms from the standpoint that many of the tests in
statistics are based on the distributions of qQuentities which can
be thought of as special cases of either a guadretic form or funce
tions of quedretic forms., The applications are too numerous to
mention; however, we skell list a few as illustrations.

(1) The distribution of a definite quadratic

form vhere the components have a multie
variste normal distribution.

(i11) The problem of finding the power func-
tion of the chi-scuare statistic, for
large semples, can be reduced to that of
finding the distribution of a positive
definite quedratic form in non-central
normal veriates.

(111)The distribution of a form of the serial
correlation coefficient can be expressed
in terms of the distribution of a ratio
of two quadratic forms. See Anderson [-1;71

(iv) Of special importence is von Neumann's

statistic, /29 7, [20 7, the ratio of

1., Numbers in square brackets refer to bibliography.
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(v)

(vi)

the me=n squere successive difference

to the verimnce, msed to test whether
obeerratlions are independent or whether

a trend exists,

Durbir end Vatson [ 6 /. use & similer
svetistic to test the error terms for
independence in least squares regression.
Koopnens [ 12 7, says, "Assuming a normal
distridution for the random disturbance, the
rathematical prerecuisite for en estimation
theory of stochastic processes is the study
of the Joinit distributions of certain quadratic
forms in normal variables". Th2 protlem
Kocpmens considers is that of estimating the
serial corrzlation in a stationary stochastic

procecs.

(vii) Tc %ez: hypothes~s concerning variance

componenis In the analysis of variance, we
require the distribution of an indefinite

quadratic form.

(viii) Hotelling /9 7, shows how the distribution

of the ratioc of an indefinite quadratic form
in non-central normal variates to a definite
quadratic form could be used in the theory of

selecting variates for use in prediction.
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(1x) McCarthy /13 7, shows how the distribution
of the ratio of two definite quadratic forms
could be used to make an F test in the
analysis of varience when the assumptions
of equal veriances and independence of the
observations are not met.

It would make this report quite lengthy to discuss the
distributions of all these functions of quadratic forms. We
shall restrict ourselves to the study of a definite quadratic
form in both central and non-central independent normal variates,
giving an important application for each distribution. Then we
shall discuss two specisl cases of an indefinite quadratio form,
Finally, we shall discuss a few inequelities. We give below a
slightly more detailed chapter-wise breakdown,

In Chapter I we shall be concerned with the distribution of
a definite quadratic form in independent N(0,l) variates.

Robbins zflé;], has treated this problem but we have carried it a
bit further. Robbins and Pitman ['11;7, have given an expression
for the distribution of a linear combination of chi-square variates.
We feel that we have improved on this form. We have derived an
expression vhich depends only on the value of the determinant of
the form and on the momente of the inverse quadratic form. The
expression is an alternating series which converges absolutely

and is such that if ve stop after any even power we have an upper

bound, and if we stop after any odd power, a lower bound to the
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cumulative distribution function. Hotelling /10 / and Gurland
/8.7, have suggested the use of Laguerre polynamials in f£inding
distributions of quadratic formes. A bdbrief account of Hotelling's
method will de given.

In Chepter II we have derived an expression for the
distridution of & definite quadratic form in non-central
independent normal variates which depends only on the value of
the determinant of the form and on the moments of the inverse
quedratic form in normsl varlates with imaginary means, This
statement will be made clearer later on, This result enables us to

find the power function of the chi-square statistic,
In Chepter III we have dlscussed the distribution of

the difference between two independent chi-squares having different
numbers of degrees of freedcm. If the degrees of freedom are the
same, the distribution becomes the same as the distribution of
the sample covarisnce in sampling from a normal population. We
have studied the properties of this distribution in some detail.

In Chapter IV we give some inequalities for the distribution
of & quadratic form in N(O, 1) variates and also for the general

case.
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NOTATION

All vectors are column vectors and primes indicate their
transposes,

"p.d.f." stands for "probability density function";

"c.d.f." etends for "cumuletive distridution function";

"r.v," stands for "random variable";

"q.f." stands for "Quadratic form"

-e

"N(u,0)" stands for "a r.v. heving e normel p.d.f. with

mean u end standard deviation o,
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CHAPTER I

THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM
IN INDEPENDENT CENTRAL NORMAL VARIATES

1.1 The problem.

Suppose we have a q.f. Qn =

v

YA Y in Yl,...,Yn, where
the Y, are independent N(O, 1) variates, and where Y' = (Yl,...,Yn),

wvhere the dash denotes the transpose of the colum vector Y.

Let Fn(t) = Pr(an t). Then the problem is to find Fn(t). It

is well known that we can mske an orthogonal transformation,

Y =P X, say, vhere P P' = P'P = I, such that -%‘ YAY = -;-' X'P'APX =
1 1 & 2

=XDX=5 Z a,x,, wvhere D 1s a diegonal matrix having the

2 a 2 1-1 i1 a

elements Byyeeesly in its main dlegonal, and where 8qyee0,8, BT

the latent roots of the matrix A, Under such a transformastion,

XyseensXy remain independent N(O, 1). So the problem is now to

n
find the Pr(% z aixi <t), vwhere we assume that 8,> 0, i=1,...,n.
=1 -

1.2 The solution.

n
Theorem 1.1. Let Qn = %‘ z aixi, where the x, ere
i=1

independent N(0O, 1), and where a

n
* 1 - 2
1 > O, 1.1, ) o,nc Iﬁt Qn. 'é’iilailxio
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2
Then,
2 k BHE
(a) Fy(t) = i 17z L (1:?) x(xQn
8y .an) k=0 ‘ I‘(-§+k+l)

where E(Q:)k is the k-th moment of Q:.

(b) The seriee is absolutely convergent and therefore it

‘ie convergent,

(c) For any two positive integers r and s and every t > O,
28-2 2r-1

£4 > F (t) > L 4, vhere
=0 k n k=odk

. /2 RVER- W

k= 2 !
(al...an)l/ k r(§+k+1)
Proof,
- 12 2
Let dx = ax;...dx and /R 7 = /'3 Elaixif t _/, then
. n

2 [N X ] n

Fn(t) = (2n) “{‘ dr exp - % z xi dx.
[r7 1

We shall make usse of the Dirichlet integral;
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where -00 < x, < o0, and (J, Cys Dy 8T all positive, and the

nx, p ]
range of integration is 8(35) 1 <1, see Favards 1], If ve
R | -

expand the exponential in the integrand, we get

(- 3 x?)k
F(t) = (2n) f 7 —L ax .

[R7 k=0 ’

ol
[l i -]

Lol

We need to evaluate integrals of the following type:
[N N J n
,j f (2 & .
[R7] 1

If we expand the integrand according to the multinomial theorem,

we get

L n 21
k! _ff T
I.+...41 =k —— . x dx .
1l n ilo'oooino Z R_7 ng J J
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We now make use of the Birichlet integral stated earlier, where

. (_32)1/2, Py =2, [ = (21,31), gotting

°
Sof “
vee n 2 (2t) k! .
£X;)dx =
: W (1 1= (al...an)iﬁr(-g-rk-rl)
1l 1
z (1 eeol(3 )
1y%ee ot sk (45 in*ﬁ X
1 D
111..'111.'&1 ...ﬂn

The problem now 18 to evaluate this last expression. Recelling

257 (k43)

r(—é)

that 1f X, 18 N(0, 1), then E(x)* = , we find that

i

ICWRES DY g e e

211 xai
1 [ N n
i i

1l n
al LK ] Oan

X n

- k!
‘2&1 & R vy by
1+...+ n- n
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211 21n

E x [ N} .E
=K = 1 ™
, w—

1 n
l:..lin! all oooan

1+. .o +in-k 4

.3 1 1
2 l"(i ""')sotF(i +‘)
12 n 2
= ki z T 1
1. 4..041 =k 1l n
1 n il.'...in.' a8, a8y
So that
nn
7 N ek
se e 2 + *. k
, f (£ x))° ax = (2 11/-2" = E(e)”
[R] 1 (8)+008,)"“ P(Z+kel)
and
* k
tn/a oo (-t)k E(Qn)

F_(%) = L
n()mmk.

P('g-l-ki-l)

This proves part (a) of the theorem.

To show absolute convergence we note that if

> "22"'3"n>°’ then
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6
n r(24%)
B <k B s e 52—, so that
—ar 2371 ok I'(
n n
tn/e oo .k 1"(-1-21+k)
Fn(t) < 7

z
= (ay..08) % ke0 r(3+ke1)aT(E)

{n/2 ob/en
<
= (ageea)® 1B

< 00, for finite t.

This proves part (b) of the theorem.

The bounds we obtaln are based on the fact that 1f r and s are

28-2 k
any two poeitive integers > 1, then for z >0, kzo ;? >e % >
=
2r-1 k
g L2
=0 k!

This proves part (c) of the theorem.

In the case where scme of the latent roots are zero, 1i.e.
when the form is positive semi-dsfinite of rank r, say, we need
only replace n by r in the theorem and in the proof,

Remarks,

(1) The moments of Q:, E(Q:)k, are easy to obtain from the

1

n
1) B
cumulants of Q:. The r-th cumulant of Q: 18 kr(Q:)s il y air.

1
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From Kendall [11_7, we have expressions for the first ten moments
in terms of the cumulants.

(11) Let S, be the sum of the first r+l terms of the series
for Fn(t). Then SO’ 82, Sh’ +os 18 & sequence of upper bounde and

8, 85, 85, ... 18 & sequence of lower bounds to Fn(t). Ifr E

2k+42
is the error camitted by stopping with Sak-o-l s then
E2k+25 louobo 82r - 8.1|bn sﬁr-‘-l’ r'o,l,ooo,k; k=0,1,.-.,
E2k+l§ luu-bo 82r - S.l.b. Ser'l’ hl’a’c.c,k; k’l,a’cco .
The values of l.u.b. S, and g.1l.b. S, , depend on the values of
the latent roots. We note thet Eek 25 Sak' Sak+1 = the last
term included, and E,,_ ,<S,, = 8 = the last term included.

2k+l= 2k 2k-1
Hence, the error is less than the lest term included and it is
positive if we take an odd number of terms and negative if we
take an even number of terms.

(111) The above theorem seems to be in several ways an
improvement over the method given in Robbins [ 16 7.

1.3 An application: Tre distridution of & sum of squares in

deperdent variates.

Suppose that xl Jees ,xn have & joint multivariate normal

distridbution with 2ero means end covarience meatrix equal to A'l.
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n
Then the problem is, vhat is the distribution of § L Xo7 Now
1

rr[%x'xftj--—‘—‘-‘—ﬂ-:f f fExp--x'AIdx.
(2x) [EI'I<t7

Make an orthogonal trensformation, X = L Y, say where L L' = L'L = I,
n

Then X'X = Y'Y and X'AX = Y'LALY = I a,Y-, vhere a, ,...‘an are
1

the latent roots of the matrix A, Now make the transformation

e
Z - cirf, gotting

ol

f'“ Exp--;-'z'z az

12 .-
[— z 8y 243 t/

Pr[% X'X < t_ ] = (2x)

i

= Pr[Q: < 4/, end we can make use of

theorenm 1.1.
Remark,

Caombining the results of theorem 1.1 and the above application
it 1s easy to show that we could find the distribution of a definite
q.f., X'A X, in xl, veey xn vhere xl, coey xu have a multivariate

-1

normal distridbution with coveriance matrix B ©, and this distridution

involves as parameters the characteristic roots of AB'I.


http://www.abbottaerospace.com/technical-library

We shall now state, without proof, an obvious corollary

to theorem 1.1, obtained by letting the firset n, latent roots be
8y, the next m, irvent roots be 8y, etc.

Corollary 1.1

1, 2 2 . e
Let 5, = 5{e; ¥ :«.1+ vee 8 xmr), waere the Xmi are

independent r,v.'s heving e central chi-gquare dietridbution with

. * 1, -1 2 -1 2
m, degroes of froedom. Lot §_ = g(a; xml+...+ 8, er),
r
M= i m, &> 0, @, (t) = Pr(S < t), then

*k
k E(S
G (t) = tM/a 5 j;:) E:d :.‘) ’
r 3 .
(atl...arr 1/2 k=0 I (z+k+L)

vhere E(SI)k is the k-th moment of s:. The series ie absolutely

convergent, and for any two positive integers s and jJ end every

ts> 0,

28-2 ) 2J-1
£ 4 >6(t) > £ 4a,, vwhere
k0 5 T k0
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M/ (-)F B(sh)"

(E:].“.a ry1ife B raca)

d

k

Remarks,
(1) The moments of S: are easy to obtain from the

-1):

r
-J
5 S me,v,

31 171

cumulents, The J-th cumulent of S, is k J(s:) -
We can find the first ten mcmente in terms of the cumulante
from Kendall /711 7.
(11) 'The above corollary gives a method which seems to
be en improvement over the ocne given in Robbins and Pitman / 17 7.

1.4 Hotelling's method of Laguerre polyncmials.

In this section we shall give a very brief account of a
method suggested by Hotelling /710 7. Let Q = (s Xo+...48 X2),
vhere the x1 ere indspendent N(O, 1) variates and where 8y > o,

i=l,,..,n. Let g(q) be the p.d.f. of Q, and let

=X M-l

f(x)-°—-ﬂ-§y— , x>0 , vhersm =3,

Then the suggested expension for g(q) 1s the Laguerre series
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00
-1
6(a) = #(0) v, 18V (q),

vhere Lr(.m'l)(q), rs0, 1,..., 18 the sequence of Laguerre polynomials

satisfying the relation

00

S PN et
0

1, = 0,1,..., form >0,

The Laguerre polynomisl Lsm'l)(q) has the following explicit

representation:
v
8 ,84m-1 {-g{
L(m"l)(q) = z ( 8-v ) '.' ) B'O,l,... []
(] v=0

See Sgego /18 /. It follows from the orthogonslity condition that

00
b, --’—;'.-({%} f e(q) LS"I)(Q) dq,
0 /

and so b . is 2 linear function of the moments of Qn. The series

g(a) = £(q) (1+bL, (@)+dsLo(a)+...)
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converges uniformly over the whole real axis and so we can integrate
term by temm.
Remarks,

(1) The main drawback in using the above expansion is
that no convenient bound 1is known for the error committed by
stopping after a certain number of terms.

(11) Hotelling suggests that the above series be used
to find the p.d.f. of the ratio of a definite quadratic form to
a sum of squares and the p.d.f. of an indefinite form by
convolution, since an indefinite form is the difference of two

definite forms.


http://www.abbottaerospace.com/technical-library

CHAPTER II

THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM IN INDEPENDENT NON=-
CENTRAL NORMAL VARIATES

2.1 The problenm,

1
Suppose we have a q. f. Q.= Y1AY in Y15 sesy Y, where the
Y, are independent N(g,, 1) variates, and where y' = (Yl, coes T Do
Let

G (5815 eees ) = O (85 ) = Pr(Q < 1)

then the problem is to £ind Gn(t; g). Lot us make an orthogonal

transformation Y = I'X, say, where I''' = I'T? = I, such that

n
. 2
» t - -
YIAY = XITIATX X’Dax Z aixi ’

1

where Da is a diagonal matrix having the elements 815 evey 8 in the

main diagonal, where 85 eeey 8 are the latent roots of the matrix A,
If EY = £, then EX = I''Z = |y (say), where X! = (El"”’zn) and
pt = (“1’ veey “’n)' Hgnce, under such a transformation xl, ey xn

remain independent with the same variances as Yl’ sesy Yn’ but the
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1L
mean of X, 48 now py = (Y1487 + eeu + Y48, ), where (Yyy, eees ¥py)
are the elements of the i-th row of I'!,

n
So the problem 18 now to find the Pr /” 5 3a,X2 <t _7, where

14i-
the X, are independent N(ui, 1),
2.2 The solution,
Theorem 2,1 Let Q = = ga X2 , where the X, are independent N(u,,1)
. %3 Bk 1 Bys

' T N
and where a, > a, > e0e 2 8 >0, Let Q =% Za Y , where the

k=1

Y, are independent N(iy,, 1), 1 = /<L . Then

e~ tn/2 o¢ 8 c
(a) G (b5 p) = === z (=) 2
n\“ B n
(al”‘an) 8%0 al HCRE R 1)
where o_ = E(Q"")% , and \ = - g 2
8 Q) 2 4m1 By o

(b) The series is absolutely convergent and therefore it is conver-
gent,

(¢) For any two positive integers r and k and every t > O,
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2r k-1
I d;>G (t;E) > & dg, where
s=0 S:O
oM n/2
3 = . . ("t)s — cS
3 (al...a 7 sl MG+ s 1)

Proof, We know that if the X, are independent Ny g 1)and if

12 2 122 '
A==2Zpu, ,and ¥ == 2 X; , then the p,dsf. of Y is
- 1l o0 m
- - - 3
ekeyy?. > (s

n
m=0 m¢ T{m + -2-)

n -
1l 2
let [R] = /[ i ayy St_7 ,dy =dy .. dy, and M = 35 Wy» then
i
1
¥y =3 00 O )
G(t)u)" f j <) Jng Z 1 de
J'l 1,0 140 T(iye .2.)

J
/ey
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i i
2z 1 e )\ n
2 00 1
e 3 3 - . I(t3a3n) ,
ka0 dy+esu+d =k 111...1 xr(i1 2)...1‘(1
where

n -1

I(t3asn) = jS Exp -2y, 7Ty 2 dyy e
1 ;j=1

L[R7

Expanding the exponential and making use of the Dirichlet integral

stated in (1.2), we obtains

i i
- 90 7\11 N )nn
Gn(t;E)ae z z S s —
, k=0 fp*eoutdl =k Lices 1 I(y+ 2) r(in+ 5)

1, 1
n I(1;+J +=) 4o el(1 4] +)
el g 1
N i i 2 nn2
1
=0 Jl‘.’o.o""jn'r Jlocoojn! il+jl l in+jn"‘]: 0
ay 2 . a, 2 P(k+r+-5»1)
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This can be rewritten as

- ¢0/2 00 (~t)®
G (s p) = = I oy =i s where
(al...an) s=0 sd F(E +8+1)
s
c_.= X -2 A d

i i
o1 e h” Py Bhanel( s -1

where d = 7 3 .
aytend P 4 ot ] (G118 aan(3 1 ) T(ae %)'"r(in" 3

The problem now is to evaluate cs;

Lot Q:* - % ailyi » vhere the Y, are independent N(iuk, 1), i= /<1,

n
b
k=l

then

00
£ - (20)"1/2 f 27 Exp - %(Y_m)e sy

=00 :
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r
-2 3 (gg) (%)% 2™ r(r-ge 2)
J=0 5

1
r I(r+ =) »
= 3 (5) —f (u ) 2rd and
=0 9" (3+ .2.) ’
23 23
B =27 2 s BY, Seer I 7
jl+ooo+jn'8 jlo .cc“ni J e j
a 1 a n
l °0 0
J J
8-k 1 n
- 2"'8 3 8l 2 . "

m— jl 5
31+0'0*jn=s 31‘ .oojn‘al ...an 1

i, - 4

: 1ye.,2y 1 2\"n
where h = (31) “.(Jn P(3* 'g)"-r(jg* 5)(=uy) .;.(-p.n)
in II‘(j-l" 5) 'YX I‘(12+ .2.)

8
z z oA 4
k=0 11+..'*in-k 31“'00.""‘]“‘8
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sl )sl:Llooo )\ ( 1) I‘(.‘ll‘* "") aee r(j + "')

where d = . J
Lot 1034 Mea (34 0 (s B)ne o 1)a1 veid”

But this is Just ¢ g Hence,

=\ ,n/2 00 8 14\ 8
6 (byn) = Smct -t) B(Q")
n( E) (ale . .a;v)l/? g=0 8l

This proves (a) of the theorem,

If kr(Qn) is the r-th cumulant of Qn’ it is not difficult to
show that

‘ (r-1)1 2
kr(Qn) - --2--2-. 351 a (1 + m‘j) .

Hence, to find the r-th cumulant of Q::* we must replace p 3 by i 3 and

-1 ey (pel)] 0 op 2
ay by a3 s getting, kr(Qn ) -T- jfl 8 (l-rp.j) « There=-

fore, c, is the s-th moment of a r,vs whose s-th cumulant is

kg(Qr) o
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n
If Q: -% z azl xf_ , where the xi are independent N(O, 1),
1
#y _ (r-1)1 -r 3 3#
then kr(Qn) - ..._2 3?-:1 ay Therefore, kr(Qn ) < kr(Qn) ,
r(3 + 8)
and it follows that E(Q:*)S = E(Q;:')s < —s?"ﬁ'— o Consequently,
r(,)
n ‘2
2 .0/ 2
\ ,nf2 00 .8 riz + 8)

t

G (b3 p) =< ~
i ' (al...an)l/2 s=0 sl a: I‘(g +8+1)

40 ? t/an
< - < 00 for finite t ,
(a,...a )1/2 + 1)

This proves (b) of the theorem, The bounds stated in theorem 2,1

are based on the fact that if r and s are any two positive integers

> 1, then for z > 0,

-1
gs ~Z)k S e_z S 2§ (.’z)k )
k=0 ki k=0 ki

This proves (c) of the theorem,
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el

Theorem 2.2, Under the conditions of theorem 2.1,

-l .
G (t; p)> o "G (t; 0) ,

wvhere Gn(t ; 0) equals the Fn(t) of theocrem 1.1.

Proof.,
1/2 (A )"1
n -y, - 0o ¥y
G _(t;p) / "‘f Y o ° ¥y ' E dyi.
Now,
231+l
y -1
i 2
f f 72 T 1, 2
DI 5T dy, = Pr [5(8.1')(23 R XQJ ) S <t 7,
[ R7J =1 i 1t
wherexg Jm”‘ is & r.v. having a centrel chi-equare distribution
with a.jm+1 degrees of freedom. Hence,
J J
-\ 90 xll...xn“
Gn(t;}_t) =0 z b T .
k=0 Jl+. . .+J =k Y1'°'*’+n’

Pr [§(e, X3 29,41%***n xaa st/
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and so,
6 (t; p) > e a_(t3 0)
n ’ & L n - 4

We note that equality is attained for any given t, by putting A = 0
(in which case p = Q) ,

Theorem 2.3, Under the conditions of theorem 2,1,

6 (t; ) <6 (t; 0) .

Proof,
Using a special case of a more general unpublished result due to

Sigeity Morigutl, we find that

f exp--;:(x-u)edxj j exp-%x2dx .
L ax2_<_ t 7 A ax2_<_ t_7

We can generalize the above inequality to the case n = 2 as follows:

1 2 2
-[ J; oxp - 3 L[ (x)4y)" + (x0p) 7 ax) ax,
[axpragxst 7

1 2
- ,{ 5[ , exp - !(x.l-lll) dx, exp - %(xz-p.z)z dx,
[ags ] [axs t-ax, ]
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= ‘( ,r exp - 22) ax, ax, .

-2
[axax, gt ]

Generalizing the method used for the case n=2, 1t is not

difficult to show that the above inequality could be esteblished
for n=3,4,... . This completes the proof. Combining the

results of theorems 2.2 end 2.3 we have the very useful inequality:

Y
6,(t;0) > G (t;p) > 0 " G (t;0).

\

The proof of theorem 2.3 was suggested to the writer by
Professor 8. N. Roy.
Remarks.

(1) The introduction of an imsginary mean in theorem 2.1
is merely a mathematical convenience; we could have cmitted this

formulation altogether and merely stated that Cy is the s-th
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ek

moment of & r.v. whose s-th cumulant is ks(Q:*).

(11) The moments cg Ore easy to compute when we know the
cumulants. Kendell /11 7, gives the first ten moments in terms
of the cumulents.

(111) It can be shown thet Gh(tig) is invariant under

an orthogonal transformation YsI'X, say, such that 'A T = Da
and ’'T =TT =1,

2.3 An application: The power function of the chi-squere statistic.

Suppose that the observetions from a random experiment
can fall into any one of k cells and that the expected number
0
of observations in the i-th cell under Eb and Ei is m, and m,,

respectively.

0 0

o kng-u)?
Xo* 3—‘-6-—— , é&nd
i=] m,

2
o k (a;m,)
x“s g =3 ,
1] By

vhere

ni is the observed number of observations in the i-th cell. If

1-p 1s the power of the test, then
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a5

B=Prf X (2)5. t I m]_:"':mk_7

- (20)7 /2 fJ exp[-%xaj%:'( a2
[ x5 87 =N

n,-m
approximately, for sufficiently large n,. Putting Xy = J.i 1 ’
n
i

0
0 By =0y
a1/2 = xn:l/:m:l T j_;—-— , and letting x,+u,=y,, ve get
1

: k
TREPLY "‘1:--~»mk._7=(2n)'(k/2) jk"'fexpf-%’zi(n“‘i)fq'(dya
[#lagi <%/

= G (t;p) .

Hence, the arplication of theorem 2.1 will give us the power
function of the chi-square statistic.
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CHAPTER III

THE DISTRIEUTION OF AN INDEFINITE QUADRATIC
FORM IN INDEPENDENT CENTRAL NORMAL VARIATES

3.1 Special case 1.
As & preliminary step to the study of the dietribution of

an indefinite q.f., this section is concerned with the distridbution
of the difference between two independent chi-squares having
differsnt numbers of degrees of freedom. If the degrees of
freedom are the eame, the distribution becomes the same se
thet of the sample coveriance in sempling from a normal population.
We shall study some of the properties of this dietribution in
order to anticipate the behavior of the distribution of a more
general indefinite q.f. Others /15 7, /4 /7, /2] heve
considered this problem from a slightly different standpoint.
The main reaults of this section ere:
(1) Recurrence relations 3.1.4, 3.1.5, 3.1.6, 3.1.7, 3.1.20
(11) Inequalities 3.1.9, 3.1.21
(441) Turther properties 3.1.12, 3.1.13, 3.1.15, 3.1.16
(1v) An epplication of a result due to Berry /3 7, 3.1.19 .
Ir Tn,m =X - Yn’ vhere xn and Y‘ are independently

distridbuted with p.d.f. hn(x) and hh(x) respectively, where

z-1
1 -
hn(x) === 0 x x »y X>0,

r@)
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then if the p.d.f. of Tn,m is gn’m(t),

00

gn,m("‘) - f n(x + ¥y (x) ax, t> 0,
0

00

= f hn(x) b (x = t) dx, t <0,
0

We gee that given the p.a.f. for +> 0, to get it for t<O, replace
t by -t and interchange n and m. Therefore, we shall conslder only
the case t> 0, for definiteness.

Hence,

-t co n,Lo
3.1.1 gnm(t) 2 mm———— f e"a'x(x-r'ls)2 x2 ax, 4>0.
]

-]
r@r@ 3

The moment generating function of T, o is M(O) = Eote -
’

n -
¢ (1+0) . Prom M(8) we see thsl

ol

(1-6)

n
(4) If a,m—> 0O 8O thet o — 1, then Tn,n 1s

asymptotically normsl &F 22,

(11) If n—> 00, put m remeins finite, then T, 4 is
]
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asymptotically normal (g;_n_x)’ V).

(411) If m —> o0, but n remains finite, then T  is
?

asymptotically normal (%! , Vm).

In 3.1.1 let x/t = y, getting

3.1.2 (t) = e
=a T o @)
Let n/2 = p, m/2 = q, and let
00
3.1.3 I(p,q) = f o T (149)? 52 ay.
0

Integrate 3.1.3 by parts three seperate times as follows:

(1) us= (143)7 5, dy = o~ 2T ay,
(11) u = (147)P o™ ¥, av = y3 ¢y,
(111) u = (14y)? y3°1, dv = ¢" Ty 4y, getting

(1)' 1(p,q) = (%;) L[ a I(p,a-1) + p I(p-1,Q)_7,

mn>0, ¢>0,
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(1) 1(na) = () Ie-1,002) + Eg) 1(ra00),

n>-2, q+1>0,

(111)' I(p,q) = (:35) /" (a-1) I(p,q-2) + p I(p~1,q-1)

+ 2t(qg-1) I(p,q-1) + 2tp I(p-1,9)_/,
m>2, q-1>0, respectively.

The restrictions placed on m and q are to prevent the integrated
pert from becaming infinite. Equate (1)' to (1ii)' getting

(tv)  I(pe,a) = (&) I(pel,a-1) + BE) 1(p,0).

In (i)' replace p by p+l and q by q+1 and then substitute from
(11)' and (1v) into (41)' getting
(v) 42 I(pel,qe1) = 2(p+1)(q+l) I(p,@) + ala+l) I(p+l,q-1)

+ p(p+l) I(p-1,q+1).

Nov q(q+l) I(p+l,q-1) + p(p+l) I(p-1,q9+1) = q(q+1) I(p-1,q-1)
+ [ p(p+1)+a(a+l)_7 I(p-1,q41) + 2q(q+1) I(p-1,q), end I(p-1,q+1)
+I(p-1,9) = I(p,q). Subdetitute into (v) getting
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462 I(ps1,q41) = [72(p+1) (q41)+p(p+1)+a(a+1)_7 I(p,a)
+ qa(q+l) I(p-1,9-1) + [a(q+1)-p(p+1)_/ I(p-1,q),

so that finslly,

n(n+2) an(m+2) +2(n+2) (m+2
31k g11+1;,m+lat(t) -[ Ein+2$,m+2$ —7gn+2, ns2 (%)

2
+ nlnzes 8n,m(t) +[m22+2h énii:g}-% 3n,m+2(t)5 >0,

The same relation holds for t <0 if we replece t by -t and
interchange n and m, Note that if nsm, the last term vanishes

and the reletion reduces to

n+l

2
t
en-»&t,m-h“” vl Bn-»'é,n+2("') * a(n+@) 3n,m(t)'
From the first integration by parts we get the simple relation
1,-
3.1.5 gma’m(t) =35/ gm_a,m(t) + gn’mé(t)_7, for all t.

We now make use of the p.d.f.'s to obtain the c.d.rf.'s.

For x50,

00
1274 Tn’n>x_7 = f gn’n(t) dt
X
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00

v .2 3131
. nl = f o f 0"V (y+t)° y° dy dt.
rz) £z o 0

0 n
1l §-1

n
e-ay(Y"'t)a y 4y,

o
Integrate by parts where 4v = e'tdt, and u= f
0

getting

Pr['I'n’m >x ] = &y, nl®) + Pr[Tn—a,m >x_/.

Hence, if n is even,

- (a-2)/2
3.1.6 Pr/ To,m >x / = .1fo Sn-aa,m(’)' vhere

-x
8, nlx) = Pr[Ta,m >x ] = ;_m72 .

If n is odd

(n-3)/2
3.1.7 Pr/ To,m >x [ = JEO 8p29,m(X) *+ Pr/ T, 0 x/.

From 3.1.6 and 3.1.7 it 18 eeen that if ve have a teble of g, ln(1-.)
1

snd 1f we know Pr/ T o> x_] for all m, we can find Pr/ LI x_/
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z2
for all n and n,

Our first obJjective, then, is to be able to find

&, m(t) for any n and m, If we consider & rectangular table
9
of & m(1:) having n columns and m rows, we will £ind that
H
given gn,m(t) for n,m=1,2,3,4,5 end 32,m(t) for m=1,2,.,., Ve

can complete the table ueing 3.1.4 and 3.1.5.
First of all we can fill in the second column using the
fact that

-t
=)
%,m(t) = ;iTe ’ m'l,a,ooo, l.nd

-t
8 (%) "':::72 (¢ +3) , m=1,2,3,45 .

If we let n=m, we obtain, as we shell see later, that

(ﬁ) (n-l)/2
2
8n,n(t) * o 2!‘(%) x(11-1)/2(1")'

Letting nx1,3,5 ve find that g ,(t) = -} Ky, (), ga’b(t)-’%xl(t),

2
and gs,s(t)-%xe(t), vhere Kn(t) is the modified Bessel function

of the second kind of order n, See McLachlan /14 7, amd
wateon /21 7.
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We shall now find the p.d.f. for cases where nsm+2, If

wve complete the square in 3.1.1 end let nam+2, we get

g)m 00 ., 00 -
o mlt) = -—-n,-?'—r [_[ o 7 (52-1)* GY+.f e W(21)? yay
T riginga) P 1

Using the fact that

1

“1/2(%)n 00 Lty 2 n-3
K (t) = 7 e “(y~-1) 4y, end

I‘(n-o—’é) 1

%_Jt'"xn(t)_7 = -t'nxml(t), we get that

msl
t)2

A 3 .
&pi2,n(t) * “‘172"'1,('%":1") LEme)folt) + Kigyy) o(t)_7

If ve now put m=1,3 in the above expression we find thet

85,1(8) = [Ko(t) + K (4) 7, ena
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8 5(t) = % z Ky (8) + Ky(t)_7

We can now use 3.1.5 to find 35’1(1'.), gj,l(t)’ gl,,).(t), and
& 5(1:.). Thera era still six values remaining to be found,
2
mmly} 81,2(*5), 81,1‘_(1"); 83)2(*‘)) 83,’4-(1.‘)’ 35,2(17) and 35,h(t’)

which can bo expreased in terms of ths incomplete gamma funotion.
In fect we find thet

21
(t) = —3 o7y ay, ema
€n,2 2n72r(£21) 2{
n [o]e) n
2 21
&, y(t) = [ _/ Vy2ay-2t / o Ty° dy_7.
2t

I‘( )2

Letting n=3,5 we got &, ,(t), 85 5(t), &5 (%), and g \(t).
Using 3.1.5 we obtain g, 2(t) and & h(t)‘ Now we have all
1 H
&, m(‘t«) for n,n=1,2,3,4,5, and together with ge,m(t), 3.1.4 and
9
3.1,5 ve can gat sll the romaining gn,m(t)'

Our second cbjective, then, is to find Pr/ T, >x 7] for
?

all m. We shall first give a method of eveluating this when m
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is even, and then & method for any m,

Evaluation of Pr/ L x_/, when m is even

00

Pr/ T, >x] = 1 ot H(t) at, where
LT rEr @) ,f

Expend H(t) in a Maclaurin eeries about t=0. Now

(x) e 3 1 /O Bt -3
1) = (0% ) /[ o TP ) Ca,
0

| 3 2
amd B0) = (1) 2 2 r(ed) rGrd) 2 22 .

We may write

k
H(t) = i—.— n“‘)(o) + Rr(t), where

r
z
k=0
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R,(t) --l—f (t-0)7 27 (5 oy,
0

Note that ‘ H(“l)(y)' < 'B(“l)(o), , 80 that

r+l
IR 0)] <7y | 20

Therefore,

‘ Pr/ T1m>x7

(k)( 0) f
Iz )1‘(5) k-O

00

| 5(r+1) (09| f ot 474 gy

rE)IrE) (ra) !

Hence, the error committed by stopping after any term is less

in magnitude then the firast term neglected,

Eveluation of Pr/ T),n> x_] for any m.

31

00 m-1 o0
1 -t, 2 -2yt 2
Pr[Tl,m> x /= 3 ar(g) j ot o/ e vy
x

[

Let H(t) = (L+t) 2 , then

(143) 2 ay at.
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1
Y
B(t) - ﬁdz-:o-(a-}l- r(3+3) + B (t), vhere

%
R, (t) = -},- f (t-y)7 87 () dy, and vhere
0

3 (re2)

H(”l)(ﬂ . (-1)TH 4 ° I‘(r%) (1+t)- 2" Then

men | BN (5)| < | 571 (o), a0 that

r+l
%0) = g (0] |

Therefore

1T (TG
@) o ¥ 24

\ 1278 'rl’m>x_7 - I

r(ré)r(gwu)

. b % (x), where
=+
xr(3) (ra1)ie® T

(x)

<

37
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00 1

I () - f ot t-(dﬁ) at,  J=0,1,... .

3 x

Hence, the error committed is less in magnitude than the first

term neglected. We f£ind that

1
I (X) JSO l,... 1y
J-% J.% | At |

By repeating the above recurrence releation several times, we

00
£1nd thet all T ,(x) can be made to fall back on f o t1/2 g4,

33 x
vhich we can get from a table of the incomplete gamme function,

Briefly summerizing, then, we have shown how to evaluate

eny g, o(t) and Pr[T].,m> x_] 8o that we cen use 3.1.6 and 3.1.7

to find any c.d.f.
Inequalities.

In vhat followe, under this heading, we shall discuse
certain inequalities related to the distribution of the difference
between two independent chi-squares considered in the preceding

sudb-section, 3.1, of section 3.
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If ns=1,

t"a]: oo . W
& - 2 3
& n(t) =2 T 1d) 22 oy,

-

H_ g
end since & “' g (1*%) < 1, it follows that

n 2 2
3.1.8 2 %0 () (1) 2 &, u(t) s 2 % ny(t), t50,

and
n n

R R
3.1.9 22 [1-B,(x) 7> Pr[Tl’n>x_7g. 2-5(14-,1;5) 2[1-111(::)__7,
b 4
vhere K (x) = f hn(t) at, x>0.
0

If n,m> 2, then since

B, nm

N4k n
-2 3l 3 3 -2

(I+*-)T 2 (y+8)° 5° 5y ; 1t follows that
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4o
3,1,10
t 00 nﬂ_a o'tr(nﬂ - 1)
a7 .y
n__ﬂ; f T r" trzg,(te o .
22 r@r@ | 2 @@
n,y n-2
Agatn, stnce 1g (1)° g e , 1t follows from 3.1.1 that,

tor t> (9-5-2-),

5101 22 B (t) s & n(t) s 2 2 n(t) [1- -‘-‘ﬁ%&_ﬂ

Nov letting t —> o0 in 3.1.8 end 3,1.11 we have

o
3.1.12 gn’n(t),v 22 b, (t), so that

&, l.(1:) has the same order of contact at +00 as the p.4.f. of
4

x2 vith n degrees of freedom. Similarly, g, ‘(t) has the same
/4

order of contact at -oo as the p.d.f. of xa with n degrees of
freedmm.

In 3.1,10 letting tewmd> O, we have
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the frequency curve does not meet the origin,

The case n=m,

Under this heading we ehall consider certain properties
of the p.d.f, and c.d.f. of Tn n' In this case the p.d.f. of

s

Tn n is the same as that of the sum of produots of pairs of
J

independent N(0, 1) variates.

On the p.d.f, of TnLn'

The p.d.f. is symmetric and so we shall consider &, n(t)
3

for t > 0. If we put nem in 3.1.13, 23 get

-1
I‘(n-l) r.(n =) i
“3p (2) -2')1‘(-2')

301.1,‘ Sn’n(O)

We can show that &, n(0) is a decreasing function of n,
2

Differentiating 3.1.1% we have

@ . reE H @
@b M il T rd)
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From Cremer (/5 7, p. 131), we heve that I''(n)/I'(n) is en

increasing function end so g n(0) is & decreasing function of n.
3

That 1s,

3,1.15 %;—1 8, n(0) <O.

Finslly, it 1s easy to show that

3.1.15 & 8y, n(t) = 0 at t=0, and

consequently tuet g n(‘.7) hes its maximum at the origin.

If in 3.2.1 ve put n=m, and let 2x = t{y-1), we get

n-1
32)"2”
2
3.1.17 sn,n(t) =D Kn-l (t) .

rEIrG) 5

If nel, g 4(t) = 1 ky(t). It 1s known that K (t) 1s asymptotic

to both axes and has & logaritimic singulerity at the origin.

Using & well-known expansion for K,(t), [ 14 7, we find that

3.1.18 el,l(t)N %’ log% ’ as t —> 0.
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The mament generating function of '1.‘n n becomes

4
n

M(8) = (1-62) 2, and so

et o (2a): [ (5+)
n,n Y, r(_r_x)
2

It 1s worth noting that if we expand Tﬁ'n and use the kmown
2

momente of Xa, we get as a dby-product that

28 Y
B (3%) r@rs-) r@es) (-1)? = L2 r(Bie) r(B),

Vhare 8.0’1"00 &nﬂ n'l’a’ono L]

On the c.d.f, of Tn,n'

?or large values of n we may wish to use the normal

43

spproximation, since T, . is asymptotically normal (o, ), It 1s
H

n
here appropriste to use a result due to Berry / 3 /. Let X=Z X5

i=l

where the x, ere independent r.v.'s. Let EX=C , Var x-oa, the

6.0.2. of X be F(x), MX,) =& |x,| farx,, A= nex AX,), end
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AR

by
AU I
6(x) = (21) ° f e 2 at, then
?
-00
Sup F(x) - G(l'%—)‘f_ g—é-, vhere
-00< X <00
!
(2r) 25_ Cs 1.88, according to Berry.
It ve 1ot U, = 3(x° - ¥2), then wo may write T = £ U
1 21 b g ¥ n,n 1’

vhere X, end Y, are independent N(O, 1) variates. Putting nam=1,

end 2x = t(sec © - 1) in 3.1.1, ve find that E | U,} > = 8/x,

If F (x) ie the c.d.f. of T, n’ then
3.1.19 Sup ‘ L (xVn) - G(x)‘ < 8¢
=00< X< 00 b § J-n

00

Consider next / B Kn(t) dt, Integrate by perts where
x
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n-1

U=t %(t), v = ¢ dt, and use the relation t g(t) -

nKn(t) -t Kn+1(*')’. getting

00

00
j £+l K, (t) dt = £ K (z) + (2041) f t" K (t) at.
X

b 4

Replaecing n by (n-1)/2, we have

31,20 P o(x) = F () - 2 (M3 K (x)
ar 3/T(3

= Fo(x) - 'x'!: %,n(x)

-x
Hence, knowing that ga,a(x) = -°-5- , gh’h(x) = 3;— (14x),

-x
Fo(x) =1 - 25~ , we can obtain ell F, ,(x). Similarly, heving
a table of the Bessel functions K,(x), Kl(x) , «+« We can get all
’2n+1(’)' if we lmow rl(x).

Evaluation of 1"1(:) .

oo
We have x/ 1 - Fl(x)_7 - f Ko(t) dt. Ueing tables of
x
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Ko(t) we could evaluate Fl(x) by numerical quadrature; however,
ve give an slternative method here. Integrate by perte where

Us=1l/t, 4V = txo(t) dt, end use the relation ftnxn_l(t) at =

-t"K_(t), ns1,2,..., gotting

00

00
f Ky(t) a4t = K (x) - / X, (%) &,
X

X

If we carry out this integration by parts repeatedly, we find by
induction thet we get an alternating series, in which the error
coumitted by stopping with a given term i1s less in magnitude
than the first term neglected. If dr is the r-th term of the

series, then

(_1)r+1 of I‘(rﬂ%‘)

r(_]é.) zr-l

a

r Kr(x), r=1,2,... .

Furthermore, if & and k are any two positive integers,

ce-1 2k
3.1,21 ;i 4.2 /1- Fl(z)_]:_»_i a. .
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b7

3.2 Special case 2,
In this section we shall give an expression for the p.d.f.

of an indefinite q.f. when the latent roots of the matrix of the

q.f., are equal in paire.

Theoren 3.2,
Let

1
Qn 3"2'(a.1 Yl 4 v + a-k Yk - °k+l Yk+l “ see * a-n Yn)’

vhere the a,> 0, and the Yi are independent r.v.'s each having

a chi-square distribution with two degrees of freedom. If f£(q)

ie the p.d.f. of Qr, then

k '%3 n-2 k 1 B Y
r(Q) =L e - aJ W (a'J"a'i) W (a'J'.'e‘s) ’ q>o
J=l 1s) esk+l
143
a
£ odar: Nasay? F(erand, <o
- e'a e+ a,-a q< .
Jokil Y ge1 9 Y ek 9
143
Proof.

- The moment generating function of Q’n is
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M(t) = [ (1-a,t)... (1-a t) (1ea, 1 t).0u(Lea b)) “1 Then

00

£(q) = -;:-n f o~ 1t M(it) at.
«00

We can evaluate f(q) using contour integration. Let us take as
our contour in the camplex plane, the real line from -R to 4R
and then the semi-circle of radius R,. in the lower half-plane if
q@>0, and in the upper half-plane when ¢<0O. In both cases the
value of the integral around the semi-circle tends to zero as
R—> o0, if n> 2, Hence

£(q)=2r1 /[ Sum of residues of the integrand at ts-i-, J=l,...,k 7/,
J

q>0, and

=2ri /"Sum of residues of the integrand at t%;, J=k+l,,..,n 7,

¢< 0.

Evaluating the resilues, we get the form stated in the theorem.
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CHAPTER IV

FURTEER BOUNDS ON THE C.D.F. OF A IEFINITE QUADRATIC FORM
IN INDEPENDENT IDENTICALLY DISTRIBUTED VARIATES - EACH
CENTRAL NORMAL OR MORE GENERAL

4,1 The centrel normal case.

If we make use of the p.d.f, of Qam vhen the latent roots
of the matrix of Qem are .oqua.l in paire, we can obtain some
convenient bounds on the p.d.f, of L when the latent roots

are not necessarily equal in pairs., Let

1 2 2 2 2
Uy = §(°‘1x1+’ vett Xode Kt .mmxem), where a,> 0, isl,...,2m,

end where 8178, 17 0p%8) oy +e.y B S8, then the mcoment generating

function of Qem is

M(t) = ["1-e.t)...(1-a %) 7 %, and hence the p.d.f.

00

of Q 18 h(q) = %; f o 1% y(1t) at.
=00

Using the celculus of residues we readily find that
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o 2
4,1.1 h(q) =L e T( (‘J"k
J=1 ksl
k¢J

Suppose now that we want the p.d.f. of

1 2 2
Qp = 5(8,X1+. 485 X5 ), vhere &) > 85> ... > &y, >0.
We form the two expressicns

v 2
=3 [al(X?+X§; + aS(I +xu) o kg 1( ‘en-l Xan)_], and

1, 22 2.2 2 2
Q= 3 L ap(X+L,0 + &, (Za4X)) + oon + a5 (X g+ X5 )/, 80 that
¢
W2 %29

We can find the p.d.f. for QU and QL by ueing 4.1 so that we have
bounds on tke c.d.f. of Q, . Let f (q), £(q), £ (q) be the

p.d.f.'s of QTJ’ Q2n' Q, respectively. Then

t t

f f5(2) dag Pr [y s t /< f £, (q) dq, where
0

0
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D Tage 1
fyld) = L e 291 77 (8241 = 2oxy) s o0

= k#a
n n
£, (a) 8351 e QQJ 231 ;ZI (&, - ‘2k)-1 .
kf)
Remarks,

(1) The above inequality wes suggested by Professor
Hotelling,

(11) The above method could be extended to cover the
case of an indefinite q.f.

4,2 The general case.
In this section we shall discuss briefly a system of

inequalities for the distribution of a definite q.f. Let

Q, -%’(alYi + aee #+ a.n!i), vhere

Pr[\fz_ o/ =0p, 1s1,...,n. Then

Pr(Y§< c,...,!§< c) = (l-p)n. It follows that
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Pr[Qn<-§(a1+ o vo) 7> (1-p)® .

Let a, > &,> ... > & > 0, gotting the following system of

inequalities:
Pr/ey<d 8,7 < ()",

Pr [Qn<-g-(a.n_1+ 2,) 7 < (1-p)" + (l)(l-P)

Pr [Qc 3o o+ &1+ 8) 7 < (1-p)2H3) (1-0) " Lp+(R) (2-0) ™32,

[ 2(& +oootay)_ ] < 1-p°

The above syetem wes suggested to the writer by Professor
Barold Hotelling. The following improvements are due to
Professor S. N. Roy.

Suppose that the dlstribution of Y is known and that
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2¢
Pr(Y2 2 ) =P
i an-a'*an-l""‘n

3’

2¢
a-1+o [N ] +a-n

2
Pr(Yi > =P,

Then it follows that:
(1-p,)" < Pr(Q, <o) g (1-p))7,

(1-p)" < Pr(Q, <o) g (1-p)" + (B)(1-p)" L p,,

(1-p,)" 5 Pr(Qy <c) g (1-p5)™ (3)(2-25)" o (D)(1-p5)""2 15,

L] L] L] . L] L L] .

(l-pn)ns_ Pr(Qn <c) < l-pﬁ .

Hence we have ocne lower bound and a whole system of upper
bounde. Obviously, we would want the least upper bound, in

practice. Incidentslly, PyS Pyg «o0 € Ppe
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