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ABSTRACT

Heat transfer rates for laminar, convective heat transfer in the

entrance region between parallel plates are investigated „ The hydro-

dynamic solution due to Bodia /_2_/ was used in the solution of the energy

equation in finite difference form on a digital computer. The thermal

boundary conditions include: constant heat input, constant wall tempera-

ture, one wall constant temperature and one wall insulated, and constant

but different wall temperatures on the upper and lower walls.

The approximate, integral methods of Siegel and Sparrow /_\J , /_!_/

produce results that are in close agreement with the solutions in this

analysis for the constant heat input and constant wall temperature cases.

The scope of the finite difference solution is limited to a narrow

range of Prandtl numbers near unity, due to the small grid sizes required

for convergence at small Prandtl numbers and to the overly low transfer

rates indicated near the entrance for high Prandtl numbers, which is a

result of the "finite starting length,"
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I. INTRODUCTION

Efficient design of compact heat exchangers such as are employed

for gas turbine regenerators, among other applications, requires maximum

utilization of the high transfer rates available in the entrance region. In

this region the velocity and temperature profiles of the entering fluid are

undergoing rapid transition from their uniform distribution at entrance to the

fully established distributions encountered farther downstream. The well

known Graetz solution, in which only the temperature development is con-

sidered, does not yield adequate results when the velocity and temperature

distributions are simultaneously developing. This is particularly true if the

entrance region represents a considerable percentage of overall length and

the two profiles develop at approximately the same rates. This situation is

frequently encountered with gases where the Prandtl number is approximately

one.

The purpose of the present analysis is to present a finite difference

solution for the heat transfer rates between parallel flat plates for several

different boundary conditions corresponding to various constant wall

temperatures and constant heat input configurations. The approach to the

problem was suggested by Miller /_!_/
'
, which is adapted from the numerical

procedures applied to the entrance region of the circular tubes by Kays /_2J

\





While an analysis such as the present one can hardly compete for

simplicity with approximate treatments such as the Graetz analysis , or

the several energy integral analyses commonly employed in engineering

design, it does provide an exact solution for a limited number of cases

which serves as a standard with which the accuracy of the various approxi-

mate methods may be assessed.





II. ANALYSIS

A. Governing Equations

The governing equations are the energy, momentum (Navier-Stokes)

and continuity equations . In order to reduce the complexity and coupling

of the equations, the following assumptions are made.

The flow is assumed to be:

1„ steady, two-dimensional

2 . laminar

3. incompressible

In addition it is assumed that:

1. thermal diffusivity (o<- ) is constant

2. convective heat transfer is large compared to radiation, axial

conduction, and viscous dissipation.

The governing equations in reduced form may then be expressed as:

Energy:

U *£. + -V il r CC « (1)

Momentum:

u
l% Ti e a*

*«f (2)

Continuity:

iii + ££ =
(3)





Due to the assumption of incompressibility the above equations are

no longer coupled. The temperature development remains dependent upon

the velocity profile, although dependence of velocity on temperature has

been removed

.

The boundary conditions associated with equations (1), (2), and

(3) for flow between parallel flat plates with uniform velocity and tempera-

ture at entrance are:

1 . At the entrance ( x = 0)

t = t = C
°

1

u = uQ
= C

2

v = vQ =

2 . At the walls ( y = + d)

v = vw =

u = uw =

t = tw

3. On centerline

v = v
c
=

4 . Applied thermal boundary conditions

(l) symmetric cases (with respect to duct centerline)

a. constant wall temperature





b. constant heat input

f-*H =C4

(2) asymmetric cases

a. one wall constant temperature, one wall insulated

X = C
5

bo constant wall temperature

= C
f&Y 6

*w2 ~ °7

where: C_^ C 7
6 /

Solution of the energy equation requires that a hydrodynamic

solution be first obtained

.

B. Hydrodynamic Solution

Several hydrodynamic solutions for the entrance region are available.

Solutions have been presented by Bodoia /_Zj , Schlichting / A_/ , Schiller /5_/,

and Han /6_/. The approximate solutions of Schiller and Han have the

advantage of being analytic, and therefore, less cumbersome to use. They

are, however, inherently less accurate than the numerical solutions presented

by Bodoia and Schlichting.





Bodoia's solution was obtained by evaluation of the Prandtl boundary

layer equations in finite-difference form. Velocity profiles were obtained

at given streamwise locations by utilizing matrix methods to simultaneously

solve a column array of momentum expressions normal to the flow.

A comparison of Schlichting's series solution and the Bodoia solution

indicates that, in addition to the velocity gradient discontinuity in the

Schlichting solution where the upstream and downstream solutions are joined,

Schlichting's representation of the pressure gradient, based only on the

centerline velocity, results in a core velocity gradient which is too large

and a wall velocity gradient which is too small /3/.

Comparisons of the dimensionless pressure decrement versus length

due to Bodoia, Schlichting and Han are presented in Fig. 2. Velocity dis-

tribution comparisons between Bodoia and Schlichting, and Schlichting

and Schiller, are shown in Figs . 3 and 4.

The Bodoia solution was adopted for the present analysis.

C . Energy Solution

Equations (l) and (3) may be written in dimensionless form by

introducing the following dimensionless variables:

T = t/t X = ^, x = x/d u = u/un

Y = y/d V = v/u
Q





In dimensionless form, the equations are then:

Energy:

v *T + Rev£L -. J_ S, ...

iJURei}£=0
(5)

Continuity:

\

The following finite difference approximations are then introduced:

il- AT .. Tx*i,y ~ Tv
£X AX AX

frT _ AT _ Tx.y+i " Tx
k y-i

*y " AY 2 ay

(6)

(7)

*X* AY 2 (8)

$5Lz &V z I/«*i,Y -U«-i,v
^X AX 2 AX (9)

iY = 4v s V/.y-Vx.Y-i
(10)

^Y AY AY

Note that (6) is a forward difference and (10) is a backward

difference, whereas the remaining equations are of the central difference





type. These have been expressed in this manher for simplicity and

convenience. The larger truncation error normally associated with the

forward or backward difference is not significant here since practical grid

dimensions require that:

AY » AX

and , due to the nature of the flow:

AU \\ AV
AX AY

Introducing (6) through (10) into (4) and (5) and solving for the

appropriate term yields:

T - f AX AX ReV ] T ,

'XU.Y - L UPRAY 2 VZLYJ X ' Y 'X

Vv -Vw + 4r[ u^-H (12)

which constitute the computing equations

.

Note that the Reynolds number (R ) , although appearing in the

above equations „ remains only for convenience and could be eliminated

It is no longer a parameter in the set of equations having been included

in the dimensionless length variable (X) .





A mixed mean temperature (t ) may be expressed in the following

way:

/Co p U t dA
tm = V (13)m /cp^Uc/A

Removing the constants from within the integral, and simplifying, a

dimensionless mixed mean temperature may be written in finite difference

form:

Y--1

Tm = -J£2 (14)

Z Ux,Y
Y=o

Due to the no-slip condition imposed upon viscous flows, heat

transfer to or from the fluid at the wall may be expressed in terms of

conduction through a thin film of stagnant fluid. Thus:

r

q'-«lA-k(^)
Jrt

(15)

which must equal the heat flux due to convection,

q = q/A - h(tw - tm) (16)

Defining the local Nusselt number as;

NUx = ^ (17)

Combining (14) and (15)

,

(a)

x t»-tw fcm





A Nusselt number based on the hydraulic diameter (d) instead of

half the gap width (d) in finite difference form becomes;

N = — ^~ (IS)
UX ' w \rr\

The hydraulic diameter was introduced in (19) to enable comparisons

with previous solutions. The conversion is:

D = 4d

In addition, for the asymmetric constant wall temperature case, it

is convenient to use a dimensionless parameter other than the Nusselt

number. A dimensionless heat flux parameter may be defined by using

(15) above:

kt d Uy/Y-o

= 4
("5yJy«o

D. Thermal Boundary Conditions In Finite Difference Form

Constant Wall Temperature femmetric Case ) Since the temperature

distribution is symmetrical with respect to the centerline , computations

were performed in only the upper half of the duct. A coordinate system was

adapted with the X axis on the centerline of the channel. The thermal boundary

condition at the wall was applied as:

10





t /tn = T„ = Nw o w

where N is a positive integer.

Constant Heat Input (jfyj
nmftttfis Case) With the axis system as above

,

the slppe of the thermal profile was maintained constant at the wall by

adding a constant to the calculated temperature one step from the wall,

thus:

T = T - + Mlw lw Ay

where: M = ( AT/AYV AXW

Constant Wall Temperature with One Wall Insulated . For this case

the coordinate system was redefined so thfe X axis coincided with the lower

wall. The lower wall boundary condition was taken to be:

t /t = T = Nwy o wj_

while zero slope at the upper wall was obtained by equating the wall

temperature to the calculated temperature one step from the wall:

tw2 //t = Tw
2

= T&2 - AY :

Constant Wall Temperaturei(Agymmfftrjb gajse),. With the axis system

the same as for the insulated wall case, thermal boundary conditions were

established as;

tw/to
= Tw

1

= N
1

VA = TW2
= N

2

where N-, and N
2
are positive integers and N, 4 N

2
-

11





Noting that:

twi _ t = twiAo " 1 = N
x

- 1

tW2 - tQ
tW2/tQ

_ i N
2

- 1

Values of N
1

- 1/ N 2
- 1 of 1/2 , 1/3, 1/4 were investigated.

E. Computational Procedure

The finite difference solution was obtained by using a CDC 1604

digital computer to solve the equations at intervals of AX = CL001 and

AY = 0.1 . Velocity distributions were obtained by interpolating plotted

curves of Bodoia's tabulated results.

Since the entire solution is dependent upon the first calculations

at the entrance, starting values were obtained by reducing the grid size

to AX = 0.0001 and A Y = 0.05 for the first 20 streamwise stations from

X = to 0,0020.

The continuity equation (2) was evaluated and the cross-wise

velocity component (V) was introduced into the energy equation (11) at

each grid point. The energy solution was then obtained at intervals of

Y between centerline and the wall at each streamwise station.

Solutions for each thermal boundary condition were obtained for

Prandtl numbers of: 0.5, 0.7, 1.0, 1.6, 3.2 and 10.

Solutions for Prandtl numbers less than 0.5 are excluded by the grid

size. This may be seen from inspection of the coefficient of the second

temperature term in (ll) # which indicates the interdependence of PR, AX,

12





and AY. In order to obtain convergence, PR must be large enough to

prevent this term from becoming negative. Thus low Prandtl numbers,

approaching those of liquid metals, cannot be effectively handled by

finite-difference methods owing to the large number of calculations

required by the small grid.

The computer program, written in Fortran 60, is included in the

Appendix „

13





III. RESULTS

Tables I through VI contain computed and extrapolated values of

the heat transfer rates as a function of distance from the entrance for each

of the thermal boundary conditions for a Prandtl number of 0.7 „ Figures

5 through 29 contain curves of the transfer rate versus downstream position

and temperature and velocity profiles for Prandtl numbers of 0.5, 0,7, 1.0,

1.6, 3o2 and 10.

With the exception of the Asymmetric Constant Wall Temperature

Case, which is expressed in terms of the dimensionless heat flux parameter,

*
q ; the heat transfer rates are presented as local Nusselt number variation

with the length parameter, L. Whereas, the computations were carried out

using the dimensionless length parameter X, which is normally employed

for hydrodynamic developments; L, based on the hydraulic diameter is

customarily employed in heat transfer. The conversion is:

X = 16L

The use of all finite starting length" in the finite difference equations

results in a finite initial value for the Nusselt number at X = rather than

the theoretically infinite value at the entrance. This causes a nearly flat

slope near the entrance and an artificial inflection point in the Nusselt

number versus length curve. The inflection point occurs progressively

farther downstream with the increasing Prandtl number, thereby limiting the

14





the useful span of the curves. A reduction of grid size from AX = .001

,

AY = . 1 to 4 X = . 000 1 , 4Y = .05 was observed to double the initial

Nusselt number from 40 to 80, arid move the inflection point upstream.

This increased the useful span. However, the approach obviously reaches

a practical limit very rapidly due to the number of calculations and the

accuracy required of the hydrodynamic solution very close to the entrance.

In general, for the three thermal boundary conditions in which the

Nusselt number was used as a heat transfer parameter, the curves for

Prandtl numbers of 0.5, 0.7, l o and 1,6 behave as expected for values

of L> 10"
. For Prandtl numbers of 3.2 and 10, L = 10" 3 is the approxi-

mate lower limit of validity.

Constant Heat Input . A comparison of local Nusselt numbers obtained

in the present analysis with those reported by Siegel and Sparrow /_!_/, and

Han /6/, contained in Fig. 5, indicate close agreement with the results of

Siegel and Sparrow. Their solution employed a simplified energy equation

in which the temperature distribution in the boundary layer was expressed

as a series of polynomials in the transverse coordinate using the down-

stream station as a parameter. The hydrodynamic Solution employed

Schiller's approximation.

The comparison with Han's integro-numerical solution is not as close

as might appear in Fig. 5 since this curve is for a Prandtl number of 0.8

15





and should lie above the other two curves which are for a Prandtl number

of 0.7.

The computed curves of local Nusselt number versus length contained

in Fig . 6 . for Prandtl numbers of 0.5, 0.7, 1.0, 1.6, 3 o 2 , and 1 , i may be

approximated within 10 per cent , for 0.5^ PR ^ 1.6, and L > 1
0~ by the

following;

N„ = 8.24 + -0 186 (

PR/L)
Ux 1+ .0178 (PR/I.)' 6

Velocity and temperature profiles for constant heat input are contained

in Figs. 7 through 10.

Constant Wall Temperature (Symmetric Case) . Local values of Nusselt

numbers for this boundary condition are compared in Fig . 1 1 with those of

Sparrow/ 5/, which were computed using the Karman-Pohlausen method and

Schiller's hydrodynamic solution. Again close correlation is indicated

between the two results.

The local Nusselt number curves of Fig. 12 may be approximately

—3
represented within JO per cent for . 5 £ PR i 1 . 6 , and L > 1 ' by the

following;

.0148 (

PRA)N„ = 7„60 +ux 1 + .0143 (PR/
L)-

6

Velocity and temperature profiles for this boundary condition are

contained in Figs. 13 through 16.

16





One Wall Constant Temperature - One Wall Insulated , The results

of this computation are presented in Fig, 17. The local Nusselt number may

—S
be approximated within 10 per cent for 0.5^ PR- 1.6, and L > 10 by;

N = 4 84 + .0155 (

PR//L)
U* 1 + .012 (

PR/L)'
b

The velocity and temperature distributions are illustrated in Figs.

18 through 21 „

Constant Wall Temperature (Asymmetric Case) . Dimensionless heat

flux values for this boundary condition are presented in Figs. 22, 23 and 24

for Ni - 1 ratios of 1/2, 1/3, and 1/4.

H
2
-l

Note that the upper (hotter) wall curve is smoothly asymptotic to

the value predicted for the steady state condition. The lower curve

exhibits a much shallower initial slope, passes through an inflection

point, and then, approaches a negative asymptotic value of the same

magnitude and at the same rate as the upper wave.

Velocity and temperature profiles for N\ • 1 = 1/4 are presented

in Figs. 25 through 28.

N2 -l

The behavior of the local Nusselt number for this asymmetrical case

is depicted in Fig. 29. The lower curve, representing the local Nusselt

number variation for the lower (cooler) wall, does not depict the actual

physical situation.

17





Both the denominator and the numerator of;

4( Tw-Tw-^y)

"%" T*-T.
(18)

approach zero at different rates. The curve tends to positive infinity as

the denominator approaches zero, returns from negative infinity, and

becomes zero as the numerator goes to zero; and finally approaches the

actual steady asymptotic value.

18





IV. CONCLUSIONS

From the results of this study it may be concluded that:

1. The finite difference method, as employed in this analysis,

yields results which are consistent with previous solutions

for other geometries /_2j and which are asymptotic to the

known fully developed values. The method is, however,

limited to a small range of Prandtl numbers near unity by the

small grid sizes necessary outside this range » For small

Prandtl numbers the grid must be very small to obtain con-

vergence , while for large Prandtl numbers practical grid

dimensions result in significant inaccuracies near the

entrance due to the "finite starting length".

2 . The results of the approximate integral methods suggested

by Siegel and Sparrow /_!_/ for constant heat input, and by

Sparrow /5_/ for constant wall temperature, compare very

favorably with the finite difference solutions reported here.

This additional substantiation of the methods suggested by

these authors is significant because of the practical utility of

their approach,which requires relatively few calculations, is

capable of handling a wide range of Prandtl numbers , and can

predict heat transfer rates very close to the entrance.

19
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TABLE I

CONSTANT HEAT INPUT

PR = .

7

X L N
uux

Tw

0016 . ,0001 46„2 l o 09

0032 .0002 30.0 1.14

0064 .0004 23.7 1.18

0128 .0008 18.0 1.24

0160 .0010 16.6 K26

0320 .0020 12.9 K35

0640 .0040 10„3 1.47

1280 .0080 8.87 1.62

1600 .0100 8.62 1„67

Asymptotic to 8.24

21





TABLE II

CONSTANT WALL TEMPERATURE

(SYMMETRIC CASE)

PR = 0,7

X L N
v

0016 .0001 34.

ux

.0032 .0002 26„0

.0064 .0004 19 9

.0128 ,0008 15.3

.0160 .0010 13.7

.0320 .0020 10.5

.0640 .0040 8.58

.1280 .0080 7.78

.1600 .0010 7.63

Asymptotic to 7.60
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TABLE III

ONE WALL CONSTANT TEMPERATURE - ONE WALL INSULATED

PR = .

7

X L
ux

Tw

.0016 .0001 33.0 1.000

.0032 .0002 24,0 1.000

.0064 .0004 19.2 1.000

.0128 .0008 13.0 1.000

.0160 .0010 11.6 1.000

.0320 .0020 9.05 1.000

.0640 .0040 7.20 1.000

.1280 .0080 5.93 1.001

.1600 ,0100 5.55 1.021

.4000 .0250 4.96 1.139

Asympl:otlc to- 4.84 2.000
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X

.0032

00064

.0128

.0160

.0320

.0460

.1280

.1600

o3200

.6400

.9600

TABLE IV

CONSTANT WALL TEMPERATURE

(ASYMMETRIC CASE)

*U - 1 = 1/ 2 PR = .

7

N
2

- 1

L
*

'1
*

q
2

.0002 26.2 57.5

.0004 17.3 41.4

.0008 11.9 28.7

.0010 10.7 25.9

.0020 8.08 18.7

.0040 6.18 13,7

.0080 4.73 10.1

.0100 4.24 9.15

.0200 2.24 6,35

.0400 -.19 3,81

.0600 -1.23 2,76

Asymptoltic to -2.00 + 2.00
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TABLE V

CONSTANT WALL TEMPERATURE

(ASYMMETRIC CASE)

N
l - 1 =1/3 PR = 0.7

N
2

- 1

X L q
x

*

.0032 .0002 28.0

.CM364 .0004 17.3

.0128 .0008 11.8

.0160 .0010 10.8

.0320 .0020 8.09

.0640 .0040 6.18

.L280 .0080 4.69

.1600 .0100 4.15

.3200 .0200 1.65

.6400 .0400 -1.58

.9600 .0600 -2.97

Asymptotic to -4.00

*
q 2

86 .0

62 .0

43 .0

38 .9

28 .1

20 .6

15 2

13, 8

9, 84

6 41

5. 02

+4 00
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TABLE VI

CONSTANT WALL TEMPERATURE

(ASYMMETRIC CASE)

N
1 - 1 = 1/4 PR = .

7

N
2

- 1

X L

,0032 .0002

,0064 .0004

0128 .0008

0160 .0010

,0320 .0020

0640 .0040

1280 .0080

1600 .0100

3200 .0200

6400 .0400

9600 .0600

Asymptotic to

*
q

l

*

q 2

28.2 116.0

16.8 82.9

12.2 57,7

10.5 50.4

8.09 37.5

6.17 27.5

4.66 20.3

4.06 18.4

1.06 13.3

-2.96 9.03

-4.71 7.27

-6.00 +6.00
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FIGURE 10
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FIGURE 29
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APPENDIX A

SAMPLE FORTRAN 60 PROGRAM
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/

..JOB0191F,LUNDBERG
PROGRAM HEATX23

C CONSTANT HEAT INPUT
C BODOIA VELOCITY DATA
C THIS PROGRAM USES A REDUCED GRID OF. X = .000 1 , Y = . 05
C FOR THE FIRST 20 STREAMWISE CALCULATIONS.
C GRAPH OUTPUTS OF NUSSELT NUMBER VERSUS LENGTH PARAMETER
C FOR'PRANDTL NUMBERS OF 0. 5 ,0.7 » 1.0 ,1 .6 , 3 .2 ,AND 10» '

C ARE OBTAINED TO 50 PER CENT OF THE HYDRODYNAMIC
C DEVELOPMENT. PRINT OUTPUT INCLUDES NUSSELT NUMBER,
C SOPE OF THE TEMPERATURE PROFILE AT THE WALL , AND THE
C . SLOPE OF THE TEMPERATURE PROFILE AT THE WALL, AND THE MEAN
C MIXED MEAN TEMPERATURE. IN ADDITION, VELOCITY AND
C TEMPERATURE VALUES ARE PRINTED AT EACH GRID POINT AT
.C SELECTED STREAMWISE LOCATIONS.

DIMENSION TOO, 23) ,U(30,23) ,V(30,23) ,Y(23) ,X(500)
1,XN(500) ,ITITLE(12)
READ 500,

(

ITITLE( I )» 1=1,6)
READ 500, ( ITIJLE( I ), 1=7,12)

500 FORMAT (6A8)
DO 750 KK=1,6
GO T0(40, 41,42,43, 44, 45), KK

40 PR=0.7
GO TO 46

41 PR=0.5
GO TO 888
GO TO 46 -

•

42 PR=1.0
GO TO 46

43 PR=1.6
GO TO 46

44 PR=3.2
GO TO 46

45 PR=10.
46 PRINT 523

523 FORMAT (1H1)
PRINT 17, PR

17 FORMAT (/////10X,17H PRANDTL NUMBER =,F5.3)
L=l
GO TO 150

700 READ 701, ((U(I,J), J=13»22)» 1=2,22)
701 FORMAT (10F6.4)

DO 710 1=2,22
DO 711 J=l,12

711 U( I ,J)=U( 1,13)
'

710 CONTINUE
DELX=.0001
DELY=0.05
R=1000.
DO 110 L=2,21

150 UTM=0.0
UM=0.0 .

.

XL = L

X(L)=(XL-1.0)*0.0001

60
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108
109

113

112

114
111

131
118

119

DO 111 J=3»
XJ = J
Y(.L) = (XJ-3.
Y(23)=1.0
U( 1,J)=1.
U(l,23)=1.0
V(1,J-1)=0.
V( 1»JJ=0.
T(1,J)=1.0
TU,J+1) = 1.

T( 1,J-1)=1.
T(L,1)=T(L»
U(L»1)=U(L»
U(L,23)=0.0
U(L,2)=U(L,
V(L»3)=0.0
V(L,2)=V(L,
THERMAL BOU
T(L»23)=T(L
T(L»2)=T(L,
IF(L-l) 109
V(L,J)= V(L
A= DELX/ (U
V(L»23)=0.0
B= (DELX*R*

.
T(L+1,J)=(A
IFU-3) 113
UTM=UTM+.5*
UM=UM+.5*U(
GO TO 114
UTM=UTM+U(L
UM=UM+U(L,J
TM=UTM/UM
CONTINUE
Tl= ( T(L
T2= T<L,
XN(L)=4.0*T
PRINT 118,
FORMAT (//

1F8.5,5X,8H
PRINT119, (

PRINT119t (

FORMAT (/9H

22

0)*0.05

5)
'

5 >

*

4)

4)

NDARY CONDITIONS
,2.2)+. 05
4)
,109,108
»J-4) + DELY/(2.*DELX*R) * ( U ( L-l , J ) -U( L+l . J )

)

(L,J)*PR*DELY**2)

V(L,J)) / (2.*DELY*U(L,J)

)

-B)*T(L,J+1 )+(l.-2.*A)*T(L»J)+(A+B)*T(L,J-U
113,112
U(L,J)*T(L,J)
L,J)

,J)*T(L»J)
)

'

,23)-T(L»22) ) / DELY
23) - TM
1/T2
X(L) ,XN(L) ,T2,T1,TM
4H X =,F6.4,5X,14H
SLOPE =,F8.5,5X,5H

NUSSELT NO.
TM =,F8.5)

=,F8.5,5X,8H TW-TM *,

PRINT120, •

(

PRINT120, (

120 FORMAT (/ 9

PRINT121, (

PRINT121, (

121 FORMAT (/ 9

IF(L-l) 700
110 CONTINUE

CALL DRAW <

DO 720 N*2»
M=2*N-1

T(L,J)
T(L,J)
TEMP.

U(L,J)
U(L,J)
H X VEL
V(L,J)
V(L,J)
H Y VELv
,700,110

J=l,12)
J=13,23)
=,12F7.4)
J=l,12)
J=13,23)
=,12F7.4)

J=l,12)
J=13,23)
=,12F7.4)

21»X,XN,MOD,0,LAB,ITITLE,.04,10.,0,0,0,0,6, 6,1, LAST)
11

61

i—

r

-rr





771
720
85

70

U(1»N)=U(11»M)
U(2,N)=U(21,M)
T(2,N)=T(21,M)
PRINT 771, Mi U(
FORMAT (I10,2F10
CONTINUE
L = 2

DO 10 M=2t250
XM = M
Y=0.0
DELY=0.1
DELX=0.001
X(M)=DELX*XM
I=L + 1

N3N=M
N = L + 1

IF(M- 99) 72,73,
READ 1 (U( I ,11) ,

1 ,U( I ,5) ,U( I ,4) ,U
1 FORMAT (10F6.4)

73 IF(M-99 ) 50,51,
IF(M-149) 51,53,
IF(M-199) 53,55,
UU=XM- 99.

2,N) ,T(2,N)
.•5)

82
72

52
54
51

53

U(N,2)
U(N,3)
U(N,4)
U(N,5)
U(N,6)
U(N,7)
U(N,8) =

U(N,9) =

U(N,10)=
U(N,11)=
GO TO 50
UU=XM-149.

=1.4388+.
=1.4292+.
=1.3993+.
=1.3454+.
=1.2628-.
=1.1467-.
= .9938-.
= .8022-.

.5720-.

.3042-.

U(N
U(N
U(N
U(N
U(N
U(N
U(N
U(N
U(N
U(N
60

,2)

,3)
,4)
,5)

,6)

,7)
,8) =

,9) =

,10) =

,11) =

TO 50

=1.4758+.
=1.4629+.
=1.42 39+.
=1.3573+.
=1.2611-.
=1.1336-.
= .9733-.
= .7796-.

.5526-.

.2926-.

55 UU=XM-199.
U(.N,2)
U(N,3)
U(N,4)
U(N,5)
U(N,6)
U(N,7)

=1.4903+.
=1.4762+.
=1.4336+.
=1.3619+.
=1.2604-.
=1.1284-.

73
U( 1,10) ,U( 1,9)
( I ,3) ,U( 1,2) )

52
54
55

000740*UU
000674*UU
000492*UU
000238*UU
000034*UU
000262*UU
000410*UU
000452*UU
000388*UU
000230*UU

000290*UU
000266*UU
000194*UU
000092*UU
000014*UU
000104*UU
000160*UU
000176*UU
000150*UU
000092*UU

0000121*UU
0000110*UU
0000080*UU
0000026*UU
0000005*UU
0000042*UU

,U( I ,8) ,U( I ,7) ,U( I .6)

62
~C" -. . , - ...





U(N»8) = .9653-.0000066*UU
U(N»9) = .7708-.0000072*UU
U(.N.10)= .5451-.0000063*UU
U(N,11)= .2880-.0000475*UU

50 UTM=0.0
UM=0.0
00 11 J=2,ll
XJ = J
Y< J)«DELY*XJ-.2 ' '

U(L»12)=0.0
V(L,2)=0.0
V(L»1)=V( 1,3) '

YQ2) = 1.0
T(L,12).= T(L,11)+0.1
T(L,1)=T(L,3)
U(L,1)=U(L,3)

8 V(L,J)= V(LtJ-l) + DELY/(2.*DELX*R) * { U ( L-l , J ) -U ( L + l , J )

)

>= DELX/ (U(L,J)*PR*DELY**2)
V(L,12)=0.0

,

B= (DELX#R*V(L,J) ) / ( 2 .*DELY*U ( Lt J )

)

. T(L+1,J)=(A-B)*T(L,J+1 ) + Q.-2.*A)*T(L»J) + <A+B)*T(L,J-l)
IFU-2) 13,13,12

13 UTM=UTM+.5*U(L,J)*T(L»J)
UM=UM+.5*U(L»J>
GO TO 14

12. UTM=UTM+U(L,J)*T(L,J) .>

UM=UM+U(L,J)
14 TM=UTM/UM
11 CONTINUE

Tl= ( T(L,12)-T(L,11) ) / DELY
T2= T(L,12)-TM
XN(M)=4.0*T1/T2
IF(N3N-50 ) 31,31,30

30 IF( (N3N/25)*25-N3N) 15,31,31
31 PRINT 18,X(M) ,XN(M>,T2,T1,TM
18 FORMAT (// 4H X = F6. 3 ,5X , 14H NUSSELT NO. =>F8.5,5X»8H TW-TM = »

1F8.5,5X,8H SLOPE =,F8.5,5X,5H TM s»F8.5>
PRINT 19, (T(L,J) , J=l,12)

19 FORMAT (/9H TEMP. =,12F7.4)
PRINT 20, (U(L,J) , J=l,12)

20 FORMAT (/ 9H X VEL. =,12F7.4)
PRINT 21, (V(L,J), J=l,12)

21 FORMAT (/ 9H Y VEL. =»12F7.4)
15 DO 60 J=2,ll

T(L,J)=T(L+1,J)
U(L-1,J)=U(L,J)

60 U(L,J)=U(L+1»J)
10 CONTINUE '

IF(KK-6) 760,761,761
761 MOD=3

GO TO 762
760 MOD=2
762 CALLDRAW(497»X,XN»MOD,0,LAB,ITITLE,.04,10.,0,0,0»0»6» 6t It LAST).
750 CONTINUE

63

:

'
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