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A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES'®

By MaNUEL STEIN and J. MAYERS

SUMMARY

A small-deflection theory that takes into account deformations
due to transverse shear is presented for the elastic-behavior
analysis of orthotropic plates of constant cylindrical curvature
with considerations of buckling included. The theory is
applicable primarily to sandwich construction.

INTRODUCTION

The usual sandwich plate as used in aircraft construction
consists of a light-weight, low-stiffness core material bonded
or riveted between two high-stiffness cover sheets. The
elastic behavior of such plates under loading cannot be
analyzed by conventional plate and shell theories in general
since these theories neglect deformations due to transverse
shear, an effect which may be of great importance in sand-
wich construction.

Many authors have considered transverse shear deflections
in analyzing the elastic behavior of flat sandwich plates by
means of small-deflection theories (see, for example,
references 1 to 4). Most of this work has been concerned
with sandwich plates of the isotropic type (for example,
Metalite, cellular-cellulose-acetate core). In reference 3,
however, sandwich plates of the orthotropic type are also
considered (for example, corrugated core).

The treatment of curved sandwich plates in the

literature has not been as general as that accorded flat

sandwich plates, although several specific studies of the
curved isotropic sandwich plate have been published. These
studies have covered. (a) simply supported, slightly curved
isotropic sandwich plates under compressive end loading
(reference 1), (b) axially symmetric buckling of a simply
supported isotropic sandwich cylinder in compression
(reference 1), and (c) a nonbuckling small-deflection theory
for isotropic sandwich shells which takes into account not
only deflections due to shear but also the effects of core
compression normal to the faces (reference 5).

The need for a general theory for curved sandwich plates
which is applicable to orthotropic as well as isotropic types
and which includes both nonbuckling and buckling effects has
led to the development of the theory presented in this report.
This theory, which takes into account deflections due to

transverse shear, covers those types of sandwich plates
having constant cylindrical curvature, similar properties on
the average above and below the middle surface, and
essentially constant core thickness.

SYMBOLS
D, flexural stiffness of isotropic sandwich plate,
. Eth?
inch-pounds (Wﬁ)
D flexural stiffness of ordinary plate, inch-pounds
Et
12(1—p?)

D,, D, flexural stiffnesses of orthotropic plate in axial
and circumferential directions, inch-pounds
D,y twisting stiffness of orthotropic plate in

ry-plane, inch-pounds

Dq_, Do, transverse shear stiffnesses of orthotropic
plate in axial and circumferential directions,
pounds per inch

D, transverse shear stiffness of isotropic sandwich
plate, pounds per inch

E Young’s modulus for ordinary plate, pounds
per square inch

E; Young’s modulus for faces of isotropic sand-
wich plate, pounds per square inch

E. E, extensional stiffness of orthotropic plate in
axial and circumferential directions, pounds
per inch

G, shear stiffness of orthotropic plate in xy-plane,

pounds per inch
Ly, Ly, Lp, V3, V4,V mathematical operators defined
in section entitled ‘“Theoretical Derivations’
bending moments on plate cross sections
perpendicular to z- and y-axes, respectively,
inch-pounds per inch
M, twisting moments on cross sections perpendic-
ular to z- and y-axes, inch-pounds per inch

M,, M,

NN, resultant normal forces in z- and y-directions,
pounds per inch

Ny resultant shearing force in zy-plane, pounds
per inch

q lateral loading, pounds per square inch

1 Supersedes NACA TN 2017, “A Small-Deflection Theory for Curved Sandwich Plates” by Manuel Stein and J. Mayers, 1950.
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Q:, @, resultany shearing forces in yz-plane and
zz-plane, respectively, pounds per inch

h depth of isotropic sandwich plate measured
between middle surfaces of faces, inches

r constant radius of curvature of plate, inches

t thickness of ordinary plate, inches

ts thickness of face of isotropic sandwich plate,
inches

U, v, w displacements in 2-, -, z-directions, respec-
tively, of a point in middle surface of
plate, inches

x,Y,2 rectangular coordinates

Yy shear strain in xy-plane

€y €y normal strains in axial and ecircumferential
directions

u Poisson’s ratio for ordinary plate

Uy Ly Poisson’s ratios for orthotropic plate, defined
in terms of curvatures

wio 'y Poisson’s ratios for orthotropic plate, defined

in terms of normal strains

THEORETICAL DERIVATIONS
GENERAL THEORY

In developing the equations of equilibrium for the ortho-
tropic curved plate element, shown in figure 1, the basic
assumptions made are that the materials are elastic, that the
deflections are small compared with the plate thickness,
and that the thickness is small compared with the radius of
curvature. The last assumption implies that the shear
forces N, and N, are equal and that the twisting moments
M,, and M,, are equal.

Eleven basic equations.—As in ordinary curved-plate
theory, 11 equations exist for orthotropic curved plates
(considering deflections due to shear) from which the dis-
placements acting in the plate can be determined. The 11
equations consist of 5 equilibrium equations, 3 equations

Fi1curg 1.—Forces and moments acting on curved plate element.

relating resultant forces to strains, and 3 equations relating
resultant moments with curvatures and twist.

The first five equations, expressing force equilibrium in
the z- and y-directions, moment equilibrium about the z-
and y-axes, and force equilibrium in the z-direction, are

ON,  ON,

or T oy 0 ()

%%4-5;\;’”:0 (1b)

Q,— E)Z\I oM,, —0 (1¢)

- aa]tf%aé‘fw 0 (1)

S S N SN, (43 0) 42N 22 tg=0 (19

It should be noted that in these equations, higher-order
terms have been neglected in accordance with considerations
similar to those of reference 6.

For the orthotropic curved plate, the relations between
the resultant middle-surface forces and the middle-surface
strains are (see appendix)

Ex oV
Nx—‘l M:t:,U«y ax+p‘1/ _—-7>] (28')
_ B (o
Ny_l_ﬂ/zﬂ/y ay r +M z ax> (2b)
~ OV, Ou ‘
Nzy_Gzy (a—x'}'_az (20)

From reference 3, the corresponding relations between
resultant moments and curvatures and twist are

__— D, Q2w 1 00, w1 06,
iM””__l——,uz,uylibir D ox Ty oyt Dy Ty):l
(3a)
v Do [¥w_ L 0Q, (w1
M,= 1— pzuy l:ay D a'y Ths ox? DQx ox
(3b)
w100, 100
D"”( 220y~ Do, 0 Dq, by) (3¢)

Equations (1), (2), and (3) are the 11 basic equations neces-
sary for determining the forces, moments, and deflections
acting in the plate. The number of equations can be reduced
to five, however, by substituting equations (2) and (3) into
equations (1). In this manner, five differential equations are
obtained for determining the resultant transverse shear
forces @, and @, and the displacements u, v, and w.



A SMALL-DEFLECTION THEORY T'OR CURVED SANDWICH PLATES 3

The 11 basic equations presented are not restricted to de-
flection problems alone but may be applied to buckling prob-
lems as well by considering the changes that occur during
buckling and modifying equations (1) accordingly. For
equilibrium of the curved plate element after buckling,
equations (1) can be written with N,, N, N,, @, @,, M.,
M., M, and w replaced by Ny +N:, NuyytNu, -,
wo+w,, respectively, where the subscript 0 refers to values
prior to buckling and the subscript 1 refers to changes in
these values that occur during buckling. For equilibrium
of the curved plate element prior to buckling the following
equations apply:

0Nz, , ONu,
Y + oy
ONy,  Nu, _,
oy ox
OM,, oM,
!IO_ a'l: + aly =
M, oM,
Qyo—gy—”‘#——b—r’ho
0@z, 0@ 02 o2 o2
50+ ap TN g N (5 )+ 2N, 5 e =0

Subtracting the previous equations from equations (1)
(as modified) gives the following equilibrium equations which
apply to buckling problems:

‘ale aNII’/[ . E -
R T &
N, N,
al;l a;y;:() : (4b>
OM,, OM,,
QZI__OT ay =0 (4(‘,) ‘
oM, oM,
Q?/l_ ay am*:() (4:(1)
aQ-‘Dl OQ a W 52(w0+wl) a ’w1
B Toy TN TN o TN gt
A wo+wy) azw N wo+w))
N [r+—2—1—]+2]\”’0 sz oy T HNm ouoy =
(4e)
. O%w 2 2
In equation (4e) the terms N, —6;21’ Ny, aa—;f;; and Ny, oz ?g?ll
may be neglected since they will be small compared with
d*w, Q*w, o%w
Ny, 52 » N, byz’ and Ny, 5 bly. Also, if the deflection

prior to buckling is zero or constant as occurs for many
problems (for example, axial compression, hydrostatic pres-
sure), all derivatives of w, vanish. For this type of problem
equation (4e) becomes

o*w bsz N,

0 0 41 1 3 0%,
oz + ay "*—Z\fxo aw2 +Ny0 ayz + =

o oxdy
(4¢)

The six equations relating changes in middle-surface re-
sultant forces with buckling strains and changes in moment
with buckling distortions are identical with equations (2)
and (3) with the subscript 1 added to N,, N, N,, Q., Q,,
M,, M,,, M,, u, », and w.

The 11 equations, given by equations (4) and equations
(2) and (3) (with subscript 1), apply to buckling problems
in general (with equation (4¢) or (4e’) as required) and can
be used to obtain the critical values of the loads acting on
the plate. As is shown in the next section, however, for the
case in which the deflection prior to buckling is zero or con-
stant, the 11 equations can be suitably combined to yield 3
equations in wy, Q,,, and @,,, a form convenient for applica-
tion to plates of sandwich construction.

Reduction to three equations for buckling problems in
which the deflection prior to buckling is zero or constant.—
The reduction of the 11 equations to 3 equations in w;, Qz,,
and @y, is achieved in several steps as follows:

By dlf'ferenuatlng equation (4c) with respect to z, equa-
tion (4d) with respect to y, and adding the results to obtain
the relationship

anl aQ,,1 OFM,, M, M,

o2 2 ozoy T o

+

equation (4e”) may be rewritten as

O, M UM, N, O
Ny -
57 2azoy T oy Tt Mo T
N o*w 0*w ,
110 oy 21+2ny0 o7 a;:O (4e’")

Next, equations (2) and (3) (with subscript 1) are substituted
into the equilibrium equations (4a) to (4d) and (4e”’) to give

aul , 327)] ,U. My awl y au1 6201 >_

bzv 19@1 , Oy bvl bu] B
w;, 1 anxl 0w, Uy D2Qy1)

@ +1t“ uy \ 028 "Dy, 30 TR 502 Dy, Sz oy) T

5D ( w1 0@ 1 a?le)_O
"\" 0z 0y* Dg, Oy Do, 0z 0y/)
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Q + DU (b"‘wl__l ) alell as'uh Mg ?iQ_fL)
T T — e, \OY® Do, 0y* ' 02?0y Dg, 0z dy
3 22Q, o?
1 D,y (2 a;wl L Ql_l_ _Q:I):O (8)
2 0270y Dq, 0xdy Dg, Oz
B on_w , 9?@) ( O'w;
Lpw, r(l—u/ ')\ oy r T ox Nz, dox?
%, Q%w, ) 0°Qz,
N, Dy2+2 ™ 37 0y) " Da, 1~M@, 2 T
Dy 4 p ) o4
1 — Uzlhy D:c oy?
1 [ -D,

ol ) o ]:0 )

D 1—u "‘Hz#u 53/ Mziy x? by

where Lj is the linear differential operat-or defined by

D, o wD, ,

Lp= 1—pzpy ozt T( +2Dzy+ 1 —uz,uy> aﬁay”
D, o
1 — papy OY*

At this point, six equations have been eliminated and, there-
fore, five equations remain—equations (5), (6), (7), (8), and
9) in uy, vy, w1, @, and Q...

A further reduction in the number of equations and un-
knowns is effected by first solving equations (5) and (6) to
obtain relations from which %; and », can be determined
and then substituting for %, and »; in equation (9). The
expressions obtained by solving equations (5) and (6), in
accordance with the rules governing the multiplication of
linear operators, are

, Gy Pwy Gzy %w,
rLpu,=p v E or* I, ox byz (10)
and
/ . , Gy 9w, | G OPw,
)"LE?JI—<1—[J.11E aj‘zay Ex ayg (11)
where Ly is the linear differential operator defined by
Gf,, o , , G\ O G,y Ot
+( “"E g, ) srtor TE, oy

The relationships given by equations (10) and (11) may
be written in a form more suitable for substitution into
equation (9) by differentiating equation (10) with respect
to x, equation (11) with respect to y, and then, symbolically

solving the equations for aa—?il and %%1—, respectively, to give

ml_LE (}L v ny ot W1 ny ot W ) (12)

dr r E, dx* rE,dz’y?

<1—'u’ G
00, 4 Y F o'w, |, Gy d'w, .
dqy =Ls r ox2y? 1—rEx oyt (13)

where L' is defined by Ly *(Lyw))= Lg(Lz'w))=w,. The
inverse operator Ly ~'is similar to the inverse operator y—*

defined: in reference 7, and, as is shown subsequently, Lz~!
reduces to v~* for the special case of theisotropic plate.

Substituting the expressions for % and aa—?;/l from equations

(12) and (13) into equation (9) and replacing 30771 by

Ly™! (LE%> results in the following equation:

Gey y _ 0? O*w, D W 02w,
L[ Da: a';Q’H_{__< o’ Q"‘l ]_
Do, | 1—pzu, 02 1—“x,“y oz Oy?
1 D, 0 le 3Q1/1 :l
Do |1~y 05" (2t D) gy [0 (19

At this stage, the original 11 equations have been reduced
to the 3 equations (14), (7), and (8), in the 3 unknowns

wy, @y, and Qy,.

For most problems, equations (14), (7), and (8), together
with proper boundary conditions, can determine the elastic
stability criteria for an orthotropic curved plate subjected to
middle-surface loadings. It should be noted, however, that
the three equations are not sufficient if boundary conditions
are specified on the displacements %, and »,. For boundary
conditions on %; and v;, as well as w,, equations (10) and
(11) must also be employed. When boundary conditions
are not specified on «; and »; (the case when only équations
(14), (7), and (8) are used), certain boundary conditions are
implied, nevertheless, by equations (10) and (11), consistent
with the expression for w,. A discussion of similar implied
boundary conditions on u; and #» is included in reference 7.

SPECIAL CASES OF BUCKLING EQUATIONS

Isotropic curved sandwich plate with non-direct-stress-
carrying core.—For the isotropic sandwich plate with non-
direct-stress-carrying core, the physical constants bear the
following relationships to those of the orthotropic plate:

DQZ:DQ,,:DQ
M= Hy=— M z“# y*#
D=D,=D,(1—u?
Dy=D(1—u)
E—E,—2E4,
E,
Gx”:l "

These relationships permit equatmn (14) to be simplified as
follows:

21‘S D w o%w o2 o?
D.Viw, + . <N,0 2| Ny a’¢1721_|_2Nm,0 bw@gz)“

Dy (09 , 00
Do" (bx T oy )“0 v (15)
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where
0? o?
or T oy

a4
a;r4+ oztoyt oyt

V=

and V~*is defined by V~* (Viw,) =V*{(V"4w,) =w,.

In this case, however, equations (7) and (8) are not needed

0@,  0Q, . . .
W+Ty" since this quantity can
be found more conveniently from equation (4e’).
equation (4e’), therefore,

to obtain the quantity

From

anl an’l (Nlll a W, a Wy 0 W1 )
oz + dy 7+N’° ox oz7 T oy oyt T 2N oz dy
2 Oy, . . .
Substituting for Qxl—l— b%l n equation (15) gives

2t, K,
st4w1 + 777"2

D‘wl D3 Nﬂ])
—4 S 1)
v ozt DQ v ( r

2 2 2
(1= 7) (Ve St Ny S+ 2Ny 25 )=0 (16)

0 Jx? 0 Qy? ox dy

The term —N, /r, which appears in equation (14) for the
4
orthotropic plate as 3 G o Lg™! baui, reduces to 2t, F v—4 aa;l?

for the case of the Jsotroplc plate. If this result is used in
equation (16), the equation of equilibrium for the isotropic
curved sandwich plate with non-direct-stress-carrying core
becomes

Divn (1D o) 2P g

O%w 0w
(NI" Dx‘l—i_ Yo dy 2t

oroy) |0
Ny oz 0

If the radius is taken infinite, equation (17) becomes
equivalent to equation (71) of reference 4.

Isotropic curved plate, deflections due to shear neg-
lected.—The present theory can be reduced to a known
theory for ordinary curved plates by appropriate substitu-
tions for the physical constants. For an ordinary plate, the
physical constants become

Do,=Dg,= = (no shear deflections)
po=py=p s=p = p

D,=D,=D (1—u?

Dy=D (1 —p)

E,=E,~=FEt

Upon substitution of these constants into equation (14),
the resulting equation becomes independent of equations
(7) and (8) and the equilibrium equation of the ordinary
curved plate, therefore, is given by

wa

2,
DV“wl—}—*V -t O*wy 0%, )

o*w
(Nzo b.ﬂ; 1/0 a 2+2N11]O ax ay =
(18)

Equation (18) is equivalent to the modified equilibrium
equation for ordinary curved plates presented in reference 7.

CONCLUDING REMARKS

A theory has been developed for analyzing the elastic
behavior of orthotropic curved plates, that takes into account
the effect of deflections due to shear and requires the use of
12 physical constants to characterize the plate. Seven of
the physical constants appearing in the equations of equi-
librium are directly associated with the flat-orthotropic-
plate theory presented in NACA Rep. 899. The remaining
five physical constants are included in the present theory
to account for the stretching under loading of the middle
surface of the curved plate.

For each type of orthotropic plate, the 12 physical con-
stants may be evaluated either from the geometry of the
cross sections and the properties of the materials used or
by direct tests conducted on sample specimens. Because
two reciprocal relationships exist (see appendix), only 10
of the constants need be determined independently.

The theory presented in this report does not take into
account the compressibility of the sandwich plate in a direc-
tion normal to the faces. Such an effect does not enter into
flat-sandwich-plate theory but might be of importance in
certain types of curved sandwich plates where the elastic
constants of the core material are small compared with
those of the face material.

For practical sandwiches of the end-grain-balsa or
corrugated-core types, order-of-magnitude considerations lead
to the conclusion that the effect of core compressibility will
be negligible as regards both buckling loads and deflections.
For sandwiches with less stiff cores—for example, cellular
cellulose acetate—the effect of core compressibility will be
more important. Kven for such cores, however, in the case
of all the numerical examples given in NACA TN 1832, the
effect of core compressibility is negligible in comparison with
the effect of transverse shear deformations for sandwich-type
circular cylindrical shells. The present theory, in which the
core is assumed to be incompressible in a direction normal to
the faces, appears, therefore, to be applicable to most prac-
tical sandwich plates.

LANGLEY AERONAUTICAL LABORATORY,
NarioNnaL Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Fienp, Va., November 22, 1949.
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NDIX

DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS

The orthotropic curved plate (effects of transverse shear
being considered) is characterized by 12 physical constants,
7 of which are associated with flat plates, as presented in
reference 3. The remaining five constants enter the present
theory because of the additional stretching strain developed
under loading in the middle surface of the curved plate. In
this appendix the five additional constants are defined, and
expressions for the resultant forces, involving these con-
stants, are derived.

Physical constants.—The seven flat-plate constants are the
flexural stiffnesses D), and D,, the flexural Poisson ratios u,
and g, the twisting stiffness D),,, and the transverse shear
stiffnesses Do, and Do,. As derived in reference 3, the first

four of these constants are related by
weDy= Dy

The five additional constants appearing in the curved-plate
theory are the extensional stiffnesses £, and E,, the
extensional Poisson ratios u’, and u’,, and the shearing
stiffness @,,. The first four constants are found by a
procedure similar to that used in reference 3 to be related by
IU'IZEy:IJ"yEr

As a result of these two reciprocal relationships, only 10 of
the 12 physical constants need be determinedindependently.

The five additional physical constants are defined in the
same manner as the flat-plate constants of reference 3—
that is, by considering the effect of imposing particular
loading conditions on the element shown in figure 1. To
obtain E,, for example, only the middle-surface forces N,
are assumed to be acting on the element. As a result of
this loading, the strain e, is induced in the middle surface.

z

The stiffness E, is then defined by the relation E,— .
z

when only N, is acting.
The Poisson effect of the forces N, acting on the element
is to introduce a strain e, negative with respect to e, in the
middle surface. The constant u’, is then defined by the

. € . .
relation p’,= —-¢ when only N, is acting.
€r

Tn a similar manner, F,, u’,, and G, are defined as

. . € .
E,,:& when only N, is acting, [.L/7,:—~f when only A, is
€y v
. N,
acting, and Gp="—""
xy
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Resultant forces.—The relations between the elastic
middle-surface strains and forces, satisfying the foregoing
definitions, can be written as

N, N
frsz Moy Ey
N, , Ny
éy”ETZ—N 08 e (A1)
N;
'ny:G Y

/

The three strain equations can be solved for N,, N,, and
N,y In terms of the strains to give

Nle ) 77 (62+“ ?lell)
M Uy
E ’
Zvyzl 1,14/_ (eytu'ze) (42)
T HozMoy
Nx}/: Gzy'Yzz/

Substituting the expressions for the middle-surface strains
of a cylindrical section in terms of middle-surface displace-
ments

Y
“
_ov_w
Yoy 7
ou , Ov
Yau @‘i‘a
into equation (A2) gives
R ou, , (o w 9
]\]z“—l_'u,z'u,” ax+#y Oy ?>:I
B (ov w, , 0u
lvy‘l V‘u/z“/y Oy r +:u z Or) - (A3)
ov | Ou
No=Ga (S0+50)
YT\ or oy J

These equations are used in the derivation of the equilib-
rium equations.
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Positive directions of axes and angles (forces and moments) are shown by arrows
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