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AIRFOIL PROFILES FOR MINIMUM PRESSURE DRAG AT SUPERSONIC VELOCITIES—GENERAL
ANALYSIS WITH APPLICATION TO LINEARIZED SUPERSONIC FLOW !

By DeEax R. CHaPMAN

SUMDMARY

A theoretical investigation is made of the airfoil profile for
minimum pressure drag at zere lift in supersonic flow. In the
first part of the report a general method is developed for calcu-
lating the profile having the least pressure drag for a given
auriliary condition, such as a given structural requirement or a
given thickness ratio. The various structural requirements eon-
sidered include bending strength, bending stiffness, torsional
strength, and torsional stiffness. No assumption s made
regarding the trailing-edge thickness; the optimum value is
determined in the ealeulations as a function of the base pressure.

Ta illustrate the general method, the optimum airfoil, defined
as the airfoil haring minimum pressure drag for a given auxil-
tary condition, is calculated in a second part of the report using
the equations of linearized supersonic flow. It is found that the
optimum airfoil in most cases has a blunt trailing edge. It also
is found that the optimum thickness distribution depends only on
ane dimensionless parameter, fermed the ‘“base pressure param-
eter”.  This parameter involves the llach number, airfoil
thickness ratio, and base pressure coefficient. The effect of
rariations in each of these latter three quantities on the shape of
the optimum profile is discussed, and a stmple criterion formu-
lated for determining the condition under which the optimum
trailing-edge thickness is greater than zero. The calculated
pressure drag of the optimum profile is compared to that of a
biconrer sharp-trailing-edge profile satisfying the same struc-
tural requirement. The reduction in pressure drag depends on
the base pressire parameter and varies from a few percent to as
much as 78 percent.

INTRODUCTION

In supersonic flow the finite thickness of an airfoil invari-
ably introduces a certain amount of pressure drag which can
be minimized by a rational choice of airfoil shape. The
profile for minimum pressure drag depends, among other
things, on the particular auxiliary condition that is imposed
on the airfoil geometry. For example, if it is required that
the optimum profile (defined herein as the profile of least
pressure drag for a given auxiliary condition) satisfy the
auxiliary condition of a given thickness ratio, then according
to a well-known result of Ackeret’s linearized airfoil theory,
the so-called double-wedge profile represents the optimum

sharp-trailing-edge airfoil. This particular auxiliary condi-
tion, however, does not represent practical cases where an
airfoil must satisfy a certain structural requirement, sueh as
a given area moment of inertia, or a given section modulus.
Drougge (reference 1) has made a more elaborate theoretical
analysis to determine the optimum profile for the auxiliary
condition of a given bending stiffness of the airfoil, and also
for the condition of a given torsional stiffness. Drougge used
linearized airfoil theory and considered only sharp-trailing-
edge airfoils. His results are somewhat limited in two
respects: They do not cover cases outside the scope of linear-
ized airfoil theory, and, though they include the auxiliary
conditions of given bending and torsional stiffness, they do
not include the auxiliary condition of a given bending strength
(given section modulus). A far more important limitation
of this analysis, though, is the tacit assumption that the
optimum airfoil will have a sharp trailing edge.

There is a small amount of experimental evidence in the
measurements of Ferri (reference 2} on airfoils with sharp
trailing edges which suggests that the optimum airfoil might,
in fact, have a moderately thick trailing edge. The meas-
ured profile drag of one airfoll tested by Ferri (G. U. 3 airfoil
at a Mach number of 1.85) was considerably lower than
inviscid theory would indicate. Allowance for skin friction
would cause this discrepancy to become even greater.
Schlieren photographs and pressure-distribution measure-
ments showed that viscous effects effectively thickened the
airfoil shape near the trailing edge. From these results it
can be inferred that at moderate supersonic velocities it is
possible for an airfoil with a thickened trailing edge—that is,
a blunt-trailing-edge airfoil—to have lower drag than a
corresponding sharp-trailing-edge airfoil. Employing a
different approach, this inference has been obtained from
quantitative considerations in reference 3, where a reasonable
estimate of the base pressure was made and the drag caleu-
lated as a function of trailing-edge thickness. Such caleula-
tions, though very approximate, have indicated that in cer-
tain cases a moderate increase in trailing-edge thickness will
decrease the over-all pressure drag.

Apart from the reasons just cited for expecting that the
optimum supersonic airfoil might have a thick trailing edge,
there are other independent considerations which suggest

18upersedes NACA TN 2264, “Alirfoll Profiles for Minimum Pressure Drag at Supersonic Velocities—QGeneral Analysis With Application to Linearized Supersonic Flow,"” by Dean R
Chapman, 1951, Various examples of optimum profiles given in TN 226¢ have been supplemented and revised for the present report in aceordanece with experimental measurements of base

pressure published subsequent to TN 2264,
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the same result. By analyzing conditions at infinite Mach
number, Saenger pointed out in 1933 that even with a vacuum
at the base the optimum airfoil for a given thickness ratio
would, in this extreme case, have a trailing-edge thickness
equal to the maximum airfoil thickness. (See reference 4.)
In reference 5, Ivey obtained a similar result by calculating
the pressure drag at a Mach number of 8 for a family of
airfoils having various positions of maximum thickness.
More recently, Smelt (reference 6) has developed an approx-
imate condition determining when an airfoil with maximum
thickness at the trailing edge has lower drag in hypersonic
flow than an airfoil with a sharp trailing edge. Saenger,
Ivey, and Smelt, however, did not consider airfoils having a
trailing-edge thickness less than the maximum aivfoil thick-
ness, and hence their results do not determine the optimum
profile for hypersonic velocities. Nevertheless, it is evident
that at high supersonic Mach numbers the optimum profile
has a relatively thick trailing edge. On this basis it is not
unreasonable to expect that at lower supersonic Mach num-
bers the optimum profile would have some thickness at the
trailing edge.

The physical reason why it is possible for a blunt-trailing-
edge airfoil in supersonic flow to have a lower pressure drag
than a corresponding sharp-trailing-edge airfoil is quite
simple, as can be illustrated by the two profiles shown in
figure 1. These profiles have the same area, which corre-
sponds to the same torsional stiffness of a thin-skin structure

== Sharp-frailing-edge airfoil

[ re-Blunt-frailing-edge airfoil

FIGURE 1.—8ketch comparing a typical sharp-trailing-edge airfoil and a blunt-trailing-edge
atrfnil of equal arca (enual torsional stiffness for a thin-skin structure).

The blunt-trailing-edge airfoil has a slightly smaller thick-
ness ratio and a position of maximum thickness which is
farther rearward, hence the leading-edge angle is smaller
and the pressure drag of the surface forward of the trailing
edge is less than that of the sharp-trailing-edge airfoil. A
certain amount of base drag, however, obviously is added by
employing a thick trailing edge. If the added base drag is
less than the reduction in pressure foredrag, then the net
result is a smaller total pressure drag for the blunt-trailing-
edge airfoil. This invariably is the case at extremely high
supersonic Mach numbers where the base drag is negligible
compared to the pressure foredrag. At low supersonic
Mach numbers, though, the base drag can be many times
the pressure foredrag, and the optimum trailing-edge thick-
ness must be expected a priori to depend fo a great extent
on the base pressure.

The present theoretical analysis was initiated in view of
the foregoing considerations. The primary purpose of the
investigation is to develop a method of determining the
supersonic airfoil profile for minimum pressure drag at zero
lift, without making an arbitrary assumption ahout the trail-
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ing-edge thickness. The profile so determined, which is
termed an optimuin profile, is considered to depend on the
base pressure, Mach number, and the particular auxiliary
condition imposed on the airfoil. A secondary purpose of
the investigation is to develop a method of sufficient gener-
ality to enable second-order and shock expansion theories
to be used in calculating optimum profiles. Such generality
is desirable in order to obtain results that are valid at hyper-
sonic Mach numbers.

NOTATION
B base pressure parameter for lincarized supersonic flow
_p, /___:]
— M =1
_ tfe)
B limiting value of the base pressure paramecter below

which the optimum airfoil has a blunt trailing edge
e airfoil chord
Ca ‘section pressure drag coefficient
symbol for the function Py’
F(k, o) incomplete elliptic integral of the first kind of modu-
lus & and amplitude ¢

h trailing-edge thickness

H dimensionless trailing-edge thickness (h/t)

I ‘given value of the auxiliary integral l:z- r v d r:l
¢ Jo (5/2)”

k., constant defined by equation (20)

l length of chiord over which airfoil thickness is constant

L dimensionless length of chord over which airfoil thick-

ness is constant (I/s)
AL Mach number
n arbitrary parameter appearing in the definition of the
auxiliary integral 7
-~ (For the examples considered n is taken as 1, 2, 3 or

=.)

P static pressure on airfoil surface

P pfessure coefficient }:(p — Do) / <% Po Vo °)]

P, base pressure coefficient [(pb—pw)/<% fuw Vj)]
Re  Reynolds number based on airfoil chord

8 distance from leading edge to first downstream posi-
tion of maximum thickness
t ‘maximum thickness of airfoil
v ‘velocity
distance from leading edge
X ‘dimensionless distance from leading edge (x/s)
Y ordinate of upper half of airfoil
Y dimensionless ordinate [y/(¢/2)]
X Langrangian multiplier (arbitrary constant)
e .arbitrary parameter appearing in the definition of the

ausiliary integral I
(For the examples considered ¢ is taken as 0 or 1.)
I ‘mass density

SUBSCRIPTS
0 airfoil surface at leading edge
1 airfoil surface at trailing edge
© free stream
b base
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ca cireular-are biconvex airfoil with sharp trailing edge
dw  double-wedge airfoil with sharp trailing edge
v vacuum at base

SUPERSCRIPT

! differentiation with respect tox

THEORETICAL ANALYSIS
ASSUMPTIONS AND STATEMENT OF PROBLEM

In the analysis which follows several simplifying assump-
tions are made. Two-dimensional airfoils in a purely super-
sonic flow at zero lift only are considered. It is assumed that
the pressure at any point on the airfoil surface forward of the
trailing edge can be caleulated from the flow of an inviscid,
noncondueting gas. It is further assumed that the leading
edge is sharp. No analogous assumption is made regarding
the trailing-edge thickness, but it is assumed that the base
pressure coefficient P, is known. This enables the optimum
trailing-edge thickness to be calculated as a function of P;
henece, experimental data on base pressure in two-dimensional
flow are required in order to apply the theoretical results of
the analysis to a given case.

From the fact that the surface pressures on the top and
bottom of an airfoil can be caleulated independently in a
supersonic flow, it follows that at zero lift the optimum
profile will be symmetrical about the chord plane. Conse-
quently, reference is made throughout to the thickness distri-
bution of only the upper surface of an optimum profile.

In comparing the pressure drag of various profiles, the
chord length is beld constant, and the thickness distribution
along the chord is varied in a manner which is arbitrary
except for the requirement of satisfving the particular
auxiliary condition being considered. The various auxiliary
conditions investigated are: a given torsional stiffness of the
airfoil section, a given torsional strength, a given bending
stiffness, a given bending strength, and a given thickness
ratio. For each of the structural conditions the case of a
thin-skin structure and a solid-section structure is considered
since the optimum airfoil profile may be expected to depend
somewhat on the type of structure. Attention is focused on
the fact that the basic idea employed in the analysis involves
the minimizing of pressure drag for a given struectural require-
ment; the results obtained with this method of approach are
the same as would be obtained if the structural characteristic
were maximized for a given value of the drag.?

MATHEMATICAL FORMULATION OF PROBLEM

The pressure drag ¢; of an airfoil with a thick trailing edge
is the sum of the base drag and the pressure drag of the sur-
face forward of the trailing edge. Letting P be the surface
pressure coefficient, »#(z) the function defining the surface,
and P; the base pressure coefficient, then ¢, may be expressed
as

f Py r[x—Paﬁ (1

The problem is to determine the partieular function y(r}
and the corresponding value of the trailing-edge thickness
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h which minimizes this expression for a given auxiliary
condition.

Before expressing the various auxiliary conditions in ana-
Iytical form, it should be noted that the surface pressure co-
efficient P is regarded as 2 known funciion of the variable y’
and the two parameters %', (surface slope at leading edge)
and 1f.. The actual functional form of Py, 3, 3 .) will
depend on whether linearized, second-order, hypersonie, or
shock-expansion theory is emploved in calculating surface
pressures. For example, if linear theory were employed, the
explicit expression P=2y'/{/3}f.—1 would be used; but,
if shmk—e*;pamion theory were employed, a more complex
implicit expression involving ¥’y as well as ¥” and A/, would
have to be used. In order to allow various theories to be
employed, the particular functional form of Py, 4%, M)
will at present be unspecified. The equations which result
can be applied to any of the various theories by substituting
the appropriate function for P.

Turning now to the consideration of auxiliary conditions,
it is dea,r that some integral expression will be involved,
since the funetion y(x) is not known beforehand. TIf, for ex-
ample, the airfoil is a solid-section structure and the moment
of inertia is prescribed, then the particular suxiliary condi-
tion which y(x} must satisfy in addition fo minimizing ¢, is

that the integral f ydz be constant. A different suxiliary

condition would, of course, be represented by a different
integral. In the present investigation a somewhat general-
ized auxiliary cordition is used which is represented by the
single integral

=1 (°¥ s
I= ﬁ(f/‘))“ dr=constant 2)

where n and o are constants. Thus the example Just cited
is a special case of the above integral with n=3 and ¢=0.
To illustrate further, the auxiliary condition of a given section
modulus of a solid-section airfoil is represented by the special
case n=3 and ¢s=1. The corresponding solution for y(r)
in this latter case would provide the profile of least pressure
drag for a given bending strength.

Some of the different structural criteria to which the gen-
eral integral (2) corresponds are summarized in the following
table:?

Struectural criteria

I Given torsional stiffness, or torsional strength, or volume of thin-
' skin sirueture
}
1
|
i
I

pd [ Given bending stiffness of thin-gkin strueture

3 . aQ Given bending stiffness or given torsional stiffness of solid-seetion
J strueture *
. 2 ! 1 Given bending strength of thin-skin structore

3 1 vaen hending strength of solid-section strueture

* Asa first approsimation the torsional stiffness of a thin solid-section profile is faken to
he proportional to the momeunt of inertia abont the chord plsne.

Thus, by solving the problem with the general integral
(2) left in terms of n and ¢ a wide variety of auxiliary con-

: This statement. which appears evident from phy:ical considerations. is equivalent te Mayer's reeiprocity theorem for izoperimetrie problems in the caleulus of variations.
< For thin-skin stractures the thickness of skin is taken to be constant over the chord length. The two cases a=e=0and n=e=1are not ineluded in this table as they apparently represent

no sensible practical problem.
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ditions can be obtained simply by substituting appropriate
integers for » and . From an engineering viewpoint the
general form of equation (2) enables approximate solutions
to be obtained for wings of intermediate structural solidity
by interpolating between the solution for essentially zero
solidity (thin-skin structures) and the solution for complete
solidity (solid-section structure).

Summarizing, the problem formulated can be stated math-
ematically as that of finding the airfoil-ordinate function
y(x), and the trailing-edge thickness A=y(c), which mini-
mizes the drag expression (1) for a given constant value of
the structural integral (2). The boundary conditions im-
posed are that y(0)=0 and that P, is given. If ¢ did not
appear in equation (2), this mathematical problem would be
a relatively simple isoperimetric problem in the calculus
of variations. The occurrence of #, the maximum value of
y(x), complicates matters because it is not known before-
hand and, in fact, is one of the quantities to be determined
from the given values of M., P;, and I. Actually, all
equations necessary for solving the problem formulated could
be obtained directly from advanced treatises on the caleulus
of variations since the problem is a-special case of the so-
called “problem of Bolza with variable end points”. (Such
a procedure would lead quickly to equations (11), (12), and
(13).) However, the necessary equations can also be ob-
tained by the simple methods employed here.

METHOD OF SOLUTION

Given structural criteria.—Since the pressure drag of the
optimum airfoil, by definition, is the least possible of all
airfoils having a given value of the structural integral (2),
it follows that the pressure drag of any ‘“varied” airfoil,

having ordinates and slopes everywhere close to those of .

the optimum airfoil, must be in the neighborhood of a
minimum. Hence, by considering only infinitesimal changes
&y in the ordinate of the optimum profile, the corresponding
increment in drag 8¢, of such a varied profile can be equated
to zero. Since y{(z) is to provide the true minimum, the
resulting equation must hold for an arbitrary ordinate change
sy varving with , or for an arbitrary change in airfoil thick-
ness &, or for an arlntrar\ change in trailing-edge thickness
8, or for any combination of variations thereof, provided
only that the integral (2) is constant for all such variations.

w=-Optimum profile

\

e Varied profile
A)
NN gy@)

F16URE 2.—Sketch of upper half of varied and optimum profiles.
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Application of this basic principle, as will be seen, leads to
g sufficient number of equations to determine the complete
geometry of the optimum profile.

A sketch of the type of optimum profile to be analyzed
and the corresponding varied profile is shown in figure 2,
Various quantities which appear often in the subsequent
analysis are illustrated in this figure. It is to be noted that
allowance is made for the possibility that the optimum
profile may have a straight midsection of length /, the opti-
mum value of which must be determined from the analysis.
The varied profile is selected such that it does not change
the ordinate or the surface slope at the leading edge. Intro-
ducing the definition f=Py’ for the purpose of brevity, and
equating the drag of the optimum profile to the drag of
the infinitesimally varied profile, yields

o h_c (i 0f S h+ 8k
l[) -ffgl'—Pb 5<% Cd—j; (f 7 by7 53/)"[-1"“1)5 5 (3)

&

The smaH change in slope &y’ is equal to 4 {(81), 80 equa—

dx
tion (‘3) can be written
Sof dey) . 8k R
s oy dz T3 )

Intergrating by parts,

bz Gy e

_(Of\ &h e d Qf) sh
=\ay rz‘—fa w7z (oy ) 1= %

§h
P, = 5

or, ﬁl{aﬁy

sumom- [ Q[P ]E 0

The chordwise distribution of the variation &y is not en-
tirely arbitrary; it must be such that the auxiliary condition
is satisfied, namely, the value of I for the optimum profile
must be cqual to that of the varied profile.

1 o (y+o)" |
: |y de=1= NG =0

(6)
Retaining only first order variations, this expression simplifies

to .
[+4 [+ ¢ §t [ )
f yrde= f g/"a’x—l—f ny*t dydx—o ~ f yrdx  (7)
0 Jo 0 t.Jo

0= rcm/“aydx—gcf (5) o (8)
Jo 2/ 1 o

This equation must be satisfied, of course if both terms on the
right side are multiplied by an arbitrary constant X, More-
over, equation (5) must be satisfied simultaneously. The
arbitrary character of X enables the two equations (5) and (8)
to be combined into a single equation which must hold for
arbitrary variations in 8y, 6k, and éf.

or
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o= i (yramTars[(3) 218+

i\ 6t
Aael (5) r (9)
Thus, Since A is arbitrary, this single equation implies that
both equations (5) and (8) are satisfied.

If at this point the variation &t is considered to be arbitrary,
equation (9) as written would incorrectly suggest that
xecl must be zero. Hence it is to be expected that an
additional term containing &t exists in the integral expression
of equation (9). Such a term arises from the contribution
of the straight midsection to this integral, since over this
region, sy==~£/2. Also,y=t{2and %(gy—f,)ZO over this region.

/

Hence

O=——J:5y I:+(% \aaz"/f,)—‘r}\ny"“:l dx—
[y Ja () -2 ] 5+
N I:—n (éy_ll%—o—cl’ (%)rl]%i

The variations 8y, 8k, and & can now be conducted entirely
independent of each other. Each of the bracketed terms in
equation (10) must be zero, if the individual variations are
not zero. Reemploying the definition f=Py’, the following
equations are obtained:

(10)

for sy =0
d 4 , OP —
for sh#0
oP™
p PN p— (
Pt(y 55) —F=0 (12)
for N&i#0
I J I (13)

e T

The differential equation (11), of course, results from
equating to zero each of the two integrals in equation (10).
This differential equation, therefore, need be satisfied only in
the two chordwise regions covered by the limits of these
integrals, namely, in the region from =0 to z=s, and in the
region from r=s+{ to z=c. (See fig. 2.) If the optimum
airfoil has a finite length of straight midsection (e.g., AB in
fig. 2), the differential equation (11) need not be satisfied in
this intermediate region.

Fortunately, one integration of equation (11) can Im-
mediately be made, thereby lowering the order of the basic
differential equation to be solved. Multiplying equation
{11) by ¢’ gives

’ ([ ’ raP\ n— r
D=y EE(P—H’I W)-{—?\n-y Ly

IYEY 1 qpt2a 4 Ly — i
___.yy E_—y’ T y y ay,g 1 dr (y )

d r,, 0P "
:%( -gy'_ir)\y )
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From this it is seen that a first integral of the basic differential
equation (11} is
(11a)

y? gy,—f- \y*=constant

At the point , or points, where y’=0 the ordinate is equal to
¢/2. Evaluating the constant of equation ((11a) from this
consideration yields

P
y'® -a—y,=7\ [@2)"—y1

{11b)
This equation, together with equation (12), equation (13),
the given value of 7, and the boundary condition »(0)=0,
determines the complete geometry of the optimum profile.

Given thickness ratio.—Attention is called to the fact tHat
special precautions must be taken in applying the foregoing
analysis to the auxiliary condition of a given thickness ratio.
For this particular case & is zero, thereby causing the last
term in equation (10) to vanish automatically without
requiring equation (13) to be satisfied; equation (13}, there-
fore, does not necessarily apply when the thickness ratio
is prescribed. Moreover, equation (11b) also does mnot
necessarily apply since it was assumed in the process of
obtaining this latter equation that the optimum airfoil had
at least one point where y'=0. Such is not the case for
the ausiliary condition of a given thickness ratio, and hence
more detailed consideration is required.

The appropriate differential equation to be used when
t/c is given may be obtained from equation (11a)* by setting
A=0. There results

y'? E:constant (14)

oy’
which is satisfied by any straight surface y’=constant,
regardless of whether linearized, second-order, or shock-
expansion theory is used for P. The appropriate condition
which must be satisfied at the trailing edge is, from equation

(10),
., 0F
: ]:(.PTy a‘y’,)l Pb:|5h;0

(15)

Here the inequality is included since 8k for the case of a
given thickness ratio is not always entirely arbitrary. Thus,
when h==¢/2 (wedge airfoil) 6k is restricted to always be neg-
ative, and a minimum can exist if
AP
Pty —,) —P 0;
I: 1T oy ) s |<

this would make &e; always positive instead of just
making ¢, stationary. Consequently, under certein con-
ditions two solutions are possible. First, the upper half
of the optimum profile may consist of two straight segments
with A<t (as illustrated in fig. 3), provided the equal sign
in (15) applies. Second, the optimum profile may be a
wedge profile with k=", provided the inequality sign in (15)
applies. If both types of solution are physically possible

+If equation (11} is used there results P+y'2 Pjog’ = constant, which also is satisfied by any siraight surface. The constant in this latter equation, however, dces not have the same value
for both straight segments comprising the profile; whereas, the constant in equation (14) is the same for both segments. (See appendix.)
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FlraUre 3,—8ketch of upper half of eptimum profile for a given thickness ratio,

in a given case, the true solution, of course, would be the

one with lower drag.

If it is possible to obtain a general solution to equations
(11b), (12), and (13) (such is the case for linearized super-
sonic flow), then the first of the two solutions mentioned
above may be obtained without solving equations (14} and
(15), but by passing the general solution to the limit as
In order to verify that this limiting condition
represents the auxiliary condition of a given thickness ratio,
three conditions must be satisfled: First, as n—>o the
auxiliary integral must correspond to. the case of a given
thickness ratio; second, the differential equation (11b) must
reduce to equation (14) in the limit as n— o ; and third,
the infinite value of n must be compatible with equation (13).
Consider for the time being that the.chord is of unit length.
Since for any reasonable. airfoil ¢<{1, it follows that

n—> b

€
I; y" dr —0 as n— =, and hence 7—0. A solution for /=0

would represent the optimum airfoil determined without regard
for an auxiliary integral.  Such is the condition that would
be used in determining the optimum airfoil for a given
thickness ratio; hence the first of the above-mentioned
conditions is satisfied. Inasmueh as ¢/(£/2)<1, it is evident
that [y/(t/2)]"—=0 as n—«, thus reducing the differential
eguation (11b) to the form

rn 9P —2A (%) =constant

Y oy’
which is the correct differential equation.
third condition to be satisfied,
I=0, n=«,[=0, and ¢=finite are compatible with equation
(13). Consequently, the limiting case n—« in the general
solution to equations (11b), (12}, and (13) represents one of
the possible solutions for the case of & given thickness ratio.
This fact will be used later in the report.

As regards the

QUALITATIVE RESULTS OBTAINABLE WITHOUT SPECIALIZING TO A GIVEN
TYPE OF SUPERSONIC FLOW

Although few quantitive results can be obtained from the
basic systems of equations (11), (12}, and (13), without
specifying a particular form for the surface pressure coefficient
P, there is one general qualitative result that can be obtained
from equation (13} without any further calculation. The
optimum length of straight midsection / always is zero for the
auxiliary condition of a given torsional stiffness or a given
bending stiffness (¢=0), but never is zero for the auxiliary
condition of & given bending strength (¢=1). Since (¢/2)*°
would be the value of 7 for a rectangular-bar airfoil of the

1t is seen that the values

same thickness as the optimum airfoil, it is evident that for
an actual airfoil 7/(¢/2)"" will be of the order of one-half or
two-thirds. As an example, this means that when bending
strength is critical in a thin-skin structure (n=2}, the opti-
mum length of straight midsection will be of the order of
one-third the chord length.

CALCULATION OF OPTIMUM PROFILES USING LINEAR
AIRFOIL THEORY

SPECIALIZATION AND SOLUTION OF GENERAL EQUATIONS FOR LINERAR.
IZED SUPERSONIC FLOW

Given structural criteria.—According to the theory of
linearized supersonic flow, the local surface pressure coeffi-
cient on an airfoil is given by

v (=+31,2—1)

For this approximation the basic differential equation (11bh)
becomes

=\@/2)"—y"] (17)

or, after solving for du/dy,

)‘—_‘81= I‘ ) d’y:;_
N2y =y

(1s)

This canbe put into a more convenient form by introducing the
dimensionless variables X, ¥, L, and H defined in thelist of sym-
bols, and eliminating A8 by evaluating equation (18) at w=s,
Between the leading edge and the first downstream position
of maximum thickness dy/dx is positive while the dimension-
less variables X and ¥ both vary from 0 to 1. Along the
length of straight midsection ¥=1, while X varies from 1 to
1+L. Along the downstream portlon of curved surface
dy/dz is negative and Y varies from 1 to H, while X varies
from 1+L to ¢/s. Consequently, equation (18) giving X as a
function of ¥ becomes (with the convention that the sign of
all radieals is positive)

1 (1 dY
B Sy surface facing upstream
x= a’Y -
1 +L+.{ f 7===== on surface facing downstream

(19)

where the constant %, depends only on n and is given by the
definite integral

2 for n=1
L4y
kn—_:f—_,—;: /2 for n=2 (20)
/0 -\/l—I *
1.4023 ... for n=3

It may be noted here that integrals of the type occurring
in equation (19) also occur at numerous places in the sub-
sequent analysis. Such an integral, being a function of the

# It should be noted that the value n=0, when substituted in the suxiliary integral, gives I= (6;2)'f~oonstant but thls value cannot be used to obtain the sclution for the ease of & given

thickness ratio because n=0 is incompatible with equation (13).
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parameter n and the lower limit ¥, can be evaluated either
graphically or analytically. An analytical evaluation for
the first three integer values of n yields

21—y for n=1
1 dY
l‘ T ={ mj2—arce sin ¥ for n=2 zn
£y 3"UVEF(k, o) for n=3

where
. 5% N3—14Y
F=sin —==0.8659 ... c0sp=1"—""—
12 BT

The function F (k, ») is the incomplete elliptic integral of the
first kind of modulus £ and amplitude ¢. (A table of this
function is given in reference 7, page 122.) For convenience
the various formulas developed later are left in terms of the
above integral; specialization to the individual functions
indicated in equation (21) for a given n could be made in
any subsequent formula if desired.
For linearized supersonic flow, equation (12) becomes

PP):PII Y by)

.

_i(dy

_13 (dl'>1
_2(c) (dY
T B(s/o) \dX ),

or, on using the relation —k, dX=d¥},/1—Y" which apphes
to the surface facing downstream (equatlon (9)), there is
obtaimed
Pbﬁ OA‘E\JF——F‘
t/c (sfe)

(22)

As defined earlier, H=hft is the optimum trailing-edge
thickness expressed as a fraction of the maximum thickness.
Equation (13) can be written, in terms of X and T, as

E_E - VL lfc“ “r Y\ 9
.s'_n(j; X+t L yrd. ) (232)
or, after specializing to linearized flow,
rotl_o ( LR T S SR e 4 e
s nk.\Jo y\TZY JE1-1"

Equations (22) and (23) can be put into more usable forms
by noting from equation (19) that
L -
NP U )
R kﬂ JH 5 1—?"

After some algebraic manipulation involving integration by
parts and introduction of the definition B=—P;8/(t/c)
there results from combining equations (22}, (23), and (24),

(2T [, 2H1—H* F dy
! N H\':l——_}T"

(n—e) (n+2) T an+2—4)
(25)

B==

and

L— 20 (h—i—H\f'm.;_ l"l ,dY ) 26)
ks(n_v') (n+2) -.H\!}.—l’yk <V,

These latter two equations are the final equations deter-
mining the optimum dimensionless trailing-edge thickness H
and the optimum dimensionless length of straight midsection
L. The corresponding equations involving the given value
of I can be developed from equations (13), (22), (25), and
(26) as follows:

I  In sf;na\_2k~1—H'(_ n
(t,f2)’*-f_FE”E(L E)_ B (‘L a)

SO Ay - RO S M
o 2 H'\"l——}n (27
nt2—c ) | 20HVIH" J"l Yy aa
Tt amra—o) T gy 1—Y*

This last equation determines H as a function of I/(#/2)*°,
or vice versa. It is to be noted from equations (24), (26},
and (27) that the geomeiry of an optimum profile for given
values of n and ¢ is determined solely by H, which, in turn,
depends only on the base pressure parameter B (equation
(25)).

Given thickness ratio.—Since the use of linerarized theory
provides a general solution in closed form of the basic equa-
tions (11b), (12), and (13), the optimum profile for a given
thickness ratio can be obtained, according to considerations
presented earlier, simply by letting n > in the general
solution. Sinee I is less than unity, it is evident that, for
very large values of n,

L4y L -
[‘ ——————t d} =1—},and k“_91.
Jri1=T* Jr

Using equations (19) and (25), and noting that L=0 for the
present case, it follows that

(Y on surface facing upstream

X=" (
{2—7 on surface facing downstream @8)

B=20R2—-H) (29)

%:1/(2 —H)=2/B (30)

Equation (28) shows that the optimum surface has a dis-
continuity in slope at X=1, and that both segments make
a common angle with the chord plane. Equation (29) pro-
vides the required relation between the base pressure param-
eter B and the optimum trailing-edge thickness. Equation
(30) determines the position of masimum thickness. As H
varies from 0 to 1 equation (29) covers only the range of B
from 2 to 4. 'Within this range the above equations apply,
and the optimum profile is of the type illustrated in figure
3. For the range of B from 0 to 2 the second possible solu-
tion discussed earlier, namely, a wedge profile, represents
the optimum section. For values of B greater than 4 the



136 REPORT 1063—NATIONAL ADVISORY COMMITTEE FOR AERONATTICS

double-wedge airfoil with a sharp trailing edge is the optimum
for a given thickness ratio.

It is remarked that the above solution also can be ob-
tained quite easily by solving equations (14) and (15)
directly, instead of employing the limiting process. This
direct method can be used to determine the optimum profile
in those cases where the general solution in terms of n and ¢
cannot readily be found. Such is the case when shock-
expansiop and similar higher-order theories are employed.

CALCULATION OF PRESSURE DRAG COEFFICIENT

Given structural criteria.—Since the dimensionless thick-
ness distribution of an optimum profile is completely deter-
mined by the base pressure parameter, it is to be expected
that the quantity Be./(t/e)? also will depend only on B.
From equation (1) and the definition of B it is seen that

= | Prs By

Substituting P=2y'/8 and changing to the dimensionless
variables X, 17, and H vields

cfs
(zz;.—-% ﬁ (T /dX)dX+BH

The integral can be expressed in terms of I/(#/2)"~°
noting that (dY/dX)'=k*(1—Y" and that I/(t/z)"“’
(sfe) J; 17"dX. There results for the pressure drag co-

efficient of the optimum profile in linearized flow:

I

Bea o 1—T[42)""] B
ey~ ooy TPH G1)

Inasmuch as H, sfe, and If(t/2)"" depend only on the base
pressure parameter, the quantity on the left side of equation
(31) also depends only on B for given values of n and o.

It is of interest to compare the pressure drag of the theo-
retically optimum profile with that of more conventional
sharp-trailing-edge profiles. Acecording to linear theory the
drag coefficient of a biconvex circular-arc airfoil (c;),, of

thickness ., is given by

B(Ca)ea__ 16
CGdo?— 3 (32)

A calculation of the value of the auxiliary integral for a
circular-arc profile ([I,) is readily made by substituting
y=2(Jc)x [1—(x/c)] in equation (2). It is found that

on(n|) -
Ioe= (22’1 1 1)' (tca/z)

By requiring that I,,=1 where [ is the value of the auxiliary
integral for the optimum profile of thickness ¢ and position
of maximum thickness at sfe, then equations (31) and (32)
can be divided to \'ield

Ca o {1 —11/@t/2)"~°| } -+ BH(s/c)®
(C,Ocd 16 ( / ) { (2ﬂ+1)

9271( NE

- 69
21

This equation gives the ratio or the pressure drag offan
optimum profile to that of a sharp-trailing-edge, circular-are
profile having an equal value for 7. If the pressure drag
coefficient of a double-wedge profile (¢;)q, is used as a basis
of comparison instead of a circular-are profile, there results
in a similar manner

k{1 —[1[t/2)" "] }+BH(8/C)2
dlsfe{(n+DUI/G2) "1}

(Cd>dw *(3 4;)

It may be noted that the right side of equations (33) and
(34) depend only on the base pressure parameter if the values
of n and ¢ are given.

Given thickness ratio.—As noted earlier, k,->1 asn— .
From equation (27) it follows that I/(¢/2)*~°—0. By con-
sidering equations (29), (30), and (31) there results

2
<523iﬁl=f28‘€‘:4—ﬂz for2<B<4 (35)

Since '{ﬁ'c;/(t/c)Q]ca=16/3 and [Beq/(t/e) =4, it {ollows that

Ca ,__3_ _Iiz ___3__ 2
016 (28-7 )‘16 =)

and

for2<B<4 (36)

2 2 o B
ﬁ:?-%ﬂ—% for 2<B <4 (37)
These are the same two equations that would be obtained by
passing equations (33) and (34) to the limit as n— . When
B<2, the optimum airfoil for 2 given thickness ratio, as
previously discussed, is a wedge, for which Be./((/e)*=1--5,
eef(es)ea=3(1+B)/16, and ¢;/(¢)en=(1+B}/4. When B>4,
the optimum is a double wedge, for which Beq/(t/c)?=4,
caf(€a)ea=3/4, and cgf(cs)an=1.

If 1t is desired to compare the optimum profile with a
corresponding sharp-trailing-edge profile on the basis of rela-
tive I for a given ¢, rather than on the basis of relative ¢,
for a given I, then the foregoing calculations can he applied
by making only minor modifications. As noted earlier, the
thickness distribution of the optimum profile having maxi-
mum [ for a given ¢; is the same as that of the optimum
profile having a minimum ¢, for a given I. By using the
subseript s to denote a sharp-trailing-edge airfoil (e. g., bi-
convex, or double-wedge), and no subscript to denote the
optimum profile, the relation

n—q
Is cg=const, €q/ r=const.

can be deduced if it is remembered that I varies as the
{n—7¢) power of the thickness, and that the pressure drag in
linearized theory varies as the square of the thickness. The
above equation shows that in employing an optimum section
the relatlve structural nnprovement that can be obtained
for a given drag is related in a simple way to the relative
drag reduction that can be obtained for a given structural
requirement.
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RESULTS FOR LINEARIZED FLOW AND DISCUSSION

Significance and physical meaning of the base pressure
parameter.—The determination of an optimum profile in
linearized flow is greatly simplified by the fact that the
dimensionless thickness distribution Y (z)} depends only on
the base pressure parameter B=—P,8/(t/c), and not on
the individual values of P,, 1., or i/c.

Thus, although the Mach number, base pressure, and
airfoil thickness ratio each indirectly affect the optimum
airfoil profile, it is only necessary to know the value of B
in order to determine the dimensionless thickness distri-
bution (2y/f) of the optimum airfoil section. Knowledge of
both I and B, of course, is sufficient to determine ¢/c as well
as the dimensionless distribution of thickness.

A simple physical interpretation of the base pressure
parameter can be given if it is recalled that the basic means
by which a thickened trailing edge reduces the over-all
pressure drag is through a decrease in pressure foredrag at
the expense of a smaller increase in base drag. Thus the
optimum dimensionless distribution of thickness must
depend essentially on the ratio of base drag to pressure
foredrag. The base drag for a given H is proportional to
(—P,)(t{c); whereas the pressure foredrag for a given I
distribution is, according to linearized theory, proportional
to (¢fe)?\/Af 2 —1.

Hence,
base drag — Pilifc) _—Pa\-"f\fm?—l_B
pressure foredrag (t;’c)zfx’T[@?——l_ “te -

or, in words, the base pressure parameter is proportional to
the ratio of base drag to pressure foredrag.

Condition under which optimam profile has a blunt trail-
ing edge.—From equation (25) it is easy to deduce the con-
dition under which the optimum airfoil will have a blunt
trailing edge. The critical condition is obtained by setting
H=0. This determines a particular value of B, say B.

R ... forn=1, =0
6.283 ... forn=2, ¢=0
§=4nkn(n—i—2—g)= 5.609 ... for n=3, ¢=0 38)
(n—q)(n+2) 9.425 ... for n=2, o=1 ‘
8.730 ... forn=3, ¢s=1
4 ... for n= o, ¢ finite

A lower value of B would correspond, for example, to a lower
base drag, hence the physical significance of B can be stated
quite simply: the optimum airfoil has a blunt trailing edge
for B<B; whereas it has a sharp trailing edge for BZB.
Comparison with results of other investigations.—As a
partial check on the equations developed, several limiting
cases can be obtained by specializing to particular values
of n, ¢, and H. First, if the base pressure coefficient is zero,
corresponding either to zero base drag or else infinite Mach
number, then B=0. From equation (25) it follows that
H=1. In other words, the optimum profile for P,=0 has
its maximum thickness at the trailing edge. If the Mach
number is finite and the base drag zero, then this result

checks simple physical considerations. If the Mach number
is infinite (for which B=0 even if a vacuum exists at the
base), then this result checks the qualitative consideration
of Saenger referred to in the introduction.

A second limiting case that easily can be checked may be
obtained by considering only the auxiliary conditions of
given stiffness of sharp-trailing-edge profiles. The appro-
priate results are obtained by setting ¢=0 and F=0. From
equation (26) it follows that /=0. From equations (19) and
(21) it is seen that the optimum sharp-trailing-edge profile

is a doubly symmetric profile, each side of which is comprised

of the arc of a parabola for n=1, the arc of a trigonometric
sine funetion for n=2, and the arc of an elliptic sine fune-
tion for n=3; these are the results obtained previously by
Drougge.

Summary curves of the principal results.—In figure 4 the
optimum dimensionless trailing-edge thickness H is plotted
as a function of the base pressure parameter B. FEach curve
in this figure is obtained by substituting the indicated values
of n and ¢ in equation (25). It is to be remembered that

the curve consisting of three straight-line segments, cor-

responding to n= = and oc=finite, represents the auxiliary
condition of a given thickness ratio. The other values of n
and ¢ represent the various structural eriteria listed in the
table presented earlier.

L‘ih
T

[\

o

kN

Trailing-edge thickness, Hxh/t

Ny

& =
Base pressure poromefer, B=-F,VMZ-1/(t/c)

ForRE 4.—Optimum trailing-edge thickness for linearized supersonie flow.

The location of the optimum position of maximum thick-
ness s/c, as determined by equations (24) and (26), is plotted
in figure 5 as & function of B. The values of n and ¢ used
here are the same as in figure 4. Comparing these two figures
it can be seen that, as would be expected, the optimum posi-
tion of maximum thickness moves steadily rearward as the
optimum trailing-edge thickness is increased. '

Curves relating the value of I to the base pressure param-

eter are shown in figure 6. These curves represent equa-

tion (27). Since I is related to the optimum length of

straight midsection through equation (13), the ordinate in
this figure represents either of the two equal quantities,
T/(t/2)* or nl/ec. Figure 6, therefore, can also be used to
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FIGURE 5,—Optimum position of maximum thickness for linearized supersonic flow.
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flow.

determine //¢ in those cases where ¢ is not zero. If ¢ is
zero, then [ is zero, as noted before. ,

In figure 7 the two quantities c¢;/(cs)ce and e;/(es)en are
plotted as a function of B for various values of n and o.
Depending on the value of B, it is apparent that the pressure
drag of the optimum profile may be anywhere from a few
percent to as much as 75 percent less than the pressure drag
of an equivalent ecircular-arc sharp-trailing-edge airfoil.
The structural criterion for which the greatest drag difference
exisis is that of a given bending strength of a thin-skin
structure (n=2, o=1). The curves of figure 7 (b) clearly
illustrate the high drag of a double-wedge profile when it is
compared to the optimum profile on the basis of a given
structural requirement. These curves also illustrate that
the relative drag reduction of the optimum sairfoil for the
condition of a given thickness ratio is much less than the
corresponding reductions for the various conditions of given
structural requirements. '

Method of determining an optimum profile from experi-
mental base pressure data—The experiments of reference
8 have shown that the base pressure of airfoils in supersonic
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F16URE 7.—Drag of optimum airfoils as compared to the drag of two different shurp-trailing-
edge airfoils in linearized supersonic flow. Comparison made on the basis of equal values
for the auxiliary integral.

flow depends primarily on the trailing-edge thickness,
Reyneolds number, and type of boundary-layer flow. The
base pressure generally does not depend significantly on the
shape of the airfoil profile upstream of the trailing cdge.
Figure 8 presents summary correlation curves (taken from
reference 8) showing the dependence of base pressure on the
parameters c¢/[h(Re)'®] and c/[h(Re)*?], which are approxi-
mately proportional to the ratio of boundary-layer thickness
to trailing-edge thickness for turbulent and laminar flow,
respectively. Since the optimum profile depends on the base
pressure, which, in turn, depends on the trailing-edge thick-
ness of the optimun profile, the value of B is not known
initially. For this reason the process of determining an
optimum profile from the experimental data of figure 8
involves several steps:

(1) For an arbitrarily selected value of ¢/e, B is computed
as a function of H using the proper experimental value of
base pressure for each H.
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FIGURE 8.—Average values of base pressure [rom experiments of reference 8.

(2) A plot of H versus B is superposed on figure 4. The
point of intersection with the existing curve for the particular
combination of n and ¢ in question determines optimum
values of H and B for the particular #/e selected.

(3) Knowing tfe, H, and B from (1) and (2), [ is calculated
from equation (27}.

(4) The above process is repeated for several values of ¢/e.
Interpolation for the desired value of 7 then yields the values
of t/c, H, and B of the optimum profile. The optimum
value of B yields the optimum values of s/c and l/fc. Equa-
tions (19) and (21) vield the basic shape of the curved
portions of the desired airfoil.

The results of applying steps (1) and (2) for a thickness
ratio of 0.06, a Mach number of 3, and a turbulent boundary
layer at Re=107, are shown ip figure 9. It is seen that the
optimum trailing-edge thickness varies between 0.12¢ and
0.67¢ for the different combinations of # and o. The cor-
responding pressure drag reduction compared to a biconvex
airfoil having the same value for the auxiliary integral varies
between 6 and 29 percent, whereascompared toa double-wedge
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airfoil the corresponding pressure drag reduction varies
between 1 and 63 percent.

The effect of Mach number on the optimum profile for
tle=0.06, n=1, ¢=0, and turbulent flow at Re=107, is
shown in figure 10. For f.=5 an estimated value of
Po/po=0.15 was employed since experimental base pres-
sure data are not yet available at this Mach number. For
Af.= and 3.=1, it is not necessary to know the base
pressure to determine the optimum profile with linear theory.
A large effect of Mach number on the optimum profile,
particularly at Mach numbers above about 3, is evident
from figure 10. The effect of airfoil-thickness ratio on the
geometry of the optimum profile also is large, as illustrated
in figure 11. (For the case {/fe=0.02 in this latter figure, it
was necessary to extrapolate the experimental base-pressure
curves of fig. 8 (a) in order to estimate the base pressure.)
The trends illustrated in figures 10 and 11 can be explained
from elementary physical consideration if it is recalled that
B corresponds to the ratio of base drag to pressure foredrag.
Thus, H approaches unity as . approaches unity because
the pressure foredrag in linear theory approaches infinity
while the base drag remains finite. Mloreover, H also
approaches unity as 1f. approaches infinity because the
base drag, which is approximately proportional to 1/3/%
becomes small compared to the pressure foredrag, which in
linear theory becomes proportional to 1/3f. By the same
token, H approaches unity for very thick airfoils because the
base drag, proprotional to ¢/, again becomes small compared

Cq

(€1)am
67

T7

&4

37

FiGeRE 9.—Examples illustrating the effect of auxiliary condition on the optimum profile;
linearized flow, vertical scale expanded, My =3, #e=0.06, turbulent flow at Re=10"
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FIGURE 10.—Examples illustrating the effect of Mach number on the optimum profile
linearized flow, vertical scale expanded, n=1, ¢=0, #/c=0.06, turbulent flow at Re=107.
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F1aURE 11.—Examplesillustrating the effect of airfoil thickness ratio on the optimum profile;
linearized flow, vertical scale expanded, n=1, e=0, M =3, turbulent flow at Re=10".
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to the pressure foredrag, which in linear theory is proportional
to (t/e)2

Reynolds number has an important effect on the optimum
airfoil profile if the boundary layer is laminar. (See fig. 12.)
This is because the base pressure depends markedly on
Reynolds number for laminar flow. For turbulent flow the
corresponding dependence is seen to be considerably less,
and the optimum trailing-edge thickness is seen to be much
less than for laminar flow.

|G
(C:)se
Re=/0°, Lominar 751 .68
g - - - . .
Re=/0°, Lominar 57| .87
< —Q——- - - - -
Re=/0.s, furbulent
g - - B - 3 16| .86
Re=/0’, Tirbufent
g— - - - . 2] .88

Fi6URrE 12.~Examples illustrating the efieet of Reynolds number and type of boundary-layer
fiow on the optimum profile; linearized flow, vertical scale expanded, n=1, c=0, M, =2,
tle=0.04.

CONCLUDING REMARKS

The general method presented for computing the profile
shape having minimum pressure drag at zero lift has been
developed for the auxiliary condition that

E% ﬁ a2yl de

is constant. For a given airfoil theory, the determination
of an optimum profile under this condition involves the
simultaneous solution of equations (11), (12), and (13),
which are general in that the surface pressure coeflicient
P(y) and the parameters n and ¢ are arbitrary. Such
generality is useful since it allows either linear theory,
second-order theory, or shock-expansion theory to be used
in determining the optimum profile for & number of practical
auxiliary conditions such as prescribed bending strength or
given torsional stiffness. As an illustration of the method, a
solution has been developed in detail using linearized flow,

that is, using the expression P=2y'/JA7_*—1. In this
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simple case 2 complete solution in closed form is obtained
for the thickness distribution of the optimum profile.

The principal result of the analysis for linear supersonic
flow is that the dimensionless thickness distribution of the
optimum profile depends only on the single parameter

=—P, /I T—1/(tfc). This parameter has been termed
the base pressure parameter, and has a simple physical
significance in that it is proportional to the ratio of base
drag to pressure foredrag. The dependence of an optimum
profile in linear flow on one parameter only enables summary
curves to be plotted showing 2ll prineipal results as a fune-
tion of B (figs. 4, 5, 6, and 7). The optimum dimensionless
trailing-edge thickness increases if either the base pressure
is increased, the airfoil-thickness ratio is inereased, or the
Mach number is inereased to very high values.

At low supersonic Mach numbers the theoretical results
obtained are questionable since the assumptions of linear-
ized airfoil theory break down as the Mach number ap-
proaches unity. The results can be applied safely only
to cases where linear theory satisfactorily predicts the
pressure foredrag. Although at high supersonic Mach num-
bers the results obtained under the assumption of linearized
flow also would not be expected a priori to be of quantita-
tive value, they predict, nevertheless, the correct result
that the optimum trailing-edge thickness for infinite Mach
number is equal to the maximum airfoil thickness. In
view of this exact agreement in the extreme case, it is con-
jectured that the linear theory fortuitously may provide
a reasonable estimate of the optimum trailing-edge thickness
for any supersonic Mach number not close to unity. As
regards the optimum profile shape forward of the base,
however, such fortuitous conditions cannot be expected,

since the linearized approximation at high Mach numbers
overestimates the suction forces and underestimates the
positive pressure forces. This causes the calculated opti-
mum profile to have too large a leading-edge angle, a posi-
tion of maximum thickness too far forward, and too small
an inclination of the surface behind the position of maxi-
mum thickness. (In reference 9 some calculations using
second-order theory are presented which illustrate this
effect on the optimum sharp-trailing-edge profile for the
auxiliary condition of a given thickness ratio.)
Because the optimum profile, by definition, has the
least pressure drag possible under given conditions, small
changes in profile shape would result in second-order changes
m drag. This allows some flexibility in modifying the
theoretically optimum profile to more closely suit individual
design requirements, and means that it is not important
to rigorously adhere to the exact parabolie, trigonometric-
sine, or elliptic-sine contour (provided, of course, that the
end points of the modified contour are located approximately
in the optimum positions). It is important to adhere
reasonably close to the ecalculated optimum trailing-edge
thickness, since this quantity ecan greatly affect the drag.
In particular, a trailing-edge thickness considerably greater
than the optimum should not be used. Excessive trailing-
edge thickness at low and moderate supersonic Mach
numbers can result in an excessive increase in drag.

AMES AERONAUTICAL LABORATORY,
NaTroNaL ApvisorY COMMITTEE FOR AERGNAUTICS,
Morrert Fienp, Cavrr., Oefober 3, 1950.
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APPENDIX

NOTE REGARDING DISCONTINUANCE CHANGE IN SLOPE
OP AN OPTIMUM PROFILE

In the general analysis of optimum profiles for a given
. - . P
thickness ratio it was found that thefunction y" ba—y’ necessar-

ily was constant along each straight segment of the profile
(equation (14)). No information was obtained, however,
about the relative value of this constant for the two seg-
ments.
by considering the change in drag due to a change only in
position of maximum thickness, that is, a change in slope of
both straight surfaces illustrated in figure 3 with no change in
¢ or h. Using subscripts v and d to denote surfaces facing
upstream and downstream, respectively, it follows that

56(!: B(Cd) u + 6(Cd)d‘
P
_t(ap) 5y ,‘T(t—k)<a ) 5y
Since y’,=t/s and y',=({{—h)/(c—s), the minimizing of ¢,
E—h)y?

requires that
t? oP
s o+ (oy ). =

o[ (Gp).mve ()l
'—‘5 Ju a aI ay,d

must be continuous at the corner—a result

5Ca'=0=— a—,

oP
2
Thus ¥ 57

which was used without proof in the general analysis. It
may be noted that an alternate proof of this result ean be
obtained in an extremely easy way from the following
known result of the calculus of variations: The Welerstrass
E-function is continuous at the point of discontinuity on a

boundary. The E-function in the present case is y’? %j

For auxiliary conditions other than a given thickness ratio
it was tacitly assumed in the analysis that the optimum
surface everywhere had a continuous slope. This assumption

The required information can readily be obtained °

also requires some justification. It is shown in the calculus
of variations that at all points of free variation it is necessary
for 2

a f
that P+y’

tobe continuous. For the present problem this means

‘h points.  Ae-

P

. : a) -
cording to linear theory, P-4y’ Y hence, within the

4
E Yy,
scope of linear theory, the surface slope ¥’ is continuous at all
points of free variation. For shock-expansion theory

is positive, and a corner would cause a discontinuous de-

DJ’

crease in P, i/, and Py’ 05, henee, also within thescope of

shock-expansion theory the surface slope of the optimum pro-
file is continuous at all points of {ree variation. This justifies
the assumption of continuous slope employed in the general
analysis for auxiliary conditions other than a given thickness
ratio.
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