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METHOD FOR CALCULATION OF LAMINAR HEAT TRANSFER IN AIR FLOW AROUND
CYLINDERS OF ARBITRARY CROSS SECTION (INCLUDING LARGE TEMPERATURE
DIFFERENCES AND TRANSPIRATION COOLING) !

By E. R. G. EckerT and JosN N. B. LiviNngoop

SUMMARY

The solution of heat-iransfer problems has become vital for
many aeronautical applications. The shapes of objects to be
cooled can often be approximated by cylinders of various cross
sections with flow normal to the axis as, for instance, heat
transfer on gas-turbine blades and on air foils heated for deicing
purposes.. A laminar region always exists near the stagnation
point of such objects.

A method previously presented by E. R. G. Eckert permits
the calculation of local heal transfer around the periphery of
cylinders of arbitrary cross section in the laminar region for
Jlow of a fluid with constant property values with an accuracy
sufficient for engineering purposes. The method is based on
exact solutions of the boundary-layer equations for incompres-
sible wedge-type flow and on the postulate that at any point on
the cylinder the boundary-layer growth 18 the same as that on a
wedge with comparable flow conditions. This method s
extended herein to take into account the influence of large tem-
perature differences between the cylinder wall and the flow as
well as the influence of transpiration cooling when the same
medium as the outside flow is used as coolant. Prepared
charts make the calculation procedure very rapid. For cylinders
with solid walls and elliptic cross sections, @ comparison is
made of the results of calculations based on the presented method,
the results of calculations by other known methods, and results
obtained in experimental inrvestigations.

INTRODUCTION

Calculation of the heat transferred to cylinders with -

arbitrary cross sections from air flowing normal to the axis
by a solution of the boundary-layer equations is a difficult
problem, even when the laminar region is considered. The
problem is especially complicated by the large number of
parameters influencing heat transfer. Such parameters are:
the shape of the cross section of the cylinder, the Mach
number which determines the flow outside the boundary
layer, the temperatures on the surface of the cylinder as
well as in the stream, the stream velocity determining the
internal heat genemtion, and the temperature distribution
around the circumference of the cylinder. If the cylinder
is cooled by the transpiration-cooling method in which a
coolant is ejected through a porous surface into the outside
stream, the amount of coolant and its distribution around
the circumference of the cross section of the cylinder are
additional parameters. Even if a solution is obtained for

such a problem, for instance by use of an electronic computer,

the solution is very restricted because of the many parameters.
Up to the present time, therefore, the problem has been
attacked only under simplifying restrictions.

The restrictions most commonly used are: (1) low veloci-
ties, (2) constant property values, (3) constant wall tem-
peratures, and (4) impermeable surfaces (no transpiration
cooling). Under restriction (2), the development of the
boundary layer along the cylindrical surface is independent
of the heat transfer; available knowledge on the flow bound-
ary layer can therefore be used as a basis for a heat-transfer
calculation. Under the simplifying assumptions, which are’
necessary in order to transform the general viscous-flow
equations into the boundary-layer equations, the develop-
ment of the flow boundary layer does not depend immediately
on the shape of the cross section of the cylinder but only en
the velocity distribution in the stream outside the boundary
layer and along its surface.

One method which was applied successfully to obtain a
solution of the flow boundary-layer equation developed the
stream velocity. along the surface of the cylinder in a power
series of the distance from the stagnation point measured
along the circumference of the cylinder. In reference 1, this
method is used to solve the heat-transfer problem. It is also
shown that the temperature field within the boundary layer
can be presented in a power series of the distance from the
stagnation point in which the single terms contain only uni-
versal functions of & dimensionless wall distance and of the
Prandtl number of the fluid. The heat transfer to the surface
is given by an analogous series with terms depending on the

. Prandtl number. The calculation of the universal functions,

however, is a tedious process, and accordingly these functions
are known only for a limited number of terms. For.air with a
Prandtl number of 0.7, they are presented in reference 1. For
a gas with a Prandtl number of 1, they are contained in ref-
erence 2, which is based on reference 3, in which the boundary-
layer flow on a yawed cylinder is calculated. The fact
that the boundary-layer equation for the velocity component
parallel to the axis of a yawed cylinder is identical in form to
the boundary-layer equation describing the temperature field
for a fluid with a Prandtl number of 1, flowing normal to the
axis of the cylinder, was used in reference 2 to determine
heat transfer to such cylinders. The presentation of more
terms of the series is announced in reference 4. It was found,
however, that the velocity distribution for only a limited

1 Supersedes NACA TN 2733, “‘Method for Caleulation of Heat Transfer in Laminar Region of Air Flow Around Cylinders of Arbitrary OrossjSection (Including Large Temperature Differa

ences and Transpiration Cooling)” by E. R. Q. Eckert and John N. B. Livingood, 1952
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range of cross sections of cylinders can be represented by a
power series converging rapidly enough that the number of
the known universal functlons is sufficient to calculate the
heat transfer.

The difficulties connected with a solution of the boundary-
layer equations point out the need for an approximate
approach by which, with a small expenditure of time, heat-
transfer coefficients can be determined with an- accuracy
sufficient for engineering purposes. A considerable number
of such approaches have been tried in the past; the results
differ greatly as shown in figure 1, taken from reference 2.

1.8y

Heat~transfer coefficient

=l .2 3 4 5 K 7
Distance from stagnation point .

FI1GURE 1.—Heat-transfer coefficients for cylinder (ref. 2).

The simplest procedure is probably that in which the heat-
transfer coefficients as calculated in reference 5 are used for
flow of constant velocity along & flat plate. The fact that in
reality the stream velocity varies along the cross section of the
cylinder is taken into account by calculating the local heat-
transfer coefficients by use of the velocity found in the stream
at the considered distance from the stagnation point. This
method is contained in a summary presented in reference 6.
Unfortunately, such an approach gives heat-transfer coeffi-
cients which are considerably low in many cases (see fig. 1).

Better agreement was obtained by another approach (ref.
7) which uses, instead of the flat-plate solution, a family of
solutions of the boundary-layer equations which can be
obtained in a general form, namely, for the case where the
stream velocity varies along the surface as a certain power of
the distance from the stagnation point. Such & velocity
variation is obtained in incompressible flow around wedges.
The solutions for such a type of flow were used to obtain
approximate heat-transfer coefficients for a cylinder with

arbitrary cross section by stipulating that the local heat-
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transfer coefficient on any location along the cylinder is
identical with the local heat-transfer coefficient on a wedge
for which, at the same distance from the stagnation point,
the stream velocity and its gradient are the same as those on
the investigated cylinder. This approach was subsequently
used by different authors, and is described, for instance, in
references 8 and 9. It takes into account the:stream condi-
tions which influence the boundary-layer growth at the
location at which the heat transfer is going to be determined;
however, it does not properly account for the development of
the boundary layer in the range upstream of the point con-
sidered. This development may be different on the cylinder
and on the equivalent wedge.

Another group uses an integrated momentum equation
for the boundary-layer flow as proposed by von Kfrmén and
K. Pohlhausen (refs. 10 and 11, respectively) to calculate
the velocity boundary layer. Different procedures iwere
proposed for determining local heat-transfer coefficients
from the known velocity boundary layer. Some investi-
gators use Reynolds analogy directly (ref. 12) or with a
correction for Prandtl numbers different from 1 (ref. 13).
Such approaches give heat-transfer coefficients which are
considerably high in many cases, as shown, for instance, in
figure 1. More accurate results were obtained when the
heat transfer was determined by solving an integrated heat-
flow equation for the boundary layer. The velocity field
within the boundary layer has to be known in this approach,
since the flow velocities within the boundary layer occur in
the mentioned heat-flow equation. This method was origi-
nated by Kroujiline (ref. 14). Extensions and simplifica-
tions are contained in references 15 to 18, and an extension
to compressible flow of a fluid having a Prandtl number
equal to 1 is found in references 19 and 20. Useful informa-
tion is also contained in a summarizing report (ref. 21).

Another approach is based on the fact that the use of the
heat-transfer coefficients for wedge-type profiles as described
previously was found to give fairly accurate heat-transfer
coefficients. ‘It should be expected that these heat-transfer
coefficients can be improved to a degree which is sufficient
for all engineering purposes by a method which takes into
account in some approximate way the previous history of
the boundary layer. Such a method, called the equivalent
wedge-type flow method, is proposed in reference 22, ex-
tended to heat transfer at high flow velocities and variable
wall temperature in reference 23, and extended to transpira-
tion cooling with small temperature differences in reference
24. The advantages of this method are that no knowledge
of the velocity boundary layer is required and that it can
be readily extended to take into account the effects of large
temperature differences, of transpiration cooling, and of
variable wall temperature as soon as the corresponding
solutions for the wedge-type flow are available.

Such an extension was made at the NACA Lewis labora-~
tory during 1950-51 and is described herein. It is based on
exact boundary-layer solutions for wedge-type flow with
large temperature differences and with transpiration cooling
(refs. 25 and 26). Charts were prepared which make the
calculation of heat transfer around cylinders of any arbitrary
cross section more rapid.
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SOLUTION OF BOUNDARY-LAYER EQUATIONS FOR WEDGE-
TYPE FLOW

BOUNDARY-LAYER EQUATIONS

The following boundary-layer equations describe the
velocity and temperature fields in a laminar steady two-
dimensionsal gas flow: the momentum equation, the conti-
nuity equatlon and the energy equ&tlon The momentum
equation is

E)u ou_ 0 ou\ 0p
U TP oy oy \* oy) 3z @

when body forces are neglected. (All symbols are defined
in appendix A; consistent units are used throughout the
report.) Since the pressure variation normal to the surface
throughout the boundary layer may be neglected, it follows
that the pressure is prescribed by the conditions in the stream
outside the boundary layer and can be connected with the
velocity u, in the stream and just outside the boundary
layer by the Bernoulli equation

_op_ ., O
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The introduction of this expression changes the momentum
equation to the form

ou o 0 o ou,
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The continuity equation is

2Ot e=0 @

and the energy equation is
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The heat generated by internal friction, described by the
second term on the right side of equation (4), and the temper-
ature variation connected with expansion, described by the
third term, can be neglected as long as the difference between
the total and the static temperature in the gas stream is small
compared with the difference between the wall temperature
and the temperature in the gas stream. For this condition,
then, only the first term on the right side of equation (4) is
retained, and the energy equation assumes the form

3y /) oy (k ®)

Equations (2), (3), and (5) include the case of transpiration
cooling when the same medium as that in the outside flow is

used as coolant and the boundary conditions are properly
defined.

‘ bT b
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=0, v=1,, and T'=7T, when y=0 ®)
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The property values g, £, ¢,, and p appearing in the equation
depend on temperature and pressure. The variation with
pressure can be neglected at the low velocities to which the
energy equation was already restricted by disregarding the
internal friction and the expansion terms. The influence of
the temperature dependency, however, may be appreciable
in applications with large temperature differences within the
boundary layer. Solutions of the boundary-layer equations
which take into account the temperature variation of the
property values were obtained in references 9, 25, and 26, in
which the partial differential equations were transformed into
total differential equations.

CHANGE OF VARIABLES

The transformation of the partial differential equations
into total differential equations is possible under the following
specialized conditions: The stream velocity is assumed to
vary as a power function of the distance from the stagnation
point measured along the surface of the cylinder.

U= Cx™ (M

It has recently become customary to refer to the exponent m
in this equation as “Euler number.” The Euler number can
be expressed by the Bernoulli equation in the following way:

—dpPz -

m= 2
psls/T

8
In addition, the temperature of the wall is assumed to be
constant and the property values are assumed to vary pro-
portionally to a power of the absolute temperature 7. The
numerical calculations were made for air. The exponents
used were 0.7 for the viscosity, 0.85 for the heat conductivity,
0.19 for the specific heat, and —1.0 for the density.

The variables

-
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are used to transform equations (2), (3), and (5) into total
differential equations presenting f and 6 as functions of 7 only.
The stream function ¥ appearing in equations (9) is defined in
such a way as to eliminate the continuity equation (3).

pU= b(g;ﬂl’)
(10)
pom 2ot

Introducing the new variables into the second of equations
(10) leads to the following expression for the velocity com-
ponent normal to the surface:

—pv—pw[1+mf ““’“"zf'(m nx=l  an
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The velocity at the surface itself follows:
. 14m I"mu: (1 2)

V="

The transformation therefore prescnb% 2 certain variation
of the coolant velocity v, along the surface, since the function
fo has to be constant (independent of z). The stream
velocity is described by equation (7); thus, the coolant
velocity v, is also proportional to some power of z. Such a
variation of the coolant velocity leads to & constant wall
temperature and is therefore consisfent with the assumed
constant wall temperature when heat transfer by radiation
may be neglected (ref. 27). The transformed equations are
presented in references 9, 25, and 26, together with the solu-
tions for a Prandtl number Pr of 0.7, and for a range of
Euler number m, temperature ratio T,/T,, and the parameter
fw describing the cooling-air flow through a porous surface.
The results contain expressions for the thickness of the flow
boundary layer which are defined in two ways: the displace-
ment thickness

Bd_f (1_P3u3> (13)
and the momentum thickness
J; pslly ( T, dy a4

The thermal boundary layer is characterized in this report
by the convection thickness

® pu T— * dy
0 psts I w""T

(15)

b=

In addition, a thermal boundary—layer thickness, which is
defined as follows, will be used herein:

(16)

Values for this boundary-layer thickness can be easily calcu-
lated from results presented in references 25 and 26.

APPL_ICATION TO HIGH VELOCITIES
The solutions described apply exactly only to flow with
low velocities. Practically, the limiting velocity up to which
it is possible to neglect the frictional and the expansion terms
can be set quite high for a gas; this fact can be understood

from the following transformation of the energy equation,.

in which only the specific heat is regarded constant. If the
momentum equation (1) is multiplied by the velocity « and
added to the energy equ&tion (4) and if, in addition, the total
tempemture Tr=T+*2¢, is introduced, the following ex-
Ppression is obtained:

pc,(u%’i—'—r—l- ) by( Ty 2ay[< Pr)a(u;)
(17)
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The last term on the right side of the equation vanishes for &
Prandtl number equal to 1. In this case, the energy equa-
tion has the same form as the one for low velocities in which
the friction and the expansion terms were neglected. The
only difference lies in the fact that the total temperature
appears in the energy equation. When the Prandtl numbor
is approximately 1, the last term in equation (17) will be
comparatively smell up to considerable velocities, and the
energy equation (5) used in the following considerations
applies to this condition when the temperature 7' is inter-
preted as total temperature. It will be shown later that as
far as heat transfer is concerned, the range in which the
results of a calculation with equation (5) may be used can
be extended even further by using a properly defined adia-
batic wall temperature instead of the total gas temperature.

The property values p, %, ¢, and p depend for gases on the
temperature. This dependency was taken into account in
the described calculations. The density depends, in addi-
tion, on the pressure, and the pressure variation may become
considerable at high Mach numbers. There are indications,
however, that calculations which neglect this pressure varia-
tion can bé used with sufficient accuracy over the entire
subsonic range, as is pointed out in reference 28, in which
an investigation of results obtained by L. Howarth (ref. 29)
is reported.

EXTENSION OF THEORY TO ARBITRARY BODIES
DETERMINATION OF EQUIVALENT WEDGE

The solutions discussed in the previous paragraph are in an
exact sense restricted to a-certain type of velocity variation
along a cylindrical surface, namely, a stream velocity which
just outside the boundary layer is proportional to some power
of the distance from the stagnation point. Such a velocity
distribution is realized, for instance, in incompressible flow
around wedges. The wedge-type solutions may be used,
however, to obtain approximate heat-transfer coefficients on
cylinders of arbitrary cross section. In one approach in this
direction, it is assumed that the heat-transfer coefficient on
any point along the circumference of & profile with arbitrary
cross section is the same as that on a wedge at the same dis-
tance from the leading edge, provided the stream velocity and
its gradient on the wedge and on the arbitrary profile have
the same value at the location considered and that the tem-
perature ratio T,/T, is the same. It will be shown that such
an approach takes into account the right stream conditions
at the local spot for which the heat-transfer coefficient is to
be determined. However, the previous history within the
boundary layer is not properly considered. Numerical
calculations presented herein show that beat-transfer co-
efficients obtained in such a manner are in most cases within
about 15-percent agreement with exXperimental data. It is
to be expected that a modification which accounts in some
approximate manner for the conditions in the boundary layer
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upstream of the point under consideration should improve
this approximation to the desired degree. This modification
is made in reference 22 by the stipulation that the rate of in-
crease of the boundary-layer thickness is the same on the
considered point of an arbitrary profile and on the point of a
wedge which has the same boundary-layer thickmess, the
same stream velocity, and the same stream velocity gradient.

This same stipulation will be used in the present report. For-

a given temperature ratio T,/ T, the heat-transfer coefficients
on a wedge depend on the Euler number m and the value f,
characterizing the coolant flow through a porous surface.
These parameters which define the equivalent wedge profile
will now be expressed by the boundary-layer thickness and
the local stream velocity gradient.

For the wedge-type profile, the stream velocity is expressed
by the power law
=0 (18)

in which the value £ expresses the distance from the leading
edge measured along the wedge surface in order to distinguish
it from the distance of the point under consideration from
the stagnation point on the arbitrary profile, which is denoted
by z. The variables used for the transformation of the
original boundary-layer equations in the prewous section
may now be written

Pulls
n= y\/ = (19)
and
2 . [eet
fw'— m—+1 v Peols (20)

Corresponding to a certain value y, which indicates the
boundary-layer thickness 8, there is a value 5, of the coordinate
yn defined by the equation

(21)

In order to eliminate the disltance £ from this equation, equa-
tion (18) is differentiated to obtain

ou, -
5= moi=m

(22)

Since the velocity gradient on the wed;ge profile is assumed
the same as that on the profile under consideration, it follows
that ou,/0t=0u,/dx. This equality gives for the coordinate
£ the expression
_mu,
=iz (23)
When this expression is introduced into equation (21), there

is obtained
=5 Pw d'u:)
W=0Y wom \dz
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In this expression, 7, (denoted as (5/z)y/Fe in refs. 25 and 26)
is & function of the Euler number m and of the coolant-flow

parameter f,. Therefore, if this equation is written in the
form
2, _ Pud dUs o
Ny M Lo d‘-’B ("’Q

the left side is a function of m and f,, and equation (24) re-

lates both values to the boundary-layer thickness & and the

velocity gradient du,/dz. In order to obtain a second relation

for m and f,, the coordinate £ is replaced in equation (20)

The result is

Pwvw'S
#w

~T%L e 25)

which is written again in such & way that the left side is a
function of the Euler number m and the flow parameter Ty
which can be calculated from the results in references 25

and 26. Both equations (24) and (25) are therefore suffi-

cient to determine the equivalent wedge profile.

EQUATIONS . FOR BOUNDARY-LAYER THICKNESS AND HEAT TRANSFER

The next step is to develop a differential equation for the
boundary-layer thickness from the postulate that the
boundary-layer gradient ds/dz is the same for the real profile
as for the equivalent wedge profile. For the wedge profile,
the boundary-layer thickness is given by the expression

) l—m
. Mo

= Ona £’

which is obtained from equation (21) by replacing the stream

velocity with equation (18) and solving for the boundary-

layer thickness. A differentiation of this equation and the

use of equations (23) and (24) result in

ds l—madu,/d:c=1—-m 2 Ho
dz 2m w2 ¥ pudu,

(26)

This is & differential equation for the boundary-layer thick-
ness which contains only values which are known for the
profile under consideration or which are determined from
equations (24) and (25) for the equivalent wedge-type flow.
An integration of the differential equation gives the boundary
layer along the circumference of the profile under consider-
ation.

The local heat-transfer coefficient is defined by the follow-

ing equation:

Introducing the dimensionless temperature ratio given in
equation (9) and the coordinate & results in

h= kwe, =k, 5 . @n
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The heat-transfer coefficient may be calculated from this
expression as soon as the.boundary-layer thickness § is
known, since 6, and 75, are functions of m and f,, contained in
references 25 and 26.

Up to the present time no recommendation has been
made as to which boundary-layer thickness should be used
in the prescribed procedure. When the momentum thickness
is used in the foregoing equations, it is easily understandable
that the integrated momentum equation is satisfied and
that the method of calculation becomes the same as the one
proposed by von Kérmi#n in reference 10. This fact can be
proved mathematically by a procedure completely analogous
to the one used in appendix B. On the other hand, the use
of the convection thickness as defined in equation (15)
satisfies the integrated heat-flow equation within the bound-
ary layer, as shown in appendix B. The use of both boundary-
layer thicknesses leads to somewhat different results for the
local heat-transfer coefficient, and 2 question arises as to
which is preferable. It is pointed out by Schuh in reference
23 that, for the purpose of determining heat-transfer co-
efficients, it is more important to satisfy the heat-flow
balance; the use of the convection thickness was therefore
recommended. In reference 22, the use of the thermal
boundary-layer thickness as defined in equation (16) is
investigated, and the results of the calculation with this
boundary-layer thickness are found to agree even better
with measured -values and with other calculations. The
convection thickness 5. and the thermal thickness 8, for the
boundary layer will therefore be used in pa.ra]lel in the
following numerical evaluations.

CALCULATION PROCEDURE
USE OF DIMENSIONLESS VARIABLES

The procedure which may be followed in determining
local heat-transfer coefficients with the relations developed
in the preceding section is now explained. Figure 2 shows a

7s ug

_ - —~Boundary layer

Us,0-—~

Stognuhon !
poml--'

F1oURE 2.—Sketch of cylinder indieating notation used.

sketch of & cylinder with arbitrary cross section and the
notation used in the analysis. Before numericel calculations
are made, however, it is advisable to change to dimensionless
quantities. In order to make this change, the distance z is
divided by the major axis L of the cylinder and the mass
velocity in the direction of  is divided by an upstream mass
velocity. All lengths and mass velocities parallel to y are,
in addition, multiplied by the square root of the Reynolds
number Re, based on the major axis and the upstream mass
velocity. The dimensionless variables which are sub-
sequently needed are
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a;*-=% (28)
5*=%-\‘R€o (29)
u:"= P‘:)if'o (3 O)
pr= :‘;f“’ Re, (31
3.0
where
R€o=?££:“l:%pq (3 2)

By use of these dimensionless quzmtiﬁes, equation (26) is
transformed into

ds* M
FEL 33)
where
M=1 =M ( L B""",v*&"‘) (34)

according to equations (24) and (25), which, in dimensionless
values, are

7% du, 5*

and
_m+ 1 fu:"lb= 0:5*

Introduction of the dimensionless quantities into equation
(27) leads to

Nu N

TRe. & (35)
where
Nu=2L (36)
and ,
N=0.9,=N (d”' 3 *5*) (37)

CHARTS AND CALCULATION PROCEDURE FOR PRESCRIBED COOLANT
FLOW

Charts have been prepared which present the functions
M and N as expressed by equations (34) and (37) in depend-
ence on (duy/dz*)8*? and v%s*. The charts presented herein
were constructed from results presented in references 25
and 26. In figures 3 and 4, the dimensionless convection
thickness of the boundary layer is used; in figures 6§ and 6,
the dimensionless thermal boundary-layer thickness is used.

At the stagnation point of any blunt nosed cylindrical
body, conditions are the same as those at the stagnation
point of & plate normal to the flow. Therefore m=1, but
the value of &* is unknown. However, there exists at tho
stagnation peint 2 unique relation o}6*=F[(dul/dx*)5*?]
which may, for instance, be read along the abscissa in figure
3 or in figure 5. Squaring this equation and dividing both
sides by (duf/dz*)5*® result in

pis 1 dul ,
I T i T ’)
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FIGURE 3.—Chart for use In determination of M for dimensionless convection boundary-layer thickness. Pr, 0.7.



230 REPORT 1118—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS
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F16URE 3.—Concluded. Chart for use in determination of Af for dimensionless convection boundary-layer thickness. Pr, 0.7.
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FIGURE 4.—Chart for use in determination of N for dimensionless convection boundary-layer thickness. Pr, 0.7.
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FIGURE 5.—Chart fof nse in determination of Af for dimensionless thermal boundary-layer thickness. Pr, 0.7.

These relations are presented in figure 7 for the dimension-
less convection boundary-layer thickness and in figure 8 for
the dimensionless thermal boundary-layer thickness.’

By use of these charts, the celculations for any profile
can be made in a very simple manner for either the dimen-
sionless convection or the dimensionless thermal boundary-
layer thickness. The method of solution for the convection
thicknesses is described subsequently. For the thermal
thickness, the procedure is the same.

The values-of %, and du,/dz must be found for the cylinder

profile under consideration either by measurement or by a
solution of the inviscid-flow equations. The coolant veloc-
ity v, is prescribed by the porosity of the wall and by the
pressure distribution around the profile. TFrom these terms,
the values of u¥, duf/dz* and v} can be calculated. The
value of 5* at the stagnation point can be determined from
figure 7 in the following way: The value of v}3/(duf/dz*) is
computed, and the corresponding value of (du}/dz*)s;* is
read from figure 7. A simple algebraic operation then yiclds
the desired value of ¥ at the stagnation point.
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The dimensionless convection boundary-layer thickness
67 along the cylindrical surface is determined from equation
(33); for the numerical evaluation presented herein, this
equation was solved by the method of isoclines with the aid
of figure 3, depending upon which ratio of stream to wall
temperature is applied. Equation (33) determines the direc-
tion of the tangents to the different §¥-curves which satisfy
the equation. The task is to find that curve which contains
the &7-value previously calculated for the stagnation point.
For chosen values of z* and &), values of (du}/dx*)&¥® and
vEs¥ are computed and the value of Af is read from the
appropriate part of figure 3. Equation (33) then gives the
slope of the tangent at this selected value of z* for the
assumed &¥. Several values of & are used for this 2*. The
same calculations are repeated for other values of z*. If
the chosen distance between these z*-values is small enough,
an accurate curve of &) against z* can be drawn which starts
at the desired previously calculated value of &7 at the stag-

nation point and which will have the correct slope at each
value of z* considered. Figure 9 illustrates this method of
solution. Values of N can then be obtained for each of the
correct 6F-values and the considered »*-value for each z*
from figure 4 after (duf/dz*)8F* and v%sF are computed (the
ratio of stream to wall temperature under consideration
determines which part of figure 4 should be used). The

_value of Nu/\/Re, can finally be obtained from equation (35).

The same calculation procedure can be used when the
dimensionless thermal beundary-layer thickness is considered.
Figure 8 is used for the determination of the value of 3* at the
stagnation point; figure 5 is used to determine M; and figure
6 is used to determine N. The particular ratio of stream to
wall temperature under consideration determines which parts
of these figures apply for the calculation of the values of M
and N. Finally, equation (35) gives the desired value of
Nu/\@o
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FIGURE 9.—Isocline solution of boundary-layer equation.

CHARTS AND CALCULATION PROCEDURE FOR PRESCRIBED WALL
TEMPERATURE

The heat-transfer coefficients determined !by the values of

Nu//Re, can now be used to calculate the surface tempera-
ture of the cylinder when the outside stream temperature
and the temperature at which the coolant is supplied to
the interior of the cylinder are known. For this purpose, &
heat balance for an element of the wall as shown in figure 10
is set up. The cylindrical volume element considered may
have two plane surfaces, one surface (1) coinciding with the
* outside surface of the cylinder wall and the other (2) apart
from the inside surface of the wall by such a distance that it
is situated outside the boundary layer present on this side.
(The inside surface has to be considered as a surface of a

R

| S . |
2
CplpwvnlTc dA Inside
F1GURE 10.—Cross section through part of cylinder wall used in sstting up heat balane;.

'-'-Boundary lu&er
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wall to which suction is applied and on which & boundary
layer builds up as shown in ref. 30.) The mantle surface
(8) of the cylinder may be normal to the wall surfaces.
Heat is carried by convection with the cooling air through
surfaces 1 and 2. The amount per unit time is indicated in
figure 10. Tt is assumed that the coolant is heated up to
the wall surface temperature T. when it leaves the wall.
This assumption is usually well fulfilled. Heat will also be
transferred by conduction through the fluid layers immedi-
ately adjacent to the outside wall surfaces, the amount being
—k, @T/oy)wdA. In addition, heat may be transferred to
the outside wall by radiation; it may be ¢, d4. Heat may
also flow into the volume element by conduction in the solid
material or by transverse flow of the cooling air., The sum
of all these individual flows may be ¢, d4. Then the heat
balance is

qr+Qc+0ﬂPwvac—'cpr‘vaw -k, <1>

The heat —k., (T/y). transferred per unit area from the
gas to the wall is expressed in this report by a heat-transfer

coefficient
bT)
h(Tw—‘T:)= _kw (a/' o

Combining these two equations results in

Qr'l'_(lo'l‘h(T:_Tw)=cppwvw(Tw— Tc) (38)

This equation permits & calculation of the wall temperature
for any place on the cylindrical surface when the coolant
velocity v, is prescribed, when the local radiative heat flow
¢, and the conductive heat flow g, are known, and when the
heat-transfer coefficient & has been obtained. The conduc-
tive heat flow ¢, is usually small and can be neglected. Such
a calculation results in a wall surface temperature which
generally will vary along the circumference of the cylinder.
When the variations are large, the temperature distribution
obtained can be regarded only as an approximation, since
the wedge solutions (refs. 22, 25, and 26) on which the
method in this paper is bagsed were obtained for the case of a

-constant wall temperature.

Usually, however, the problem which faces the designer in
an application is somewhat different from the one treated.
The purpose of transpiration cooling is mostly to keep the
wall temperature of some structural element below the limits
which the material can withstand. On the other hand, the
amount of coolant almost always must be kept small, which
means that local overcooling should be avoided. For the
wall surface under these conditions, a temperature is pre-,
scribed which should be uniform about the circumference of
the cylinder and the problem is to find that distribution of the
coolant velocity v, which results in the desired wall tempera-~
ture. Generally, such an investigation requires a trial-and-
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error procedure which is very involved. The procedure
becomes simple and straightforward, however, when the
radiative heat flow ¢, and the conductive heat flow ¢. can be
neglected. Such a solution, then, is also useful as a starting
point for the trial-and-error procedure when radiation is
present.

The heat balance (eq. (38)) can be transformed to

h _ Pwlw Tw‘—To
CppPsis, o Psls,0 Ta_Tw

(39)

when ¢,=¢,=0. The ratio of temperature differences in this
equation is now a prescribed value. A similar ratio
(Ty—Tw)/(T,—T.) often appears in turbine-cooling work and
is denoted by ¢. Introduction of this value and conversion
to dimensionless values result in

Nu —
=p*Pr I—¢
+Re, 0

Another expression for Nu/yRe, is given by equation (35).
Combining both equations gives

(40)

N=9p}*Pr 1;¢

This equation expresses a relation between the parameters
N and »%6* in figures 4 and 6 which may be used to insert
lines of constant ¢ into these figures. With the use of these
lines, the calculation procedure for any specific problem
becomes quite simple. The procedure will be described for
T,Ts=1 (or near 1) and with the use of the convection
boundary-layer thickness §f. The prescribed temperatures
fix the value of .

At the stagnation point, m=1 and du}/dz* is known. In
figure 4 (a) the intersection between the line m=1 and the
line for the prescribed ¢ determines %5} and (dul/dz*)5¥3,
and, from both values, §F and »? may be calculated.

The method of isoclines may again be used to determine the
development of the boundary layer along the cylindrical
surface. The use of this method implies that the gradient
d5?/dx* has to be determined for any pair of values z* and
8¥. For an assumed &F, the value v%s¥ can be found in
figure 4 () as the value on the prescribed o-curve above the
known abscissa value (du?/dz*)s¥2.
M and equation (33), the gradient dé¥/dx*. A plot, similar
to figure 9 determines the boundary-layer thickness, and the
values »¥ belonging to these boundary-layer thicknesses
represent the coolant-flow distribution for the particular
temperature-difference ratio ¢.

NUMERICAL EVALUATIONS AND COMPARISONS WITH
ENOWN RESULTS
SOLID SURFACES

The results of the outlined procedure for calculating local
heat-transfer coefficients have to be compared with experi-

(41).

Figure 3 (a) then gives,
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mental results or calculations by some other method in
order to check the accuracy. The only cylindrieal shape for
which experimental data or solutions of the boundary-layer
equations suitable for such a comparison are available seems
to be the cylinder with a circular cross section. Accordingly,
local heat-transfer coefficients ere calculated according to
the method proposed in this report by use of the dimension-
less thermal boundary-layer thickness as well as of the dimen-
sionless convection boundary-layer thickness. The results
of these calculations are plotted in figure 11 over the dimen-
sionless distance from the stagnation point. -Also inserted
in the figure is & curve representing the average curve through
the experimentally determined local heat-transfer coefficients

ARBITRARY CROSS SECTION
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FIGURE 11.—Comparison of present method with formerly used methods for calculation
of local heat-tranafer coefficients around circular cylinder with impermeable wall. g}, 0;
Pr,0.7; T/ Tw, 1.

mentioned in reference 31. It is shown in reference 22 that
the measurements correlated well into & single curve when
the experiments with Reynolds numbers near the critical
value for transition to turbulence within the boundary layer
were excluded. The tests with high Reynolds numbers gave
values of Nu/\/Re, which over the whole upstream side of
the cylinder were about 10 percent higher then the ones for
the lower Reynolds numbers. The same behavior is reported
in references-32 and 33 in which it is shown that an increase
up to 50 percent in the heat-transfer coefficients over the
expected laminar values was caused by the turbulence level
in' the wind tunnels used. The result of a solution of the
boundary-layer equation as presented in reference 1 is also
included in figure 11.
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This method solves the boundary-layer equations and
obtains results as a series in the distance along the surface.
Also inserted are values obtained by use of the Pohlhausen
flat-plate solution when the free-stream velocity is based on
the local values and results obtained by the methods of
references 12 and 13. Heat-transfer coefficients on wedges
with the same local stream velocity and velocity gradient
at the same distance from the stagnation point are also
included (ref. 8). Appendix C explains how these wedge
solutions were obtained. ‘

On a cylinder with a circular cross section, separation
occurs in the suberitical range near the value 2*=0.7. The
stream velocity distribution around the surface of the cylin-
der which was needed for the calculations was obtained from
pressure distributions given in reference 31 and is contained
in reference 22.

1t may be seen from figure 11 that the use of flat-plate
values results in heat-transfer coefficients which are consid-
erably lower than experimental values, whereas the methods
in references 12 and 13 result in values which are too high.
Much better agreement is found between the wedge heat-
transfer coefficients and the experimental results, especially
near the stagnation point. Farther downstream, the accu-
racy is improved by the method of this report. For the
largest distance from the stagnation point, the use of the
dimensionless thermal boundary-layer thickness results in
values which are higher and the use of the dimensionless
convection thickness, in values which are lower than the
experimental ones. The values calculated by Frossling’s
solution of the boundary-layer equations are also higher
than the experimental ones. Frossling’s. method has to be
considered as an exact solution of the boundary-layer equa-
tions. In reference 22 it is recommended, on the basis of
the good agreement between Frossling’s curve and the values
obtained by the use of the thermal boundary-layer thick-
ness, that the method of the equivalent wedge flow be based
on the thermal boundary-layer thickness. The values of
the heat-transfer coefficients depend primarily on the veloc-
ity distribution in the stream around the cross section of
the cylinder. The velocity distribution used for the calcu-
lation on the circular cylinder is also shown on figure 11.
The calculations are made for & Prandtl number of 0.7, for
8 solid surface (v,=0) and a temperature ratio T%/T, of 1,
equivalent to the assumption of constant property values.
These calculations agree within 5 percent with the exact
calculation and within 8 percent with experiment when the
immediate neighborhood of the separation point is excluded.
Similar comparisons have already been made in reference 2
for a gas with & Prandtl number of 1 and a different velocity
distribution (see fig. 1). This comparison shows that the
method proposed by Squire (ref. 16) gives heat-transfer
coefficients which agree with the exact boundary-layer solu-
tion to about the same degree as those of the method of
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the equivalent wedge flow. The same fact holds for the

" method indicated in references 15 and 17 especially with

the improvement given in reference 4. It can be stated in
summary, therefore, that & number of methods exist today
which, at least for the circular cylinder, permit the deter-
mination of heat-transfer coefficients on solid surfaces in the
laminar region of a gas having - constant property values
with a very good accuracy. The advantage of the equiva-
lent wedge flow method over those methods just discussed
is that it gives solutions in & very short time and that it
can be readily extended to include variable property values
and transpiration cooling, as was done in this report. The
wedge solution, according to reference 7, is still more rapid;
however, the results differ from the experimental values, up
to 15 percent.

~ Figure 12 gives the analogous results for an elliptic cylinder
with the axis ratio 1:2. It may be observed that heat-
transfer coefficients on wedges differ only slightly from those
obtained for equivalent wedge-type flow, whereas the flat-
plate values and the ones calculated with references 12 and
13 are considerably different. No experimental results or
solutions of the boundary-layer equations for a cylinder with
such a cross section which could be compared with the ap-
proximate solutions are known to the authors. The calcu-
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F106URE 12.—Comparison of present method with’formerly used methods for calculation
of local heat-transfar coefficients around elliptic cylinder with axis ratlo of 1:3. o, 0;
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lation with Kroujiline’s method, presented in reference 22,
agrees well with the solutions obtained with the equivalent
wedge-type flow method. Separation of the flow occurs on
such a profile near z*=0.8. The stream velocities used are
calculated values contained in reference 22.

The agreement between the wedge solutions and the results
obtained by the method herein is still closer for the elliptic
cylinder with axis ratio 1:4 (fig. 13). The reason for this
fact is the type of stream velocity variation occurring on
elliptic cylinders. Flow separation occurs on this cylinder
near z*=0.85. The curves in figures 12 and 13 show that
the stream velocity is comparatively constant over a con-
siderable part of its circumference after a steep increase near
the stagnation point. This behavior is more pronounced for
an axis ratio of 1:4 than for one of 1:2. An inspection of
figure 13 shows that, apart from the region near the stagna-
tion point, even the flat-plate values give a reasonably good
approximation, Calculations obtained by use of the dimen-
sionless thermal boundary-layer thickness extended to the
flow separation point, whereas those for the dimensionless
convection boundary-layer thickness did not. It therefore
appears advisable to use the dimensionless thermal boundary-
layer thickness. '

Experimental heat-transfer coefficients found at the Uni-
versity of California for an elliptic cylinder with an axis
ratio of 1:4 (ref. 34) are about 50 percent higher than the

241

theoretical values shown in figure 13. There are several
reasons for this discrepancy.. The measured stream-velocity
distribution was different from the one on which the present
calculations are based, probably because of s limited width
of the wind tunnel. The cylinder in the experimental in-
vestigation was heated by an electric resistance which pro-
duced a constant heat flow through the surface per unit area.
Accordingly, the surface temperature varied along the cir-
cumference of the cylinder, being lowest at the forward
stagnation point and increasing in the downstream direction.
Calculations in reference 34 indicate that the higher values
found in the tests are mostly due to this fact. Another
increase of the experimental heat-transfer coefficients may
again be connected with the turbulence level in the wind
tunnel used, as discussed in connection with the experimental
results for circular cylinders.

From figures 11 to 13, it may be concluded that, for
cylinders with a stream velocity which is fairly constant over
the greater part of the circumference, local heat-transfer
coefficients may be obtained with good accuracy from wedge
solutions. In the region in which the stream velocity varia-
tion is considerable, the method of the equivalent wedge flow
gives heat-transfer coefficients with an accuracy sufficient for

engineering purposes.
POROUS SURFACES

Heat-transfer coefficients were calculated by the method
of the equivalent wedge flow for cylinders with circular and
elliptic cross sections for transpiration-cooled surfaces and
different temperature ratios 7'/ 7. by using either the thermal
or the convection boundary-layer thickness (figs. 14 to 18).
In these figures it was more expedient to base the Reynolds
numbers appearing on the ordinate and in the coolant flow
parameter on the density at wall temperature (Ke.) rather
than on the upstream density (Rey). In figures 11 to 13 and
19, both Reynolds numbers are identical since they are
calculated for a temperature ratio 7,/T.=1. The use of
both boundary-layer thicknesses gives different results only
for large distances. from the stagnation point. The vari-
ation of the heat-transfer coefficients with the ratio of stream
to wall temperature is comparatively small for solid surfaces.
This result is in agreement with previous findings. For
transpiration-cooled surfaces, however, the effect of the
temperature ratio on the heat-transfer coefficients becomes
more pronounced, especially on cylinders with nearly circular
cross sections. In reference 24, the case of transpiration
cooling with small temperature differences is calculated; this
reference includes the effect of the temperature ratio by a
correction factor which is based on the assumption that this
effect is the same as that determined experimentally for
impermeable surfaces. A comparison of results shows that
the procedure in reference 24 underestimates the effect of
temperature ratio for transpiration-cooled surfaces. In
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addition, it can be observed that transpiration cooling
results in a considerable decrease of the heat-transfer co-
officients. A larger amount of coolant flow is necessary to
reduce the heat-transfer coefficients by the same amounts
in regions in which the heat-transfer coefficients are large.
Such a region exists at the stagnation point on a cylinder
with an axis ratio of 1:2, and especially on a cylinder with
an axis ratio of 1:4.

The variation in coolant flow required to maintain con-
stant wall temperature for transpiration-cooled cylinders
with circular and elliptic cross sections is shown in figure 19.
The calculations were made for a temperature ratio T,/7.
of 1, a value of ¢ of 0.5, and a Prandtl number Pr of 0.7.
Figure 19 shows that the highest local coolant-flow rates are
necessary near the stagnation point in order to keep the
wall temperature down at that place. The magnitude of
the coolant-flow rate at the stagnation point is proportional
to the square root of the velocity gradient duf/dz*; this in
turn is determined mainly by the value of the radius of
curvature at this point. As this radius of curvature de-
creases, the required coolant flow increases. This is in
agreement with figure 19, which shows that the maximum
coolant flow is required at the stagnation point of the elliptic
cylinder with the 1:4 axis ratio. Downstream of the stag-
nation point, the flow rates decrease for each cylinder.
Figure 19 also shows that the use of the thermal rather than
the convection boundary-layer thickness results in only a

very minor increase in coolant flow required to maintain the

circular cylinder wall at a constant temperature.
EXTENSION OF CALCULATION TO HIGH-VELOCITY FLOW

The heat generated by internal friction was neglected in
equation (5) according to the assumption of small velocities.

fration-cooled elliptic ¢ylinder |
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The equation

q=h(Ts—Tw) (42)
gives the heat-transfer coefficient for this case. It was
already explained that the inclusion of the internal friction
for a gas with a Prandtl number of 1 results only in the
change that the temperature T in equation (5) and the
temperature T, in equation (42) are now total temperatures,
a8 long as the property values may be regarded constant.
The heat-transfer coefficients determined in this report may
be used in this case. It is shown in reference 35 by use of
results obtained in reference 36 that the heat-transfer co-
efficients determined for low-velocity flow apply to high-
velocity flow up to a Mach number of about 4 for a gas
with a Prandtl number different from 1, when the stream
velocity is constant (flat plate) and the heat flow is not too
large. The heat-transfer coefficient, however, has now to
be defined by the equation

q=h(Toa—T) (43)
in which the temperature 7,; denotes the value which an
unheated plate assumes in the high-velocity flow. The
adiabatic wall temperature may be determined from the
recovery factor : .

Ta.d—T [

TO_T—T,—.?T’, (44)
which was found to be.equal to +/Pr for laminar flow and for
Prandtl numbers of approximately 1. The difference be-
tween the total and the static temperatures in the stream
is connected with the stream velocity by the equation
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For the flat plate with & constant stream velocity, the adia-
batic wall temperature is therefore constant.

Conditions are more involved on & cylinder with a stream
velocity which varies along its circumference. Even when
the recovery factor is assumed to be constant, equations
(44) and (45) give an adiabatic wall temperature which
varies along the circumference of the cylinder. The fact
that the low-velocity heat-transfer coefficients also repre-
sented the high-velocity values on a flat plate, however,
followed from the fact that the energy equation for constant
property values is linear in T, and that a general solution
of the nonhomogeneous equation describing the heat transfer
including the internal friction could therefore be obtained

by superposition of the solution of the homogeneous equation .

valid for small velocities' and a particular solution of the
nonhomogeneous equation. Such a superposition results in
a constant wall temperature on the flat plate when the solu-
tion of the homogeneous equation for constant wall tempera~
ture and the one describing the adiabatic wall temperature
is used, since the adiabatic wall temperature is also constant.
For a cylinder with an arbitrary cross section, however, the
adiabatic wall temperature which represents a particular
solution of the nonhomogeneous equation varies along the
circumference. Therefore, a superposition of this particular
solution with the low-velocity solutions for constant wall
temperature does not give a constant wall temperature, which
was specified for the problems investigated in this report.
Accordingly, the heat transfer has now to be calculated with

the equation-
q=h(Tdf— Tw) (46)

in which T, has to be determined for constant wall tem-
perature conditions; that is, T, is the temperature which
a particular spot along the surface, for which the heat-
transfer coefficient is to be determined, assumes when the
heat flow through the wall at this particular spot is zero
and the wall temperature along the circumference of the
cylinder is constant. .

For flow around wedges, this temperature, which may be
referred to as the ‘“effective temperature,” can be found
from the results in reference 23. It is also determined for
several cases in reference 37. The calculation procedure
which determines this effective wall temperature from ref-
erence 23 is described in appendix D. The calculation
shows that this temperature may be again expressed by a

recovery factor g
eff—Ls

Q_TT :‘_T: (47)

r
The index « is used to indicate that such a recovery factor
could be determined experimentally by a model made of a
material with a very large heat conductivity so that the
internal heat conduction would eliminate all temperature
differences along thesurface. On theotherhand, the recovery
factor describing the adiabatic wall temperature in equation
(44) has to be determined experimentally by & model made

REPORT 1118—NATIONAL ADVIS<0RY COMMITTEE FOR AERONATUTICS

of a material with an infinitely small heat conductivity so
as to eliminate internal heat flow.. Values for the recovery
factor 7., determining the effective temperature of a wedge
are presented in figure 20. The recovery factors r, describing
the adiabatic wall temperature according to equation (44)
have been calculated for wedges in reference 7. This calcu-
lation had resulted in values which decreased slightly with
increasing Euler number m. Repetition of these calculations
on an electric computing machine, however, according to a
communication from Arthur N. Tifford of Ohio State
University, showed that the recovery factors for the adi-
abatic wall temperature are practically independent of the

Pr
1.00 .o
.95
.90
\\\
\\
.85
\ —~—~1_.8 Ref
137
80 \\\ IR i
ro i I~
N\ ™
75 N 3
\\
—1__|23
10 \\ 12 |
\\
\
65 BN 5
o \\\
60 [~ 37
5% 2 4 6 8 10 1.2 .4
m

FIGURE 20.—Recovery factor values determining effective temperature of wedge.

Euler number and have the same values as the recovery
factor r,, shown in figure 20 for an Euler number m equal
to zero.

The consideration up to now dealt with solid surfaces.
No information was found in the literature on recovery
factors for transpiration-cooled surfaces. Some recovery
factors were therefore determined for a transpiration-
cooled flat plate and a flow with constant property values
(the same for outside and coolant flow) by an integration
of the boundary-layer equation (4). The integration was
carried out in the same way as in reference 5. The dimension-
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less stream function f and its second derivative were taken
from reference 30. The results of this calculation are
presented in figure 21 and the following table where T,/T,=1
and Pr=0.7:

Recovery
fe factor
-1 - 0.713
—. 75 . 750
—. 50 . 786
0 . 838
.50 . 874
1 . 900

The figure shows that the recovery factors decrease consider-
ably with increasing coolant flow. The calculations were
extended to positive values of f, which apply to a surface with
suction.

.94

.86 —

Recovery factor
@
n
\\

78 /
L
1/

/

9% =5 0 5 1.0

f
Fi1auRre 21,—Recovery factors for transp!ration-eooled flat plate and constant fluid prop-
ortles. T Tw, L; Pr, 0.7.

It might be Worthwhile to mention that the accurate
determination of the adiabatic or effective wall temperature
appreciably influences the heat flow as calculated by equation
(43) only when the difference T,g— 7. is of the same order of
magnitude as or of a smaller order of magnitude than the
difference T'»,— T, (see also appendix D).

RESULTS AND CONCLUSIONS

An approximate method for the calculation of heat transfer
in the laminar region around cylinders of arbitrary cross
section was presented. The method, called the equivalent
wedge-type-flow method, is based on exact solutions. of the
laminar boundary-layer equations for wedge-type flow and
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takes into account the influence of large temperature differ-
ences between the flow and the cylinder wall and the influence
of transpiration cooling. The use of prepared charts reduces
calculations to & graphical solution of an ordinary first-order
differential equation. The method can be based either on
the convection thickness or on the thermal thickness of the
boundary layer. The results of calculations based on one
thickness differ slightly from those based on the other
thickness. There are not enough experimental data avail-
able to decide which boundary-layer thickness should be
used. Near the separation point, however, the results ob-
tained with the thermal boundary-layer thickness seem
somewhat more plausible.

. The method was applied to circular and elhptlc cylinders,
and the following results and conclusions are given:

1. Results of experiments and exact calculations were
available only for circular cylinders with solid surfaces.
Calculations based on the present method and on the thermal
boundary-layer thickness agreed within 5 percent with the
exact calculation and within 8 percent with experiment when
the immediate neighborhood of the sepa.rataon point was
excluded.

2. With.the present method, heat—transfer coefficients may
be obtained without a knowledge of the flow boundary layer.
Consequently, such calculations are more rapid than those
based on the momentum and heat-flow equations.

3. Heat-transfer coefficients determined from wedge solu-
tions agreed on the circular cylinder within 15 percent with
the results of experiments. The calcul&tlon procedure is
still more rapid.

4. For elliptic cylinders, the dlﬁerences between the results
of calculations with the various methods decreased as the
axis ratio increased from 1:2 to 1:4.

5. The development. of the boundary la.yer is determined
by the velocity distribution around the cylinder. The
accuracy which has to be expected for the results of calcula-
tions with the different methods will therefore depend on the
character of the velocity distribution.

6. For cylinders with solid walls, the variation of the
heat-transfer coefficients with ratio of stream to wall tem-
perature was comparatively small.

7. For transpiration-cooled surfaces, the effect of tempera-
ture ratio on heat-transfer coefficients became pronounced,
especially on cylinders with nearly circular cross sections.

8. A considerable decrease in heat-transfer coeflicients
accompanied transpiration cooling.

9. The influence of transpiration cooling on the recovery
factor was investigated for a flat plate and constant property
values. It was found that the recovery factor decreased

considerably with increasing coolant flow. .

Lewis FrigaT ProruLsioNn LABORATORY
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS
CreveLAND, OHIO, March 19, 1952
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APPENDIX A
SYMBOLS

The following symbols are used in this reporti
dimensionless wall temperature gradient taken from

[ 2
refs. 22 and 23, m 0;

constant

specific heat at constant pressure

function

dimensionless stream function, (p.¥) /-\/p.p
heat-transfer coefficient

thermal conductivity

characteristic dimension (major axis of cylinder)
1 m =M Z—u£5*2,0w8*> (see eq. (34)

—apjox /b:c; uy=Cz™

Euler number, 5
P T

x
N =0.’,nb=N(ZZ; 5, u:a*) (see eq. (37))

Nu
Pr

¥4

q

q

qe
qr
Rey
Re,

To

Nusselt number, AL/k.

Prandtl number, c,u/k

pressure
heat flow

approximated heat flow

heat flow by conduction

heat flow by radiation

Reynolds number, %, oLgof/ttew

Reynolds number, 4, oLp./uw

recovery factor defined by (Lo a— T)/( T ,—
recovery factor defined by (Tap— T))(T'r.s—
temperature in boundary layer
temperature in stream

velocity component along surface
free-stream velocity

dimensionless mass velocity in free sfreain, p.u,/petso
velocity component normal to surface

T,) (eq. (44))
T5) (eq. (47))

JRT

dimensionless velocity normal to surface, -2 e
0

distance from stagnation point along surface

dimensionless distance from stagna,tlon point along

surface, /L
distance normal to surface
dimensionless boundary-layer coordinate taken from

refs. 22 and 23, 1 /ﬂj—l 7
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1 8, [uz
J2—8 2%
] pressure gradient parameter, 2m/(m-1)

) boundary-layer thickness

§*  dimensionless boundary-layer thickness, (3/L)/Re

3,  convection boundary-layer thickness (eq. (15))

8  dimensionless convection boundary-layer thickness,
" (3/L)vRe,

5;  displacemient boundary-layer thickness (eq. (13))

§; momentum boundary-layer thickness (eq. (14))

5,  thermal boundary-layer thickness (eq. (16))

8¢  dimensionless thermal boundary-layer

(8/L) VReo
n  dimensionless boundary-layer coordinate, y [ Putls .ﬂ;.

7 5 ’Pw’us

d Eok
6 dimensionless temperature-difference ratio, 11,1 111,
.4 w

D4 dimensionless temperature-difference ratio, TT TT
T Ls

dimensionless stream function taken from ref. 27,
m-1 -
~2El g

2y

thickness,

>

absolute viscosity

kinematiec viscosity, ufp

distance along wedge, taken from refs. 22 and 23
density

dimensionless temperature-difference ratio, 111, ',:I[',

stream function '

ubscripts:

adiabatic

coolant, when used with 7’

effective

stream

total

wall

except when used with », refers to a fixed point in the
stream

Superscripts:

m  exponent of distance along surface from stagnatlon

point for stream velocity, u,=Cz™
’ denotes differentiation with respect to

Q&UJ“G | O v R R

o g }ﬂ@o&



APPENDIX B
EVALUATION OF HEAT-FLOW EQUATION

The energy equation (5) will be integrated along ¥
throughout the boundary layer under the conditions of small
Mach number, constant wall temperature, and constant
specific heat

"’ﬁ P“bz“”by dy= f ay<"

The first term on the left side can be transformed by partial

differentiation to
p’u a ( Tt) —pary a(Pu’)

An analogous transformation of the second term ‘and con-
sideration that the temperature gradient 07/0y is zero out-
gide the boundary layer (for y= ) result in

cna @ a @
ﬁa(puT)dy——j; TLa"x“—)dyﬂvT,

J‘Tb(pv)d _ lc (

The second and fourth terms cancel because of the con-
tinuity equation (3). In the first term, the sequence of
differentiation and integration can be reversed. Introduc-
tion of the convection thickness of the boundary layer leads
finally to the integrated heat-flow equation

Ps % (usac)"PwvtD:é_: (g_z (B1)
It will now be proved that equation (26), used for the method
of the equivalent wedge-type flow, is the same as this inte-
grated heat-flow equation when the convection thickness for
the boundary layer is used. Equation (Bl) may be trans-
formed by partial differentiation of the first term into

d, ko f00
Pluo dz +P:8c du Pwvw='o;' (a_ (Bz)

For wedge-type flow, the convection thickness is given by

the expression
Se=n \/ o 1/ 3
Pulls (B3)
Differentiation of this equation gives
1tm
ds, 1—m Bo _ 2 _1—m e
dz 2 "V 0aC T 72 "V ooz, (B4)

Introducing thjs‘expression as well as equations (9) and (12)
into equation (B2) gives the equation

1+m (P:'ﬂo'!"oww)_' o,

(B5)
which interconnects the convection thickness with the di-
mensionless temperature gradient at the wall. The gradient
of the convection thickness may now be determined from
the integrated energy equation (B2) wheh the expressions
in this-equation are transformed to the new variables -

s B

ey __Po 1+m /#w me / B
dz ¢ p,,:m. Ps PuTUs | Pr Pulils

Replacing the nondimensional temperature gradient in this
equation by equation (B5) results in

dé. _1—m Hw l1—m , e
dz 2 1\ ooz, 2 1 B

which is the same as equation (26).

It can also be proved by a completely analogous calcula-
tion that the method of the equivalent wedge-type flow,
when it is used to calculate the momentum thickness of the
flow boundary layer, satisfies the integrated momentum
equation which is obtained from equation (2) by an integra-

.tion over ¥ in a manner similar to the derivation of equation

I
E}' (Pt'u':‘at)"“P:u: % Sa

u
— Poluls= [y (%)
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APPENDIX C
DETERMINATION OF WEDGE SOLUTIONS

‘The wedge solutions which were used as a first approxi- :

mation in figures 11 to 13 can be obtained very easily with
the use of figure 22 reproduced from reference 9. The heat-
transfer coefficient has to be Jdetermined on a wedge which
has the same stream velocity and its gradient at the same
distance from the stagnation point as the real profile. The
Euler number for this wedge can be found from equation (23).
In the dimensionless coordinates it is .

(Cn

The parameter f,, which determines the coolant flow through
the porous wall is found from equation (20), which reads,
when converted to dimensionless quantities,

2 [
fw—‘ m+1 12 ,u:

The value (Nu/ Rey) \z*[uF can be determined from figure

(C2)

’.50 * = T Y
:l ' //
___-._._ % /-’//
.45 f t I — /‘/‘
Impermeable, ',-0// Pl e
e L~
~ -
~
40 Pt
. 1 ’//
N '/ /'
35 'L/;V’
A
.30
/ Porous flow, fw==1/2 1
il
_Nv_ 4.25 '/ // -
JReg/ &5 Iy P =+
i // '!'—’
-1 Jd—tr—7
20 l’[ / P _//_—/
. — ~
,' /L’ |~
77
V Porous flow, fir =—1
.f5
| ]
/1
// — —_—
05 LA
"0'.2 (o} .2 4 .6 .8 1.0

m
F16URE 22.—Heat transfer through lamimmgndary layer with and without porous flow
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22, and Nu/ yRe, is finally obtained by multiplication by
Vurz*. i

When the temperature ratio ¢ is prescribed, figure 23
reproduced from reference 9 can be used to obtain the
parameter f,, for any Euler number m. Equation (C2) then
determines the value v} and the distribution of the required
coolant flow along the profile.

.55
.50 —
Sy
[ ] \ f,'
N \\«_\\ Q
.45 ~T ~<J
’ \~\_ o~ "~
<. ]
\\
.40 \~\
.35
/T,
i
————— 2
—_——— s
.30 '
-9
.25

A T
/ it S
1544 e
/ e -~
! // \"‘\ (\"\
ya . .
7 =
/ I —
.10 P~
s
.05
0 .2 4 6 8 1.0

m
F1aUBE 23.—Temperature of porous wall (ref. 9).



APPENDIX D
DETERMINATION OF EFFECTIVE WALL TEMPERATURE

It is shown in reference 23 that for high-velocity flow of a
fluid with constant property values around a wedge with
constant wall temperature, the temperature field can be
expressed by the equation

T=(Tw—TT,8)(1_0)+(TT,:— 3)0+T3 (D]-)

in which 0 represents the nondimensional temperature field
for low-velocity flow and #, the nondimensional temperature
field for high-velocity flow and a wall temperature equel to the
total stream temperature. The heat flow from the wall,
obtained by differentiating equation (D1), is

te= =t (§) [0 () - (35),]
(D2)

With the transformations used in reference 23 (see also
appendix E)

'u':

=C’a:“‘ (D3)

2m
P=mri

equation (D2) can be transformed into

tem e B[00 (82) ~ -2 (22) ]

, - : D9
This equation is to be brought into the form
_k de
==V T (5), ©)
A compaerison of equations (D4) and (D5) gives
(z)
. dz /e .
Tw_ 6ff=Tw_TT,t_(TT,8_TI) 20 (D6)

dz/w

321605—b66——17

from which the difference between the total and effective gas
temperatures can be found. The expression

z)
T. Lrs—L aj‘f — az/w
TremT, 1= 725
(#).

defines this temperature difference and the recovery factor
for the effective wall temperature. The nondimensional
temperature gradients appearing on the right side of this
equation are presented in references 23 and 37. In this way,
the values in figure 20 have been determined.

To obtain an estimate of the conditions under which the
difference between the adiabatic wall temperature and the

effective wall temperature may be neglected, the heat flow
into the wall will be approximated by the equation

To=k(Te—To) (). (D8)

and the error of such an approximation will be determined:
The ratio of the exact heat-flow equation (D2) to the one
approximated by equation (D8) is

G Tw_‘TT: TT: _
qw Tw—TadiT Tad(l Tm)

Introducing the recovery factor for the adiabatic wall tem-
perature :

D7)

TT, s~ L ag= (1—7'0) (TT, i :)

gives
!lw ___T T3
7. 1 T T ¥ (ro—T0)
For an Euler number equel to 1, which characterizes flow
near a stagnation point and which, according to figure 20,
shows a large difference between the recovery factors r, and
T, the error is smaller than 5 percent when -

Tou—T,

T T, :—T s

is larger than 2.5.
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) APPENDIX E

COMPARISON OF VARIABLES

This appendix gives a comparison of the variables used in
references 9, 25, and 26 with the ones used in references 22,
23, and 27. All of these references deal with wedge-type
flow.

The values used in this report are related to- the ones in the
aforementioned references by the following equations:

__E U T

n—:ﬁ v
2 m+138, [usx 1 8. Jjux
= | —— =< — Oe

v J2Tpz v
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