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A SPECIAL INVESTIGATION TO DEVELOP A GENERAL METHOD FOR
THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS *

By M. M. FrocmT and R. GuerNsEY, JR

SUMMARY

The method of strain measurement after annealing is remewed
and found to be unsatisfactory for the materials available in
this country. A new, general method is described for the photo-
elastic determination of the principal stresses at any point of @
general body subjected to arbitrary loads. The method has
been applied to a sphere subjected to diametral compressive
loads. The results show possibilities of high accuracy.

INTRODUCTION

It is known that purely photoelastic procedures cannot
solve the general three-dimensional stress problem. The
photoelastic method furnishes five independent equations,

whereas the complete specification of the state of stress at.

& point requires six relations to determine six unknown stress
components.

In order to obtain a sixth relation it has been suggested
that the frozen slices removed from the model be annealed
and strain measurements be made after annealing. This
suggestion has recently received a rather extensive treat-
ment from Prigorovsky and Preiss in Russia (reference 1).
A coreful analysis of this suggested method shows that its
successful application requires model materials having
relatively low values of Poisson’s ratio at the elevated
temperatures used in the freezing process. Such materials
are not available in this country. Fosterite and-Bakelite,
which are the best available materials, have Poisson’s
ratios approximately equal to 1/2. Itis further shown that
the method of strain measurement after annealing breaks
down when this ratio approaches 1/2.

In this report a new method is described which does not
depend on Poisson’s ratio and therefore can be used with
models made of Fosterite and Bakelite. This method
employs frozen stress patterns from normal and obhque
incidence. The separation of the principal stresses is
obtained by the numerical integration of one of the differ-
ential equations of equilibrium in Cartesian coordinates
rather than by strain measurement after annealing which
involves Poisson’s ratio. It will be shown that this permits
the determination of all six stress components at each point
of a body.

The report consists of three parts. The first part com-
prises a survey and analysis of the method in three-dimen-
sional photoelasticity which rests on the freezing and slicing
processes and strain measurement after annealing. The

second part presents the theory of the new method. The
third part contains the application of the new method to
the determination of stresses in a diametrically compressed
sphere.

The investigation was conducted in the Photoelastic
Laboratory of the Mechanics Department at the Illinois
Institute of Technology under the sponsorship and with the
financial assistance of the National Advisory Committee
for Aeronautics. The Research Corporation provided the
funds for the fellowship held by Mr. Roscoe Guernsey, Jr.
Mr. David Landsberg, Assistant Research Engineer in
Experimental Stress Analysis, assisted in all experimental
phases of the work. It is a pleasure to acknowledge his
cooperation. Acknowledgment is also due Mrs. Dora L.
Frocht for her assistance in the translation of the paper by

Prigorovsky and Preiss (reference 1).
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SYMBOLS

normal stresses, psi
shearing stresses, psi
stresses on an inclined plane, psi

P, q principal stresses, psi

7, q secondary principal stresses in XY -plane, psi

", ¢’ secondary principal stresses in XZ-plane, psi

Nz, Ny, Nz normal stresses in fringes

Nizyy Toysy Tz shearing stresses in fringes

n', n'’, 0" fringe orders at normal incidence for slices
parallel to XY-plane, XZ-plane, and
YZ-plane, respectively

Togy, Nos fringe orders at oblique incidence for rota-
tions about Y-axis and Z-axis, respectively

6 angle of rotation of a slice; also angle defining
an inclined plane,

', &', ' isoclinic parameters at normal incidence for
slices parallel to XY-plane, XZ-plane, and
YZ-plane, respectively

Doy isoclinic parameter at oblique incidence for
rotation about Y-axis

F shear fringe value of slice, psi per fringe

T A A shear fringe value for slices parallel to XY-
plane and XZ-plane, respectively

Fy, shear fringe value for actua.l light path in
glices rotated about Y-axis

f shear fringe value of material, psi per fringe

per inch

t Bupersedes NACA TN 2322, “A 8pecial Investigation to Develop a General Method for Three-Dimenatonal Photoolastic Stress Analysis” by AL, AL, Frocht and R. Guernsey, Jr., 1052.
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linear strains

Young’s modulus, psi

Poisson’s ratio

load, pounds

area of equatorial plane of sphere, square
inches

area of surfaces of contact, square inches

radius of sphere, inches

radius of contact areas, inches

normel stresses in terms of P/4

shearing stresses in terms of P/4

contact pressure in terms of PfA.

Tys contact shearing stress in terms of P/4,

€y, €2
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SUR/VEY AND ANALYSIS OF EXISTING METHODS -

FROZEN STRESSES AND OBLIQUE INCIDENCE

Frozen pattern.—It is now well established that elastic
stress systems can be fixed or frozen into models made of
certain diphase plastics and that such models with frozen
stresses can be sliced into thin sections without disturbing
the fixed pattern (references 2 to 5). Observations of such
slices in a polariscope yield the relative retardations as well
as the isoclinic parameters at each point of the pattern.

Oblique incidence.—The use of oblique incidence of a
collimated beam of light, as suggested by Drucker and
Mindlin, adds materially to the information obtainable
photoelastically (references 6 and 7). The retardation and
isoclinics at normal incidence are a function of the secondary
principal stresses in the plane of ‘the slice, while those at
oblique incidence depend on the secondary principal stresses
in a plane perpendicular to the wave normal at each point
of the slice.

The basic relation for oblique incidence with rotation
about the Z-axis is given by the following expression
(2Fnef=—i {(os—02)-L(cy—02) Sin? 6+ 72, sin 26,124

2
COS™0s 4 (.. COS Bat-74s SN 0,)°) A )

The system of notation used in this report is shown in
figure 1. Normal stresses are positive when tensile and
negative when compressive. The four components of shear
in the XY-plane are referred to either as the 7, or the 7,
shear system, and the sign of this system is positive when
the shearing components are as-shown in figure 1-(reference
8, par. 1.3). Similarly the shear system in the YZ-plane
is positive if the components are as shown in figure 1. No
signs are attached to individual shearing stress components,
their directions being determined by inspection (reference
8, par. 8.2). ’

By combining the data from five stress patterns of different
obliqueness it is possible to determine the three differences
between the normal stress components and the three systemg
of shearing stresses at each point in the slice (for convenience
the plane of the slice is taken as one of the coordinate planes).

It can be shown that from the five quantities obtained
with the aid of oblique incidence it is possible in turn to
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Freure 1.—Positive normal stress components and positive systems
. of shearing stresses.

obtain the three principal shears at all points of the section.

_This is equivalent to determining Mohr’s circle for a three-

dimensional state of stress except for its érigin which remains
indeterminate.

Limitations of purely photoelastic data.—Except for special
cases, the optical date by themselves are insufficient for the
determination of the individual principal stresses, This
limitation results from the fact that isotropic stress systoms
produce no photoelastic effects. Consequently, two states
of stress differing by an arbitrary isotropic system produce
equal photoelastic effects. '

- The method employing scattered light, or the Tyndall
effect, which was developed in this country by Weller
(references 9 and 10) and independently by Menges (vefer-
ence 11) suffers from the same limitation. 7

The method of convergent light employed by Hiltscher
(reference 12) and by Kuske (reference 13) makes it possible
to determine also the directions of the principal stresses but
not their magnitudes.

SEPARATION OF PRINCIPAL STRESSES

Free surfaces.—The limitation mentioned above does not
hold at free boundary surfaces. A free surface is subjected
to only two principal stresses, similar to those in plane stress
systems. Tangential slices yield directly the difference
between the principal surface stresses. If in addition a slice
;8 taken normal to the surface and parallel to one principal
stress, it is possible to determine the individual principal
stresses on the surface (fig. 2). This method has been em-
ployed by Leven and Frocht (reference 14) to determine
the principal stresses on the surface of Diesel engine valves.
Leven (reference 15) has also applied this method to the
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Fraure 2.—Slices and directions of fight for determination of surface
stresses. L, direction of light.

problem of surface stresses in torsion, and Hetényi (reference
16) has applied it to threaded connections. In these appli-
cations the faces of the slice were oriented to be normal to
the direction of a collimated polarized beam.

In special cases the combination of oblique and normal
incidence leads to a complete determination of the principal
stresses, Using this combination, the stress distribution in
Saint Venant torsion was determined (reference 17).

Planes of symmetry.—For the special case where a plane
of symmetry exists Jessop (reference 18) has developed an
extension of the Lamé-Maxwell equations (Filon’s graphical

integration) to three-dimensional cases. By means of these-

extended equations it is possible to determine the stresses
along the axis of symmetry. However, the method lacks
genecrality.

Strain measurement after annealing.—It has been sug-
gested by Kuske (reference 5) that mechanical strain
measurements after annealing in conjunction with the

freezing method might be used to provide the additional
relation necessary for the determination of the principal
stresses at & general point. If it be assumed that the differ-
ences between the three normal stress components at a
point have been found photoelastically from equation (1),
there result:

ar—oy=0Cy
oy—0;=0C: (2)

o—0;=Cp

where the (s represent constants. If now the slice from the
model containing the frozen stresses is annealed, the state
of stress is relieved and the thickness of the slice at each
point will return to its original unstressed value. From this
change in thickness, if it can be measured with accuracy,
the strain at a point in a direction perpendicular to the slice
can be computed. Taking this direction as the Z-axis, for
instance, the strain would be ¢. Then from Hooke’s law,

€ =El' [o:—v(o7F0p)] (3a)
which may be written as
e,=E1-. [(1—2#) o Fv(os—oy)+v(c:—o2)] (3b)

from which
Ee—v(o,—0,)—v(e:—02)

1—9 (42)

==

In view of equations (2) this gives the stress componént o,
after which o; and o, are readily found. The entire state
of stress has thus been determined.
LIMITATIONS OF MECHANICAL STRAIN MEASUREMENT

Poisson’s ratio equal 1/2.—The method outlined - above
would seem to solve the problem and offer a powerful method
of attack. Closer examination discloses certain serious dif-
ficulties. For the photoelastic materials used in this country,
such as Fosterite and Bakelite, Poisson’s ratio is very nearly
1/2 at the elevated temperatures used in the freezing process,
and for this value of » the method breaks down.

Thus, inspection of the general equations of Hooke’s law

o

5z=’E];" [a'x—'”(a'l'l" 0':)] )

e,=—é— [ey—v(o:+o2)] L )

e= lov—(ost ol

shows that when o,=0,=0,, that is, when the stresses form
an isotropic system, and, in addition, the value of Poisson’s
ratio » is 1/2, then - :

es=g=¢6=0 X
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In other words, isotropic systems of stresses produce no
strains. Hence, two stress systems differing by an arbitrary
isotropic system produce the same strains. Thus, when
Poisson’s ratio is 1/2 a given strain field does not determine a
unique stress field, although the converse is not true. Strain
measurement when y=1/2 thus adds nothing to the general
solution of the three-dimensional problem.

Poisson’s ratio nearly 1/2.—If Poisson’s ratio is slightly less
than 1/2, the method of strain measurement after anneeling
should theoretically lead to a solution. However, other
difficulties arise. XEquation (42) may be written as

__Ee;—v(Coyt-Ch) 4
o= 1— ;v (4b)

If » is the true value of Poisson’s ratio and »--Av is its experi-
mentally determined value, then the error Ae, in the com-
puted stress ¢,/ =0,+Ac, for a measured ¢, is

Av

=19,k =T

0','—0,=A0'—, (6a)
With » very close to 1/2, a very small error Ar in Poisson’s
ratio may lead to large errors As, in the computed stress.
For instance, if »=0.48 is assumed, which is the approximate
value for Fosterite, and A» is taken as only 0.01, then

0.01

0.02 (6b)

Ag,= (o:+0,)=0.50(a.+0y)

Experimental measurements of v.—HExperiments with the
determination of Poisson’s ratio for Fosterite and similar
plastics indicate that it will be rather difficult to determine
the value of v closer than 45 percent. The error Ac,in
equation (6b) would be particularly large when o¢. and o;
happen to be of the same sign and each is large in comparison
with ¢,. All things considered, no great accuracy can be
expected from this method so long as Poisson’s ratio is
nearly 1/2. -

It must be pointed out, however, that strain measure-
ments may serve & useful purpose. Assuming that, in some
way or other, the normal stress components have been
found, the strains can be calculated and compared with
those found experimentally. Here the error in the computed
strains due to an error in Poisson’s ratio is given by

o

Be=— (oto)ty G

which is not large.
METHOD 8UGGESTED BY PRIGOROVSKY AND PREISS

The method outlined above for -the separation of the
principal stresses which employs oblique and normal inci-
dence of collimated polarized light and strain measurement
after annealing is not- the only possible procedure. Prigo-
rovsky and Preiss suggest two alternative methods in refer-
ence 1. Their procedures combine (1) stress patterns from
normal and oblique incidence-with (2) axis patterns from
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convergent polarized light and (3) strain measurements after
annealing. The significant point lies in the fact that their
method utilizes strain measurement after annealing and
therefore breaks down when Poisson’s ratio equals 1/2.

THEORf OF SHEAR DIFFERENCE METHOD

General theory.—A method for determining stresses in
three-dimensional problems is now proposed which is com-
pletely general. With this method the six stress components
at any point may be found. It is essentially an extension
to three dimensions of the method, long and effectively used
for plane problems, which is known as the shear difference
method (reference 8, ch. 8).

‘ Y
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F1aorE 3.—Auxiliary lines in X Y- and XZ-planes for shear difference
method.

Consider an arbitrarily loaded unsymmetrical model with
the set of coordinate axes as shown in figure 3. Let a straight
line AB be drawn through point i from boundary to bound-
ary and let this line be taken as the X-axis. At any point
along this line the first differential equation of equilibrium,
with body forces neglected, is

Og= b-rp a-ru
527 +az ®

v

and upon intregmtion the st.ress at any point j is given by

(A== [ GEde- [ @

where (o), denotes the stress at point A and (cz),, the stress

at any other point j on the line AB. The partial derivative
J7,./0y is the rate of change of . with respect to y and
07502 is the rate of change of 7,. with respect to 2. Thus
if values of 7,, were computed along a line through i parallel
to the Y-axis and the curve r,,=f(y) were plotted, then

a Would be the slope of the cuxve f(y) at point i.

Similarly (%—z- is the slope of the curve 7,,=g(z) at point i.
1

As in the plane problem, these slopes may be approximated
by computing the shearing stresses at points near i on oppo-
site sides of theline AB and forming finite difference quotients.
Thus, choosing neighboring points O and D in the XY-plane
and similarly points E and F in the XZ-plane,
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%‘r;:)i - (Tw)oA—y(T vo)p =(AAT;>1 (10a)
aafg,){,_.__ (m)pA—z(ru)z= A;:){ (10b)

Thus if the shearing stresses can be determined along four
auxiliary lines, parallel to and on opposite sides of AB, two
lines in the XY-plane and two in the XZ-plane, one has all
the data necessary to obtain the quotients on the right side
of equations (10) and hence good approximations to the
partial derivatives. In evaluating equations (10), care
must be taken to attach the proper signs to the shear systems
Tyz And 74, 88 in figure 1.

Substituting the above approximations for the partial
derivatives in equation (9) and replacing the integrals by
summations, the following equation is obtained:

_ N AT, AT
(02)5=(02)a $ Ay Az $ Ao Az (11a).

The summations are evaluated graphically in the same man-
ner asin plane problems. For convenience, Ay and Az may be
taken numerically equal to Az. Then equation (11a) becomes

(6:);=(<rz)¢:l:$ A'r,,:l:$ Arps (11b)

in which A7,, and Ar,, have the mean value in each
interval Az,

Bhearing stresses in first slice.—In order to carry out this
integration, it is necessary to determine .the magnitude and
direction of shearing stresses r,. along the two auxiliary lines
in the XY-plane and of 7., along the two auxiliary lines in
the XZ-plane. The shearing stresses r,. are obtained from
a slice in the XY-plane containing AB in its middle surface.
The stress pattern of this slice from normal incidence will
give the difference between the secondary principal stresses
in the plane of the slice at all points, and the corresponding
isoclinics furnish their orientation. The magnitude of the
shearing stress .. at any point will then be given by

ree=33 (' —0") sin 24/ (122)
where p’ and ¢’ are the secondary principal stresses in the
XY-plane and ¢’ is the isoclinic parameter. The directions
are determined by inspection as in paragraph 8.2 of reference
8. TUsing equation (12a), the shearing stresses r,, along the
auxiliary lines and along AB itself may be found. -

Shearing stresses in second slice.—A second slice lying in
the XZ-plane and containing line AB would furnish similar
information for 7,,. Here a practical difficulty arises since
the first slice removes an essential part of the second slice.
One of several procedures may be used to eliminate this
difficulty.

(1) In the general case two identical models, identically
loaded, may be used, one for the XY slice and one for the
XZ slice. The shearing stresses r,. for the XY slice are

967

calculated from equation (12a). Similarly, the shearing
Btresses 7. for the XZ slice are given by

[IC STRESS ANALYSIS

re=3 ("' —q") sin 24" (12b)
where p’/ and ¢’/ are the secondary principal stresses and ¢’/
is the isoclinic parameter in the XZ slice.

(2) In large models it may be possible to use a sub slice
from the main slice for determining 7,,. After the data are
obtained from the main slice, a small section containing the
line AB is cut from it, as shown in figure 4 (a). The neces-
sary data in the XZ-plane are then obtained from normal
incidence on the sub slice, as shown. This procedure is
feasible if the model is large so that the main slice can be
made of sufficient thickness. )

(3) In the particular case where a plane of stress symmetry
exists, such as the XY-plane in figure 4 (b), advantage can
be taken of this symmetry. Referring to figure 4 (b), let it

{0}

.- Plane of symmetry

>

AP

{c)

(a) Sub slice.
(b) Loaded model. .
(c) Slices from opposite sides of plane of symmetry.

F1qUure 4.—Schematic diagram of necessary slices.
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be assumed that the stresses on line AB are required. The
first slice is made parallel to the XY-plane and contains the
line AB as shown in figure 4 (c).
cut from the opposite side of the body so that it contains the
symmetrically placed line A’B’, along which the stresses are
the same as along AB itself. The necessary shearing stresses
are calculated as outlined in procedure (1), above.

Normal stresses.—The starting value (o). will be obtained
from boundary conditions and boundary fringe orders. The
integration may then be carried out and values of 0. ob-
tained along AB. Further, from Mohr’s circle or other
considerations: . -

(6s—0,)y=(p/ —q'); cos 26’ /=2F"n’, cos 2¢';  (138)
(0e—0)y= ("' —q'"); c08 26" =2F""n/" ;o3 24", (13b)

where the F’s and n’s denots, respectively, fringe value of

the model in shear and fringe order at point j. From -
equations (13a) and (13b)
(02)5=(02)s— (@' —4'); cos 2¢', (13¢)
(03)3=(02);— ("' —q""); cos 2¢"’, (13d)

All the necessary data for the evaluation of (s,); and (o);
are obtained from the slices in the X¥- and XZ-planes,
respectively.

Use of oblique incidence.—At this stage five of the .six

stress components, namely oy, ¢y, s, Ty, 20d 7., have been’

found at all points of AB. There remains one unknown
stress component r,,. The shear system 7,, has no influence
on the stress patterns from normal incidence for either one
of the slices but will have an effect on the patterns from

oblique incidence.
N ‘1’@‘}/ -_
‘ >~ /\Z

/( % y
__ | _l_e [_.
O
-\ r}'z Tz
I
Figure 5.—Normal incidence and oblique incidence for different
directions of rotation.

In order to find the shear system 7,, an oblique stress

pattern is obtained from either one of the two slices. For’

concreteness assume that the slice parallel to the XY-plane
is used and that it is rotated in a clockwise direction about
the Y-axis through an arbitrary angle 6,.
a view of a small element as seen from the positive end of
the Y-axis. From equation (1) the fringe order ns at any
point due to the oblique incidence is given by

O Fytay— \/ [oy— (o c0s%0, 0, sIn%0,— 7, sin 26,) P+

4(7yz cOS 8,— 7y 5in 6,)° (148)

in which ¢, oy, and ¢, are the known normal stresses
and 7,. and 7, are the known shear systems. Also the

The orthogonal slice is -

Figure 5 shows
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isoclinic parameter ¢s, for the oblique incidence is given by
the expression )

Ty €08 0,— T, sin 6,

Fomes - (16a)

sin 2¢s,=

If the rotation about the Y-axis be made in the counter-
clockwise direction then :

2F8,'nvy= ‘/[0'1_

and

(o cos?,+ o, sin?f,+ 7., sin 26,)°*+

4(7ys 8ID B, 7ys cOB 0,)? (14D)

__ Ty €08 B+ Ty 81D G,

Frnes (15b)

sm2¢

Similar equations may be written for rotatlon of the slice
parallel to the XZ-plane about the Z-axis.

It is to be noted that in general the retardation observed
at any point depends on the direction of rotation of the slice.
For one direction of rotation the fringe order at a point will
be different from its value for the other direction. In the
particular case when the slice conteins s principal plane,
then 7.=7,=0 and equations (14a) and (14b) become
identical. In such cases the direction of rotation is im-
material. In dealing with general slices it is important to
note carefully the direction of rotation relative o the wave
normal and to attach the proper signs to all the stresses.

Each of equations (14a), (14b), (15a), and (16b) may be
solved for the unknown shear system r,,. It is necessary
only to determine the fringe order and the isoclinic parameter
¢sy along the line AB. If the rotation is counterclockwise
equation (14b) or (15b) is appropriate. Of these, equation
(15b) is much the simpler. Using equation (15b) and §=45°
there is obtained

T,,=-\/§Fo,,’nay BN 2¢sy— Tyz (150)
With this, r,, is easily computed. All six componenis of
stress are thus determined for the point i, and therefore the
principal stresses themselves are determmed at the given .
point.

Extension to the plastic state.—It should be noted that
the method described in this report is not limited to a lineax
stress-optic law. With minor modifications, which are
stated below, the method is equally valid for a nonlinear
stress-optic law. Thus, the method is applicable not only
to the elastic state but also to the plastic state of the model.
This follows from the fact that the only equations, in addition
to the stress-optic law, are the equations of equilibrium
which are independent of stress-strain relations.

In order to adapt the equations to a nonlinear stress-optic
law it is necessary to observe that whereas in the linear
range fringes can be used as the unit of stress, since the
stress is proportional to the fringe order, in the nonlinear
range fringes cannot serve as the unit of stress, since propor-
tionality between stress and birefringence no longer exists.
To obviate this difficulty all fringe orders in the equations
should be converted into standard units, say pounds per
square inch, as was done in all preceding equations.
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Now, let the nonlinear stress-optic law be given by
Trmax™ (Z}—(])/2=1'(7L)

where 7(n) is & known function of n. If one replaces the
products FXn by r(n) in equations (14) and (15) these
equations are directly applicable to a nonlinear stress-optic
law. It should, however, be noted that the results will
apply to the model only and are not directly transferable to
the prototype. It is also observed that the photoelastic
models are assumed to be free from strain-hardening.

Effect of Poisson’s ratio.—In conclusion, it should be
noted that in transferring the results from three-dimensional
photoelastic models to metal prototypes the effect of Poisson’s
ratio will have to be considered. It is fortunate, as shown
by the theoretical solutions obtained to date, that the effect
of Poisson’s ratio on the most significant stresses is small
(references 19 and 20).

APPLICATION OF SHEAR DIFFERENCE METHOD TO
A DIAMETRICALLY COMPRESSED SPHERE

DESCRIPTION OF APPARATUS

The apparatus used in this investigation consisted of the
following items:

(1) An electric furnace with temperature controls and

built-in loading frame with special jigs

(2) An 8-inch photoelastic polariscope with a special im-

mersion tank

(3) An oblique incidence jig

(4) A Babinet-Soleil compensator
A photograph of the electric furnace is shown in figure 6.
This is & relatively large oven 46 inches high, 42 inches wide,
and 19 inches deep. It is fitted with automatic temperature
controls by means of which any desired thermal cycle could
be imposed on the model. The furnace was equipped with
o built-in loading frame suitable for the application of all
basic types of loading.

A special loading jig built for the investigation is shown in
figure 7. It consisted of a smooth circular shaft about 1/2
inch in diameter passing through a pair of smooth, lubricated
guide holes carefully alined so ‘that the axis of the shaft was
perpendicular to the base. The load was applied to the top

—~

R L-80278°

R IR, .-‘T‘

[

F1gure 6.—Electric furnace and control panel.
321005—656——01

Fiaure 7.—Loading jig and model of sphere.

of the shaft through a hard steel ball. This jig was found
to give almost perfect vertical loading and the friction was
negligible.

A special jig was also built for oblique incidence. The
frame of the jig can be rotated about a vertical axis through

.any desired angle which- can, easily be measured to one-tenth

of a degree. The slice was mounted in the frame of the jig
and the whole unit was placed in an immersion tank with
a suitable mixture of Halowax and mineral oil.

The remaining equipment was standard apparatus in
photoelastic laboratories, the descriptions of which are avail-
able in the literature.

TEST PROCEDURE

Model.—The sphere was machined from a cylinder of
Fosterite which was previously annealed to reduce initial
stresses. The machining was carried out in a lathe. The
rough cylinder of Fosterite was first turned to a true cylinder.
In order to form the sphere a tool bit was set in a special jig
riding on the carriage of the lathe. This bit could be rotated
about a vertical axis lying in the plane of the lathe centers.
The cutting was performed by swinging the tool bit by hand
around its vertical axis while the cylinder was rotating, and
the radius of the sphere was slowly reduced by bringing the
tool bit gradually closer to its axis. In this way it was
possible to shape the complete sphere except for a relatively
small nipple near the chuck. The final diameter of the
sphere was 3.313-+0.002 inches.
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Loa.d1ng —The sphere was placed in the loading jig and
carefully alined for diametral compressive loading. The
model was then heated to 162° F in the electric furnace, the
rate of heating being about 10° ¥ per hour. A load of 172
pounds was then applied to the model. After a soaking
period of about 2 hours the temperature was lowered at the
rate of 4° F per hour to room temperature. The final
diameter of the equatorial plane was found to be 3.334 inches
and the load axis was measured as 3.102 inches. Although
relatively large deformations were developed in the loaded
regions, the main body of the sphere was not notably dis-
torted from its original shape. - The stress pattern of the

whole sphere in figure 8 shows that the loads and the stresses
were rotationally symmetrical.

L- 80280

Fiqgure 8.—Stress pattern of whole sphere.

Slicing.—In preparation for slicing the center lines of all
the slices were carefully seribed on the sphere using the flat
spots in the loaded regions as datum planes. The slices
were then sawed out roughly on a bandsaw to a thickness
of about 3/8 inch. They were subsequently ground by hand
to about 1/8-inch thickness in most cases. Great care was
taken to keep the slices symmefrical with respect to their
center lines.

Figure 9 shows the slicing plan. The first slice removed
was parallel to the equator and midway between the equator
and the load point. Then from the opposite side of the
sphere a meridian slice was removed. Next a slice contain-
ing the equatorial plane was cut. Finally a slice parallel to
the meridian glice and halfway out on the radius was removed.
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Fraure 9.—Slicing plan for sphere. 1, slice parallel to equator; 2,
meridian slice; 3, slice parallel to meridian; and 4, equatorial slice.

Stress patterns and isoclinics.—The slices were mounted
in the oblique incidence jig and stress patterns at normal and
oblique incidence were recorded photographicelly. Typical
stress patterns are shown in figures 10 to 15. Most of the
normel incidence patterns show very few fringes. In order
to obtain accurate data in thesé cases a Babinet-Soleil com-
pensator was used to obtain the fringe-order distribution
along the lines of interest by point-by-point exploration.

L ' Lkl

PR o — -

Figurs 10 —Stress pattern of meridian slice at normal 1noidonce
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F1guRE 11.—Stress pattern of meridian slice for a rotation of 45° about
Y-axis.

L 80283

Fiaure 12.—Stress pattern of shce para.llel to equator at normal
incidence.

A black cross was made on the screen to mark the point on
which attention should be centered. The model slice was
then adjusted until the line of interest on the image ran true
on the intersection of the cross as the straining frame was
moved laterally. Then beginning at the outer edge and
moving the straining frame by a known amount after each
observation the fringe order was obtained at a series of
points along the line. From these date the curve of fringe-
order distribution was plotted.

Ficure 13.—Stress pattern of slice parallel to equator for a rotation
of 45° about X-axis.

FIGU'B.E 14 —Str&s pal:tern of slice parallel to meridian at normal
- incidence. R

-,

It mdy be Doted that fractional fringe orders can also be
obtained by the Ta,rdy method of compensation, the accu-
racy being com able with that of the Babinet-Soleil
compensator,” ¥z

Isoclinic hnés*ivere recorded by one of two methods. For
the over-all picture the isoclinic lines were photographed in
most cases (figs. 16 and 17). From the photographs aver-
aged sketches were prepared and used in making the cal-
culations. On several lines direct sketching of the isoclinics



F1GURE 15.—Stress pattern of slice parallel to meridian for a rotation
of 45° about Y-axis.

Fraure 16.—Typical isoclinic for meridian slice.

L-80288

Freure 17.—Typical isoclinic for slice parallel to meridian.
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was used with attention being confined to the particular line
of interest. Here the intersections of successive isoclinic
lines with the line of interest were obtained at very short
intervals, from which the distribution of the isoclinic param-
eters along the line could be plotted. This method was
found to be accurate and considerably less time consuming
than the photographic method. White light was used in all
isoclinic work. :

In plane stress systems the isoclinic parameter at & point
on & free boundary is determined by the tangent to the
boundary at the point. The isoclinic parameter thus
changes from point to point along the boundary in general.
This is not necessarily true for isoclinics of secondary prin-
cipal stresses. In the slice parallel to the meridian the
secondary principal stresses at the boundary consist solely
of one normal stress ¢, which is horizontal. The boundary
is therefore & zero isoclinic and no other isoclinic may inter-
sect the boundary at any point. The higher order isoclinics
therefore all lie within the boundary forming closed loops
in this case, as shown in figure 17.

Fringe value.—The fringe value of the material was ob-
tained from a small cylinder about 1/2 inch in diameter and
1% inches long. This was loaded in compression in the
special loading jig used for the sphere and subjected to the
same thermal cycle as the sphere. A portion of the cylinder
was machined away to leave a V shape as shown in figure 18.
The resulting stress pattern was then photographed (fig. 19).
The V shape was used to make clearly visible the fringe of
zero order occurring at the sharp edge of the wedge. In tho
cylinder itself the first few fringes crowd together near the
boundary of the cylinder and it is practically impossible to
identify the zero fringe. From the stress pattern in figure
19 it was a simple matter to plot fringe order against posi-.
tion, which for the wedge described is a straight line (fig. 20).

Figure 18.—Cross section of calibration member after machining of
wedge.
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Fraure 19.—Stress pattern of calibration member.
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Fraure 20.—Fringe order for calibration member as a function of
distance from edge of wedge.

In this way the fringe order at the point where the plane
faces of the V intersect the curved boundary of the cylinder
could be accurately determined. At the same point the
thickness & could also be measured accurately. With the
measured fringe order and thickness the fringe value 2f of
the material was found to be 3.0 psi per fringe, per inch

compression.
RESULTS

Interior stresses.—The stress distribution was obtained
along six lines passing through the interior of the sphere.
The lines are indicated in figure 21 by the letters A—~A, B-B,
C-C, D-D, E-E, and F-F. Thus the six lines are defined
as follows:

A-A intersection of meridian slice with equatorial slice

B-B intersection of meridian slice with slice parallel to
equator

c-C intersection of slice parallel to equator with slice
parallel to meridian

D-D  load line

E-E intersection of equatorial slice with slice parallel to
meridian
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F-F intersection of slice parallel to the meridian slice

with a meridian plane which is perpendicular to it

In this problem advantage was taken of the symmetry of
the sphere to eliminate the need for two models as discussed
in the theoretical part of the report. In particular because
of the rotational symmetry of the stresses one meridian
glice could be taken to represent all meridian slices.

Fi1gURe 21.—Lines in sphere along which stress distributions were
) determined.

Typical calculation.—In order to make clear the application
of the method the complete calculations for line C-C will
now be given. The evaluation of the stresses along this
line requires all the generality which would be encountered
in a body devoid of symmetry. The basic data for the
determination of the stresses on this line are obtained
from the stress patterns and.isoclinics at normel incidence
of the two slices defining the line C—C and from the stress
pattern and isoclinics of one of the slices at oblique incidence
with rotation about an axis perpendicular to C-C and lying
in the plane of the plate. )

Because of the symmetry of the stresses along C-C it is
necessary only to deal with half the length of the line. This
half length was divided imto 10 equal subdivisions. The
two necessary auxiliary lines were  drawn parallel to it in
each of the two orthogonal planes and spaced the length of
one subdivision apart. ’

The first step is to obtain the distribution of the shearing
stresses along line C-C and along the four auxiliary lines.
This requires the determination of the distribution of the

- secondary principal stress differences and of the isoclinics

along these lines. Figure 22 shows the curves of n'’’ and
¢’’’ for the slice parallel to the meridian, and figure 23
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Figure 22.—Distribution of fringe order n’’’ and isoclinic parameter
¢'"" for line C—C and two auxiliary lines in slice parallel to meridian.
In curves IT and III the letter ¢ denotes the Y-coordinate of line C~-C
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Figure 23 —Distribution of fringe order n/’ and isoclinic parameter
¢’" for line C—C and two auxiliary lines in slice pearallel to equator.
In curves IT and III the letter ¢ denotes the X-coordinate of line C-C

shows n’’ and ¢’/ for the slice parallel to the equator. With
these data the required shearing stresses are computed at each
division point of C-C. Thus, following equations (12) and
expressing the stresses in terms of fringes,

72,,=% n'’ sin 24’7 ‘ (162)

n,,=% n'/’sin 24"’ (16b)
It will be noted that for positive values of z the shear system
7, 18 positive and n., is negative.

As noted in the theoretical part of the report the integra-
tion requires the use of the difference between the shearing
stresses ot the center of each subdivision. These differences
are obtained from the curves representing the distribution
of the shearing stresses just found. Figure 24 shows the
curves of the shear differences for the two slices.

The next step is to obtain the value of the normal stress
n, at each division point by an integration of one of the dif-
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Ficure 24.—Distribution of shear differences An,, and An,,
for line C-C.

ferential equations of equilibrium. The integration is car-
ried out by approximation using summations to replace the
integrals. The appropriate equation for line C-C is similar
to equation (11a), that is,

() =) — g B Sann 22 (17)
Choosing Az=Ay=Az the ratios of these quantities are unity.
The signs of the ratios depend on the choice of axes and the
direction of integration. The integration begins at the
boundary and proceeds inward. Consequently Az is nega-
tive. The shear differences have been formed in such a way
that Ay is positive and Az negative. The final form of the
equation is therefore i

(nz)1=(nz)c+$Ann‘—$Antx (17b)
The signs of the shear differences are as shown by the curves.

In order to start the integration the value of (n,), is
required. 'This must be determined from the boundary con-
ditions and boundary fringe orders. From the fact that the
boundary is unloaded it is evident that the principal stress
normel to the boundary is zero. Inspection of the meridian
slice shows that, excepting the loaded regions, the boundary
stresses in the meridian section are also zero. The fringe
order at the boundary of the slice parallel to the equator is
0.58 fringe tension, and the direction of this stress makes an
angle of 55.6° with line C-C. The boundary value of n, is
thus found from the equations of stress transformation as

follows:
(n;)=0.58 cos? 55.6°=0.185 (18)

The expression for (n.); therefore takes the form

(n,),=0.185+ﬁ)Aﬁw—i)An,, ' (17¢)

" The integration is easily carried out in tabular form as
shown in table I.
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Once 7, has been found the values of 7, and =, are found
from expressions similar to equation (13c), that is,

(19a)
(19b)

- Ne=mn,—n"" cos 2¢’’
,n,=,n’_,n/// co8 2¢///

This computation is shown in table II.

The last step is to determine the remaining shearing stress
system 7. This was obtained in this case from oblique
incidence on the slice parallel to the meridian with rotation
through 45° about the Y-axis. Figure 25 shows the fringe
order and isoclinic distributions along C-C for this case.
With these data and the known values of n,, previously
determined the required shearing stress component is found
from an expression similar to equation (15¢). Thus

Ty =3 iy SID. 2y (20)
The results of this computation are shown in table ITI.
This completes the solution for all six stress components along
line C-C. In order to determine the stress components in
pounds per square inch it is necessary only to multiply the
stresses in fringes by the proper fringe value of the slice.

Using methods similar to those just explained the stress
components for all six lines have been determined. With
the exception of line D-D integration began at the boundary
and proceeded inward. For line D-D the starting point was
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Fiaure 25~—Distribution of ns, and ¢, along line C~C for a 45°
rotation of slice parallel to the meridian about the Y-axis.
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taken as the center of the sphere and integration proceeded
upward. The starting value of n, for this line was taken to
be that obtained from line A—A. The results of these com-
putations are shown in figures 26 to 32. At the center of the
sphere the stress components were found to be o,=—2.59P/A4
and o,=0,=0.45P/A4. These values may be compared with
the stresses at the center of a disk under diametral compres-
sion which are o,=—1.91P/4 and 0.=0.64P/A.

STIC STRESS ANALYSIS
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Ficure 32.—Distribution of stresses along line F-F.

Contact stresses at load points.—As noted previously the
loads on the sphere produced considerable local deformation
which resulted in flattened areas at the poles. Upon obser-
vation of the meridian slice it was found that fringes and
isoclinics were unusually clear right to the loaded boundary.
It was therefore possible to continue the integration all the
way to the loaded boundary along lines normal to the areas
of contact and thereby to obtain approximatioans to the con-
tact stresses. The stress components at the ends of line D-T)
represent the contact stresses at the poles, that is, at the
centers of the loaded areas. In order to determine, at least
roughly, the actual distribution of the contact stresses over
the loaded areas two additional slices normal to the loaded
zones were cut from the remaining material of the sphere.
The intersections of these slices with the meridian slice then
define two lines parallel to line D-D which extend from line
B-B to the loaded boundary. Starting values were taken
from the stress distribution on line B-B previously obtained,
and integration proceeded to the loaded boundery in the
usual fashion. In this way the contact stresses at two points
at different distances from the center were obtained. With
these three points the distribution of the normal stresses on
the contact surface could be pretty well determined. The
shearing stresses acting on the surface of contact were found
from the values of 2’ and the isoclinics ¢’ in & meridian section
in the region of contact. The results are shown in figure 33,
the directions of the shearing stresses being from the poles
outward. )

Checks on accuracy.—Two types of checks are available
in this problem, static checks and checks between stresses on
different lines. Static checks were made from the stresses
on lines A—A and B-B and from those acting on a diameter
in the surfaces of contact. Since these stresses are rotation.
ally symmetrical the resultant force acting on the equatorial
plane and on the plane containing line B-B parallel to the
equator as well as on the plane of contact can be determined
by integration. From the stresses on line A—A the resultant
load on the equatorial plane was computed as 176 pounds,
which is 2.3 percent higher than the applied load of 172
pounds. The stresses on line B-B gave a resultant of 168
pounds which is 2.3 percent low. Lastly the resultant of
the normsl stresses on the surface of contact was found to
be 170 pounds, or 1.2 percent low.
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Figure 33.—Distribution of stresses on surfaces of contact.

Points O’ and O,/ (fig. 21) are commeon points on different
lines. The stresses at these points can be determined from
each line and the results compared. The stresses at O’ were
found by integrating along line B-B and also by integration
along the path AOO’. From line B-B the stresses were
found to be n,——4.08 and n,=n,=0.40. From the path
AOO’ they were found to be n,——4.06 and n,=n,=~0.42.
At O, the stresses are found from lines C—C and F-F.
From line C-C the stresses were computed as n,=—1.12,

n.=—0.36, n,=0.43, and 7,,=0.62." From line F-F they
were n,=—1.14, n,=—0.39, 7,=0.40, and 7,,=0.66. The
agreement in these values is seen to be quite good.
ol
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Fiaure 34.—Sketch relating stress components at a point on line B-B
to those on line C-C.
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It is also possible to compute the stresses on lines C-C
and E-E from the stresses on lines A—-A and B-B. Figure 34
shows the rectangular stress components on lines C-C and
B-B. The necessary equations for transformation are sim-
ilar to the familiar equations for inclined planes in plane
stress systems, that is,

ozt oy, 0:—0

2 T2

oo= ¥ cos 207, sin 20

(21a)

n="’; 7 gin 20— 74, cOS 26 (21D)
The stresses computed by transformation were compared
with the stresses independently determined on lines C-C and
E-E by integration. The comparative values are shown in
figures 28, 29, and 31. The general agreement is seen to be
excellent.

Check by the Lamé-Maxwell equations,—Lines A—A and
D-D are lines of symmetry for the sphere. For these special
lines the stresses can be computed by the method outlined
by Jessop (reference 18) using the extension of the Lamé-
Maxwell equations to three dimensions. This computation
has been carried out using fringe orders from the meridian
and equatorial slices and the 5° isoclinic from the meridian
slice. The comparative values are given in figure 26 for
line A—A and in figure 30 for line D-D. Inspection of the
figures shows that in both cases the agreement is close.

ANALYSIS AND DISCUSSION

The primary objective of the project under discussion was
to develop a general method for solving three-dimensional
problems photoelastically. In the theoretical.part of this
report such a method is described. The experimental work
shows that the proposed method is practical.

It is too early to draw broad conclusions regarding the
general accuracy of the new method. However, the excel-
lence of the static checks and the consistency of the results,
as shown by the close cross checks between the results from
the various lines, seem to indicate possibilities of high ac-
curacy. Unfortunately there is as yet no theoretical solution
available for this particular problem to furnish conclusive
checks and a measure of the errors? Nevertheless thereisa
reasonable degree of certainty that the major stresses are
free from significant error.

It must be pointed out that the stresses as found here
represent the solution for a material for which Poisson’s
ratio is 0.48, whereas most structural materials have Poisson’s
ratios of about 0.3. This is an inherent limitation of three-
dimensional photoelasticity. However, as noted previously,
the theoretical solutions available to date indicate that
Poisson’s ratio has only & small influence on the major stresses
although the effect on the minor stresses may be pronounced
(references 19 and 20).

Although no theoretical solution is available for the sphere

.Hertz’s solution can be used to check the contact stresses

3 A theoretical sojution of this problem has recently been published. (See reference 2L)
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determined photoelastically. - According to Hertz’s solution
the contact pressure is representaeble by the ordinates to a
hemisphere erected on the contact surface. Further the
Hertz theory predicts that the maximum contact pressure
should be 1.5P/d4.. Reference to figure 33 shows that the
experimentally determined value of the maximum pressure
is 1.53P/A., which is 2 percent high. When it is considered
that the path of integration used in determining the maximum
pressure led along an equatorial radius to the center and
thence up the load axis to the surface this is indeed a remark-
able check. The general distribution of the pressures is
also seen to be substantially correct. The proposed method
would therefore seem to hold considerable promise for the
determination of contact stresses.

According to the Hertz theory the two principal stresses
in the plane of the contact surface at the pole, o, and o,

should each equal 1+2V

reduces to s, =0,=0y whlch indicates that an isotropic point
exists at the pole, and therefore the shearing stress is zero
at this point. This is borne out by the photoelastic results.

Along the circular boundary of the surface of contact the
stress consists of a pure shear f the amount (——1_32V %
according to the Hertz theory. If Poisson’s ratio is 1/2 this
expression vanishes. Hence the normal and shearing stresses
at the bounda.ry should be zero. The photoelastic reeults
are seen to give this value.

The problem treated in this report has complete rotational
symmetry which simplifies the experimental technique by
eliminating the use of two models. No problem has as yet
been solved which requires two models. The use of two
models will no doubt introduce complications, but no insur-

o,. For Poisson’s ratio of 1/2 this

mountable difficulties are anticipated. However, further,

work must be done to demonstrate the effectiven%s of the
proposed method with two models.

There remains also the p0331b111ty of using sub shces from .

the main slice as discussed in the theoretical part. The
model used in this investigation was not large enough to
make this procedure feasible although some attempts were
made. This possibility also needs to be further explored.

It will perhaps also be desirable to repeat the solution of
the sphere with smaller loads in order to reduce the rela.twe]y
large local deformations.

SUMMARY OF RESULTS

The results from this investigation to develop & general
method for three-dimensional photoelastic stress analysis
may be summarized as follows:

1. The method of strain- measurement after annealing
cannot be_used with the *haterials now available in this
country. -

2. A general photoelastlc method for obtaining six stress
components at any point of an ungymmetrical body arbi-

trarily loaded has been developed. This method does not-

depend on Poisson’s ratio, although the results reflect the
physical constants of the model. )
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3. The new method is apphcable in the plastic range of
the model.

4. The method shows possibilities for the determination
of contact stresses.

5. The stresses existing in & sphere subjected to diametral
compression have been determined with considerable
accuracy.

6. At the center of the sphere the stress components were
found to be ¢,=—2.59P/4 and ¢,=0,=0.45P/A, where P is
the load on the sphere and A is the area of ‘the equatorial
plane of the sphere. These values may be compared with
the stresses at the center of a disk under diametral compres-
sion which are oy=—1.91P/A4 and ¢,=0.64P/A.

7. Further work is needed to determine the full potentiali-
ties of the method when two models are used. Further work
is also needed to determine the practicability of sub slices.

Iriwvors InsTITOoTE OF TECHNOLOGY,
CHicAGO0 16, ILL., September 15, 1961.
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NUMERICAL INTEGRATION OF DIFFERENTIAL
EQUATION (17¢) FOR LINE C-C

0 0. 431
0.012 —0.009
0.1 0.410
0025 | —o004 |
0.2 0. 361
0.030 —0.034
0.3 . 0.207
0.028 —0.038 i
0.4 0.231
0.021 —0.038
0.5 Q.172
0. 009 —0.033
0.8 0.130
0. 001 —0.024
0.7 0.106
—0.004 —0.014
0.8 0.095
—0.019 ~0.001
0.9 0.113
—0.080 0.012
LO 0.1856
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TABLE II
CALCULATION OF NORMAL STRESS COMPONENTS FOR
LINE C-C
06 5 ne .| n7 |eos2g”| wr leos 28 nl(;‘)ﬂx ﬂ'(’;}nl ’(3‘3 ’(1‘;
0 0.43 0.79 1.000 | 1.5% 1.000 0.70 L5 |—0.38 |[—L12

0.1 0.41 0.78 0.057 | 1.52 0.603 0.76 151 |—0.35 |-1.10
0.2 0.38 0.78 0.841 | 1.43 0.972 0.68 139 [—0.30 |-1.03
0.3 0.30 0.77 0.674 | 1.30 0.942 0.52 1.2 |02 |-0.92
0.4 0.23 0.76 0.488 | 1.18 0. 906 0.87 105 {—0.14 |-0.82
0.5 0.17 0.74 0.302 | 1.00 0.863 0.2 0.86 |—0.05 [—0.69
0.6 0.13 0.70 0.122 | 0.84 0.827 0.08 0.69 0.05 |-0.56
0.7 0.10 0.66 {~—0.035 | 0.70 0.809 | —0.02 0.57 0.12 |-0.47
- 0.8 0.10 0.62 |—0.167 | 0.58 0.819 | —0.10 0.48 0.20 }—0.38
0.9 0.11 0.60 |~0.282 1 0.40 0.868 | —0.17 0.35 0.28 |—0.24
Lo 0.18 0.59 [|-0.375 | 0.18 1000 { —0.22 0.18 0.40 0

L —ng=n’’ cos 2¢'.
25— ny=n’" 003 281,
3nzmn,— En.—n.;.

i ny=n,—(na—ny).

TABLE IIT

CALCULATION OF SHEARING STRESS BY OBLIQUE
INCIDENCE FOR LINE C-C

CL{ Bay 24, %m, sin 23,, "y 1:1')'
0 2.22 3.8 0.63 0 0.63
0.1 214 4.0 0.70 0.09 0.61
0.2 1.99 47.4 0.73 0.17 . 0.57
0.3 1.82 548 0.74 0.22 0.52
0.4 1.63 6L4 0.71 0.25 0.46
0.5 L42 65.6 0.85 0.25 0.40
0.6 . L2 67.0 0.55 0.24 0.31
0.7 0.90 66.0 0.45 0.2 0.24
0.8 0.79 62.0 0.34 0.18 0.18
0.9 0.55 49.0 0.20 0.10 0.10
L0 0.28 0 0 0 0

1 1
-.,-5 n,, sin 2¢»,'—-ﬂ".
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