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ON TRANSONIC FLOW PAST A WAVE-SHAPED WALL!

By Carr Karran

SUMMARY

The present report 18 an extension of a previous investigation
(described in NACA Rep. 1069) concerned with the solution
of the nonlinear differential egquation for transonic flow past
a wavy wall. In the present work several mew notions are
introduced which permit the solution of the recursion formulas
arising from the method of integration in series. In addition,
a novel nymerical test of convergence, applied to the power
series (in the transonic similarity parameter) representing the
local Mach number distribution at the boundary, indicates
that smooth symmetrical potential flow past the wavy wall is
no longer possible once the critical value of the stream Mach
number has been exceeded.

INTRODUCTION

In NACA Report 1069 (ref. 1) the writer considered the
problem of two-dimensional transonic flow past an infinitely
long sinusoidal solid boundary. The problem was treated
in the physical plane and the purpose was to investigate
whether or not the flow past the wavy wall remains a smooth
symmetrical type of potential flow when the undisturbed-
stream Mach number exceeds its -critical value. By a
smooth type of potential flow is meant one for which the
velocity potential, say, and its first derivatives are single-
valued and continuous; that is, there are no discontinuities
of the nature of shock waves.

Initially, the Prandtl-Busemann small-perturbation method
+ was applied and the velocity potential developed inclusive
of the third power in the “thickness” coefficient e—)\ o
where
a amplitude of wavy wall
A wave length of wavy wall
The velocity potential was then referred to the critical speed

— MR
of sound ¢, the coefficient ¢ was replaced by kQ =277

v+1
where k= (y+1)e is the transonic similarity paramet d
A=A yP eter, an
terms involving powers of 1—AM/_? higher than the first were
neglected (main assumption for transonic flow). This simpli-
fied or transonic form of the Prandtl-Busemann solution was
shown to be identical with the one obtained by solving the sim-~
plified nonlinear differential equation for transonic flow, with
the boundary condition taken not at the wave-shaped wall but
at the flat plate corresponding to vanishing amplitude. The
calculation was carried through the sixth power in the tran-

sonic similarity parameter ¥ and corresponds to the in-
superable task of obtaining the Prandtl-Busemann solution
to the sixth power in the thickness coefficient . Thus each
iteration step of the Prandtl-Busemann method contributes
to the transonic form of the solution, which may therefore be
considered a result of thin-profile theory with disturbances
not necessarily small -compared with 1—Af_2. The main
conclusion reached in reference 1 was that the transonic
similarity parameter ¥ must be less than g—:—a value still
somewhat greater than the critical value 0.83770 calculated
there.

The purpose of the present work is to express the solution
of the problem of transonic flow past the wavy wall in a
form more suitable for general considerations and to prove
that the assumed smooth symmetrical type of potential flow
cannot exist at stream Mach numbers beyond the critical
value.

SYMBOLS
z,y nondimensional rectangular Cartesian coordinates
a amplitude of wavy wall
A wave length of wavy wall
A2r reference element of length
€ ““thickness’ coefficient of wavy wall, ——— x /2
% ratio of specific heats at constant pressure and con-
stant volume
U stream velocity
M local Mach number
M, undisturbed-stream Mach number
i e (v+1)e
k transonic similarity parameter, ;=5 A — 37
Cer - critical speed of sound
¢ velocity potential of flow
f(z,y) transonic disturbance potential
Iy functions of ¥ only, related fo f(a:,y)
Azz numerical coefficients
Ar? generating functions of %, EAQ A
Anp functions of dummy variable r, i Arz_ r*, lower

n=1,m
label starts from 1 when m is negative and from
m when m is positive
Primes denote differentiation with respect to independent
variable.

1 Bupersedes NACA TN 2748, “On Transonic Flow Past a Wave-Shaped Wall” by Carl Kaplan, 1952,

981



ANALYSIS
GENERAL FORMULAS
If the undisturbed stream is in the direction of the positive

z-axis, then the velocity potential ¢ referred to the critical
velocity ¢, can be written as (see ref. 1)

1

¢-—93+7_|_1 (A—M_Hf(z,y)

where the second term on the right-hand side is a disturbance
velocity potential and implies that terms involving powers of
1—2Af_2higher than the first have been neglected. The differ-
ential equation for transonic flow satisfied by the function
f(z,y) is obtained from the general differential equation for
compressible flow and takes the following simplified non-

linear form:
o*f _of o*f
dy® oz 0zt @

The boundery conditions to be fulfilled by f(z,y) are as
follows:

of __

Z;_ (at y= )

E)y—() )]
aJc=—l.:.éunz (at y=0, —-°°<z<°°)

Here # and y are nondimensional rect&ﬁgula.r Cartesian
coordinates simply related to the physical plane coordinates
X and Y by means of the transformation

=X
y=(1—M.9"Y

and the equation of the wavy wall is Y=¢ cos X or
y=Q1—M_*"2¢ cos z. Clearly, f(z,y) involves only the
variables z and ¥ and the transonic similarity parameter k.

The most general form for the function f(z,y) to ensure

symmetrical potential flow past the wavy wall is the following

(see fig. 1):
f(z,y)=—:c+§;f. sin nx (3)
where the f, are functions of ¥ only. When this form for

[(z,y) is substituted into equation (1) and the coefficients of
the separate harmonic terms sin nx are equated to zcro,

Y

A

y

Figure 1.—Wave-shaped wall.

A
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the following system of second-order nonlinear ordinary
differential equations for f, results:

fn” —nxfn‘: ’_% 'n;?;:‘im (nf—m)fmf.u—m ot

1 ®
FUEM O ffurn (=12, ®) (@)
Before proceeding to the solution of these equations, several

formulas of general interest and subsequent use are given.

They have been derived in reference 1. The local Mach
number distribution is given by
1-MP=—(—M.H 3L (5)

The eqﬁati.qn from which the critical value of the transonic
similarity parameter is calculated follows from equation (5)

by taking z=0, y=0, and M=1; that is,

(524
a :-0

or‘With the aid of equation (3),

Sinfu0)=1 (6)
-The pressure coefficient
Op, Mo™ 12)—2)&0
_ g U’
is given by
__.2 df
Gy, um—'—y—_l_f(l'—Mmz)(l-l-gE) )

INTEGRATION IN SERIES FOR THE FUNCTIONS f,

In reference 1, equations (4) were solved by an iteration
procedure and approximate expressions for f; to f; were ob-
tained. An examination of these expressions showed that
the general form of f, is

n—1
@ 2p4n—2 =) -
Ja=D e @My S @S AR P et (p=1,2,...®) (8)

=0 g=0 T=p

where, if =0, the upper limit of ¢ is »—1 and, if p=0, the
upper limit of ¢ is 2p4+n—2. The four-labeled coefficients
Az 7are real numbers calculated from recursion formulas
obtained from the system of differential equations (4) and
the boundary condition at the surface of the wavy wall.
The boundary condition at y= = is automatically satisfied
by the form of f,; whereas the boundary condition at the
wall takes the form

i =t - (2D} o

Inserting the expression for f, given by equation (8) into
equations (9) yields immediately the following results:

433=1
pHOTLVIEESIP (n=1,2,...w)} 4o
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where, if n=1, the lower limit of p on the right-hand side
is unity and, if n 1, the lowerlimit of p is zero. Also,ifn=1,
the upper limit » of p goes from 1 to « and, if n5<1, 7 goes
from 0 to «.

By elementary manipulation of series, the second of equa-
tions (10) can be replaced by the following more useful forms:

nAg =433 (n=2,3,... =)

_ oy (D
ndit= Sdre—gopma (23500 7)

where in the first term on the right-hand side the lower
label p starts from 1 when n=1 and from 0 when n>1.

In reference 1, recursion formulas were derived for the
coofficients A2?. In the present report & much more
significant approach is introduced. Note that equation (8)
can be rewritten in the following form:

n—-1 )
@ -2
R 3 (s SW U 12)
p= g=0
where - -
ArP= ZAq Ry

r=0

In o manner similar to that described in reference 1 for the
coefficients .47 ?, recursion formulas can be obtained for the
power series A" ?. Indeed, the two types of recursion formu-
las are intima.tely connected and, for & given value of p,
the one can be obtained from the other by mere inspection.
A single recursion formula can be written for the general
quantity A" but the resulting expression is cumbersome
and serves no practical purpose. It is much more desirable
to obtain separate recursion formulas for each value of p.
As examples of procedure, the recursion formulas for p=0,
1, and 2 are considered in the sections which follow.

"RECURSION FORMULA FOR A=,

With p=0, the recursion formula is (compare with eq. (57)
of ref. 1)

2n(g+ 1A= (g+1)(g+2)8" 47,3

n—2—g
lniz Z} (m+1) (n—m—1)A=—%"* °A";"1q°
4 g=b mEgtn 1
n=2,3,...o; ¢=0,1,...2—2) (13)
where
g O (g=n—2)
" i=

1 (g#=n—2)

This recursion formula can be solved, the solution starting
with g=n—2 and descending towards g——O Thus, for
g=n—2, equation (13) becomes
B(n— 1) A7 §= - (m-+1) (o—m—1) Am¥3 onomsns
me N
n=2,3,...=) (14)

Now, multiply both sides of this equation by »* where r is a
dummy variable and sum from n=2 to n=®. Then

83 (n—1jAz _ope ;izr»’i";(ern (n—1m— L):Am+1 0 4n =10
nal = mm
(16)

- the equation log {=yt or {=
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Let ,
Aro=33 Az g
then
| A S =33 ndy g
and "

[ n—1
(A Y=2, 2 mn—m) A2 372 %
By observation, it can be seen that the right-hand side of
equation (15) is equal to (r4, ,")*. Equation (15) can thus be
replaced by the following first-order nonlinear differential
equation:

(TAl 01)2_ STAI o,+8A1 o=0 (16)

The solution of this equation is

A1 0 =G et rAl 0
where ¢, is the arbitrary constant of integration. From the
definition of A4, ¢ it follows that, with »=0,
= Al®
and hence
. A g gﬁ:ﬂ’
10 (1 7)

A0,
Note that by definition A" involves the coefficients .43°
which are ultimately calculated by means of the auxiliary
relations, equations (11), engendered by the boundary con-
ditions at the surface of the wavy wall. In solutions of the
recursion formulas, therefore, the coefficients A% appear as
undetermined quantities.
. Ay . 1o : .

The expansion of o in powers of rAY° is a nontrivial
problem which fortunately can be solved with the aid of
Lagrange’s investigations on the reversion of power series.
In reference 2, Lagrange’s problem is illustrated by the
following exa,mple

To expand e°* in powers of y—:ceb’
a8

The result is expressed

o
=y + 220y W8

ala—nb)*?
n!

Y+ .. (18)

In particular, with a=1, b=—1, and £=¢%, the solution of .
¢t (generally referred to as
Eisenstein’s problem) is given by the series

o nn—a

=2 a—oid

Then, if‘f is replaced by jl > and ¥ by —rA‘ the solution
of equation (17) is

A [P ,nn—R Al
AT oD AT
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or
inAﬂ -17‘“-1_2 (’Tb 1)! 45_1(A 4:!0)ﬂ re-l

n=] n=1
Hence, by equating coefficients of equal powers of » on both
sides of this equation,
Ay 9=

SNy m=2,3,. .. =) (19)

14-
which is the solution of the recursion formula, equation (14).
The coefficient A%_§ can be considered as the.generating
function for the set of coefficients A,%;?. Thus, equation
(19) can be written as

Then, by equating coefficients of equal powers of £ on both
sides of this equation and putting Aj}3=1 (see boundary
condition, eqgs. (10)), the following equations are obtained :

SN A, k= (20)

r=0

> Al

r=0

T

-

n—2
A 3=
A =T A
=Gt Aot L 1)
n- nl_
Aatai= (n—1)14--1A°“ Sn—2yia—1 Ao
..... , J

Note that from the first of these formulas A2 8=l and that

8
from the boundary condition, equations (11), .43 8=T16-

Consider now ¢g=n—3. Then equation (13) becomes

2n(n—2) A2 _s=(n—1) (n—2) A7 1+

%n;};:m(n~—m) Az 3dzme (29

Multiply both sides of this equation by r* and sum from
n=3 to n=o. Then

2 33 nm—2) Az _§r"=23 (1—1) (—2) 43 3r"+-

;é)a nrt g)z mn—m) Az 3A3°5 Y (23)
Let
1 o=g Ar 3rm
and

-]
20=2, Az _§r*

n=2

REPORT 1149—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

then
A1o' 4so =ZT"Z‘, min—m-+2)Ag_Ar-z+30

n=l M=l
It can be shown easily that the last term on the right-hand
side of equation (23) is equal to % r(r*d; o 4:")’. Hence,

equation (23) can be rewritten as the following differential

- equation:
27'2Ag 0'— 27‘A2 o'=T2A1 o'—‘ 2TA1 0’+2.A1 o+;%7'(7‘2.A1 g’Ag o'),
(24)
Now, from equation (16), it follows that .
(rd: oY=8 (rd, o — 410
AV 4Al 0,
(rd: o) 174, (25)
TAl OI(TAI 0,),=4TA1 0”
Then equation (24) can be written as
1_8+7'(TA1 o) ____1—_ "ne_
(TA2 0,) 1'(4:—1'A1 01) (TA? 0’)—“7.(4:__7,‘,11 0/) [27’(7‘Al 0)
6741 o' +441 o] (26)
[AY1
Let r4: =0 gT—AT-X—),: where v is the new dependent var-
- 10
iable. Then equation (26) becomes

’ 1 ,
0 =W [27‘ (TAI 0,) —GTAl 0’+4A1 o]
or with the aid of equations (25),

°'=% (rd:0)
Hence
v =L rd: +l c
8 10 8 1

or
(TAl 0 )3 (TAl )

8r Az = I—rd, 7

+

The arbitrary constant ¢ is determined by differentiating
this last equation twice and evaluating for r=0. Thus,

AR (]
=0t Gy
Finally,

Az 7'2 [(A1 ol)’]I+8 (Al o)g rA; " 0 (27)

Now, from equation (18) with ¢=2, b=—1, and £=¢* it
follows that

=23 Ty

n=3

(n— 2)!



ON TRANSONIC FLOW PAST A WAVE-SHAPED WALL 985

Or with
1
f= ; z __4 rAL°,

nr—3

(4, )= 2E(n 2)'4__,(A O =2
and

© n* -3 _
[(A: o)1= 2’12_;@@?2 (A%yr?
Thus, equation (27) becomes

@ 1 @ n"—a )
5 0 n-=1__"T A 1 0\n4n —1
Zyndi 2=y 2 oy (AN T

(A10)2Zn(n l)A‘n—lr‘—l

Hence, replacing A3 _¢ by its value from equation (19) and
equating the coeflicients of equal powers of 7 on both sides
of this equation yields

_m
(n—2)ldr -1

n"
2W(Aoo)

n=3,4, ... ) (28)

Again,

4348 (A0y - 40045

the solution of the recursion formula, equation (22).
equation (28) can be written as

IV RIY

r=0

3 -2
2 10
8 o 2),4,. o i ;ﬂAo,k*) +

»n—4 © n
o S Ape ke

2 (n—3)14~ 1 \7=4 ) (29)

Then, equating the coefficients of equal powers of £ on both

sides of this equation and putting A4i3=1 and - A} °=—1€
yields:
-
. r=-3 n -4
Ay b
2(n—2)14» 2(n—3)14"
Snﬂ -3 nﬂ -3
n 0 20
An—ﬂl (n__z)!4,._1 AO 1+( 3)[4,_14‘101
8nﬂ -3 M
A%, 3=m':; A3 3+ L (30)
n" -3 10 10 20
6‘_—3)!_4:7__1 [Ao 2+8Ao 1 Ao 1
1 0\2 ) /n/' -3 Al 2
o1 +W 459
.J
Note that from the first of these formulas 1 and that

10—24

from the boundary conditions, equations {11), A3 g=7—12~

The procedure followed in order to obtain equation (28)
for A7 _Jis a general one and with very little difficulty other
members of the family A" can be obtained. For example,

n—4
A7 _3=48 e (AL AN+

(n—3)14"7

1 n-—4 '
3 (,;_714)—14.:1(11‘0“)' LAY (ALY (1)

From this equation it follows that

2 ntt 1 nn—t h

Aa%s g=§ (n—3)14~-1+§ (n—4)14=-1

n—4i n—4
Ay =48 T A3 T Azey

(n—3)l4 (n—4)14 . (32)
nl—4

e

of [5 Cy R 5)1]

o

From the first of these formulas and the bounda.ry conditions,

7
384 and A3 $=15z%-

At this point, it is noted that the coefficients of the form
Az § are calculated from the first formula of each set, equa~
tions (21), (30), (32), and so forth. A number of this type of
coefficient have been evaluated (see ref. 1) by means of the
recursion formulas for the coefficients A% ? themselves.
They are listed as follows:

equatlons (11), A=

4 g=i 4i 8=18>1<3256
AtF% A?3=5§2§§§e
A-gg % .....

A careful examination of these numerical values leads to the
general rule, :

no_{3n—5}

Al [ 72,!4:._" (n=2)3) AR m)

and from the boundary conditions, equations (11),

3 5 )
33 %7%1_}' (n=2731"' oo)
where by definition

{3n—5}=1X4X7X10X13X . X(3n—5)

In the expression for the local Mach number distribution
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evaluated at the crest of the wavy wall (z=0, y=0), there
occurs the following power series: -

F=3nAz 8k

n=1
or

F—k—}-zg {3n—5} .

al4r—1

This power series can be expressed in the closed form
_ 3\
F=2-2 (1—Z k)

The graph of F against k is a semicubical parabola with the
cusp point at k=§ and F=2. With the necessary condition

that one and only one value of & correspond to a given value

of F, the transonic similarity parameter % cannot be greater

than 4/3. Moreover, the lower limit of % is zero when the

amplitude of the wavy wall is zero but M, is different from

unity. ] L
RECURSION FORMULA FOR A =d

With p=1, the recursion formula for 4*? is (compare
with eq. (69) of ref. 1) ’
4t 1) Ari—2m+2)(g+ 105 Az 1+ (g+ (g2 Az, i=

——-]-'-12,5: i E m(n—m)A" -m oAm_zl__E,n(,n_i_ l)AloDAn -|;1 0

2 qlzul) g:n-g—ql

mn=1,2,...=;¢=0,1,...7) (33)
where
o .0 (g=n—1 or n)
@ 1 (g#n—1 or n)

-0 (g=mn)
6:—1 (g==n)

The solution of this recursion formula proceeds-as in the
case p=0, the solution starting with g=n and descending
towards g=0. Thus, for §=n, equation (33) becomes -

A= —%n Al A+ (n=1,2,...o)
or

A= S DAY A28 (=2,3,...)

Hence, inserting the expression for A% _9 given by equation
(19) gives

1 3 !
Arii= —5(7;,%‘?,)!_4"_'1-(‘4100)‘“ n=2,3,... =) (34
or B
ZA' ___1'_ 72;"—3 (IEAID 21,) n+1
24t L =g
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From this rela:tion, by equating coefficients of equal powers
of & on both sides of the equation, the following equations
are obtained: ’

.o ——l ,nu-a
A= 8 (n—2)14~-* )

B 3 n=3 1 » =3
A:Z{§=~§v(7:n§)FA53—§m—_n3)TE:U‘139
=8 M4y (A -
42-15= 7 24 L 35)

1 »=3 '
3 (n_%@.? 43 3-!—3(A1 D7—
1 ,nu—s
16 g B
..... (n=2,3,... oo)J

Consider now g=n—1; equation (33) becomes

4(n+1)A4r _1=2n(n+2)A" 1 —

En:g (m41)(n—m—1)A=+10 An-m—t1_
%n(n-{—l)A‘o? A0 (n=1,2,... )

Multiply both sides of this equation by " and sum from
n=1ton=co. Then

AR DA e =2 a9 Ay -

27“‘“2 (m4+1)(n—m—1)A=t1 0 4n-m-11

ﬂml

_Al °Zn(n+1)A""“° (36)

Ap=2ndrm Ag=33A0 0
n=] N

=> 430

=1

Ay g=32 An 97
N

Then it can easily be shown that the second term on the
right-hand side of equation (3Q) i8 —% r(?A, /A, ') and
that equation (36) can be replaced by

40rd, )'=2r"4,,"+6rd,, _%T(HAO 4, o’)""'% rd'" 4,
37

Now, . &)

Ao 1= —'% Aloo 2 (’IL-— 1)A:_‘1’ o1

R fi=]

or, with the aid of equations (25),

rdy y=—gir A0 (r Ay o)
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Hence, from the use of equations (25) and equation (27) for 4, it follows, after routine calculations, that the integral
of equation (37) is

1
=gy A1 =3 04 P A P A DD e 2, )
where .
A2 [}
=64 —=%3 @ o),
Now from equation (18),
n—m—1
(rd; )™ _.'mﬂnm(ﬁ—nTMz Ay r ! (38)

Then

At = (Alo)n+1{ 2 n 3 E et - 1 i n° 4
Z; 128 ¥ ° =2 (n—2)14» = 4 7= (n—3)l4~—3 16 7=i (n—4)14»

nt -3 " -2 .
eto| 3 S g2 D &

Equating coefficients of equal powers of 7 on both sides of this equation gives

i 42t ot O a2 e Dl 3)1+2[5+4<°1+4>]< Syt

5)'545—1(A )t
n=2,3, ... =) (40)
Trom this equation the expressions for all the coefficients of the type A3z},}; with n=2, 3, ... o and r=0, 1,
. « can be obtained. Thus, for example, ;
Ayt L2 20, 70 ] 3
S22 401 (n—2)1 T (n—3)! + (n—4)lT(n—5)! '
A7 gy P {[Gr DA 3248 st (Grk DA 32480 15 (870+5) 43 4
- (41)
256 431) s H (A3 14843 D e
----- J
For g=n—2, equation (33) becomes
4(n+1) 42 3=2(—1)(n+2) 42 _i—n(n—1) 4~ 1—%n:zi [(m-+2) (n—m—2) Amt30 gn-ncts
(r+D—m—1) A AR G ma 1) A0 A &)

The solution of this recursion formula follows along the same lines as that for equation (36) and leads to the following result:
il {[ 162 , 414, 205 ,47 1 w21 L 20 9 1 mt,
R S T) ( 3)1T(n Hitm=sit 2 (n 6)1 4n—’T ¢ = i 2Tt
12X 128 (A1 0)3 [( 3)["‘2 (71;"‘4:)[] 4,, —2T8 (cl+4=)2 [(n 4)!+(,n 5)]] 4: —-2} (A 0)“' +1
) n=3,4, . .. =) (43)

Trom this equa.tlon there follow, in the usual manner, expressions for coefficients of the type A,_3,+1 Thus, for
example, with =0

) 81 21 , > 2073 , 13 ) 205, 9 1,47 1
A5 [(64+16 +5m a9 t\ez 2" Tas™) m—ant\iest 55 "G =51 1256 m—o) | &

..... ~ (44)
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RECURSION FORMULA FOR A=
With p=2, the recursion formula for A"} is

8(n+2)4~2—2(n+4) (¢+1)5~ 1 A%4d
(g+1)(g+2)5m 1+ 453

=-——;:n5‘+’6“"1" n+1501.22 E (m—2)(n—m-+

qi=0 M=g—q1

z)An—n+2 [} An:qi?__nan+l n+2 5» i ﬁ m(,n_

Q=0 mm=g—gq

m)A-—n 1 Anl ___6 ,n(,n_l_l)(ai;l-ﬂ Aloﬂ An-l;l l__|_

a—q)

5 +1le +2 Alol A +ql ot 5o,nq+2 Alll And-l;li o)_
n(n+ 2) (5';"2 Anoo A* +°2 °+6'; Azlo A";"flo)

n=1,2,..

.»; ¢=0,1,...n+2) (45)

where § is defined in the usual manner. The solution of

" this recursion formula proceeds as in the previous cases,
starting with g=n-+2 and descending towards ¢g=0. Thus.
for g=n-+2, equation (45) becomes:

Arg=—p A0 AN (=1,2,...)
or
Ar? ’=-—— (n—2).42° Az ¢ n=3,4,...=)
Then, from equation (19),
n -—2 2 __ = 1 0\n +2
A = (n 2)7Ll4“'1 Al
(n=3,4,

...®) (46)
or -

Sy b O (5 )

r=0

By equating coefficients of equal powers of & on both sides
of this equation, the following equations are obtained:

- n—2)nr—?
R T
_ nz_ 4)7L‘ -3
A §=——( nl4nt3 453 s 47
—4)nr2 1
A= 421‘, [A3+] otz o]
Consider now g=n-1; equation (45) becomes
8(n+2)A1:+1 2(n+2)(n-+ A7 35—
n—2
.5 nZ (m1)n—m—1) A= A e —
5 At (A AR A A+ 0 —
nln+2)(A%° A% 1 4% 412 0)
(n=1,2,. .. =) (48)
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With the introduction of
A—s 2=E "+§ e
=l
A—l 2=’§A: +§ ™

A]_ 0=iA: _? bl

n=]

equation (48) is replaced by the following ordinary lmenr
differential equation:

8(1-’A_1 =2 A )Y H12rr A, )+ 16rd_, . —
'12‘7'2(73111 oIA-a 2’)—% AloorZAo 1”""%111117"4-41 o”""

‘ A% rA, S ACA, S —A%° rd, -
A21°A2 o' _AlooAaoo (49)

By repeated use of ‘equations (25), the solution of this differ-
ential equation is found to be as follows:

8rfA-u—<A1°)*{ 35 4 V=5 (s =75 0

2048 (TAI D,)"l"' rg-Al 0”+ A2 0+

57 O [ § o yp—ra s I—F raer+
A29 I:Al o—% (rd, 0’)’:|—rA‘0°A’o° (50)

Finally, with the aid of equation (38) and the definition of
A-—l 2

w—2a_ 1 2 nr -2
A= {256 n— 1)1 =2 =g | T
1 s 1
52 mﬁ-m (e:+4) I:(n—_m-—

1 »° - 10\n
m—2) 4--1} (A

Azoo
<n=3, 4. .o 0=041hs) 6D

From this equation, there follows*in the usual manner
formulas for the coefficients of the type Axz%1,3;. Thus,
for r=0, -

n* -3 nn—ﬁ

4n+3 (,n__4)l4n+2+

a-22__ 1 -
Az 2—‘|:(,n_ DI (n— 2)!+('n— 3N

n» -2
4- +2

1 1
[(n— D~ n—2) (n=3,4,... ©)

DISCUSSION OF CONVERGENCE OF SMOOTH TYPE OF
PQTENTIAL FLOW PAST WAVY WALL

In the preceding sections, a number of examples of recur-

gion formulas and their solutions have been given in consider-

able detail. The purpose of this exposition is threefold:



ON TRANSBONIC FLOW PAST A WAVE-SHAPED WALL
»

First, to show the inherent elegance of the method of integra-
tion in series although the equations concerned are nonlinear
in character; second, to present a type of analysis which may
be useful in other problems involving nonlinear differential
equations; and third, to indicate that an analytical proof of
convergence may ultimately be obtained by careful examina-
tion of the recursion formulas for the quantities 4%, and
their solutions. One example is the obtaining of the general
expression for the coefficients A33 and the subsequent con-

clusion that k= %

In actual practice it has been found more convenient to
evaluate the coefficients A3? from their separate recursion
formulas rather than to derigxe the general formulas. The
appendix contains the exact numerical values of the coeffi-
cients necessary for the development of the functions f, to
the eighth power in the transonic similarity parameter k.
These coefficients are utilized to demonstrate numerically
the test for covergence of the smooth symmetrical -type of
potential flow (eq. (3)) assumed in this report. Thus, when
the form of f, given by equation (8) is inserted into equation
(6) for the local Mach number distribution and evaluated at
the surface of the sinusoidal wall (y=0), the following result
is obtained:

lﬂfJE’ 12 —1 +n¥1 k Z-fl (n—2m) cos (n—-zm)xz Arn>

(52)
where [%] denotes the integral part of »/2. At the crest of

the wavy wall (z=0), the point of maximum fluid velocity,
with the numerical values for the coefficients inserted, equa-
tion (52) becomes:

M" 1 . .. 337 ., 4043
— M, T—araT 1= k+ k +384 k 9216 k +576><256 ket
359381 ., 7326757 ks
270256 ' 6480X256°
81688733 .
864002665 F T - - (53)

The critical value of % (that is, when AM=1) calculated from
this equation is

k.=0.83244 )
(Note that in ref. 1 the value k,=0.83770 corresponds to the
first six terms of eq. (53).) Consider now the infinite series

4/3
V= om3pas "|Le0I2
1.0 1 1 I 1 { ]
1.0 20 3.0 4.0 5.0 - 6.0 ~ 70
n

Fraure 2.—Numerical test of convergence.
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2L HS

- =1
where ( } .
n 3n—5 _ :
AOS:_/’T/’M—'_I (Tb—?:, 3, P CD)

A0
The Cauchy ratio test Rl.=ﬁ yields in the limit n— e
. 00

the result that the radius of convergence B, is equal to or
less than 4/3. If the corresponding ratio R,, are formed for

R
the right-hand side of equation (53) and the quotient N,= Rlﬂ
2n

is calculated, the resulting sequence of numbers is as follows:

n Ris R l Na

1 |0 8.0 2.0

2 45 Loz | 23

3 a.04762 | L7sos1 | L7178

4 25 185368 | L

S 2.21516 | 1.85000 ( 1.64104

8 20467 | L1772l | 173132

7 1.92481 | 119588

The noteworthy feature of this table is that, although
R, (and presumably R,,) is converging quite slowly toward

1-—— (and R;), the quotient NV, exhibits a strong tendency

to approa.ch an asymptotic value NV for a relatively low value
of n. Figure 2 shows this tendency in a graphic manner.
The apparent asymptote represented by the straight line is
the ratio of 4/3, the limit of R, as n—> =, and of 0.83244, the
critical value of k. Certainly, the rapid approach of the
lower dotted curve toward the apparent asymptote and the
decreasing oscillations represented by the upper dotted curve
indicate that the critical value of % is the radius of conver-
gence I; of the power series on theright-hand side of equation
(53). -Thus, the critical value of the stream Mach number
marks the limit of convergence of the smooth symmetrical
type of potential flow assumed. The ability to approximate
clgsely the limiting value N is a matter of luck; namely, the
choice of the known comparison series. Once, however,
the proper comparison series has been selected and the
approach to an asymptote indicated, there can be no question
of the meaningfulness of the approximate value of NV obtained.
It may be that one would like to extend figure 2 to n=9.
This extension would entail the forbidding calculation of an
additional 185 coefficients A3 ?. The result presumably
would be to decrease slightly the approximate critical value
of k& and thereby raise slightly the straight-line asymptote of
figure 2. This extension of figure 2 would show still more
convincingly the approach to an asymptote and the dying-out
of the oscillations. Perhaps more important still, figure 2
definitely shows that conclusions based on less than six or
eight terms are mere speculations in this field.

CONCLUDING.REMARKS

If the numerical test of convergence presented is accept-
able, the conclusion to be drawn is that smooth symmetrical
potential flow past the wavy wall exists only for the purely
subsonic range. Moreover no such flow can possibly repre-
sent the transonic or mixed type for which a local region of
supersonic flow near the solid boundary is imbedded in the
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otherwise subsonic stream. It follows as a corollary that
the transonic or mixed type of flow past the wavy wall is
necessarily an asymmetric one. This asymmetry in the
flow pattern entails a resistance usually defined as wave
drag. As shown by experimental observations, the shock
wave associated with wave drag closes the downstream
portion of the local supersonic zone.

As a final remark—although the analysis and conclusions
of the present work refer directly to the wavy wall, the’
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suggested result that the critical stream Mach number
marks the limit of smooth potential flow very likely applies
to other boundaries. This conclusion is based on the idea
that the gradual transition from a purely sinusoidal wall to
a boundary composed of a single bump, say, introduces no
essential changes in the analysis.
LANGLEY AERONAUTICAL LLABORATORY,
NaTronal Apvisory COMMITTEE FOR ABRONAUTICS,
Lancrey Fiewp, Va., May 6, 1952.

APPENDIX

" NUMERICAL VALUES OF THE COEFFICIENTS Azr?

Coefficients for S
5
10__ 11_ ___ T
Ao =1 AD 1= 256
10 11 . ) 1 2765
A 17256 2T 9X2562
o 1861 i 184345
T3 X256 317282563
4896755 1
10 11—
Ay 37781 X 256° i3 64
33
1i___ _“-
4 784X 256
139
11 __
4iz= 42562
Coeflicients for fs:
2 o__l - 21__ _ 125
°716 Agi= 36256
419 45895
20 21 -
4 1772 X256 463 —108256°
a0 234215 21 4210409
3774322562 3T B1X256°
\ 42791533 5 '
20__ 31 A
45 378482563 433 256
2 o_}_ 21__ 815 -
4‘ °8 Ai=—gr5%250
. qpo 11 P ,___ 456185
1177024 : s 3456 4.256°
4085 1
20__ 21—
A 3T 24¢2567 Az 1= 128
21287 11
20__ 31 —-
A 377324 X 2563 a3 32X256
4811
31 _ _
Az 5= 192X 2562

12 65 1s_ 3385
A°°_576><256 A°3—1152><256’
. 26435 . 3907
18 __ 3__ -
A°3/_81><2563 Al 43232562
: 7 - 23
12 13
Aie= 72256 433 123X 2563
Ari 53995 A3 583
13 1728X 2562 33 54 %2562
9 119
18___ 18— .~
Aii= 32X 256 433 122562
2765 ' 1
13 4tYY 18 __
A= 96X 256% A3 3: 96X256
' 1
12__
A33= 8256
12 __ 99
A33= 8X256%
.5 12245 a5 17999
A°"144><2562 A3 3= 90X 2563
Arie 35023583 e 72577
37716202568 13757602562
43— 0245 Aza 45400
1377792568 237721602562
23 104063 Arg— 3815
137790X 2568 3877864 X 2567
79 ' 10229
28 _ 38
Aii= 32562 A25 864 X256%
2a__ 167 ss__ 13 __
45= o5 ‘ A i=—ga50
47 25
23___ =0 23_ S
A33= 192256 433 12X256%
Arse_ 24199
337 8642561
Api—— 1
3T T12X 256
11

:2_ .
As=—5% 250"
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1
30 —
AO 0_72

gzo_23603
0 17X 256%

9843883
81X256°

EHE

oo 149317
13 30 2568

Coefficients for f;:

7
40__
A5 =gxame
Ato_, 390647
01T 720X 2662

_ 1704729613
16200 256°

7
Afi=551

32947
362567

A58

Ats=

o 20627213
277162 256°

b

4
1

4o==_§;
2077128

b

co_ 817
31288 266

R

I

369587
1728X256*

1
40__ —
Aﬁ 0_96

Afg=

=1l
24256

oo 4811
33T TAEX 2560

4
A58
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1765
31 ___ _
Ai= 3X256%
i 1351393
A3i= 2880X 2562
155
31—
Afi= 32256
30365
31___
Api= 482563
117
31— .
Azi= 32X 256
A31_ 29545
23982562
1
31 ___ _—
A31= 256
55
A3 i=—g5
35251
41___
A31= 90X 256°
411 80872738
03T 875X 256°
A41_._ 2485
1176 256
441 _ 30506538
1TTTIS5X 2560
455
41
A“_"96><256
As1 127825
337 192X 2563
) 119
41—V
Aii= 48256
Asi . 51343
33T 216X 2568
25
41_ :
At 48X256
275
41=____
=t 8X 2567
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991
475823
32___

A°’—15x2565

4z 1 74353
1377320X256%

‘ 3083
3a___
A“_24><2563
go_ -4l
32T 9% 2562

1785
32___

A= 40X 256°
33 25
839X 2562

4ea 741115
0375184 X 2562

s 38381086
1374052567

.o 423833

A

A4 3 =115z %056
qez__ 20845
2144 2567

173
42__ 'Y
A= —To5e

30
Asi= g5

36
43___ 99
Ad3=—5xz500
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Coefficients for f: Coeflicients for f;:
7 5470394
Afy= AS = — e 13
3840 ot 1X2563 =
81X256 A5 5 =136%256
90354659 88735
A t= oo 05556 At = g5 50567 , 3
259200X 2562 11 2 =
7 2 ; ‘
Att=rgg A= o g3 2T
] 3077144256
886243 25X997
A= All=—E— 833
108032562 31 2562 . 70 999
x 24X258 A3 =258 256
25 105
A=tz A== : 343
1536 i1 2 Y (O L
64256 A =Tzz%o56
24375 9
AS = - A= - 343
32X 256% 51 2%X2 0= =
X 32X256 . A3 8=350%256
5 i
A= : 2401
84 T 10—_o
438 45XX256%
43 ?=27§2§%G’
Coefficients for f3:
Aso— 25
24256 A3 18X19
0T TR R RS
ro_ 1375 ) 18256
41 2 2 9
480 A3 3=5;2 éégs
Coeflicients for fs:
89
Ay L g1 2483620 + A =grcass
977432256 t 542563 _
59
285522407 4371541 A =5r5rR
60__ e1__ _ _“vI-vT-
453 4860X256° A 57602562 24X256
47
91 265901 Al = —
60__ e
A =7oz56 A3 i =—155¢256% " 18X256
144862403 403535 Aso—_19_
80 61___ -
A =025 A3 1= g5 cone *° 2880
23 79841 ) 7
60 61 _ _(YOE~L s80_._ ¢
A5 5=g256 A= —ggo56° A5 5=5830
2553091 2205 1
60._ 61 __ — ‘
431 28803< 2562 451 8X256% 47 3_2520
60 13 61 __ 2401
433 1024 A3 i= 60X256%
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