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CONSIDERATIONS ON THE EFFECT OF WIND-TUNNEL WALLS ON OSCILLATING AIR FORCES
FOR TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW!

By Harry L. RunyaN and CrarLEs E. WATRINS

SUMMARY

This report treats the effect of wind-tunnel walls on the
oscillating two-dimensional air forces in a compressible medium.
The walls are simulated by the usual method of placing images
at appropriate distances above and below the wing. An im-
portant result shown s that, for certain conditions of wing

- frequency, tunnel height, and Mach number, the tunnel and
wing may form & resonant system so that the forces on the wing
are greatly changed from the condition of no tunnel walls. It
18 pointed out that similar conditions exist for three-dimensional
Jlow in circular and rectangular tunnels and apparently, within
certain Mach number ranges, in tunnels of nonuniform cross
section or even in open tunnels or jets.

INTRODUCTION

The understanding of flutter and other nonsteady phe-
nomena requires a knowledge of the associated unsteady flow.-
In the underlying theories of unsteady flow, such assumptions
as small displacements, linearizations, and an inviscid fluid
are made in order to obtain workable and usable results.
When it is necessary to investigate the effect of these assump-
tions on analytical results by measurements of the forces
and moments on an oscillating wing in a wind tunnel or to
treat cases that do not conform to theory, the question of the
effect of the tunnel walls naturally arises. In the case of
steady flow the problem of the effect of tunnel walls is more
or less classic and has been treated by many investigators.
In general, these investigators have been able to obtain
relatively simple factors which can be used to modify
measurements of the air forces on a wing in a tunnel to cor-
respond to free-air conditions. The extension of the results
to compressible flow presents no difficulties since the resilts
for incompressible flow can be corrected according to Prandtl-
Glauert correction factors. )

In the case of unsteady flow, Reissner, reference 1, and
W. P. Jones, reference 2, have published papers showing the
effect of wind-tunnel walls for the incompressible case. In
both papers, the influence of the tunnel walls is found to be
comparatively small for most cases, although indications are
given that, for some ranges of a reduced-frequency param-
oter, the effect may be quite large. In the unsteady case,
unlike the steady case, the transition from results for incom-
pressible flow to those for compressible flow cannot be accom-
plished by simple transformations. This difficulty is a result

of the fact that, in an incompressible fluid, the velocity of
propagation of a disturbance is infinite ind no time lag occurs
between the initiation of a disturbance and its effect at
another position in the field, but, in a compressible fluid, a
definite time is required for a signal to reach a distant field
point so that both a phase lag and a change in magnitude
result. Under certain conditions this phase lag can result in
a resonant condition which would involve large corrections.

The purpose of this report is to consider the effect of wind-
tunnel walls on the forces on an oscillating airfoil of infinite
span with considerations of the compressibility of the fluid.
The usual method of images is employed in order to satisfy
the condition of no normal velocity at the tunnel walls.
First, the effect of tunnel walls on the induced vertical
velocity, hereinafter referred to as downwash, of an-oscil-
lating doublet is determined and this result is used to for-
mulate the integral equation for the downwash of an oscil-
lating airfoil in a tunnel. This report is not intended to
give numerical values or any detailed calculations of final
tunnel-wall correction factors but mainly to show the exist-
ing need for such calculations and to present equations for
calculating corrections for the two-dimensional case.

SYMBOLS

A " constant
b semichord
c veloeity of sound
H tunnel height
Hy®, H® Hankel functions
M Mach number
Ap local pressure difference
13 time

wk
GE
V velocity .
W, Wy, Wy downwash or vertical induced velocity
Exy 2z Cartesian coordinates
B=+1—M?*
v Euler’s constant
© angular frequency
A wave length
¥ acceleration potential
@ velocity potential
p fluid density
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] ANALYSIS
EFFECT OF TUNNEL WALLS ON THE DOWNWASH OF A SINGLE DOUBLET

The differential equation that governs flow due to small
nonsteady perturbations imposed on a steady, uniform
flow field is the wave equation. Referred to rectangular
coordinates, fixed relative to the undisturbed stream at
infinity, this equation is
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In this equation the independent variable ¢ may be regarded
as either a perturbation velocity potential or as an accelera-
tion potential. In treating the boundary conditions of the
second section of this analysis it is convenient to regard ¥
as an acceleration potential. Thus, in order to be con-
sistent, ¥ is hereinafter regarded as an acceleration potential.
Accordingly ¢ is directly proportional to a perturbation
pressure field and is therefore related to a perturbation
velocity potential ¢ as follows:
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Tn order to calculate the downwash @=-2—§ associated with

¥, it is necessary to solve equation (2) for ¢ in terms of .
When ¢ and ¢ are sinusoidal functions of time, such that
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equation (2) becomes independent of time and thus reduces
to an equation with one independent variable, namely

P
This equation can be integrated with respect to = to give
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where the lower limit of integration is chosen for later con-
venience so that ¢ vanishes far ahead of the point of dis-
turbance. The downwash may be readily calculated with
the use of this equation. In the absence of tunnel walls
the retarded potential ¥, (that is, the potential corresponding
to outgoing waves) of a harmonically pulsating pressure
doublet located, for simplicity, at (0, 0) that satisfies equation
(1) is :
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where H,® and H;® are Hankel functions as defined in
reference 3, A is an arbitrary constant denoting doublet
strength, « is circular frequency, and p=+1—12% The
Hankel function H;® in equation (6) becomes infinite

1
(= oo
H;® is continuous and approaches zero as its argument
approaches infinity. Thus the only discontinuity in ¥, is at
the location of the doublet, that is, at (x=0, y=0).
In the presence of plane tunnel walls located parallel to the

as its argument approaches zero. Otherwise

z-axis at H/2 units above and H/2 units below the doublet,

position, the potential ¢ of a pressure doublet may be ropre-
sented by the potential of an infinite system of appropriately
chosen reflecting doublets, namely (see fig. 1)
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In this equation the term corresponding to n=0 is the poten--
tial ¥, equation (6), discussed in the preceding paragraph.

It may be noted that only this term of the infinite summation
in equation (7) gives rise to a discontinuity in ¢ at any point

within the .tunnel <—%§y§%;—oo<x< m)- The 4in-

finity of terms corresponding to n7<0 is necessary to cause
the downwash w to vanish at all points of the tunnel walls,
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Fieure 1.—Sketch showing reflecting system of doublets simulating
two-dimensional tunnel walls.
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The downwash along the midsection of the tunnel y=0 is given by

w=AT D i [ 5 (e - s [ TG lY | di=vetw ®
where
o= AT;“ “C) i f ?—gHo (;z—ﬂlfi‘l‘ﬂxya) dg (9)
represents the downwash associated with the pressure doublet in the absence of tunnel walls and
fuf -
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ropresents 'the additional downwash due to the presence of tunnel walls. Thus the relative value of w, as compared
with w,~+w, is the main item of interest here.

The integrals appearing in equations (9) and (10) can be reduced to simpler form for evaluation but since the steps
required to reduce one of the integrals are the same as required to reduce the other, only the integral appeanng in
equation (9) will be treated in detail. The reduced form of the other integral can then be obtained by simple comparison.
The Hankel function in equation (9) satisfies the following identity:
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Substituting this relation into equation (9) gives
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In equation (12) the first integral can be integrated twice by parts to give for w,
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By writing the integral in equation (13) as the sum of two integrals, namely
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and making a change of variable

Fa—u , -y
the expression for w, may be further reduced to
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In the limit y=0 the expression in braces in equation (16) reduces to the kernel of Possio’s integral equation relating
pressure and downwash for the oscillating airfoil in compressible flow. (This result checks the results for this expres-
sion given, for example, in ref. 4.)
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The value of the integrals in equation (10) may be similarily reduced to give
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In general, this infinite-series representation of w;, equation (17), converges to a finite value.
critical values of the frequency parameter wH/V, it is found -that the value of w; becomes infinite.
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However, for certain
This fact can be

readily made evident by use of relations given in reference 5 where it is shown that an infinite series of Hankel functions of
the type appearing in equation (17) can be replaced by an equivalent series of exponential functions as follows:
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If relation (18) is substituted into equation (17) the value of w; becomes
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It may be seen that this expression becomes infinite for &ll
values of = when the frequency parameter wH/V has any of
the values given by

wH__ =B _ .
7—(2177,—1) Vi (m=1,2,3,...)

(20)
These critical values of the frequency parameter correspond
to a condition of pure resonance in the tunnel which in the
present case implies that a harmonic disturbance of any
finite amplitude may lead to a downwash of infinite
amplitude.

Of course these infinite values of w;, would never be realized
under practicable conditions because factors such as finite
tunnel length, absorption through walls, fluid viscosity, and

- so forth that would give rise to damping would make pure

resonance unobtainable; however, with damping present,
resonant frequencies yielding values of wH/V in the neighbor-
hood of those given in equation (20) would exist and it is not
likely that quantitative agreement or even possibly qualita-
tive agreement between calculated and measured downwash
(or forces) can be realized when the value of wH/V is in the
neighborhood of these critical values.
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It is interesting to note that the effect of boundary condi-
tions such as section geometry, tunnel-wall flexibility, and so
forth is to change the value of the critical frequency but not
to do away with the possibility of resonance. Also, by treat-
ments similar to those employed herein, it can be shown that
under idealized conditions resonance can occur in three-
dimensional flow in both round and rectangular tunnels or
apparently, within certain Mach number ranges, in tunnels
of nonuniform cross section (expanding or contracting sec-
tion) or even in open tunnels or jets.

The fundamental or smallest critical values of wH/V, cor-
responding to m=1 in equation (20), are shown plotted as
functions of Mach number 31 in figure 2. This figure indi-
cates that there is no finite critical value of wH/V for the con-
ditions M=0, V0, and ¢= =, which correspond to a flow
of incompressible fluid in the tunnel. This result agrees
with those found in references 1 and 2.

The frequency parameter
(m=1,2,3,..))

9%3;=(2nz-1)wﬁ (21)
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Fraure 2,—Fundamental critical values of frequency parameter wH/V
vlotted as s function of Mach number M.
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which may be derived from equation (20) is shown plotted,
for m=1, as a function of Mach number in figure 3. Equa-
tions (21) and figure 3 show that finite values of the critical
frequency exist for the conditions /=0, V=0, and ¢ .
These conditions correspond to & compressible fluid at zero
velocity in the tunnel. For these conditions equations (21)
and the corresponding wave lengths

(m=1,2,3,...) (22) -

agree, respectively, with results found in the literature for
the characteristic frequencies and wave lengths associated
with transverse acoustic vibrations in rectangular chambers
when the location of the source of disturbance is excluded as
a nodal point. See, for example, reference 6.

It may be of interest to note that equation (21) can be
derived from the principle of standing waves as follows: The
condition for resonance for the type of disturbance considered
implies that the standing transverse waves have & maximum
velocity at the midsection of the tunnel and zero velocity at
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Figure 3.—Fundamental critical values of frequency parameter wH/e
plotted as a function of Mach number 3.
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the boundaries. A half-sine wave of wave length A=2H or any odd divisor of this length namely, )\— 2H s&tlsﬁes

this condition. If ¢ is the velocity of sound in the medium and V the velocity of the medium, the velocity of propagatlon of

a disturbance in a fixed plane perpendicular to the air flowisyc®—V? Since the frequency is given by the speed of
propagation divided by the wave length there is obtained

f @em—1)/c*—V?:
2H

27
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=xp(2m—1)

INTEGRAL EQUATION FOR AN AIRFOIL OF INFINITE ASPECT RATIO OSCILLATING IN A WIND TUNNEL

In order to present equations from which tunnel-wall corrections for two-dimensional flow can be calculated, use
is made of the foregoing analysis to derive the integral equation, relating downwash distributions and lift distribu-
tions, for the effect of tunnel walls on the lift distribution associated with a given downwash distribution. -

The resultant pressure or local lift Ap associated with the acceleration potential of a single doublet located at (x,0)
with strength depending on streamiwise position z, may be, expressed simply as (compare with eq. (6)):
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where A(xz) denotes local doublet strength or lift density. The downwash due to a distribution of such doublets between
ro=—>0 and %=b is '
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For a given value of the lift density A(z), this equation determines the downwash. . For a given or prescribed expression
of w(z,), the distribution of lift density must be determined. Thus, in this case, equation (24) is a form of Possio’s integral
equation relating downwash and pressure for an airfoil oscillating in compress1ble flow. In passing it may be well to point
out that Possio’s equation has not yet been solved in closed form but has been evaluated by different methods of

(24)

approximation by several authors. - Reference 4 gives a résumé of these methods of approximation.
For an airfoil inside & two-dimensional tunnel the rela.tlon between downwash and local lift becomes (compare with

eq. (8))
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For a given value of lift density A(x), this equation deter-
mines the effect of tunnel walls on the corresponding down-
wash., For a given downwash distribution, the more
pertinent effect of tunnel walls on the distribution of lift
density is obtained by comparing the solution of equation
(24) with the solution of equation (25). In either case the
summation in the second integral in braces in equation (25)
is the same summation that was found in the preceding
section to have critical values of the frequency parameter
wH|V that cause the summation to become infinite. Conse-
quently, evaluations of equation (25) for values of the
frequency parameter in the neighborhood of these critical
values would lead to the same resonant effects found in the
treatment of a single doublet. Otherwise, for values of the
frequency perameter not too near critical values, it is

[c gw/E’+Bi(y—nH)2 ds}

o (2 EFF7) di+

- by

(25)

proposed that a fairly close approximation to solutions of
equations (24) and (25) for effects of tunnel walls on lift
density (or lift) will generally yield results from which
tunnel-wall correction factors for two-dimensional flow can
be obtained. Expressions from which correction factors for
three-dimensional flow can be obtained may be similarly
derived when the downwash of a three-dimensional pressure
doublet is employed instead of the downwash of a two-
dimensional pressure doublet.

It appears desirable to solve equations (24) and (25) by
collocation or some other approximate method to obtain
tunnel-wall corrections for some particular cases of pre-
scribed downwash and to determine experimentally the
range, if any, of frequency parameter in which quantitative
results can be obtained for these cases.

~
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CONCLUDING REMARKS

The important result shown is that, in & tunnel of infinite
length containing a flowing fluid, a resonant condition
involving a transverse oscillation of the fluid “across the
tunnel is possible and measured air forces at or near this
condition of resonance might be greatly modified from those
measured in free air. This resonant condition is a (simple)

function of Mach number, tunnel height, and wing frequency -

and brings to attention a new type of tunnel-wall interference.
\

LANGLEY ABRONAUTICAL LLABORATORY,
NaTioNaL ApvisorY COMMITTEE FOR ABRONAUTICS,
LaneLey FieLp, Va., September 24, 1961.
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