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UNSTEADY OBLIQUE INTERACTION OF A SHOCK WAVE WITH A PLANE DISTURBANCE'

By Frawgrin K. Moorr

SUMMARY

Analysis is made of the flow field produced by oblique im-
pingement of weak plane disturbances of arbitrary profile on a
plane normal shock. Three types of disturbance are considered:

(@) Sound wave propagating in the gas at rest into which the
shock moves. The sound wave refracts either as a simple isen-
tropic sound wave or as an attenuating isentropic pressure wave,
depending on the angle between the shock and the incident sound
wave. A stationary vorticity wave of constant pressure appears
behind the shock.

(b) Sound wave overtaking the shock from behind. The
sound wave reflects as a sound wave, and a stationary vorticity
wave 15 produced.

() An incompressible vorticity wave stationary in the gas
ahead of the shock. The incident wave refracts as a stationary
vorticity wave, and either a sound wave or altenvating pressure
wave 18 also produced.

Computations are presenied for the first two types of incident
wave, over the range of incidence angles, for shock Mach num-
bersof 1, 1.6, and .

INTRODUCTION

The unsteady one-dimensional interaction of normal shock
waves and disturbances, such as sound waves or other shock
waves, has been studied quite thoroughly (an example is
Kantrowitz’ paper on shock stability, ref. 1). The steady
interaction between normal shock waves and plane Mach
waves has been treated by Adams (ref. 2).

The general class of unsteady flow problems is currently
of increasing interest, in connection particularly with sta-
bility of high-speed aerodynamic and combustion processes.
The effect of a shock passing through a flow field (or vice
versa) is likely to be important in many applications. For ex-
ample, ahot-wire anemometerintended to measure thefluctuat-
ing field of turbulence in asupersonicstream will actually meas-
ure the turbulence as modified by passage through the nearly
steady bow shock of the probe.

Considering, for simplicity, that the flow interacting with
a normal shock is a nonviscous field of weak disturbance, it
may usually be considered irrotational and isentropic (such
a8 produced by a moving slender body) and therefore can be
imagined to be composed of a suitable array of sound waves.
Another possible type of weak nonviscous disturbance would
be a stationary, incompressible flow of variable vorticity

(turbulence which is convected rapidly past the point of
observation is commonly thought of in this way).

Either of these two types of flow may be represented as a
linear combination of plane waves (each wave either a sound
wave or a rotational wave, depending on the type of flow
to be represented) of various amplitudes, wave lengths,
and orientations. Thus, if the interactive effect of a shock
and each constituent wave may be found by a linear analysis,
the complete problem may in principle be solved by linear
combination of the resulting flow fields behind the shock.
The interaction between a turbulent field and & wind-tunnel
gcreen. or contraction, or both, has been successfully carried
out in references 3 through 5 by this method.

The present report concerns the interaction of a normal
shock met obliquely by a plane sound wave or by a con-
vected plane vorticity wave. Since sound waves may im-
pinge on & shock either from upstream or downstream, both
cagses are considered. The oblique interaction of a shock
and weak vorticity wave is also treated in a current investi-
gation by Ribner (ref. 6). '

Theshockis considered to bemoving freely into gasnominally
at rest (as in a shock tube, when wall effects are neglected).
Of course, if the observer moves at a constant speed with the
shock, the flow appears as that associated with a steady
shock, under different stagnation conditions. The shock-
tubepoint of viewisadopted in ordér that there be no question
of how the equivalent steady shock is “anchored”; that is,
end effects on the shock are not contemplated.

GOVERNING UNSTEADY EQUATIONS

In the following paragraphs, the equations will be derived
which pertain to the propagation of a plane normal shock
wave through a gas at rest, as modified by the influence of a
weak pattern of unsteady disturbance.

If the shock propagates without disturbance, its instan-
taneous position is z;=V%, in a coordinate system fixed in
the fluid nominally at rest ahead of the shock (fig. 1). (All
symbols are defined in appendix A.) The constant velocity
of the shock front is V, and the corresponding constant
velocity of the gas behind the shock is U, in this system.
This one-dimensional motion is considered to be perturbed
slightly by the presence of a weak field of unsteady plane
floww. The velocity ahead of the shock is written as u,(z,y,),
v:(z,y,t); behind the shock as U-twus(z.y,8), m(z,y.t). Pres-
sure, density, and tempersature are written as P-+p, B} p,

t Suparsedes NAOCA TN 2879, “Unsteady Oblique Interaction of & Shock Wave with a Plane Disturbance,” by Franklin K. Mooore, 1853,
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and 00, respectively, where the capitalized symbols refer
to the basic steady-shock motion, and the lower case to the
unsteady disturbance. Throughout, subscripts 1 and 2 are
used to specify conditions ahead of and behind the shock,
respectively. As a result of the unsteady disturbance, the
shock front itself undergoes a small unsteady displacement,
given by £(y,t). Thus, the position of the shock at any
instant is Vi+£(w,1).

SHOCK RELATIONS

Because of the rapidity with which changes occur across
a shock wave, the disturbed shock may be regarded as be-
having in a locally quasi-steady manner; that is, in a coordi-
nate system fixed in the shock at each instant, the usual
Rankine-Hugoniot relations apply. Because of the disturb-
ance, the shock is slightly oblique in such a coordinate system
(see sketch). Because the shock is only slightly oblique, the

y .
——¢y lapprox)

shock relation concerning the product of velocity compo-
nents normal to the shock front ahead of and behind the
shock (ref. 7) may be written approximately as

(V'_U‘i‘fr‘—'ue)(v"‘& —up=

2 T (V+s,—u1)’+

1 (el+el)] (18)

The assumption of a slightly oblique shock also provides
that the equations of conservation of normal energy and
mass, respectively, may be written:

b (V+Et"’1~’d)2+ (91+91)—

LU+ 2 0ke) (1)

Bt o) (VAHE—u) =B+ pa) V—U+{—us) (Lo

The remaining oblique shock relation states that the velocity
component parallel to the shock is unaltered by passage
through the shock. Because the shock is assumed to be only
slightly oblique, this relation is, approximately,
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n— VE,=v3— (V— U)Eﬂ
_$v=i’%”1

The shock relations for the basic undisturbed shock propa-
gation are obtained from equations (1a), (1b), and (lc),
with small quantities neglected:

or,

(1d)

— __0'7_1 l vJ

(V-DV=2171 (574 250,) (20)

D ) o=1 (V-Ur+ ‘YJ -0, (2b)
RV=Ry(V—T)) 20)

Terms of equations (1a), (1b), and (1c) which are of first
order in small quantities yield the conditions which the dis-
turbance field must satisfy at the shock:

_ =2 Ly — a2
(V—=U)t:—w)+ V(E—u)=2 +1|:V(Ez u1)+7_101:|

(3a)
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p1VARi(§—w) = ps(V—U) + Ry (£,—up) (3¢)
Equations (2), the state equation
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Fiagure 1.—Notation for shock wave propagating into a region of
wesak disturbance.

and the assumption that the incident flow ahead of the shock
is isentropic permit equations (3) to be simplified, yielding
the following set of disturbance shock relations (eq. (1d) is
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also included), which relate the disturbance fields ahead of
and behind the shock:

Ei—ug

gty B, I (52)
ﬁ:olf‘;”%o,% (5b)
%:D o+ Da B (59)

oo U, (5d)

where the coefficients are constants depending on the Mach
number of the undisturbed shock M=V/a,:
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EQUATIONS OF PLANE DISTURBANCE FIELD

In addition to the perturbation shock relations (eqs. (5))
which are concerned with the compatibility at the shock of
weak disturbance fields ahead of and behind the shock, the
equations satisfied by the disturbance fields themselves are
required. The nonviscous equations of motion are written
in a coordinate system at rest relative to the gas ahead of or
behind the shock. That is, the following equations apply
in the coordinate system of figure 1 for the disturbance field
ahead of the shock, and in a coordinate system moving with
velocity U, for the disturbance behind the shock. Subject
to interpretation of the coordinate system, the same equa-

tions apply in both regions, and therefore the subscripts 1 .

and 2 are omitted for the time being. To first order in small
quantities:
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Momentum:
U= '_'R y 23
(M
1
‘ V= y7) Dy
Continuity:
‘ P5+R (u,—l—v,) =0 (8)
Energy:
‘ ¢ 20,4 P(us+v,) =0 (9)
State:
0

These equations may be combined to yield the equation for
the pressure disturbance:

0* _ ,=__

oa W+ay )] 0; @ (10)
the equation for the entropy disturbance (Whlch may be
shown to be proportional to (p/P)—v(p/R)):

o (P . P\_

5 (F-1§)=0 (11)
and the equation for the vorticity (»,—u,) of the disturbance
flow:

2 (oe—u)=0 (12

Thus, the pressure disturbance satisfies the wave equation
(10), and any entropy variation (eq. (11)) or vorticity varia-
tion (eq. (12)) is steady, relative to the main flow. Any
disturbance field satisfying these linear equations may be
regarded as composed of two parts, one steady and the other
unsteady, in a coordinate system at rest in the main flow.
From equations (11) and (12), variation of entropy and vor-
ticity may be assigned to the steady flow; and from equation
(8), the associated velocity components satisfy the incom-
pressible continuity equation. From equations (7), pressure
variations must be assigned to the unsteady flow, satisfying
the wave equation (10). The unsteady portion of the flow
may then be regarded as produced by a pattern of sound
waves. A weak nonviscous disturbance field may therefore
be considered to include:

1. An unsteady, isentropic, irrotational disturbance, which
may be regarded as produced by a pattern of sound waves,
and

2. A steady rotational disturbance of constant pressure
and (in general) variable entropy and density.

TYPES OF INITIAL DISTURBANCE CONSIDERED

The present analysis concerns the interaction of a shock

wave with three types of initial plane disturbances:
A. SOUND WAVE OVERTAKEN BY SHOCK

The shock moves into a region in which a plane sound
wave is propagating in a direction oblique to the direction
of shock propagation (fig. 2(2)). Since the shock velocity is
supersonic relative to the gas ahead, it will overtake the
sound wave, whatever its direction of propagation. The
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solution for the interaction of such a wave with a shock may
in principle be generalized by linear superposition to pro-
vide analysis of the passage of a shock through any isen-
tropic field of small disturbance.

A general plane sound wave may be represented as follows
(the particular profile of the wave need not be specified):

)

—Agf (mﬂ?l ly+0«1f>

- (12s)
P1_ m:cl—l:l/+a1t)
yas ( N
P1__ m:cl—ly—l—alt
E—AJ < A )J
where
l=sin ¥y ; m=cos ¥, (13)

and A; is a length characterizing the scale of the disturbance.
If the function f were a sine wave, \; would be equivalent
to the wave length. By equations (12), (11), and (7),
respectively,

lA1= bl MAg
Ay=r44 (12b)
A1=—77gl A,

The disturbance is of the type 1 discussed in the previous
section (unsteady, isentropic, irretational), and is longi-
tudinal; that is, the fluctuating velocity component is in the
direction of propagation of the sound wave.

B. SHOCK OVERTAKEN BY SOUND WAVE

The sound wave propagates relative to the fluid behind
the shock, in such a manner as to overtake the shock (fig.
2(b)). Thus, consideration will be restricted to cases for
which —a; cos V> V—U. The initial disturbance may be
specified in a manner similar to that employed for the pre-
ceding case.

The subscripts 1 and 2 have been introduced to denote the
flow ahead of and behind the shock, respectively. In the
present problem, the entire flow disturbance occurs behind
the shock. The subsecript 2 is therefore appropriate to both
the incident and reflected waves, which will hereinafter be
distinguished by second subscripts 1 and 2, respectively.

o (22551
‘021 = Af <m:r,2—ly—|—a,t>

Pa__ mxz—ly+a,2t>
P2 Aaf < )‘21

B —Ad (Pesated)

Y

(149)
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Pertinent-equations of motion provide, as before,

lA1= '—‘mAa
As=v4,4 (14b)
Ai=—m ;“Tl, 4,

The coordinate system 2,y is fixed relative to the flow behind
the shock.

C. STATIONARY VORTICITY WAVE OVERTAKEN BY SHOCK

The shock moves into & region occupied by a stationary
plane shear disturbance of constant density, oblique relative
to the shock front (fig. 2(¢)). A system of such waves may
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(a) Shock overtaking sound wave.
(b) Sound wave overtaking shock from behind.
(c) Shock overtaking stationary shear wave.

Fraure 2.—Types of initial disturbance considered.

be employed to represent a turbulent field (refs. 3 and 4).
Therefore, the effect of the passage of a shock through a
gingle obligue shear wave may in principle be generalized by
Fourier superposition to provide an analysis of the passage
of turbulence through a normal shock.

The incident vorticity wave, of arbitrary profile, may be
represented as follows:

U mxl—ly>
A4S ( N

vl—Agf ma;— ly)

v

From equation (9), .
md,=l4, (16)

The disturbance is therefore a special case of the type 2
discussed in the previous section (& steady vorticity disturb-
ance of constant pressure), and, by continuity, must be
transverse; that is, the fluctuating velocity component is
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parallel to the plane of the shear waves. Since the wave is
transverse, there may be a component of velocity disturbance
parallel to the shock (perpendicular to the plane of fig. 2(b))
which may be of arbitrary amplitude.

This type of interaction (problem C) is treated in refer-
ence 6,

ANALYSIS OF INTERACTION BETWEEN SHOCK AND
IMPOSED DISTURBANCE

THREE TYPES OF REFRACTION AT SHOCK

It has previously been shown that the equations of motion
imply that any weak disturbance field may be divided into
two parts: an unsteady isentropic irrotational ﬁeld, and a
steady vorticity disturbance. This point of view may be
adopted with regard to the disturbance downstream of the
shock, produced by the interaction.

Simple refracted sound wave—problem A.—In the case
of a sound wave overtaken by a shock (problem A of the
previous section), it would seem reasonable to expect that
for ¥ near either 0 or = (fig. 2(a)), the isentropic part of
the downstream field would simply be a refracted sound
wave traveling away from the shock. This is indicated by
the sequence of events shown in figure 3(a). At time 1,
the initial wave intersects the shock front at point P,. At a
later time ¢{;=t,+ 8, the sound wave has moved a distance
a, 8¢, the shock has moved a distance V&, and the intersection
occurs at point P;. In the meantime, a cylindrical sound
wave has been generated at point P, as a result of the shock
interaction and expands with velocity a,, while being con-
vected with a velocity U. Thus, at time #;, the effect of the
intersection at t; is felt within a cylinder of radius a,6t, with
center at point @,. According to figure 3(a), an envelope is
formed and may be identified as a simple refracted sound
wave,

Attenuating refracted pressure wave—problem A.—
Figure 3(a) is drawn for a rather small value of ¢,. If ¢, is
increased, there appears a critical value y,; (fig. 3(b)) be-
yond which no envelope may be drawn. Thus, when ¥, >y,
the influence of intersection P, is felt at P; before the inter-
section arrives at P,. However, as y, is further increased,
there appears another critical angle ¥, beyond which simple
envelopes may again be drawn (fig. 3(d)) and simple sound
wave refraction occurs.

When ¢, <¢1<t¥w, the downstream pressure disturbance
cannot be a simple sound wave. The cylindrical sound
waves produced by the interaction at the shock do not
coalesce, but rather continue to expand independently, thus
diminishing in strength as time progresses. Accordingly, the
isentropic part of the downstream disturbance may be ex-
pected to die out at large distances downstream of the shock.
This attenuating disturbance may, however, be expected to
remain planar, because both the incoming disturbance and
the shock are plane. This attenuating wave has been called
o pressure wave rather than a sound wave, because, as will
be shown subsequently, it does not propagate at the local
velocity of sound.

LExpressions for ¥.; and ¢, in terms of shock Mach number
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may be obtained from the following equation derived by
inspection of figure 3(b): -

a3'— (V—U)*=(V cot y¥.+a; cse ¢.)? a7)

The solution of this equation is shown in figure 4, labeled
“sound wave.” The curves labeled “stationary vorticity
wave” will be discussed subsequently. The curves both
approach a value of 180° for M=1, and have a half-order
singularity there. As M— «, the curves become symmetric
about ¥,=90°, because a¢; becomes insignificant compared
with V. The limiting value of y., is 67.8°.

Steady vorticity wave—problem A.—If a vorticity disturb-
ance is created at the shock-disturbance intersection (fig. 3)
and is thence convected with a velocity U, & vorticity wave
appears along the line connecting P; and @, whatever the
value of ;.

Thus, of the three types of refractions discussed, the
“steady vorticity wave’’ always appears, in combination
with either a “simple refracted sound wave,” or an “at-
tenuating pressure wave”’, depending on the angle ¥,.
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(d) ‘l’m<'l’l<“'~

Fraure 3.—Formation of waves behind shock, because of interaction
with sound wave (problem A).
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Expectations for problem B.—In the case of the shock
overtaken by a sound wave, it may be shown in constructing
figures similar to figure 3 that a simple reflected sound wave
will always occur, in conjunction, of course, with a steady
vorticity wave.

Expectations for problem C.—In the case of the shock
overtaking a stationary shear wave, sketches may be drawn
similar to those presented in figure 3, except that the incident
wave does not move in the time interval §6. The qualitative
character of the downstream disturbance is expected to be
the same as for problem A. Despite the fact that the initial
disturbance is not a sound wave, sound waves are produced
by the interaction and form envelopes when 0<¢1<¢.; or
Yaulh<w. In this case, the values of ¥.; and ., are ob-
tained from equation (17) with the term involving @, omitted.
The solution, which is presented in figure 4, is symmetric
about y,=90°, approaches 90° at M=1 with & half-order
singularity, and has the same asymptote at M= as in
problem A. As in problem A, when ¥, <¢1<¥.., an attenu-
ating pressure wave occurs, and for all values of 4, the steady
vorticity wave appears.

The foregoing discussion may be summarized as follows:
In case A, the incident sound wave refracts, as either a
simple sound wave or as a more complicated attenuating
pressure wave, and an oblique steady wave of variable
entropy and vorticity appears. In case B, the incident
sound wave reflects at the shock as a simple sound wave,
and a steady vorticity wave appears. In case C, the initial
‘vorticity wave’’ refracts to form a stationary vorticity
wave in which, because of the action of the shock, the entropy
also varies. In addition, a sound wave, or pressure wave, is
produced by the interaction.

SOLUTION OF PROBLEM A

In the problem of an oblique plane sound weave overtaken
by the shock, there are two different solutions to be ob-
talned—one for 0<¢,<y,; and ¢Y,<$<7 and another for
Valdh<¥ew. The first is the simpler and will be presented
first.

Solution when 0<y, < or Y., <1< w.~—The initial dis-
turbance ahead of the shock is described in equations (12)
and (14). The discussion of the preceding section has es-
tablished that, in these ranges of y,, the pressure variation
behind the shock is associated with a simple sound wave.
Accordingly, the disturbance pressure is written

%=Kf <axz+f§/+a2t>

where K, «, B, and ); are to be determined. In order that
the pressure satisfy the wave equation (10),

(18)

o +p=1 (19)

Equation (18) is written on the assumption that the profile
of the pressure disturbance carries through the shock un-
distorted, though its orientation, magnitude, and scale may
change. This assumption may be regarded as a trial, the
correctness of which is inferred from the self-consistency of
the entire solution so obtained. )
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In view of the requirements of the shock relations (egs.
(5)), the arguments of the downstream pressure wave (eq.
(18)) and the initial wave (eq. (12)) should match. At the
shock, ;= "Vt and 2,=(V—U)t. The matching requirement
therefore is

[«(V=U)+agi+By__(mV+ta)t—ly

~ N (20)
Equating coefficients of ¥ and ¢ yields
1 g 1 a3
=i 5 ()~
(21)
M
==l
where
r=U[V 22)

Equations (19) and (21) yield a quadratic equation for
A2/\1, the meaningful solution of which is

n_ ¥(tam)
M (1+#ﬂ 2+n’(1—7')’

1+

1

.

n=I/m=tan ¥,

1+n%(1 —r)’/(l +ﬁ4‘>2
1 —z—;i 1—7)

(23)

where
(24)

160

/
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Crifical angle,
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Shock Mach number, ¥/, aM

7

Ficore 4.—Critical angle of incident wave for formation of refracted
sound wave behind shock.
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The other solution corresponds to & wave moving in the
same direction as the shock and is rejected. (Inspection of
fig. 3(a) shows that two families of envelopes might be indi-
cated mathematically, and that only one is physically sig-
nificant.) Thus, the inclination and scale of the pressure
wave are fully determmed and only the magnitude K re-
mains to be found.

The vorticity wave will also be assumed to have a profile
given by the function f. In view of equation (12), its argu-
ment can be a function only of 23 and ¥, and must further-
more match the argument of the incident wave at the shock,
in order that the shock relations may be satisfied. At the
shock, the argument of the incident wave is given by the
right-hand side of equation (20). Also, t==1,/(V—"U), at the
shock. The argument of the vorticity wave must therefore
be

m-4 1/M
1—r
M

:cg—ly (
25)

The inclination and scale of the vorticity wave are thus de-
termined.

The density fluctuation behind the shock consists of two
parts—one part associated with the pressure fluctuation to
form the sound wave, its magnitude determined by equation
(11); the other part associated with the vorticity wave. Thus,

m+1 /M

o f(ax’+‘8y+a’t)+¢2f< - ® )(26)

Likewise, the velocity components each consist of two

parts, the first associated with the sound wave and the sec-

ond associated with the vorticity wave. Accordingly,
: m-+1/M
U_py (axz+ﬁy+aat>+gf (ﬁ_ xrly)
-V A2 M
1{; oy (a:cg+iz/+a,gt +If <_1__7-)\1 xz—h/) 8)
The requirement that all terms in the shock equations (5)

have the same functional form and the same argument
suggests that

L VLf [(mH/ﬂi) Vt—-ly:l

__n (m+1/M) Vi—ly
—& 1+1/mMI’f|: N

m—+1/M

(29)

(Cross-differentiation shows that these two equations are
compatible.)

The solution is completed by the algebraic determination
of the various unknown constants. The coefficients F and
H may be found in terms of K through equations (7); I may
be found in terms of @ from the incompressible continuity
equation. The remaining unknowns K, @, @, and L may be
successively determined by use of the four shock relations

368655—56——10
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(egs. (6)) when it is recalled that the arguments of all quan-
tities have been a;rra.nged to match at the shock. Neither
the details of the remaining procedure nor of the final solu-
tion are particularly interesting, and therefore the analysis
has been completed in appendix B. The numerical results
will be discussed in & subsequent section.

Form of attenuating pressure wave when v, <v; <ou—
is intended to form the solution for this range of ¢, in essen-
tially the same way as was done in the preceding paragraph.
An essential step in that solution was the assumption that
the refracted sound wave has the same profile as the initial
disturbance. Therefore, in order to proceed with the analysis
of the case Yo <¢1<<i¥cu, it is first necessary to determine the
form of the pressure disturbance just behind the shock and
the manner in which it attenuates with distance behind the
shock.

Tentatively, the pressure is written as a function of two
variables only:

—}l—:—@- (n, ©) (30)
where
r=—L (VD)1
(31)

ra%l (et t+By +cV't)

and the constants d, «, 8, and ¢ require determination. The
variable 7 is proportional to distance behind the shock front,
—24+(V—U)t. Neither the undisturbed shock front nor
the incident wave has curvature. Therefore, it is expected
that along any one of a family of planes moving with con-
stant velocity, any variation of pressure would be due solely
to the attenuation associated with distance behind the shock.
This consideration leads to the definition of the second vari-
able {, such that the equation ¢=constant defines a plane
moving obliquely with & constant velocity.
The wave equation (10) is satisfied if

(Srt25) B=0 (320)
F—g (1—)e (32b)
W 2 >2 2
e [ —1)—c=d*—(S+8) (32¢)

The boundary conditions to be applied in solving La-
place’s equation (32a) are

Paoo m_

and 2 condition (eq. (5¢)) at the shock providing compati-
bility with the initial disturbance. In the following discus-
sion, this information will be used to infer a likely form for
the pressure wave.

Part of the downstream velocity variation is associated
with the pressure to form an isentropic irrotational flow.



224

For this part of the disturbance field, a velocity potential
¢(n,¢) may therefore be defined such that

timpe = ot o (349)
n=p—L o (34b)
In view of equations (7) and (34),
2 grad p=—7-grad g D=,
Therefore,
= —% V—ree—y- Ver (34c)

In the case of the simple sound wave, compatibility at the
shock was obtained by supposing that the profile of the dis-
turbance (the function f) carried through the shock undis-
torted. In the present case, the corresponding assumption
would be that, just behind the shock at =0, the various
disturbance quantities each contain a term proportional to
f(¢) and that ¢ should therefore match the argument of the
initial disturbance at the shock. From equation (34b), if
2(0,¢) is to contain a term proportional to f(¢), then the
potential must contain a term proportional to

1 (- —
¢(')=—; f_m £(r) tan~1 1 m § dr

which satisfies equation (32a) and hence the wave equation,
satisfies boundary condition (33), and has the property that
or® (0,0)=7(¢). This solution may be regarded as the result
of & distribution of singularities along the plane of the shock
(n=0). In the skew coordinate system 7,{, these singulari-
ties may be identified as potential-flow vortices. Therefore,
from equations (34a) and (34c), 4, and p; would each contain
& term linear in f(¢) at the shock and, in addition, a term
linear in
=0 0=1Py. [ 19 (a5

where P.V. denotes the Cauchy principal value of an'im-
proper integral.

Of course, v, would likely contain a term linear in g(¢) at
the shock also, and therefore the potential would have an-
other part

D= _21_7J: F@Op*+(r—)idr

satisfying equations (32a) and (33), and having the proper-
ties: :
‘PI’Q) (0:{) =g(§-) ; qp,,u) (0:() ='—'f(§—)

This solution may be regarded as a distribution of potential-
flow sources along the plane of the shock in the 7,{ system.

Thus, the quantities associated with the attenuating pres-
sure wave may tentatively be written in the following form:

(35Db)

p:(g;i’)=Km¢m(,7,3-)+K"""1>'2’(‘0,§') (36)
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where

20 =p === | 1) o dr
. @7)

and the constants K@ and K® require determination. At
the shock, equations (35) and (36) provide that:

ng()); O_rw FO+E®&(E)

Examples.—(a) If it happens that f({)=sin 2x{, then
g($)=cos 2=¢, and
M =¢~%7 gin 2x¢

B® =g~ cos 2}
Thus,

ng=e—2n[Km sin 27 ¢ +K® cos 2r{] (38)
and, therefore, the disturbance undergoes a phase shift in
passing through the shock and subsequently attenuates ex-
ponentially with distance behind the shock.

(b) If f(§)=(143")7", then g()=—¢(1+3%)™" (see ac-
companying sketch), and

PR EO Ko
4ot

3 2 Tz 3 ¢
Peill

Solution when ¥, <¢1<<.u—The form of the pressure
wave has been adduced in the previous paragraph (eq. (36)).
The quantities d, a, 8, and ¢ may be found by using equations
(32) and the requirement that the disturbance function f
have the same argument ahead of and behind the shock.

-At the shock, ,=V%, 2,= (V—U)t, this requirement leads to

the equations

=—] (39a)
amTH M (39D)
Equations (32b) and (39b) yield
¢ —_mE1/M (39¢)
l—— (1—7)?
and equa:tion (32¢) may be solved for d:
(39d)

The vorticity wave is expected to involve a linear combi-
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nation of the profile functions f and g, just behind the shock,
and is not expected to change its form subsequently, because
it is not time-dependent in the 3,y coordinate system and
therefore cannot attentuate, as does the pressure wave, or
otherwise change character. A matching procedure at the
shock yields, as previously, the argument given in expres-
sion (25).

The remaining analysis parallels that following expression
(25) in the paragraph Solution when 0< <y, 0T Yo <t1 <.

'm-4-1/M m—+1/M
pa_ 1 P2, Ay < 1—r xg—ly> @ ( 1—r :c,—ly)

(40)
W_ pog LF@e® L o <m£l—_17/'M :c,—ly)
P=F O30 L FOg® 4 go g - +
(%Za—l@/)
[¢1]
A%y — . (41)
1/M
D _H0ap0 { F@a® L JOf <m;|__f' a:z—ly> +
Vo M
(28
@ \ 2=
I%g o (42)

%_;.:,L(l)f I:(m'l'l/-n;ll)Vt_ly:l_l_L(z)g I:(m'l'l/ﬂ;\tl)vt—ly:l 43)

@
L®g o

The various unknown constants remain to be determined
algebraically through equations (7), the incompressible con-
tinuity equation, and the shock equations (5), as before.
These equations suffice to determine a greater number of
constants than were required in the previous case because
the functions f, g, ®*, and &® and their derivatives form
two separate groups of functions whose coefficients may be
separately equated. Details of this procedure are provided
in appendix B.

SOLUTION OF PROBLEM B

The analysis of problem B (gound wave overtaking shock
from behind) is identical in all essential respects to that of
problem A when only a simple refracted sound wave is in-
volved. The only differences which arise are “the slightly
different matching of arguments at the shock and a slightly
different form assumed by the shock relations (5).

The equation (18) is adopted in the present case to rep-
resent the reflected sound wave. Matching the argument of
this expression with that of the initial disturbance (eq. (14))
yields
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o VU=l By} =5 {Im VU )+ aali—ly)} (45)

whence,
1 {dn )& |_
“_1—r{x21[m(1 "H'V] V} (462)
~_ -
B=— . (46b)

Equations (19) and (46) provide a quadratic equation for
An2/Aa, the useful solution being:

(1,32
A2 Vi
Aot

(-

(46¢)
(1—r)4-2 %, m(l—r)—l—%,l:

The other solution is Ap/A=1, corresponding to the incident
wave itself.

The right side of equation (45) is used as the argument in
the expressions for £, and £,:

E=VLf{[mV(Q1—n)tali—ly}

L ——

—" = L[ V(A=) +aali—ly} @D
1=rtny

The right side of equation (45) also yields the argument of
the vorticity wave, when the substitution i=x/(V—U) is
made:

-
[’”+V<1'—' ol ik 48)
Rﬁl

Equations (26), (27), and (28) may be adopted to complete
the description of the flow, except that expression (48) must
be used for the argument of the vorticity wave. The analysis
is completed in appendix B.

SOLUTION OF PROBLEM C

The only differences between problem A and problem C
(stationary vorticity wave overtaken by shock) involve the
shock equations (5) and the matching of arguments at the
shock. The difference in matching is due to the fact that in
the present case,.the disturbance is stationary, while in prob-
lem A, the disturbance moves with velocity a;. Accordingly,
when 0<¢, <y, equations (18), (21), (23), and (25) through
(29) apply directly to the present case if the quantity 1/Ad
1s omitted wherever it appears explicitly. 'When ¥ <<y1<¥eu,
equations (36), (87), and (39) through (44) may also be
adopted, again by omitting terms proportional to 1/A. The
remaining details of the analysis are provided in appendix B.

As previously mentioned, an initial disturbance of type C
may have a third fluctuating velocity component parallel to
the shock, which might be represented as follows:

Wi __ m:cl—ly>
p=ad (75
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(see eqs. (15)). The amplitude 4y is arbitrary, within the
limitations of linear analysis. This disturbance will pass
through the shock unaffected and become part of the steady
vorticity wave behind the shock. Thus,

ol
%=Asf<1—7‘ s y)
M

The shock front itself will not be affected by this purely
transverse disturbance.

SINGULARITIES AT ¥.; AND Y

Equation (23), which applies in the refracted sound-wave
solution, contains & radical which vanishes at ¥ and ..,
and becomes imaginary when ¥ <¢1<¥ex. It may be shown
that the quantity under the radical vanishes with & nonzero
slope. Accordingly, the quantity Mf/)\;, though finite, has &
half-order singularity at ¢¥g and ¢.. Furthermore, this
quantity is involved in all the formulas characterizing the
refracted sound wave (see appendix B). In the range ¢, <
Y1 <., the attenuation coefficient d (eq. (39d)) vanishes
with half-order singularities at ¥4 and ¥. and mmﬂa.rly
affects the remainder of the analysis.

The reason for this singular behavior may be inferred from
figure 3. According to figure 3(a), when 0<¢h1<ya, the
refracted sound wave is the envelope of an imagined succes-

sion of cylindrical waves, as shown in the following sketch.

/ />~\\
Refracted wave—"

Refracted wave—~..
Shock

At ¥, however, according to figure 3(b), the cylindrical
waves all meet at & common point of tangency, as shown in
the sketch. Therefore, successive waves reinforce at one
point, giving a singularity of the flow. This singularity, of
course, depends on the fact that the theory is linear. An
exact analysis would presumably show steep, though not
singular, flow gra,dlents

This situation is similar to that arising in the linearized
analysis of compressible flow about bodies: as the Mach
number of the flow approaches 1, the Mach waves have a com-
mon point of tangency at the nose, and the wave drag shows
a reciprocal half-order singularity in Mach number. In the
present case, the physical quantities remain finite, but have
infinite rates of variation with ;.

The preceding discussion applies to problems A and C,
but not to B.

RESULTS AND DISCUSSION

In the following paragraphs, the results (presented in
graphical form) will be described for problems A and B.
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Results for problem C are presented in reference 6. The solu-
tion for each problem has essentially three elements:

1. Disturbance of the shape of the shock front

2. Characteristics of the isentropic pressure wave behind
the shock

3. Characteristics of the steady vorticity wave behind the
shock.

Computations heve been carried out for three Mach num-
bers, 1, 1.5, and infinity. Of course, the case M=1 is really
degenerate, because the shock is then a weak sound wave,
and therefore the interaction with the incident disturbance
is obtained by linear superposition, the initial disturbance
passing through the ‘‘shock” with no change. Also, M=1
is a singular point, because the range of angles of incidence
of initial disturbance for which the attenuating pressure
wave appears in problems A and C vanishes with a half-order
singularity (fig. 4), and in problem B, because the incident
wave is unable to overtake the “shock’” moving with sonic
velocity.

The results will show that the critical angles ¥, and ¥,
are also singular points. In many instances there are not a
sufficient number of points near the singular points for which
computations have been made, so that not all the curves can
be faired with complete confidence. Xor this reason, the
computed points are shown circled, so that the basis for the
fairing will be clear in each case.

No mention will be made of the temperature disturbance
behind the shock, which may be obtained directly from equa-~
tion (4) if the pressure and density disturbances are known.

All disturbance quantities found by the linearized analysis
of the present report will be proportional to the intensity of
the incident wave. Therefore, results are divided by the
pressure amplitude of the incident wave A; (see eqs. (12a)
and (14a)). -

PROBLEM A—-SHOCK OVERTAKING SOUND WAVE

1. Shock front disturbance.—In figure 5 are shown the
amplitudes LW =L® /4, and L® =L®/A4; of the incremental
velocity of the shock front, due to the interaction. From
equations (29), (43), and (44) these amplitudes are associ-
ated, respectively, with the functions f (which defines the
profile shape of the incident wave) and g (which is an addi-
tional profile function arising when ¥a<<¥1<ye.) to give the
actual incremental velocity. The variations with ¢, are
quite extreme, particularly at the critical angles, where, in
fact, there are half-order singularities. The variations with
Mach number are equally severe.

When ¢,=0 (incident wave moving parallel to and toward
the shock), the figure shows that the shock front is retarded
by a pressure wave. In the case M=1, this is because the
velocity in an incident compressive sound wave, relative to
which the shock (really a weak compression wave) propa-
gates as it moves through the dlsturbu.nce, is directed agmnst
the shock. When the incident compression wave moves in
the same direction as the shock (¢;=r), the shock front is
speeded up for low shock Mach numbers; at M=1, this is
true because the incremental velocity due to the incident
wave is in the same direction as the ‘“shock’” movement.
Whether y,=0 or =, there is a smaller accelerating effect due
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Fiaure b.—Problem A: shoek front disturbance (shock overtaking
sound wave).

to the higher velocity of sound in the incident compression
wave—that is why the curve for M=1 is not perfectly
antisymmetrical about ¢, ==/2.

When M= o, the curves are symmetrical about y;=/2
because the incremental sound-wave velocity is vanishingly
small compared with the shock velocity.

For each value of M there is a value of ¢, for which the
shock intersects the incident sound wave permanently at
one point on the traveling wave, and the problem becomes
essentially steady, so that the increment in shock velocity
vanishes (though a steady displacement occurs). This ha.p-
pens when a;=—mV or ¢y=sec™'(—M), yleldmg 131.8°
when M=1.5, and 90° when M=, and is the case of
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Fiaure 6.—Problem A: inclination of refracted pressure front (shock
overtaking sound wave).

steady interaction of a Mach wave and a normal shock which
has been treated by Adams (ref. 2).

2. Characteristics of pressure wave.—(a) Inclination of
refracted pressure front: Figure 6 shows the angle between
the directions of propagation of the shock and the refracted
pressure wave behind the shock. In view of equations (18)
and (31), this quantity is given by the equation

ys=cot™(—a/f)
Of course, when Ya<¢1<tes, this wave is not a sound wave,
and the inclination shown refers to a front parallel to which
physical quantities depend only on distance behind the shock.

Outside the range ¥u<¢1<<¥c, the pressure wave is a sound
wave. When M= =, the curve is symmetrical about ¥;==/2.
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Fiqure 7.—Problem A: attenuation of pressure wave behind shock

(shock overtaking sound wave).

(b) Coefficient of attenuation of pressure wave: Figure 7
shows the coefficient d which appears in equations (31) and
(39d). This quantity vanishes at y.; and ¢, indicating that
the sound-wave solution and attenuating wave solution meet
continuously at the critical angles. When A is either 1.5 or
o, the maximum value of d is about 1. This implies a
rather rapid attenuation—if f(¢)=sin 2«t, it has been shown
(egs. (38)) that the wave attenuates as exp(—2wy). From
the definition of 7 (eq. (31)), when d=1, the attenuation
factor becomes ¢! at a distance behind the shock approxi-
mately equal to 1/27 times the wave length of the incident
sound wave. .

(c) Propagation velocity of pressure wave when ¢,<yh <
You: Figure 8 shows the quantity ¢ of equations (31) and
(39¢), combined with other quantities to give propagation
velocity as a fraction of the speed of sound a;. Since the
solution when ¥, <¢1<¥., meets the sound-wave solution
continuously, the propagation velocity is equal to the speed
of sound at ¥, and ¥... The change of sign of ¢ is taken
into account in figure 6 by the 180° shift of direction shown
at the angle for which ¢=0.

(d) Ratio of scales of pressure waves behind and ahead of
shock: Figure 9 shows the quantity N/N; (eq. (23)), which
was defined only for the sound-wave solution. However,
inspection of equation (31) shows that the equivalent quan-
t'it'y When ¢cl<‘l’1<"pm is (as_l_ﬁZ)—ljﬁ_

The reversal of sign of A/, signifies & reversal of the direc-
tion of propagation of the pressure wave relative to the shape
of the incident wave. For example, when ¥;==0, the incoming
and outgoing waves might appear as follows:

,~ Incident-wovs profile -

A /\/\le/h positive

Shock

whereas when y;=x, they would appear thus:

N\ I-/J\ s/
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Fraure 8.—Problem A: propagation velocity of pressure wave behind
shock (shock overtaking sound wave).
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Ficure 9.—Problem A: ratio of scales of pressure wave upstream and
downstream of shock (shock overtaking sound wave).

The difference between these two cases consists of a difference
i sign in the arguments of the refracted wave in the two
cases, and arises formally in the present analysis as a change

in Sign. Of_')\a/)\l.
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Fraure 10.—Problem A: amplitudes of pressure disturbance behind
shock (shock overtaking sound wave).

When M=1.5, the magnitude of A/}, is greater for y,=n
than for y,=0, because, when the incident wave is traveling
in the same direction as the shock, the shock requires a
longer time to traverse the incident wave than when the two
waves travel in opposing directions.

(e) Amplitudes of pressure disturbance behind shock:
Figure 10 shows the coefficients (of f, or of ®® and &®
when ¢, <¢,<¢.) Which describe the pressure wave behind
the shock: K*%'=K®2/A4, (see eqs. (18) and (36)). As in
figure 5, the flow is shown to be singular at the two critical
angles and to vary markedly with both ¢, and M. At
M=1.5, near y,==, the refracted sound wave is seen to be
very weak,
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Fieure 11.—Problem A: coefficient for part of u, associated with
pressure wave (shock overtaking sound wave).

Since the pressure wave is isentropic, the coefficients of
the corresponding part of the density variation are equal to
1/ times the pressure coefficient.

() and (g) Coefficients for velocity components in pres-
sure wave: Figures 11 and 12 show the coefficients for the
velocity components associated with the isentropic pressure
wave behind the shock (egs. (27), (28), (41), and (42)). The
velocity resultant is longitudinal with respect to the direc-
tion of propagation of the pressure wave, except when

11{’¢:l<"|[’1<"1['t:1.1-
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Fraure 12.—Problem A: coefficient for part of v associated with pres-
sure wave (shock overtaking sound wave).

8. Characteristics of steady vorticity wave behind shock.—
(a) Inclination of the steady vorticity wave: Figure 13
shows the inclination y; of the vorticity front behind the

shock. From equation (25),
Ys=cot™!

|:1+1/m

() Ratio of scale of vorticity wave to that of incident
sound wave: From equations (12a) and (25), this is

(oot g +1)"'=
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F1gure 13—Problem A: inclination of vorticity wave beﬁind shock
(shock overtaking sound wave).
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Figure 14—Problem A: ratio of scales of vorticity wave behind
shock to that of incident sound wave (shock overtaking sound
wave).

which is shown in figure 14. When M=1 and ¢;=n, the
scale ratio goes to = because the ‘““shock’ is unable to over-
take the incident wave.
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Fraure 15.—Problem A: amplitude of density variation in vorticity
wave behind shock (shock overtaking sound wave).
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Fraure 16.—Problem A: coefficient for part of u, associated with vor-
ticity wave (shock overtaking sound wave).
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Frgure 17.—Problem A: coefficients for part of m associated with
vorticity wave (shock overtaking sound wave).
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Figure 18.—Problem B: shock-front disturbance (sound wave over-
taking shock).

(¢) Amplitude of density variation in vorticity wave be-
hind shock: Figure 15 shows @®’ and @®’ (egqs. (26) and
(40)). Apparently, when M is of order 1.5, the vorticity
wave is very weak.

(d) and (e) Coeflicients for velocity components in vor-
ticity wave: Figures 16 and 17 show the coefficients for the
transverse velocity field associated with the vorticity wave
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Fi1gurE 19.—Problem B: inclination of reflected sound wave (sound

wave overtaking shock).
PROBLEM B—SOUND WAVE OVERTAKING SHOCK FROM BEHIND

Consistent with the previous analysis, computations have
been carried out only for values of ¥5; (incident-wave incli-
nation) sufficiently close to 180° that the component of
propagation velocity in the direction of the motion of the
shock is greater than the velocity of the shock Telative to
the fluid behind. These values of y; are 134.5° and 112.2°
for M=1.5 and o, respectively.

1. Shook-front disturbance.—Figure-18 shows the ampli-
tude of the incremental shock-front velocity L’=L/A;.
When ¥, is near 180°, an incident pressure wave displaces
the shock ahead.

2. Characteristics of reflected sound wave.—The down-
stream pressure wave in problem B is always a simple sound
wave.

(2) Inclination of reflected wave: The inclination Yu=
cot™! (—a/B) (see eq. (18)) is shown in figure 19. In effect,
the incident and reflected waves coalesce into a single wave
at the critical angles.

(b) Ratio of scales of reflected and incident sound waves:
This ratio is given by equation (46¢) and is shown in figure
20. At Y =x, the scale ratio is greater when M=1.5 than
when M= o, just as in problem A, and for the same reason.

At the critical angles, the ratio becomes1, because the incident -

and reflected waves coalesce.
(¢) Amplitude of reflected sound wave: The pressure
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Fiqure 20.—Problem B: ratio of scales of reflected and incident sound
waves (sound wave overtaking shock).
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FraurE 21.—Problem B: amplitude of reflected sound wave (sound
wave overtaking shock).

amplitude K’=K/A; (eq. (18)) is shown in figure 21. At
Ya=m, an incident compression wave reflects as an expansion

‘wa¥e with a strength which is greater the higher the Mach

number, but always less than that of the incident wave.

.



UNSTEADY OBLIQUE INTERACTION OF A SHOCK WAVE WITH A PLANE DISTURBANCE

1 T T T T T
Vorticity
Y wave \\‘ /
. s —V-U
//% -Shock
s Yo .
g L \ X,
50 — ' 2
o Mach number, ‘%‘4\\
3 40 M : o
g —— 05 N
%’ —_ X
£8 30 AW
2%, \
I | Y
9 AY
E 10 2, \
\
\

G‘530 100 10 120 130 140 150 160 170 [BO
Inclination of incideat wave, y,|, deg

Tiaure 22.—Problem B: inclination of vorticity wave produced
behind shock (sound wave overtaking shock).

The velocity components associated with the reflected
sound wave are obtained simply from K’ and are therefore
not plotted.

3. Characteristics of steady vorticity wave.—The coeffi-
cient @’ of the density fluctuation in the vorticity wave is
simply proportional to L’ (combining eqs. (B26) and (B27)
of appendix B) and is therefore not shown in a figure.

At M=15, Q'=—0.147L’
At M=o, '=—143L

(2) Inclination of vorticity wave: From equation (47), the
inclination is given by

oot 145655

which is plotted in figure 22.

(b) Ratio of scale of vorticity wave to that of incident
sound wave: As in problem A, this ratio is given by
(1/1) sin y», and is shown in figure 23.  As for the reflected
sound wave, the scale ratio is larger for M nearer one..

(c) and (d) Velocity variations in vorticity wave: Coefli-
cients @ and I’ of the transverse velocity fluctuation (egs.
(27) and (28)) in the vorticity wave are shown in figures 24
and 25.

4, Wave reflection at critical angle—The analysis and
figures show that at the critical angle the incident and re-
flected sound waves coalesce to form a single sound wave.
This statement may be interpreted to mean that & sound
wave incident at the critical angle reflects as a steady vor-
ticity wave only. Therefore, the shock disturbance and
vorticity wave characteristics may be expressed in terms of
the pressure amplitude of a single incident sound wave of

strength A;4+K=A4;(1-}K").
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Froure 23.—Problem B: ratio of scales of vorticity wave behind shock
and incident sound wave (sound wave overtaking shock).
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Fiaure 24—Problem B: coefficient for part of ux associated with
vorticity wave (sound wave overtaking shock).
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vorticity wave (sound wave overtaking shock).
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CONCLUDING REMARKS

In principle, the interaction of & shock with any weak
flow field may be obtained by first constructing the initial
flow field as a linear combination of plane waves of varying
strength and orientation. From the present analysis the
interaction of each constituent wave with the shock may be
found. Assembling the resulting waves behind the shock
then would yield the desired solution. Regrettably, the
formulas for the interaction depend on the angle of incidence
in & rather complicated way and it would in general be diffi-
cult to evaluate explicitly integrals in which these formulas
are used for the distribution functions. Numerical pro-
cedures could be used for this purpose, though & technique
would be required for dealing with the singularities at the
critical angles ¥.; and ¥,.

The nature of the solution of problem B perhaps requires
a clarification, in that the angles of incidence 3 have been

REPORT 1165—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

restricted to the range for which the sound wave overtakes
the shock. For purposes of superposition, however, all inci-
dence angles must be considered. Inspection of figures 6 to
12 shows that a sound wave of any incidence angles between
0 and = may be identified either as an incident wave or as a
reflected wave, in the sense of the analysis. TFor purposes
of linear superposition, the distinction between incident and
reflected waves is of no significance. The point of view may
be adopted that whatever its angle, a constituent wave of
the initial flow has associated with it another sound wave of
another angle and a steady vorticity wave. The notion of
cause and effect is not needed.

Lewis Friear PrOPULSION LABORATORY
NaTionan Apvisory COMMITTEE FOR ABRONAUTICS
CrLevELAND, OHIO0, February 8, 1964.

APPENDIX A
NOTATION

The following symbols are used in this report:
Ay, Ay Ay, Ay coefficients of incident disturbance (egs.
(12a), (14a), or (15))
a velocity of sound

By, B, coefficients in shock relations (egs. (6))

G, G, coefficients in shock relations (egs. (6))

¢ dimensionless velocity of propagation of
pressure wave behind shock (eq. (31) or
(89¢))

¢y specific heat at constant volume

D, D, coefficients in shock relations (egs. (6))

d coefficient of attenuation of pressure wave
behind shock (eq. (81) or (39d))
F coefficient of part of u; associated with pres-
sure wave (eq. (27) or (41))
f profile function of incident wave (eqs. (12a),
(14a), or (15))
Q coefficient of part of u; associated with vor-
ticity wave (eq. (27) or (41))
additional profile function appearing behind
shock

<=11;P. V. f 1@ —9)dr, eq. (35&))

[/

sure wave (eq. (28) or (42))

functions involved in solution when y.;<C
¥1<veu (egs. (B19), appendix B)

coefficient of part of »; associated with vor-
ticity wave (eq. (28) or (42))

gas constant (eq. (4))

coefficient of p; (eq. (18) or (36))

coefficient for £(y,t) (egs. (29) or (43))

sin ¥ or sin ¥y

Mach number of shock (=V/a;)

co8 Y Or ¢OoS Yq

tan ¥, or tan Yy

mean static pressure

perturbation in static pressure

SN

BMRIIEFTHRS N~

coefficient of part of v, associated with pres-

Q coefficient for density fluctuation in vor-
ticity wave (eq. (26) or (40))

mean gas density

ratioof Uto V

time

mean velocity of gas behind shock (fig. 1)

perturbation of velocity component in x-
direction (fig. 1)

mean velocity of propagation of shock in
gas at rest (fig. 1)

perturbation of velocity component in -
direction

coordinates measured in the direction of the
shock propagation, relative to which the
gas is (on the average) at rest ahead of
and behind the shock, respectively (figs.
1 and 2) \

Y coordinate orthogonal to z; or z; (figs. 1 and
2)

functions defining pressure front (eqs. (21)
or (39))

ratio of specific heats (=1.4 for air)

variable upon which pressure wave depends
when Y. <¥h<veu (egs. (31))

variable upon which pressure wave depends
when Y <¢1<¥e (egs. (31))

mean static temperature

fluctuation in static temperature

scale of pressure wave (eq. (23))

displacement of shock front (fig. 1)

fluctuation in gas density

functions appearing in solution for L (eqs.
(B9) or (B31), appendix B)

function associated with pressure wave when
Va<h<veu (egs. (37))

@ velocity potential associated with pressure
wave when Ya<¥1<¥ou

angles of inclination of incident waves (fig.
2)
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Vo, ¥ angles of inclination of pressure wave be-
hind shock (figs. 6 or 19)

¥, Y3 anglesof inclination of vorticity wave behind
shock (figs. 13 or 22)

Vet, Yeu lower and upper bounds, respectively, of
the range of ¢, for which the attenuating
pressure wave appears (eq. (17))

Subseripts:

Subscript notation for partial differentiation has been
used where convenient.
1 conditions ahead of shock
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2 conditions behind shock
Double subscripts 21- and 22 (problem B), incident and
reflected waves, respectively.
Superscripts:
(1) coeflicients associated with f at shock
(2) coefficients associated with g at shock
Primed coefficients are referred to intensity of incident
wave. (d;in problems A and B,/A,>+4,* in problem C).
Primes are also used to denote ordinary differentiation of
f and g with respect to their arguments.

APPENDIX B
COMPLETION OF INTERACTION ANALYSIS

PROBLEM A
The solution of problem A is found in two separate ranges
of ¥y, for which the solution involves a refracted sound wave

in one case and a refracted attenuating pressure wave in the

other. The analysis will be completed in that order.

L 0<¢1<¢¢h ¢°u<¢q<w.—Equations (27) and (28) are
substituted into equations (7), and coefficients of f’ are
equated, yielding:

F=—i’-V Ka

B ’YV v K8
When equations (28), (27), and (28) are substituted into
continuity equation (8), the quantities associated with the
sound wave combine to satisfy continuity. The terms asso-
cinted with the vorticity wave then must satisfy the incom-
pressible continuity equation (uz-4-v,==0) because the corre-

(B1)

The shock equations remain to be satisfied ; it should be noted
that the arguments of f for the various quantities have been
matched at the shock, so that coefficients of f may be equated.
From equations (5a), (27), (29); and (12a),

G=L—F—B(L—A1)—B:4s (B3)

From equations (5b), (5¢), (5d), respectively, with the neces-
sary substitutions made,

Q=L — A+ Gt (B4)
B—=Dy(L— A)+ D ds ®B5)
I— 1+1/Mm(H+I — A ®B6)

The terms H and [ in equation (B6) may be expressed in

sponding density term is time-independent. Therefore, | terms of L by using equations (Bl), (B2), (B3), and (BS).
equating coefficients of f yields The resulting equation for L yields the result
_I141/Mm
I =nl—r) G B2)
1457
Mm ag l
1 —=8(Dprt D)ty (131 St D)~ (B T+ B) |17
3
+__
™M Mm Qs
I+—1+ 5 8D iy (L D)
Mm
or, from equations (6), (21), and (23):
'y—l-lM 83—y, v—1 :I 7—!—1( y—1ln_ a’) .
p—_m [H T ) b () 0 .
r+1i (1 +__> (BS)
4 1—r
where and (22) that
n(l—-r) A — 2_( __1_>
T SR 75
Mm

and - B9)

x_=_ 1_,Y+1T 1+0_2 1/3
2 1+7_1r
2 J

and where use is made of the results from equations (2), (6),

(%)2=(1—r) (.1 +52

When I’ is known, the remaining coefficients follow from
equations (B1) through (B5).
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2. Ya<h<¢u—Equations (36) and (41) substituted into

(7) give
Fog,® _I_Fm@tm:__;a%;(Km@:m +E®3,®) (B10)
From equations (31) and (37), ‘

@,“v"”:(V—U)-‘—i—@,“-” + _cl_f.;,tu.m
A A

q,%u.m=_)%q,’a.:) +{ilq,{u.m
Equations (37) show that
3,0 =F@; H0=—F @
Accordingly, equation (B10) may be written: .
(1—1r)dF0,®0 —cF0P,® (1 —1r)dF PP @t cFOH,D

____[ dRWP,® — gK 0P @ — JK @, @ —l—aK(”fi o]

By equating coefficients of &, and #,® separately,

(1—r)dF“’+cF@’=yi’;—,(dK“)—aK"’)
B11)
(1—r)dF<=)—cFm=7"°+;,(de+aKm)
Similarly, equations (36), (42), and (7) yield:
(1—1)dH® +cH®—=— 2 _gro
v V3
B12)

(1—r)dH® —cH® =%,’-,,s}zm

When equations (41) and (42) are substituted into equation -

(8), and coefficients of f* and ¢’ are equated, the following
equations are obtained:

- (B13)

The shock conditions remain to be applied. Equations
(58), (5b), (5¢), and (5d) yield, respectively, the following
four pairs of equations, when the coefficients of f and g are
separately equated:

GO=LNO_F® _B(L®—A)—DB:4;
(B14)
GO=L®_F®_B,L®
@ =01(L(D —A1)+02A3—K(D/’Y
: (B15)
Q@=0,L® Ky
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EKO=D(L®— A)+ D4,
bt
L(n=l"%M'm(H(n FT®— 4y
(B17)
Lo— 1 +1/Mm 1HUMm g roy

Equations (B11) through (B17) may be combined to yield
the solutions for LZ® and L®

L(l)/_.L(l) hlhz <M+ has
T4y ha*+-hy?
m , D (B18)
2
raLo_, hH(Sar o)
A, ha* R4t J
where
S
L (G5Bt Be) 3 1+
1—r1—B,
ha=1——— =0 L B19)
__2d(d—r)
e (1425 1
o

Equations (B16) are substituted into equations (B11),
which may be solved to yield

F“”=h4<L(l”+"y—ﬂzﬁ.—+% — R L@
(B20)

@7 ’ wry ™ Dy

F®'=p, L@ +hy( LO +W+f

1

where

_ 4 4

104D

2Tdo’fl—1')17_’
(1469 af

I3

(B21)
hs—

Similarly,
Ho! =—h4(L<D'+ +35) oL

] 5 (B22)
n
H®'=;h4L(”'—ah5<L“”+m—+ﬁ

- The remaining quantities follow from equations (B14) and

B15).
PROBLEM B
The solution of problem B is restricted to angles 5 for
which ——m>% (1—r), and involves a reflected sound wave

and vorticity wave behind the shock. The momentum equa-
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tions (7) provide

F=—"2,K
“’V ®23)
= 22 6K

and the continuity equation (8) prov1des that

et e

All perturbation quentities vanish ahead of the shock, and
shock relations (5a), (5b), (5¢), and (5d) yield, respectively,

G=L(1—B)—F—A4, (B25)
Q=CL—A—EKly (B26)
| ALACS R L 8 SWD B28)

By solving the foregoing set of equations for L,

L 'y—l-l 'y 1
L= 1+
As ( >1_|_ ‘Y+1 (l-l- )
29
where - ®29)
n
=V
1_I_m(l—r)
- B30)
1—r
x=—(o+m) 1+1_—1"J
2

»

The remaining quantities follow from equations (B23)
through (B27).
PROBLEM C
The analysis of this problem parallels that of problem A.

1. 0<y1<ter, Yeuthy<<m—The equations of motion (7)
and (8) provide

F= ——-7 Ka
H= —WKﬂ
q
I=n(1 —7)

The shock equations (5) give
@=L—F—B,(L—A))
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Q=C(L—4)—KJy
K=D;(L— 4y

=L @+1-49

These equations may be solved to yield

/= L —1 1_7—[—1 r(l—na)
/A12+A2 4 - o? }
4 1—r
c=n(1—7)
yz
r>

2
E<1_'y-gl r 1;{-:1
14 3
2. Ya<¥1<Yewr The analysisis essentially identical to the
corresponding part of problem A, except that the constants
Bs, C:, and D, do not appear in the present case, and the
Mach number M does not appear explicitly. Hxcept for
these differences, equations (B14) through (B17) may be
carried over to the present case. The solutions for L® and
L® may be written as

1+x—

where, in this case,

(B31)

rore L0 hhatlhs
VAT
L® hi—1lh,

@7
B A P e

The definitions of the A’s follow those of problem A (egs.
(B19) and (B21)), with the exceptions that

1—r1 (l >

=(=——m

o \0o

z;.nd, in this case, s=n(1—r). The solutions for the s and
H’s are:

hlE

FO
VAT AP
pore I

A+ 47
H® 1,

H(l)' H—_—
'\‘A12+A2 g

H®
VAT 22 = KL — ke (L]
1 2

The remaining quantities follow as before.

For= =R (LO —D— R, L@’
=R LD s (LO'—1)
hyLO'—D) 4k L

H® =

ENCES

5. Tucker, Maurice: Combined Effect of Damping Seresns and Stream
Convergence on Turbulence. NACA TN 2878, 1953.

6. Ribner, H. S.: Convection of a Pattern of Vorticity Through a
Shock Wave. NACA TN 2864, 1953.

7. Liepmann, Hans Wolfgang, and Puckett, Allen E.: Introduction to
Aerodynamics of a Compressible Fluid. John Wiley & Sons,
Inc., 1947. Chapter 4.



~———THIS DOCUMENT PROVIDED BY THE ABBOTT AEROS

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM



