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APPLICATION OF SEVERAL METHODS FOR DETERMINING TRANSFER FUNCTIONS AND
FREQUENCY RESPONSE OF AIRCRAFT FROM FLIGHT DATA *

By Jomn M. EccrestoN and CEHARLES W. MATHEWS

SUMMARY

In the process of analyzing the longitudinal frequency-
response characteristics of aircraft, information on some of the
methods of analysis has been obtained by the Langley Laboratory
of the National Advisory Committee for Aeronautics. In the
investigation of these methods, the practical applications and
limitations were stressed.

In general, the methods considered may be classed as: (1)
analysis of sinusoidal response, (2) analysis of transient
response as to harmonic content through determination of the
Fourier integral by manual or machine methods, and (3)
analysis of the transient through the use of least-equares solu-
tions of the coefficients of an assumed equation for either the
transient time response or frequency response (sometimes
referred to as curve-fitting methods).

The investigation has led to the following observations: The
curve-fitting methods (Donegan-Pearson and exponential-
approximation methods) appear to be less critical to inpuis
having regions of low harmonic content than Fourier methods
and present the frequency response as analytical expressions
(transfer functions). Fourier methods indicate characteristics
of frequency response that may be missed in ocurve-fitting
methods because of the limitations on the assumed form of the
equations used in the curve-filting methods. For manual
calculations, the Donegan-Pearson method appears to be best
suited for highly damped systems in response to arbirary
control inputs, the exponential-approximation method appears
to be best suited for lightly damped systems in response to step
or short-pulse control inputs, and the Fourier method offers
comparable results but requires lengthly caleulations. Special
machines for performing the Fourier analysis, such as the
Coradi harmonic analyzer and the Fourier synthesizer, reduce
the time required for the solution but do mot offer particular
improvement in accuracy over the usual manual methods.
The use of puncheard calculating machines for the evaluation
of the Fourier integrals appears to offer possibilities of more
accurate results with a large reduction in time over the usual
manual methods.

INTRODUCTION

In recent years, & large number of methods have been
advanced for the purpose of obtaining frequency-response
data, transfer functions, and stability coeflicients from flight
tests by using control inputs of arbitrary shape. As pointed

1 Supersedes NACA TN 2997, 1053.
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out in reference 1, the data obtained from the application
of these methods are of great value to aircraft and auto-
pilot designers as well as to designers of other electronic
airborne equipment for the combination of their individual
products into a stable working unit.

A résumé of methods and progress to date with reference
to dynamie flight testing is presented by Milliken in reference
2. Although all these methods appear to have advantages
and limitations, some methods have gained popularity with
various groups whereas other methods remain comparatively
unused. A number of methods have been examined and
used by the Flight Research Division of the Langley Aero-
nautical Laboratory in an effort to determine which methods
to adopt in establishing the transfer functions of the various
aireraft undergoing dynamic flight tests. This program has
offered a certain amount of practical experience in the use
and limitations of the methods, and it is believed that this
experience may be of value to others engaged in obtaining
the frequency responses of aircraft. No attempt has been
made to examine all the known methods of analyzing dynamic
responses and omission of any method is not intended to
imply lack of merit.

A brief review of the methods examined is offered in this
report, together with references to their derivations and
examples of their application. Three types of aircraft, a
fighter, a transport, and a free-fall model, were used for
these examples. The examples are concerned with the
short-period longitudinal mode of the airplane, which is
usually a well-damped mode defined by a fairly simple
transfer function. Thus, the comparisons of methods pre-
sented herein are made solely on the basis of results obtained
from analysis of this longitudinal mode. It is recognized
that complicated oscillating systems may be analyzed and
greater accuracies obtained by all the methods reported at
the expense of a more extensive analysis. The comparison
of methods presented herein, moreover, may be altered
when applied to more complicated systems.

The methods are discussed with regard to the time required,
the means for facilitating their use, and the limitations on
their application. Some opinions presented are not directly
substantiated by quantitative results but are based on
experience in the use of the methods. The results obtained
are compared to give some indication of the relative accuracy
of the methods, exclusive of any inaccuracy in the measure-
ments.
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SYMBOLS

coefficients of longitudinal transfer functions of
an airplane (composed of stability param-
eters)

amplitude

coefficients of cubic apprommatlon to transient

damping exponent in e*¢

damping coefficient, —2a

arbitrary coefficient

differential operator, d/dt

natural logarithmic base, 2.71828

pressure altitude, ft

coefficients of equation relating airplane longi-
tudinal response to step-control motion

real and imaginary terms of Fourier integral,
respectively '

stiffness coefficient, a*4«?

Mach number .

numerical integer

numerical integer or normal acceleration, g
units

period, sec

Laplace transform variable

quantity as a function of ﬁ'equency

quantity as a function of time

time variable of integration, sec

time to damp to one-half amplitude, sec

time to damp to one-twentieth amplitude, sec

time, sec

time required for oscillation to reach initial
peak from time of step-control input, sec

time interval over which curve analyzed

abscissa of response curves

ordinate of response curves

angle of attack, deg

flight-path angle, deg

control deflection, deg

Damping coefficient

tical damping coefficient

damping ratio, o

pitch angle, deg

time lag, sec

phase angle, deg

displacement coefficients of Coradi haImomc
analyzer

frequency, radians/sec

undamped natural frequency, radians/sec

forcing frequency, radians/sec

elevator

input

output

magnitude at {=0
magnitude at steady state
magnitude at infinity
error

.n numerical integers

The absolute value of any term is denoted by | |.

BASIC CONCEPTS

It is assumed herein that the reader is familiar with the
concepts and application of the Laplace transform to linear
systems. A presentation of this method may be found in
reference 3.

The frequency response of a dynamic system defines its
steady-state response under the influence of an input applied
in the form of a sinusoidal oscillation of constant amplitude
and period. An analytical expression which defines the fre-
quency response throughout the frequency range is, when
defined in terms of the Laplace transform variable p, the
transfer function of the system. The transfer function not
only expresses the frequency response but it may be said that,
for linear systems, any arbitrary input function operated on
by the transfer function determines the variation in the
output function. Conversely, if the input and output are
known, it should be possible to determine an analytical ex-
pression which relates the two, that is, the transfer function.
The present report is concerned with several methods of
obtaining the transfer functions of aircraft from moasured
inputs and responses. The methods presented herein, in
general, may be divided into two classes: methods that first
determine the frequency response of the system and methods
that determine the transfer function without the determina-

‘tion of the frequency response.

The NACA sign convention, as shown in figure 1, assumes
elevator trailing edge down as positive. Therefore, a positive
elevator deflection will, in general, produce negative static
responses. In order to conform with the usual practice of
plotting frequency-response data, phase angles have been
shifted 180° (that is, zero phase angle at zero frequency).

DESCRIPTION AND DISCUSSION OF METHODS -
SINUSOIDAL-RESPONSE METHOD

Of the several possible ways to obtain the frequency re-
sponse of & system, an obvious way is to oscillate sinusoidally
a control surface at a constant amplitude and frequency until
a steady-state response of the aircraft has been obtained and
measure the amplitude and phase relationship between input
and output sine waves. The process may then be repeated
throughout the frequency range of interest. The theoretical
application of this method to the determination of the co-
efficients of the transfer function is given by Greenberg in
reference 4, and a graphical method of determining transfer
functions from frequency-response data is given in reference 5.

Flight path ‘

Horizontal refarence

Ficure 1.—Sign convention. Arrows indicate positive direction.
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The sinusoidal-response method requires the least compu-
tation time and the most flight time of the methods reported
herein. In an effort to reduce the large amount of flight
testing required, & number of simplifications from the usual
technique have been attempted. One procedure that was
investigated involved obtaining sinusoidal-response data by
continuously recording the controlled input and the response
of the airplane while slowly changing the frequency of the
input to cover the range of frequencies desired. Appendix A
presents an estimation of the errors encountered at several
values of rate of change of forcing frequency when such a
frequency-modulated input is applied to a dynamic system
defined by a second-order lag. From this analysis and also
from flight results, it appears that, for systems having near
critical damping, satisfactory results may be obtained. In
addition, it appears that a human pilot may generate an
adequately near sinusoidal input without the aid of special
equipment, particularly if he has a fairly precise indication
of the amplitude of his stick motion. A typical record ob-
tained by using these techniques is presented in figure 2.
The deviation from a pure sinusoidal input is obvious al-
though the filtering supplied by the airframe results in a
nearly sinusoidal response. dJones and Sternfield in reference
6 outline a method for determining the amplitude of an
equivalent sine wave when the actual periodic wave has an
irregular form. In general, however, it has been possible to
obtain results consistent with the accuracy of the measure-
ments by fairing the peaks of the oscillations in the input
and output and obtaining the double amplitude of these
quantities from the fairing by averaging over a number of
successive half-cycles. The mean value about which the
oscillations occur is established from the fairing of the peak
amplitudes, and the time lag of the output behind the input
is determined by averaging the lag read along this mean
value over a number of successive half-cycles. The period
of the oscillations is similarly obtained by averaging. The
method of measurement of these quantities is illustrated in
figure 2.
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Fraunrs 2.—Film records of sinusoidal elevator input and response of
fighter in pitching velocity at A/=0.6 and h;=10,000 feet. Average

amplitude, % (A4 Az A43) ; average period, 1 (Py+ P3+ Py) ; average
1
ag, 3 (ntrtr).
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The importance of averaging over successive half-cycles,
when establishing the time lag, is shown in figure 2 where,
in some cases, the velocity of the input is considerably
different in one direction than in the other with the result
that the time lag read at one point will differ considerably
from that read one-half period later. The average, how-
ever, appears, in most cases, to represent adequately the

~actual time lag.

The frequency-response parameters may be determined
from the averaged values through use of the following
relations:

2
. Frequency= Per;'rod @
] .. _ Amplitude of output
Amplitude ratio= Amplitude of input @
Phase angle=360 Log (3)

Period

Flight records for a fighter airplane were obtained with
the pilot manually applying an approximate sine wave of vary-
ing frequency to the elevator. A sample of the flight data is
presented in figure 2, and some pertinent geomefric charac-
teristics of the airplane and the flight condition under which
the data were obtained are listed in table I. Data points
obtained by the foregoing analysis are presented in figure 3
together with a suggested fairing. The scatter is considered
typical for this technique (pilot-induced input). These data
points represent portions of two flights of the fighter airplane
and a recording time of about 250 seconds. A typical ex-
ample of the time required to reduce the flight data to a
frequency-response curve by this method is shown in table IT.
Typical times are also presented in the table for other
methods to be discussed subsequently.

TABLE 1

CHARACTERISTICS AND FLIGHT CONDITIONS OF AIR-
CRAFT USED FOR LONGITUDINAL TESTS

l 4 % &
? N
Condition
Free-fall model
Fighter

Weight, 1b_. e 12,840 000 1,030
Tall length, ft_ ... 16.0 7.0 3.7
Wing | { R —— 250 988. 9 8.0

Horlzon ares,
F:-o [§ { R 68.2 176.2 1.72
{\nglect ratio. oL 4,975 9.13 4.0
gspan, ft_.._____. 35. 25 a5.0 6.0

Mean saerodynamiec
chord, ft._ .. _____ 7.45 1.5 1.5312
Pressure attitnde, ft____ 10, 000 5,000 32,000
Mach number.__........ 0.60 0. 268 0.725

Moment of Inertia

stug-{tr . ... 17,311 91, 690 50
Sweep, de€eeancmmanean 0 15.5 45.0
Afreraft density factor.. 1220 80.6 2,730
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Fiaure 3.—Sinusoidal-response data points of fighter airplane at
M=0.6 and h,=10,000 feet.

TABLE II

EXAMPLES OF TIMES REQUIRED TO OBTAIN FREQUENCY
DATA FROM TRANSIENT DATA BY VARIOUS METHODS

200 | s o | SR || S
wm)| q qu
Number of
dethod of analysis fungéom data points M t?-}a)mfer &gguansy
Derfumotion | " rgr ™ | fynotions,| response,
function hr hr
Blnusoddal. ool 2 | e — 16 | cooeeo 2
Fourjer:
integration.... 2 .16 n | e 12
Numerieal integration__... 3 24 8 | cooee- 12
Punch-card compater
b5 3 P, 2 241 ——— 10
‘ourler synthesizer.___. 2 24 213 | ... 4to8
Coradl harmonic ana- 2 Continuous 10 O 8
lyzer. curve
Curve fitting:
tlal approxima-
on:
Direct computation.. b1 24 215 0.5 2.5
e mememsaame— b1 b 15 6to 8 8to010
Donegan-Pearson._._.__. 2 20 =16 8 8

s Results were obtalned in form continuous with frequency but numerical evaluation was

made at number of uencles shown,
bMethod is applicabls to impulss or step inputs; therefore, analysis of the input
funotion is not required.

FOURIER ANALYSIS OF TRANSIENT RESPONSE

Another well-known method of determining the frequency
response i8 to determine the coefficients of the Fourier
transform of the input and output functions over a frequency
range by analyzing the response (as a function of time) of
the aircraft to an arbitrary input. The process is indicated

by the expression
w@edetdt
o (jw)=Lm———— @
ﬁ gr(t)e""‘dt

which represents the ratio of the Fourier integral of the out-
put to the Fourier integral of the input. The derivation and

. expression must also be made.
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several applications of this method are reported in references
4 and 7.

This method, as well as the sinusoidal method previously
described, gives data points in amplitude ratio and phase
angle at a number of discrete frequencies through which o
fairing can be made. Transfer functions may be obtained
from the frequency-response curves by the same methods
as were mentioned for the sinusoidal response.

Integration of the Fourier integral offers a choice of meth-
ods which may be divided into two general categories:
(1) methods which divide the transient into finite intervals,
approximate the curves within each interval with an analyti-
cal expression, perform the indicated integration analytically,
and sum the real and imaginary parts of these integrals;
and (2) methods which express ¢~#*f in trigonometric form,
multiply these sine and cosine functions by the value of ¢ (¢)
at corresponding times, and integrate the product curves to
determine the real and imaginary terms of the Fourier
integral.

Solution of the Fourier integral by either approach involves
the judicious choice of time intervals. For the analytical
representation method, & choice in the form of the analytical
As the chosen expression
becomes more complex, the accuracy of the determination
of the frequency response generally increases but, as the

- work involved likewise increases, a compromise usually is

necessary.

The following are several methods which have been studied
and illustrate the various approaches to the Fourier trans-
formation. ,

Manual Method: Analytical integration within disorete
intervals of cubic representations of a transient.—A method
of representing a transient for solution of the Fourier integral,
as developed by Ordway B. Gates, Jr., of the Langley
Laboratory, involves the division of the transient into
discrete time intervals chosen to facilitate accurate approxi-
mation of each portion of the transient by cubic (or lower-
order) polynomials. The Fourier integral will then be

Q= [ aerat
~ [Cwterat [Cn@erat .+
[} L

[ a@esmart ..+ gu@e=tudt ()

"
where

Gn () =B+ b -cat-+dy

The values of the coefficients a., b, ¢,, and d, for any
given n may be determined from the characteristics of the
transient within the interval ¢, to £,;;. For the general case,
the interval is subdivided into thirds, and values of the
trangient ¢() at these dividing points afford four cubic
equations having four unknowns (a., bs, ¢x, and d,). The
advantage of using equal divisions within the interval ¢, to
tay1 18 the ease of the solution of the four equations by means
of “successive subtraction.” {See illustrated example in
appendix B.) If, however, the slope of the transient is

‘zero (%%=0> within the interval, this condition should be
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used as well as the value of the transient ¢(f) at this point.
The coefficients thus determined give an equation that may
be used to check the fit of the transient by the expression
beofore further work is initiated.

This approach to the evaluation of the Founer integral
may be expressed analytically as follows:

Qw)= ,,an Qa(w)=Ki(w) —j Ks() (6)

where
 ESY

Qnlw)= t (@ntP+0utF-cot4-dy) et db

and

anﬁtwl t%"fmdt:—-% (64 6jtw—3ttw*—jt3wd) e i@ :n+1

»

Tutt 2 —fatl -—._bl. e 43 —jtw t”_‘_]
b ft (eIt Qs 2+ Djta—ta) e

tn+1

tn+l —jot =0, . —ite
c,ﬁu te¥tdt = (14jtw) e t

tat1 —fal Jf — _d_l —~ftw
d,ft” e~Tutdt R e

The substitution of discrete values of frequency w gives
the real and imaginary terms of the Fourier transform of the
time transient g(f), and the relationships of amplitude and
phase are given as

tnt1
tn

= '\/K12+K22

@
— -1 —K,
$=tan™ g

As an illustration of this method, a numerical example is
presented in appendix B. A method of this type is not very
adaptable to machine methods because some discretion is
required in the subdivision of the transient, and the time
intervals are not necessarily equal. A small amount of trial
and error may be required in the choice of these time inter-
vals, particularly in the vicinity of points of inflection. The
cubic representation has the merit of being the lowest-order
polynomial to contain a point of inflection. This approach
to the solution of the Fourier integral has the advantage of
providing an analytical representation that may be directly
compared with the transient and of providing an exact
annlytical integration. On the basis of comparable accuracy,
this approach is in many instances shorter than the classical
numerical integration method that follows.

Manual Method : Numerical integration of product curves of
g(t)sinwt and g () cos wf.—The usual manual method, which
also is the basis of some of the machine methods, requires
2 large amount of graphical or numerical integration, because
no attempt is made to obtain a continuous analytic expression
for the transient until it has reached a steady state. If the
input is restricted to a simple analytical expression (for
example, a step input will have & constant value from zero
time to infinity), the graphical or numerical integration of
the input is eliminated and the time required for the solution
of equation (4) is roughly reduced by one-half. For the
purpose of graphical or numerical integration, equation (4)
may be reduced to an expression involving real integrals of
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the form

ﬁmg(t)e"“‘&;ﬁmg(t) cos wi dt—jﬁmq(t) sin wi di

=K(w)—jK2(w) 8
where the frequency-response relationships are given by
equation (7).

The numerical and graphical method for the solution of
the Fourier integral, and an example of its use, is given in
reference 4 by Greenberg and a more complete discussion is
given by Schetzar in reference 8.

A rule of thumb for choosing the proper time interval in
analyzing flight data has been suggested by experience gained
in the use of this technique. The rule is restricted to the
methods of integration adaptable to the manual methods,
for example, Simpson’s three-point rule. In general, a
chosen time interval At will give reasonable results up to a

frequency of —— so that a time interval of 0.10 second may

5 At
be expected to produce good results up to a frequency of
about 6 radians per second. The proper choice of time
intervals is obviously dependent on the character of the input
and output; however, the foregoing rule has been found
usually conservative except in cases of extremely erratic
variations in the input and output. The highest frequency
at which reasonable results might be expected will also depend .
upon the choice of forms of integration, a superior integrating
method affording use of greater time intervals for comparable
results.

‘When Simpson’s three-point rule for numerical integration
or & planimeter are used for this method, the time required
may be estimated by another rule gained from experience.
For a typical case where the short-period longitudinal re-
sponse to a step or pulse input is analyzed, the time required
to obtain the amplitude and phase angle of the output (one)
function at 8 frequencies by using 24 data points has been
found to be about 6 man-hours for an experienced user.
Tabulated values of sin «f and cos «t were used and the
time required to make these tabulations was not included
in the estimate.

Punch-card method (IBM).—Certain International Busi-
ness Machines (described subsequently and referred to as
IBM machines) offer a timesaving solution to the process
outlined in the previous section with usually more accurate
results over o greater frequency range since use of more
complicated and accurate methods of numerical integration
are feasible. Weddle’s seven-point rule (ref. 9, p. 125) as
derived from the Newton-Cotes quadrature formula has
been employed and is an example of such a method.

By using essentially the -same procedure as the manual
method which integrates the product curves ¢(t) sin ot and
g(®) cos wt, a set of “master” cards are puached, which
define the values of the cosine and sine functions for the
values of «t selected and also define the numerical integra-
tion process used. Since values of wt determine the values
of the trigonometric functions punched on the cards, the
frequency range to be evaluated may be varied by changing
the time interval in inverse proportion. Cards are likewise
punched for the time functions of input and output (and
these must obviously be punched for each separate analyzed
record). '



1092

The calculations involved in the Fourier analysis method
as performed on the IBM machines that are available at the
Langley Laboratory are as follows:

(1) Time response data are perforated onto IBM cards
by using a card punch.

(2) Correct transcription of data onto cards is checked by
& verifier.

(3) Original deck of cards representing time-response
dala is reproduced, one deck for each frequency to be ana-
lyzed, by using a reproducer.

(4) Integrating factors and trigonometric functions are
transferred from the “master” deck to each deck obtained
from step (8) by using the reproducer.

(5) Product functions (g(f)sin wt and g(f)cos i) are
obtained by an electronic calculator.

(6) End corrections and integration corrections are ap-
plied by using a sorter and the electronic calculator.

(7) Fourier summation of terms obtained for each fre-
quency are made by using a tabulator (alphabetical account-
ing machine).

(8) Summary cards of amplitude and phase relationships
are obtained on the electronic calculator.

(9) Final frequency data of input and output functions
are typed out by the tabulator.

Some aspects of this process as applied to lateral responses
having steady-state oscillatory responses are deseribed in
more detail in reference 10.

The time required for this IBM equipment to perform
the operations indicated has been found to be 5 machine-
hours for the determination of data at 12 frequencies for
one function by using one set of machines and 241 data
points (12-second records using 0.05-second intervals). This
time was averaged over several performances and included
all checks and correction of mistakes.

Method using the electromechanical Fourier synthesizer.—
The electromechanical Fourier synthesizer, originelly built
and used by the Massachusetts Institute of Technology to
produce transient-response curves from frequency-response
data, was designed to perform the following operation (see
ref. 11):

P2y qe'""”*“’— E _gacos nB+dn)—
jﬂ_I%, .q.sin(nﬁ+¢.) 9
where

¢. amplitude of nth harmonic
¢. phase angle of nth harmonic
B angular displacement of fundamental
The application of the Fourier synthesizer to the evaluation
of the Fourier integral may be seen from the following
derivation.

The general form of analysis assumes that any arbitrary

‘to an arbitrary input as presented in reference 13.
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curve of input or output may be represented by a series of
step functions with a constant finite time lag between the
steps:

AAg N
: 4 _ﬁqf)(f)
an l//] g gyl
=
— At — o)
T T T lAq T -I— T { T :
o h f. 13 173 Is fe

Time, # sec

The step epproximation is the same as that used in the
analytical method of obtaining the frequency response from
8 time response to a step input as presented in reference 12
and also the same as the extension of this analytical method
Thus,
the Fourier integral of an arbitrary function in time q¢(t)
may be approximated in the form

Q(w)=f Aql(t)e" "’dt-l—f Agg(t)e" ot o

J: a_gAq.(t)e"“‘dt (10)
"2
Therefore,
Qa)=r 3 Agalye (w2-v3) ()
n=1,2,3,... ’

In trigonometric form

Q(w)=——% ?‘_‘, A, sin ( nwAt—w éf)-

Al

3 > Ag,(t) cos <7wAt—w (11a)

® n=1,2,3,..
This relationship, as can be seen by comparison of equation
(11a) with equation (9), may be handled by the Fourier
synthesizer.

The number of points that may be used conveniently to
represent the time-response curve is determined by tho
number of resolvers available in the machine to simulate
the convolution process. The machine investigated, em-
ploying 24 resolvers, required 4 to 8 hours to obtain the
frequency response of & system from any arbitrary input
and output that may be represented by 24 equally spaced
steps. The frequency data are presented by the machine as
curves of the Fourier transforms of the real and imaginary
coefficients. From these curves, values at any number of
frequencies may be chosen for the determination of phase
angle and amplitude.
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In view of the fact that the Fourier synthesizer utilizes 24
oqually spaced steps, it is limited to transients that may be
adequately approximated thereby. Although the frequency
range plotted by the synthesizer is from 0 to =/At radians per
second, the results do not appear to be accurate to any
higher frequency range than is quoted for the manual method

i i ) =-T)\.
which uses Simpson’s rule (w— A t)

Coradi harmonic analyzer.—The Coradi harmonic analyzer
(ref. 14) is a semimanually operated tracing machine which
by the use of several rolling spheres may be used to evaluate
the Fourier integral of a function. The model investigated
(Dent-Draper Model, Rolling Sphere Type, Mico Instrument
Company, Cambridge, Mass.) employed five spheres which,
through use of various gears, may measure the harmonic
content of a curve within a range of 1 to 50 harmonics.
Details of the operation of an earlier model of the Coradi
harmonic analyzer are presented in reference 15.

Through the use of the Coradi harmonic analyzer, the time
transient is traced from the point of initiation (initial con-
ditions zero) to the point of steady-state response and the
following integrals are evaluated:

E

1,!/1=—0ﬁy" cos wid [y @] (12a)

Yo=C f’ " gin wtd [y @] (12b)

Theso integrals are proportional to the real and imaginary
part of the Fourier integral of the curve being analyzed

O I
The proportionality may be seen by integrating the Fourier
integral by parts to change variables so that

@

Qo =*%7E,t—) et

1 j‘q(m) ot

=— wtd 13
A Tetaigel  a9)
where for all practical purposes the first term is zero. In
the use of the Coradi harmonic analyzer, the term ¢(f) is
plotted along the y-axis; therefore, equation (13) may be
written as follows:

Q=3 [r= ety

1 (P g 1 fvm _
=— @ i -— St
) e | e el g
where the second term is zero since ¥;=Ye.
metric form, equation (14) becomes

In trigono-

Quy=—1 ﬁ " gin wtd[y(t)]+jlw ﬁ " cos wtdly(®] (15)
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so that substitution of equations (12) into equation (15) gives

Q=—2+i L (16)

where w=2%~n and ¢ is defined as the time interval over

which the curve was analyzed. The constant 1/C is the
scale factor between the function being analyzed and the
displacement of the dials of the analyzer. In general,
because only the ratio of output to input is desired, the
individual scale factors need not be computed provided both
quantities are plotted to the same scale.

This analyzer appears to produce the Fourier coeffi-
cients within an accuracy dependent upon the kinematic
accuracy of the machine (which is primarily affected by
slipping of the rollers but also to some extent by wear)
and the ability of the operator and machine to follow exactly
the trace being analyzed. The operator is required to
follow the curve in the direction of the ordinate ¢{t) while
the machine, operated by a microswitch, automatically
traverses along the abscissa (f). Accurate tracing becomes
difficult when steep slopes (large values of dg/dt) are experi-
enced, and a certain amount of roller slipping and human
error should be expected. This inaccuracy is alleviated
somewhat by averaging the values obtained from three or
more repeated tracings. Experience with the machine has
indicated that the accuracies obtained are about the same
as those obtained by the manual methods.

The time required to obtain the Fourier coefficients of
one function ¢(¢) for 15 harmonics has been found to be about
4 hours for an experienced operator. This estimate includes
the time to aline correctly the axes of the curve with the
machine, to connect the correct set of gears for each 5
harmonics, and to trace the curve three times for each set
of 5 harmonics.

A consideration in the use of this machine is its ability
to produce the Fourier coefficients in a comparatively short
time, particilarly with erratic functions that would require
very small time intervals to represent accurately the function
for use by other methods. A point worth noting is that, for
erratic functions, the average of several tracings should
produce a more reliable result. In the use of the Coradi
harmonic ansalyzer, the limitation that the function must
reach steady state still applies.

CURVE-FITTING METHODS

In the methods herein called curve-fitting methods, the form
of the transfer function is directly or indirectly assumed and
the coefficients of the transfer function are determined by
least-squares methods of a combination of least-squares and
direct-computation methods. With a number of these
methods, the analytical expression called the transfer
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function is obtained without first obtaining frequency-
response data. -

The Donegan-Pearson method requires a direct assump-
tion as to the form of the transfer function and solves for
the coefficients by substituting into the transfer function
the input and the output time functions and their integrals.
On the other hand, the exponential-approximation method
solves for the coefficients of analytical expressions which
approximate the time histories of the input and output
functions. The transfer function is then established by
taking the Laplace transform of these analytical functions.

In either the Donegan-Pearson or the exponential-approx-
imation methods, the order of the expressions used to approx-
imate either the transfer function or the input-output time
histories is unlimited. Therefore, the requirement that the
form of the transfer function be assumed would appear to
be not particularly restrictive other than that the system
be linear. In practice, however, the computation involved
in the least-squares procedure increases rapidly with increase
in the order of the equations and the equations tend to
become progressively more ill-conditioned. The general
practice therefore has been to assume a form for a given
transfer function, as would be predicted from the stability
theory, and this practice, in general, neglects low-frequency
(phugoid) modes and possible high-frequency modes due to
structural elasticity in order to hold the order of the equations
to a minimum. Such procedures do not afford detection
of these modes from flight-test data in cases where these
modes are important, unless a form of the transfer function
is assumed in advance which include such modes. In
contrast, Fourier analysis will detect all details of the fre-
quency response which are within the accuracy of the
measurements and the calculation procedure. The forms
of the longitudinal transfer functions usually assumed in
conjunction with the curve-fitting methods are:

a Ep4-F A
8 Ap*+Bp+C

De Gp+H
5 ApfBptC [

n_ Lp*+Mp+N
8 Ap*+Bp+C |

aan

where the substitution of jw for the Laplace transform op-
erator p gives the frequency response of the system.
Exponential-approximation methods.—Since the response
of a linear system to & step or impulse is a sum of exponentials,
an obvious method for fitting airplane time responses is the
choice of exponential terms. The number of exponentials
is selected so that the Laplace transformation will give the
same polynomial expressions as obtained from stability
theory. Although this method can be applied to any input
that has a Laplace transform, it is most suited for application
to responses to an approximate impulse, & step, and an
approximate step input. The practical “approximate step,”
as compared to the theoretical perfect step, may have a
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small but finite lag in reaching steady state and may have
a small undershoot or overshoot. (See ref. 18.) The
response equation to a step may be represented for the case
of the short-period longitudinal mode of motion of an air-
plane by the form

g()=q.+e*(J; sin wi-+J; cos wit) @18)

where a is the damping exponential, w is the frequency, J;
and J; are the coefficients of the in-phase and out-of-phase
components of the response, and ¢(f) is a function of time
that expresses the response of the system.

In the Laplace transformation of the general form given
by equation (18), the denominator of the transfer function
would be given by

[p—(a+j0)llp—(a—jw)]=p*+bp+k

For lightly damped systems where the period and time to
damp to one-half amplitude may be read directly from the
response records, it has been found that direct calculation
affords an accurate and rapid means of obtaining b and £.
In the use of this method it follows from equations (18) and
(19) that .

(19)

1386
b= T 2 (20)

where T'p, is the time required for the oscillation to damp to
one-half amplitude and P is the measured period of the
oscillation.

This process, where the coefficients of the transfer function
are computed from direct measurements of the flight records,
has been used extensively for the case of rocket and free-fall
test models since these test models, in general, exhibit the
low damping and high natural frequency which enable this
approach.

Once a and v are determined, values of .J; and J; appearing
in equation (18) may be obtained from the time history. In
instances where the steady state is adequately defined, direct
computation of J; is afforded. In the analysis of the response
of an airplane in angle of attack and pitching velocity over
short periods of time, the coefficient J; must be negatively
equal to the value of the response at steady state. For the
response in normal acceleration, however, a step input of the
control surface causes an effective instantaneous change in
load on the tail which, in turn, produces an instantaneous
jump in the normal-acceleration response of the aircraft.
An illustration of this type of response is shown in figure 4.
The relationship among the instantaneous change in accelera-
tion at t=0, the steady-state acceleration, and .J; is shown
by equation (18) for t==0 so that

7(0)=¢.+; 2)

With the coefficient J; thus established, a possibility for
direct calculation of J; may be indicated for the case of a step
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mput and lightly damped systems by writing equation (18)
in the form

qy=q.+e*VJi*+ I, gin (w4 ¢) 23)

o= 5(ap)

where P is the period of the oscillation and ¢, is the time re-
quired for the oscillation to reach a peak after initiation of
the step input. The relationship among ¢, P, and ¢, may be
visualized by reference to figure 4.

The method of obtaining the transfer function for a system
represented by equation (18) in response to a step input of
the foreing function is shown in appendix C. The transfer
function is of the form

(qm'l‘Jg) 2+(qu+J1w'—JgG/ o4 kq.,

L
PFopTE

where a, b, k, and o are related by equations (20) and (21),
and &, is the magnitude of the step.

As a general rule, the exponential-approximation method
of simulating transient data seems to offer the best approach
of any of the methods reported in this report when the re-
sponse is a lightly damped oscillation to an approximate step.
It is of interest to note that this method may be used even
though the input is not approximated by exponential expres-
sions, provided its analysis is restricted to the free-oscillation
portions of the response. The coefficients %, b, J;, and J;
of equations (18) and (19) may be obtained regardless of the
form of input provided that they are obtained from a portion
of the time-response curve after the mput has reached a
steady-state wvalue. This adaptation is pointed out by
Shinbrot in reference 16 and the method of application is
reported therein.

The foregoing method is useful only when the period and
time to damp to one-half amplitude may be read directly

and
(24)

(25)
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from the records. For highly damped systems where this
is not possible and as an alternate to the foregoing approach,
8 least-squares method for obtaining the period, damping,
and other coefficients of equation (18) may be employed.
Greenberg, in reference 4, discusses extensively the applica-
tion of the Prony method for fitting a sum of exponentials
to & number-of equally spaced ordinates. This method will

, likewise obtain the transfer function given by equation (25).

A measure of how closely the analytical expression repre-
sents the time response of the system during free oscillation
may be obtained by substituting the derived coeflicients
into equation.(18) and allowing the time ¢ to vary. This
substitution amounts to taking the inverse Laplace trans-
form of the transfer function, once it has been determined,
and returning the function @(w) to the time domain where
it should be equal to the original function of time g(t).

The time required for this method varies with the number
of least-squares solutions required to obtain the four un-
knowns b, k, J;, and J;. The extreme case is the case where a
least-squares solution is desired for all the coeflicients of a
response. In this instance if the input is considered to be a
step and the response is described by 24 data poinfs, the
time required to obtain the transfer function of the system
may be estimated at 8 to 10 man-hours of work, and three
separate least-squares solutions are required. Any reduction
in the number of least-squares solutions will obviously
reduce the time required appreciably.

Donegan-Pearson method.—This method is appropriate
for obtaining the transfer function from transient response
to an arbitrary input, and, when only manual computing
techniques are available, offers a good degree of accuracy
with & minimum of work. The method is presented in
reference 17. In brief, a transfer function of one of the forms
given by equation (17), for example,

(4p*+ Bp+C)g=8(Ep+F)
is integrated twice and rearranged to give

B t Cl t T E 13 F t T
Zfo th—l—EJ; fo qara—3 [ 5dt—Zfofo 54T di=—q
(26a)
The equation is now in a form where the integrals may be
calculated from ¢ and & which are known from a time history.
The integral quantities in the foregoing equation are evalu-
ated at some fixed time intervals, starting with the initial
control input, to form a sevies of simultaneous equations

(26)

from which the g: %; %, and g coefficients may be evalu-

ated by the least-squares method.

The expression of the transfer function in integral form is
an important point with regard to application of this tech-
nique in that the integration processes are inherently more
accurate than the differentiation process indicated in the
normal form of the transfer functions. The integrals and the
coefficients may be obtained by the matrix methods de-
scribed in references 17 and 18. The use of higher-order
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terms in the numerator and denominator of the transfer
function is possible but, in many cases, is unnecessary
because of the insignificance of their coefficients and is
impractical because of the large amount of additional work
required. .

In the derivation of this method no restriction is made
or implied that the forcing function (input) .or transient
response reach a steady state within the time limit con-
sidered. There appears to be, however, a practical limitation
on the length of the record since, for any given short length
of a curve, a large number of analytical expressions may be
written that satisfy, with good precision, the conditions of
the curve in the region considered. Obviously, as the length
of the record considered is extended, the expressions that
adequately define the curve become more limited until the
correct expression is closely approached. In the analysis
of arbitrary inputs and responses that reached a steady
state, this method produced excellent results over a large
range of frequencies in a reasonably short length of time.
When proficiency was obtained in the use of this method,
including the matrix methods of integration and least squares,
a complete frequency response required about 8 man-hours of
work from raw data (averaging about 20 data points) to fin-
ished frequency-response curves (averaging 16 frequencies).

In the application of this method, & somewhat simpler in-
tegrating matrix was used that reduced the time of integra-
tion by about one-half over the method presented in reference
17. The derivation of this integrating matrix by use of the
relationships reported by Diederich in reference 18 is pre-
sented in appendix D.

A check on the accuracy with which the time response is
represented is afforded by the inverse Laplace transformation
process described in reference 3. A second method, which
is suggested in reference 17, utilizes the evaluated integrals
of the output, the recorded input, and the transfer function.
If the transfer function is to represent the system accurately,
the response obtained by this check must be equal to the
original time response.

For both the Donegan-Pearson and exponential-approxi-
mation methods, a second approximation to the determined
transfer-function coefficients may be made by a procedure
suggested by Shinbrot in reference 16. In cases where this
refining procedure was attempted, the process was lengthy
and frequently did not afford better approximations because
of failure of the method to converge.

RESULTS AND COMPARISONS OF METHODS

The frequency responses as obtained from three aircraft
of different types are used herein for illustrative purposes.
‘A summary of the mass and geometric parameters of these
aircraft together with a sketch of their plan forms is presented
in table I, as are the flight conditions for which the data were
obtained. These aircraft will be referred to as a fighter, &
transport, and a free-fall model.

All methods of analysis were not applied to all three of these
aircraft, but a comparison of the methods is made herein for
the fighter at one flight condition. The comparison is made
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with the response in pitching velocity to an elevator step
input. Time histories of the control input and the response
are shown in figure 5. The Donegan-Pearson, Prony, Fourier
synthesizer, IBM, and manual Fourier methods were used to
obtain the frequency response of the fighter from these timo
histories. A time interval of 0.10 second was used for the
manual methods, 0.5 second was used for the IBM method,
and 0.06 second was used for the Fourier synthesizer. The
frequency-response curves thus obtained are shown in figure
6, together with the faired curve of figure 3 which was ob-
tained at the same flight conditions by the sinusoidal-response
method. The frequency response of the fighter appears to
be established to a generally acceptable degree by any one
of the several methods shown. The expression ‘‘acceptable
degree” is expanded subsequently.

EFFECT OF INPUT SHAPE

Inasmuch as the compatibility of results obtained by using
the various methods on a step input has been established, it
is of interest to check the effect of this and other input
shapes.

A check of the effect of input shape on results obtained
through use of the Donegan-Pearson method has been made.
The step input illustrated in figure 5 together with the
approximately square and triangular inputs shown in figures
7 and 8, respectively, were used for the investigation and
these inputs and their responses were analyzed at time
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Ficure 5.—Time history of elevator step input and pitching-velooity
response of fighter at M=0.6 and h,=10,000 feet. Circled points
indicate the response calculated from transfer coefficients obtained
from Donegan-Pearson method.
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TFigure 6.—Frequency response of the fighter relating pitching velocity
to clevator deflection at 3/ =0.6 and A,=10,000 feet as determined
by several methods.

intervals of 0.10 second. On each of these three figures,
the accuracy with which the responses were represented by
the transfer functions determined by the Donegan-Pearson -
method is shown by the data points on the response curve.
These points represent values of pitching velocity obtained
by multiplying the integrated functions of equation (26a)
by the derived transfer coefficients at the values of time
indicated in figure 5. This procedure is described in more

dotail in reference 17. .
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Fiaure 7.—Time history of elevator square-pulse input and pitching-
velocity response of fighter at M=0.6 and h,=10,000 feet. Circled
points indicate the response caleulated from transfer coefficients
obtained from Donegan-Pearson method.

20

2
g
I VB
\
fo N
§.2
IEETER!
o
g / \
;g o N —
3
~o 4 8 N sz .16 20 24
ime, 7, sec

Fiaure 8.—Time history of elevator triangular-pulse input and pitch-
ing-velocity response of fighter at M=0.6 and %,=10,000 feet.
Circled points indicate the response calculated from transfer coeffi-
cients obtained from Donegan-Pearson method.
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The frequency response of the fighter as determined by
these transfer functions is shown in figure 9 compared with
the faired curves of amplitude ratio and phase angle ob-
tained from the sinusoidal-response method. The sinusoidal-
response method is included because it involves a different
test technique. These four sets of frequency-response curves
appear to be in good agreement. Whether their agreement
is to an “acceptable degree’” may be illustrated by examining
how closely they agree in the time domain when an identical
control inputis applied in each case. This process may be done
manually through use of the inverse Laplace transformation;
however, the Fourier synthesizer offers & machine method of
obtaining the time response of a system described by the
frequency-response curves to an approximate ramp or step.
The Fourier synthesizer was used in the present analysis and
the inverse of the process described in the section entitled
“Description and Discussion of Methods” was applied.
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Figure 9.—Comparison of frequency-response curves of the fighter
at M=0.6 and k,=10,000 feet as obtained from a varieby of inputs
by using the Donegan-Pearson and sinusoidal-oscillation methods.
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The control input and time responses using the throe
frequency-response curves corresponding to the three input
shapes investigated are shown in figure 10. The curves show
a maximum spread about 13 percent of steady-state value
at steady state and a smaller percentage spread at peak over-
shoot. Thus, it appears that the determination of the trans-
fer function is not particularly sensitive to the shape of the
control input when the Donegan-Pearson method is used.

EFFECT OF HARMONIC CONTENT OF INPUT

In the application of Fourier methods, the harmonic con-
tent of the input must be considered and has a predominant
effect on the results obtained. Harmonic content pertains
to the relative magnitudes of the sine waves of various
frequencies which make up the input or response shape and
is essentially the amplitude of the Fourier transform of a
funection.

In order to illustrate the harmonic content of several
inputs, figure 11 shows the Fourier transforms of square,
triangular, step, and impulse type of inputs plotted against
frequency. It can be seen that the harmonic content of the
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square and triangular inputs go to zero at equally spaced
increments of frequency, the spacing being dependent on the
duration and shape of the input. For either shape, doubling
the duration of the input will halve the spacing between the
frequencies of zero harmonic content. An error frequently
encountered m the frequency domain when Fourier methods
are used is caused by the harmonic content of the Fourier
transform of the input closely approaching or reaching zero.
When this condition occurs, slight errors in the data cause
the frequency-response curves to diverge and even to go to
nfinity at some frequency if the harmonic content of the
input functions becomes zero at that frequency.

An example of the distortion of the frequency-response
curves due to low harmonic content was obtained in the
analysis by Fourier methods of the rectangular-pulse input
and pitching-velocity response of the fighter as shown in
figure 12. Because of the length of the rectangular-pulse
input used, the harmonic content of both the input and
response closely approached zero at frequencies of about 8.5
radians per second. The discontinuity due to the lack of
harmonic content is shown in the frequency-response plot of
figure 13. An additional test utilizing an input which affords
data having good harmonie content in the region of uncer-
tainty would be desirable in order to msure that no legitimate
secondary peak or other significant characteristic exist in
that range of frequencies.

When chooosing inputs to be used in obtaining flight data
for Fourier analysis, it is desirable to examine their harmonic
amplitudes in light of expected instrument accuracies in order
to select an input or series of inputs which will afford suffi-
ciently accurate frequency-response date in the frequency
range of interest.

Since it is desirable to maintain large values of harmonic
content over the entire frequency range, inputs approaching
an impulse would appear most usable. In practice, how-
over, control inputs of this type having suitable amplitudes
must be maintained over a significant length of time so that
the airplane is disturbed sufficiently to insure accurate
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Fiaurs 12.—Time history of elevator rectangular-pulse input and
pitching-velocity response of fighter at M=0.6 and A,=10,000
feet,
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measurement of the response. Thus, the transform of the
resulting pulse will often closely approach or reach zero at
some frequency in the range over which the response is
desired.

The transform of the step input has the desirable feature
of never becoming zero. Having infinite amplitude at zero
frequency, the transform decreases as the inverse function
of frequency and approaches zero amplitude as the frequency
approaches infinity. In view of the rapid decrease in
harmonic content with increase in frequency, however, it is
sometimes difficult to maintain the accuracy of the frequency
response to as high & value of frequency as desired. This
effect may be seen in figure 11 by compearing the harmonic
content of the triangular and step pulses from 1 to 8 radians
per second.
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Fraure 13.—Discrepancies in regions of low harmonic content that
appear when the frequency response of the fighter is determined
by the Fourier analysis.
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The transforms of several basic inputs together with the
effect on harmonic content of distortion of these basic inputs
are illustrated in reference 10.

EFFECT OF RECORD LENGTH

The advantage indicated for the so-called curve-fitting
methods with regard to their ability to make a logical inter-
polation over frequency regions of low harmonic content
would also appear to be applicable to extrapolation in either
the frequency or the time domain. For example, the fact
that the analytical form of the transfer function is assumed
in advance for these curve-fitting methods would appear to
afford possibilities for analyzing only a part of an input and
response to establish the coefficients of the transfer function
whereas the Fourier analysis, by the nature of the limits of
the Fourier integral, requires that a steady-state or a constant-
amplitude oscillation be obtained. This apparent advantage
of the curve-fitting methods in that the transient is mot
required to reach steady state has, in general, proven to have
definite practical limitations. In the application of both
Fourier and curve-fitting methods, it has been found that
time transients that do not closely attain steady state do not
produce accurate frequency-response data.

Figure 12, which shows the time history of a rectangular-
pulse elevator input and the response in pitching velocity
of the fighter, may be used to illustrate these practical
limitations. The data were analyzed in three stages. The
response was first considered, in the time interval from
0 < t < 0.70 second, to be the response of the fighter to an
approximate step where the pitching velocity appeared to
reach a steady state before the elevator was again disturbed.
Time increments of 0.05 second were used to obtain the
frequency response of this portion of the time histories by
the Prony, Donegan-Pearson, and manual Fourier methods.
(In this analysis, the Prony method required 16 man-hours;
the Donegan-Pearson method required 9 man-hours.) In
addition, check points were obtained by the manual Fourier
method (by using Simpson’s three-point rule of integration)
with time intervals of 0.10, 0.025, and 0.0125 second. The
frequency-response results of this analysis are shown in
figure 14 and, although all the methods closely agree, the
frequency response appears to be quite different from that
indicated in figure 6 which was obtained for the same airplane
at the same flight conditions. |

The source of this discrepancy was determined when the
time histories shown in figure 12 were again analyzed by using
the Donegan-Pearson method at 0.05-second intervals to a
time of 1.40 seconds where the response still had not ap-
proached a steady state too closely, but the length of the
record used had been doubled and the effective amplitude
had been more than doubled. A third analysis was made
by using the Donegan-Pearson method at 0.10-second inter-
vals to 2.10 seconds at which time its steady-state value was
closely attained. The frequency response obtained by using
each of the three record lengths is shown in figure 15 together
with the frequency response obtained for the fighter (by the
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Figurs 14—Frequency response of the fighter relating pitohing
velocity to elevator deflection at M=0.6 and h,=10,000 feet as
determined from first one-third of rectangular-pulse-input time
history. .

Donegan-Pearson method) from figure 6. It may be seen
that, when the first one-third of its response was analyzed,
the record was short, and a steady state had not been
reached ; these factors precluded an adequately precise defini-
tion of the time response and an erroneous frequency response
was obtained. When the length of the record was doubled,
a more correct trend became apparent but, because a steady
state had still not been defined, some fairly large discrepancics
persisted, particularly with regard to the static value of the
frequency response (the frequency-response curves of figure 6
being used as a basis for comparison). When the analysis
included the entire response, even though the time interval
used in the analysis was doubled, a close agreement with
the frequency response obtained from the step input was
obtained. Reference 17 recommends that enough of the
response time history should be taken to cover the natural
period of the system.
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Fiaure 15—Frequency response of the fighter relating pitching
velocity to elevator deflection at M=0.6 and hp=10,000 feet as
determined from portions of rectangular-pulse- and step-input
time histories by using the Donegan-Pearson method.

OTHER CAUSES AND EFFECTS OF ERRORS

. In the determination of transfer functions from inputs and

outputs having regions of low harmonic content, an advan-
tage has been indicated to the approach of fitting an analyti-
cal expression to experimental data. In the authors’
opinion, this curve-fitting technique, as compared to the
Fourier analysis, is of particular merit if there is reasonable
confidence that the assumed analytical expression is of the
correct form for the system being analyzed. In this manner,
another condition (the form of the transfer function) is
stipulated which the analysis must obey. In mathematical
processes, the more conditions correctly stipulated, the more
precise the results. On the other hand, errors in the transfer
function or frequency response as obtained from the curve-
fitting methods, due to either the wrong assumption of the
form of the transfer function or to the errors in the calcula-
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tions, are not readily apparent since the assumption of a
given form will usually give variations that appear logical.
However, as has been pointed out, certain checks, such as
the use of the inverse Laplace transformation, are available
for comparing the time response predicted from the transfer
functions with the time-response curves from twhich the
transfer functions were derived.

In the Fourier methods, inaccuracies are, in general, more
readily discernible than in curve-fitting methods. In the
use of Fourier methods, there has been found evidence of
discrepancies attributable to three causes (as pointed out in
ref. 10): the lack of harmonic content of the Fourier integral,
the use of too large time intervals in the time domain to
efford accuracy in the frequency domain, and the incorrect
synchronization of input and response data in the time
domain. . ‘ :

The first of these errors has already been discussed in the
consideration of the effect of input on*Fourier methods and,
as has been pointed out, is usually discernible by divergence
of the curves in some small range of frequencies.

The second of these errors, that of too large time intervals,
is generally indicated by a scattering of the data points in
the frequency domain where the magnitude of scatter usually
diverges rapidly with increasing frequency. Insight into the
cause of this scatter may be seen in the characteristics of the
Fourier transform where, at each frequency, the transient
¢(¢) is multiplied by a sine and cosine wave of unit amplitude
and where the resulting area under the two product curves
determine the coefficients of the real and imaginary parts of
the complex variable in the frequency domain. As fre-
quencies greater than the natural frequency are investigated,
the differences in the positive and negative areas of the
product curves grow smaller (compared with the magnitude
of the individual arees) so that the effect of small errors is
magnified. Thus, small inaccuracies in the representation
of the transient curve become more prominent as higher
frequencies are investigated and appear in the frequency
domain as scatter. Several estimates of the frequency at
which scatter will become important, for the different Fourier
methods, based on the time interval chosen, have been given
in the section entitled “Description and Discussion of
Methods.”

A typical occurrence of scatter due to the choice of too
large a time interval was obtained when the response of a
free-fall model, the characteristics of which are given in
table I, was analyzed at 0.10-second intervals by the manual
Fourier (numerical-integration) method. The elevator input
used and the response of the model in angle of attack are
shown in figure 16. The frequency response as determined
by the numerical manual Fourier, the Coradi harmonic
analyzer, and the exponential-approximation methods of
analysis are shown in figure 17. The scatter of points
obtained by the manual Fourier method of numerical
integration occurs at frequencies greater than about 8 radians
per second. Further analysis with smaller time intervals
of, say, 0.05 second should provide better results in this
region. :
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determined by several methods.
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In the study of missiles and free-fall models where low
damping is generally encountered, the use of the exponential-
approximation method is particularly useful and requires &
minimum of time. The response in figure 16 was analyzed
by both the least-squares (Prony) method with 0.10-second
intervals and by direct computation. Both gave identical
coefficients and the frequency respomse obtained by using
these coefficients is also shown in figure 17. The Donegan-
Pearson method was attempted with this type of response
but did not produce coefficients that represented this lightly
damped system as exactly as it did for systems with high
damping. The representation of the time response by the
derived transfer function is illustrated in figure 16 where the
inverse Laplace transform was applied to the transfer
function obtained by the Donegan-Pearson and exponential-
approximation methods to predict the response to a step.
The reason for this condition is that the transfer coefficients
which primarily determine the period and damping of the
oscillation are determined by the double integration and
integration, respectively, of the output. The smoothing
effect of these integration processes on any existing oscillation
does not therefore enable accurate detection of the oscillation
characteristics.

Although scatter obtained by using the Fourier approach
is indicative of inaccuracies, the converse does not apply
inasmuch as the. absence of scatter in the use of Fourier
methods is not an indication of correctness. An illustration
of this point was obtained in the analysis of the frequency
response of the transport, tested under the conditions given
in table I. The response in pitching velocity to an clevator
input is shown in figure 18. The manual (numerical-
integration) Fourier method, analyzed at 0.20-second inter~
vals, was used to determine initially the response at 1, 3, 4, 5,
and 8 radians per second and these frequency-response
points are indicated in figure 19. Although the amplitude
ratios and phase angles at the frequencies investigated did
not indicate scatter, when two additional fréquencies (6.5
and 7.5 radians per second) were investigated, the scatter
became apparent. At a smaller time interval of 0.10 second,
the control input and time response were analyzed by using
the Fourier synthesizer, Donegan-Pearson, and again the
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Ficurs 18.—Time history of elevator input and pitching-veloecity
response of the transport at M=0.268 and h,=5,000 feet.
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hp=15,000 feet as determined by several methods.

manual (numerical integration) Fourier methods. Although
small differences in the results are apparent in figure 19,
they do agree sufficiently well for most purposes. A check
point at a frequency of 8 radians per second and with &
0.06-second time interval was made with the numerical-
integration Fourier method. The result essentially sub-
stantiated the value determined with 0.10-second time
intervals.

The third mentioned cause of error often incurred in the

Fourier analysis was referred to as incorrect synchronization
of the input and response data in the time domain. A shift
in the correlation of the time scales between input and out-
put, in turn, causes a change in the phase angles obtained
in the frequency domain by an amount directly proportional
to the frequency. These erroneous values of lag or lead will
be hard to detect regardless of whether Fourier or curve-
fitting methods are used since incorrect but apparently
logical frequency-response curves will usually occur.

In order to avoid or reduce errors in the determination of
transfer functions from flight data, it is highly desirable to
use as large a control deflection as possible, but the magnitude
of this control deflection must also be compatible with the
requirement that the stability parameters of the airplane
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remain within their linear range. It also appears highly
desirable to analyze responses from two or more input
shapes at a given flight condition. A comparison of the
frequency response obtained from the same record by
different methods has also proved a useful check.

As mentioned previously, examples indicating the times
required to reduce flight data to frequency responses by the
various methods discussed herein are summarized in table IT.
The table enables the weighing of the time factor in choice
of & method; however, the choice depends on other factors
as well, such as availability of machine computing equipment
and limitations inherent in the various methods as have
been discussed.

CONCLUDING REMARKS

In the foregoing study a number of considerations are
indicated which pertain to the choice of methods in the
determination of transfer functions and frequency response
from transient data. These considerations may be sum-
marized as follows:

In the methods which involve the analysis of transient
responses over short periods of time, a control input should
be used that will affiord (a) a close approach to a steady-
state condition and (b) response amplitudes and harmonic
content (covering the frequency range of interest) large
enough to give good instrument and reading accuracy yet
small enough to keep the saircraft from departing from the
flight condition for which the response data are desired.
When flight data are analyzed, it appears highly desirable,
2s a check on the determined transfer function, to obtain
responses from two or more input shapes at a given flight
condition. A comparison of the frequency response ob-
tained from the same record by different methods has also
proved & useful check.,

The method involving the oscillation of an aircraft
through use of sinusoidal control inputs requires a large
amount of flight time but a relatively simple analysis.
Satisfactory date may be obtained with & human pilot
generating an approximate sinusoidal control input. For
modes of aircraft motion which are nearly critically damped,
the large amount of flight time can be reduced somewhat
since continuous records may be taken while the frequency
of oscillation is slowly changed to cover the frequency range
desired.

Two manual Fourier methods of analyzing arbitrary in-
puts and their responses were investigated. In the first
approach, analytical expressions within discrete intervals are
fitted to the time response and input, and terms of the Fourier
integral are obtained analytically. In the second approach,
the time response and input functions at selected times are
first multiplied by the sine and cosine functions appearing in
the Fourier integral and the resulting product curves are
integrated numerically. The first approach appears to be
basically more accurate when utilizing manual computing
but is not as flexible or as suited to machine calculations as
the second approach. Special machines for accomplishing &
Fourier analysis, such as the Fourier synthesizer and Coradi
harmonic analyzer, afford & means for significantly reducing
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calculation time as compared to a manual approach. The
two machines mentioned give results comparable to those
obtained by the usual manual procedure in numerical Fourier
analyses. Because of its principle of operation, the Coradi
harmonic analyzer appears to be basically more accurate
than the Fourier synthesizer and, in general, gave satisfactory
results out to somewhat higher frequencies. The Coradi
harmonic analyzer appears more capable of handling random
variations than the Fourier synthesizer. The mechanical
application of the numerical Fourier analysis through use of
punch-card calculating machines (for example, IBM equip-
ment) is & means for appreciably reducing calculation time.
This approach appears to afford the possibility of obtaining
greater precision in the calculations since the rapid computa-
tion makes feasible the use of smaller time intervals combined
with more complicated and precise integrating formulas.
The exponential-approximation and Donegan-Pearson
methods establish an analytical expression for the transfer
function which, in terms of the imaginary frequency variable,
is continuous in frequency. The Fourier apalysis, in con-
trast, does not furnish analytical expressions and gives values
of frequency response only at selected frequencies. The
Donegan-Pearson and Prony methods can be used satis-
factorily when reasonable confidence exists as to the analyt-
ical forms of the transfer function (since the form must be
assumed in advance). This approach will not, however,
detect details of the frequency response that cannot be ap-
proximated by the assumed form even if such characteristics
exist in the time response. In contrast, Fourier analysis will
detect all details of the frequency response which are within
the accuracy of the measurements and the calculation pro-
cedure. The exponential-approximation method is best
suited for lightly damped systems where the control input

.response.
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closely approximates & step or is of a form that possesses a
simple Laplace transform. The longitudinal transfer func-
tions of oscillatory aircraft can often be determined by simple,
direct computation from the measured period, damping,
steady-state value of the response, and phasing of the time
Nonoscillatory transients that do not aflord
direct approximation of the response may be approximated
by a least-squares procedure known as the Prony method.
The Donegan-Pearson method appears best suited to systems
that are not highly oscillatory and works well for inputs that
are not necessarily represented by analytical expressions.
‘When least-squares procedures must be gpplied in the Prony
method, the Donegan-Pearson method generally affords
shorter calculation time. When more than a few discrelo
frequencies are desired, the Donegan-Pearson method affords
a more rapid approach than manual Fourier analysis.

Fourier methods are more critical to the forms of the input
than the Donegan-Pearson method and inputs should be
chosen to avoid regions of low harmonic content in the fre-
quency range of interest. Although the Donegan-Pearson
method appears to interpolate satisfactorily over regions of
low harmonic content, it does not appear to be applicable to
large extrapolation in either the frequency or time domain,
In the use of this method, as in the Fourier methods, it is
necessary to obtain data which closely approach the steady
state in order to predict accurately the low-frequency-re-
sponse characteristics.

LANGLEY AERONAUTICAL LLABORATORY,
NaTionan Apvisory COMMITTEE FOR ABRONAUTICS,
Lancrey Fiewp, Va., June 4, 1953,



APPENDIX A

ESTIMATION OF THE ERRORS ENCOUNTERED USING A CONTROL INPUT THAT CHANGES IN FREQUENCY AT A
CONSTANT RATE

Much of the extensive flight-test time involved in obtain-
ing frequency-response data by using a sinusoidal input can
be eliminated if the sinusoidal inpuf is continuously changed
in frequency at a slow rate. Since transients are constantly
being introduced and dying out because of this constantly
changing frequency, the error introduced by assuming that
the response to this wave approximates the steady-state
response to a constant-frequency wave may, at any given
frequency, be & function of the natural frequency and damp-
ing of the airplane as well as the rate at which the frequency
is changed. Investigation of the magnitudes of these errors
in amplitude and phase angle based on the response of the
airplane to a constant-frequency sinusoidal input was
performed as follows:

If a wave form of constant amplitude and constantly
changing frequency is compared with a sinusoidal wave
form having the same amplitude but constant frequency,
there will occur, at a time herein assumed to be zero, a
condition where the amplitude and instantaneous frequency
of the two waves will be identical. In the following deriva-~
tion, the frequency at this instant is defined as w, and the
two waves are adjusted so that at this instant both waves
are at their maximum amplitude. A second-order system is

considered. " The differential equation relating the response .

of the system to a constant frequency input is then

2
(2,+2—‘°D+1> =08 wol (A1)
W™ Wy

Similarly, for the varying cosine wave, this differential

equation is ,

2

(w%+i_i D+1> z=cos (woL-Ct)t (A2)
Comparison of the two inputs shows that their difference
is effectively a phase difference which varies as the parabola
¢=0p. Since a time-response solution of equation (A2) was
too cumbersome to be feasible, a linear-phase relationship
was chosen that would approximate the parabolic-phase
relationship and would afford a relatively simple time-
response solution, A wave having a linear-phase differ-
ence with a constant-frequency wave is, of course, another
constant-frequency wave of a different frequency. Although
a constant-frequency wave would not appear to be a good
approximation to the variable-frequency wave under con-
sideration, it will be shown that the difference between the
original constant-frequency wave and the varying-frequency
wave may be closely approximated by the difference between
the two constant-frequency waves within the region of interest,

provided the relationship between their frequencies 1is
properly selected.

The procedure used for establishing the frequency of the
wave used in the approximation, in terms of the rate of
change of frequency of the variable-frequency wave, is as
follows: The actual phase-angle variation and the assumed
approximation are illustrated in figure 20. The time inter-
val over which the actual phase-angle variation was approxi-
mated was the interval which would enable transients intro-
duced by the varying-frequency wave to reduce to one-
twentieth of their initial value (— T =<¢<0). The parab-
ola was approximated by a straight line chosen to pass

through the parabola at the times =0 and {= —%Tum. The

approximation was chosen to balance the area between the
parabola and the straight line in the region of interest.
Substitution of the approximate phase angle into the varying-
frequency input for the right-hand side of equation (A2)
gives

cos (g CTym ) ¢ (A3)

The relationships Tum=;_% and Dw=‘%—;(wot+0ﬁ)=20 may
be substituted into equation (A3) to give

(o rin)®
COS | wy o

(A4)

Fieure 20.—Straight-line approximation to the parabolic-phase-
angle variation which exists between a constant-frequency wave
and a wave whose frequency changes at a constant rate.
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For an example case where Dw=1 radian per second per
second and w,=8 radians per second, the original constant-
frequency wave (eq. (A1)) and the varying-frequency wave
(eq. (A2)) are shown in figure 21 together with the wave used
to approximate the phase-angle relationship between the
original two (eq. (A4)). In addition, the difference between
the original constant-frequency wave and the varying-fre-
quency wave is compared in figure 21 with the difference be-
tween the original constant-frequency wave and the wave
used in the approximation of the phase-angle relationship.

The errors in phase and amplitude incurred in the response
of the second-order system and caused by the use of a vary-
ing-frequency-wave input instead of a constant-frequency-
wave input may be obtained by determining the difference
between the phase angles and amplitude ratios obtained from
‘these two inputs. These errors are given by

c ( -—D(‘:)t
08 | w, o

3
T on

CO5 wob

,+2fD+1

Ze

(48

The substitution of D=jw, for the response to cos w4 and
the substitution of D=3 ( «,

cos (oo

terms of amplitude and phase angle

for the response to

t will, at ¢=0, give the error relationship in

N ECIREE)!
(s )’Hzf oo ]

[z.(0) I

o w, Do
-1 2 Wn -1 % wx  {ws
$o=—tan™! — Agttan~t — Rt
@, Do
1—(— 1—
w Wy g‘wz

Various values of damping ratio {, frequency ratio wo/ws,
and the rate of change of frequency ratio Dw/w,? were sub-
stituted into the foregoing relations in order to obtain plots
of phase error and amplitude error (related to the response
to & pure sinusoidal input) at zero time. Figure 22 presents
plots of these errors over a range of values of parameters
pertinent to most aircraft. This figure indicates that the
errors increase rapidly with & decrease in the value of damp-
ing ratio below 0.707. At low values of damping ratio, ex-
cessively large errors will be obtained unless the frequency
ig varied at an extremely low rate in the vicinity of g‘—:=0.01.

The greatest errors in all cases appear to occur in the vicinity
of the natural frequency, the errors approaching zero at high
and low values of the frequency ratio.

For the tests presented in the body of this report, the air-
plane tested had a damping ratio of about 0.7. The rate

Anplitude. error, percent
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Fraure 21.—Time history of coSine wave forms in tho vicinity of
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w,=8 radians per second.
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Figume 22.—Variation in amplitude and phase errors obtained when
using o sinusoidal input, which changes frequency at a constant
rate, to simulate a steady sinusoidal input.

of change of frequency for these tests was not constant but
rather was held constant at one frequency for several oscilla-
tions before progressing to & new frequency. However, aver-
aging over a range of frequencies gave an average value of
Dofw,® of 0.06. Figure 22 indicates an error in amplitude
and in phase angle of less than 10 percent for the airplane
tested at these conditions. This error falls within the scatter

shown in figure 3.



APPENDIX B

METHODS OF FOURIER ANALYSIS WHEREIN THE TRANSIENTS ARE REPRESENTED BY A SERIES OF POLYNOMIALS

A representation of an approximate step-control input and
the time response of pitching velocity of the fighter as shown
in figure 5 involved the division of the input into three
intervals of time and the division of the response into five
intervals of time. ’

The input, which reaches a steady-state value of 0.74° at
t=0.10 second, was represented within the intervals by the
equations

5o () =208 (0=t 0.05)
5,(1)=13.8t(—0.6¢  (0.05<¢=0.10)
8(8)=0.74 0.10S s )

The Fourier transform of the input is then
0,05 0.10
8(s)=20 ﬁ fg-tet sy f (13.86—0.64)6= 7wt dt -
0.05
0.74 ) e~detde

0.10

13.8¢70-10J0— 11, 8¢~0-057e  4((1—g0-07e
3 +J ( 3 )

(8} [

or in trigonometric form

8y =22 c08 0.100— 152 cos 0.050—20 sin 0,050+
W w w
5] 22 6in 0.050—"2:2 6in 0.100-+23 (1—cos 0.05w):| (B1)

where the substitution of selected values of frequency o will
afford the real and imaginary coefficients of the Fourier trans-
form at each frequency chosen.

The time response of pitching velocity, shown in figure 5,
was divided into discrete intervals and the coefficients of the
cubic equation

Do(t) =at*+-b*+-ct+d

were found as follows:

For the time interval 0=#<0.10, inspection of the curve
indicates that it may be closely approximated by a cubic
without lower-order terms so that b=c¢=d=0 and, at
t=0.10 second, the relationship is written

Dé(t)=as
0.0049=a(0.10)3
4.9=a
The equation for_this time interval becomes
Dgy(t) =4.98

For the time interval 0.10<¢=<0.30, a quadratic repre-
sentation, since the transient in this interval does not indicate
the need of a cubic representation, will be assumed where
the coefficients are found by the solution of the following
equations:

D6(t=0.10) 0.0049=(0.10)%+(0.10)c+d
D6(t=0.20) 0.0489=(0.20)%-- (0.20)c+d
Do(t=0.30) 0.0733=(0.30)%0+(0.30)c+a

The solution by ‘‘successive subtraction” is illustrated here
since equal time intervals were used.

0.0049—0.0489=(0.01—0.04)5+(0.10—0.20)c+ (1—1)d
0.0489—0.0733=(0.04—0.09)6-+}(0.20—0.30)c+ (1—1)d
0.0440=0.036-+}0.10¢
0.0244=0.05504-0.10¢
0.0440—0.0244=(0.03—0.05)b+(0.10—0.10)¢
0.0196=—0.02b
—0.98=b
0.734=c¢
—0.0587=d

The equation for this time interval becomes
Do, (t)=—0.98:*1-0.734¢—0.0587

For the time interval 0.30=<¢= 0.80, the slope of the tran-
sient is zero at a time of 0.55 second. Use of this condition
is desirable in evaluating the constants over this interval;
therefore,

D6(t=0.30) 0.0733=(0.30)%a-}(0.30)%b (0.30)c+-d
Do(t=0.55) 0.0856=(0.55)%a+- (0.55)%-- (0.55)c+-d
Do(#=0.80) 0.0793=(0.80)%a+- (0.80)%6+- (0.80)c-}-d
D?6(¢=0.55) 0=3(0.55)%¢-2(0.55)b+c¢

and the equation for this time interval becomes
Db, () =0.1928*—0.465512+0.3379¢t-+0.00862
For the time interval 0.80 < ¢< 1.40, the solution of

Do@=0.80)  0.0793=(0.80)%z+} (0.80)% (0.80)c+d
Do(=1.00)  0.0723=(1.00)%a+ (1.00)%5-+} (1.00)c+d
Do@E=1.20)  0.0665=(1.20)%a+ (1.20)%b-+ (1.20)c+d
Do@E=1.40)  0.0636=(1.40)°a+ (1.40)?5+} (1.40)c+d

gives an equation for this time interval of
D6y(#) =0.0354*—0.091251*-}+0.0425¢t10.08565
For the time interval 1.40=¢{=< «, the equation for a
constant value from steady state to infinity becomes
Do(t=1.40) 0.0636=d
Therefore,

Do, (£)=0.0636
1107
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The Fourier transform of the response is now evaluated by using the foregoing analytical expressions by summing the

following integrals:
Déw)= fo " Do@)e-roids

0.10 0.30 0.80
=4.9f Bedutdi— (0.98t*—0.7342--0.0587) e~ “‘dt—l—f (0.192£*—0.4655t*-+0.3379¢t1-0.00862) ¢~/ «*dt -}
0 0,20

a.10

1.40 ®
f (0.0354£3—0.09125t*4-0.0425t-1-0.08565) e~/ “‘dt—l—0.0636f e 1otdt
0.50 1.4

The integration of these terms (given in text after eq. (6)) leads to the following relations:

Dowy="38 1 [(53;8 0.391>+j (%):I (cos 0.10w—jsin0.1%)%[(2'395—!-0.0358)-]—1'<%7—5>:| (cos 0.30w—3 sin 0.30w)—

=

1;)8,8+0.0031>—j (ﬂ?)] (cos 0.800—; sin 0.80) —— [(0'42 48+o.004:7> +j (0'1:'“’)] (cos 1.40w—j sin 1.40w)

w2

(B2)

where the substitution of selected values of  affords the real and imaginary coefficients of the Fourier transform of the
pitching-velocity response of the fighter. The relationship between the output and the input is given by equations (4), (6),
and (7) and a plot of these relationships at several values of frequency are shown in figure 6.

APPENDIX C
APPLICATION OF THE LAPLACE TRANSFORM TO A RESPONSE EQUATION

The response equation for the normal acceleration, as used
in the Prony method described by Greenberg in reference 4, is

n(E) =n+ € (J; sin wi+Ja cos wf) (C1)

where n,, is the normal acceleration at steady state. The
equation for a step control input of magnitude §, is as
follows:

8(t)=3, (C2)

The Laplace transform, indicated by the ope'mtor p when
applied to equation (C1), gives

(t=0)

Ny | Jiw . Jilp—a)
P @—a'+e* p—af'+of

and equation (C2) becomes

2(p) (C3)

_%
8(p = (CH

By definition, the transfer function is the ratio of the Laplace
transform of the output to the Laplace transform of the inpub
(initial conditions zero)

n(p)_1 n o Jiwp+Jap(p—a)

5@ &L °' pP—2aptaito?
_1 L S+ (Jiw—Jaa) p
sL ' p'+bp+k

where the substitution of b=—2a and k=a?4-«* has been
made. The equation may be rearranged to agree with the
form of equations (17) so that

Ngs+Jo g+ Jiw—Jea | kn,,
S 5 5,
p*+bp+-k

where the substitution of je for the operator p will produce
the frequency-response relationships,

(Cb)

(Ce)

n
;@)=



APPENDIX D

AN INTEGRATING MATRIX

The Donegan-Pearson method (ref. 17) of analysis of | Solution of equation (D1) for values of the integers n=0, 1,

transient responses suggests a matrix solution which, if | 2,3,4, ... m gives
followed, requires some knowledge of integrating maftrices. .
An integrating matrix believed to be somewhat easier to f " ydi=0 (n=0)
use than the one suggested in reference 17 is presented here famy
together with its derivation. .
If an arbitrary time-curve is chosen and divided into f » ydt=g (Y14 8Yn—Yn i) (n=1)
equal intervals of time, then by Simpson’s rule a parabola 12
may be described through three adjoining points . Af
y ﬁ Y di=15 (Y2 F13Yn-1t7Ya—Yn+) (=2)
n—1
AT [ v Gt 1300 2 F T vr)  @=3)
I l I n—1
P ‘ At
ol } I I}’Ml Il . ft ydt:ﬁ (5Yn—sT13Yn—3+12yp_a+ 1221+
| I a1
———t t
-t fa a4l 7ya'—yn+1) (72'=4)
By the use of equation (A4) of reference 18, t At
[ ylt=33 et 13 o0 H12mnon - - F
ydi= ( At> ,._+< At) \ ( At) . 1 =
f,._l Yy 12 Yn—1 3 Y. + 12 Ynt1 (D ) 12yﬂ_1+7’y“—"y.+1) (n=m)
Written in tabular form (without fixing a value for Af), the coefficients of i appear in the integrating matrix in the form
¢ 0 At 2 At 3A 4 At 5 AL A TA
0 0 0 0 0 0 . 0 0 0
Al 0. 416667 As 0. 866667 AL —0, 083333 A? 0 0 0 0 0
24 416687 At 1. 083333 At . 583333 Af —0. 083333 Af 0 0 0 0
3 AL 416667 At 1. 083333 At 1, 000000 A¢ . 583333 AL —0.083333 At 0 0 0
44l 416667 A2 1. 083333 A¢ 1. 000000 A? 1.000000 A . 583333 Af —0. 083333 A¢ 0 0
b At . 416687 At 1.083333 A¢ 1. 000000 At 1. 000000 Af 1. 000000 A2 . 583333 At ~—{0., 083333 Al 0
[).14 . 416667 Af 1083333 Af 1, 000000 Af 1000000 Af 1. 000000 A¢ 1. 000000 Af 583333 Af —0, 083333 Af

The use of this integrating matrix simply requires the accumulative summation of

(0.416666 Af)y,_1+ (0.666666 Af)y,— (0.083333 At)Yat1
which gives the area lying between n—1 and n added to the area already found from 0 to n—1.
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