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A COMPARISON OF THE SPANWISE LOADING CALCULATED BY VARIOUS METHODS
WITH EXPERIMENTAL LOADINGS OBTAINED ON A 45° SWEPTBACK WING
OF ASPECT RATIO 8.02 AT A REYNOLDS NUMBER OF 4.0x10¢'

By WiLriam C. SCENRIDER

SUMMARY

Ezperimental force and moment data obtained by pressure
measurements on a wing of aspect ratio 8.08, 45° sweepback of
the quarter-chord line, taper ratio of 046, and NACA 63,4012
airfoil sections have been compared with the caloculated loadings
obtained by the standard methods proposed by Weissinger,
Falkner, and Multhopp, as well as by several variations of these
methods. The most accurate shape of the span load distribution
was predicted by the standard Multhopp 23X1 solution. The
standard Falkner 6X3 solution failed to predict the experi-
mental dip in the span load distribution at the root stations.
All methods that predicted a fairly accurate loading shape pre-
dicted the lift-curve slope about 8 percent low. Since all the
methods are based on thin-wing theory, the underestimation of
the lift-curve slope 18 probably attributable to the finite thickness
of the wing. On the basis of the present calculations, the Weis-
* gigner method, when the number of control points was increased
from 7 (the number suggested by Weissinger) to 15, or the
Multhopp method, when using at least 15 control poinis, i8 a
good compromise bctween accuracy of the results and time re-
quired for a solution.

INTRODUCTION

Various methods exist for the calculation of aerodynamic
forces on swept wings but only limited experimental corrobo-
ration of the different approaches has been made. As early
as 1947, a comparison with experiment was made of the
various methods available at that time (fef. 1), but the com-
parison was limited to experimental data obtained on wings
of low aspect ratio; and, in addition, the experimental load
shape was somewhat inadequately defined by the small num-
ber of spanwise stations available. No comparisons have
previously been made for wings having both high aspect
ratio and large sweep angle.

Experimental data have been obtained in the Langley
19-foot pressure tunnel on a wing of aspect ratio 8.02, 45°
sweepback of the quarter-chord line, taper ratio of 0.45, and
NACA 63,A012 airfoil sections parallel to the plane of sym-
metry. Pressure data were available from 8 spanwise sta-
tions, including one at the plane of symmetry. The present
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report compares the loadings computed by the second-order
lifting-line method of Weissinger (ref. 2) and the lifting-sur-
face methods of Falkner (ref. 3) and Multhopp (ref. 4) with
the experimental loading.

The effects of the number and distribution of spanwise
control points, the chordwise distribution of control points,
the root-section discontinuity, and the chordwise distribution
of circulation on the spanwise loading, lift-curve slope,
center of pressure, pitching moment, and induced drag are
examined and discussed. The applicability of the calcula-
tions at high lift coefficients is also investigated. Also pre-
sented are spanwise loadings predicted by the rapid approxi-

~ mate methods of Diederich (ref. 5) and Jones (ref. 6).

SYMBOLS
%9 wing loading parameter
g’% unit wing loading parameter
'L
c section lift coefficient,
el z\_ . (&) e Z
cos a f (S,—S,)d(—)—sm o f (S,—S,)d(—)
= ’ (3) i

1 610
Cr wing lift coefficient, = 5] = dn or FIA
Cu wing pitching-moment coeﬂiclent.
Co wing drag coefficient, g

1
Cp, induced-drag coefficient, ; % aidy
c local wing chord, ft
c mean wing chord, %, it
b wing span, ft
Se wing area, sq ft
.  H—p

S pressure coefficient,
H free-stream total pressure, Ib/sq ft
D local static pressure, 1b/sq ft
L lift, 1b
D drag, 1b
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free-stream dynamic pressure, % pV?, 1b/sq ft

free-stream velocity, fps.

density of air, slugs/cu ft

chordwise coordinate, positive rearward, ft
spanwise coordinate, positive right, ft
normal coordinate, positive up, ft

nNR HT < K

nondimensional spanwise coordinate, 31/%

longitudinal coordinate of center of pressure, ft

lateral coordinate of center of pressure along mean
aserodynamic chord, ft

Cr, lift-curve slope per degree

<8l 3

0 angular chordwise coordinate, cos™ <1__E/x§ ) Ta~
dians

%’f ratio of increment of local velocity caused by ad-
ditional type of load distribution to free-stream
velocity

Qo,s,... 1z coefficients of terms in Fourier representation of

chordwise loading

o geometric angle of attack, deg

ay induced angle of attack, deg

Subscripts:

° upper surface

l lower surface

J forward of point of maximum thickness

r rearward of point of maximum thickness

MODEL AND TESTS

The wing tested (ref. 7) had an aspect ratio of 8.02, 45°
sweepback of the quarter-chord line, taper ratio of 0.45,
NACA 63,A012 airfoil sections, and no geometric twist (fig.
1). The wing was constructed with a solid steel core, and
measurements of the twist due to aerodynamic loading

Section A-A
(enlarged)

Fiaure 1.—Geometric characteristics of model. Aspect ratio, 8.02;
taper ratio, 0.45; airfoil section, NACA 63,A012. (Dimensions are
in inches except as noted.)
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showed it to vary lineatly with lift coefficient. Under the
test conditions of the subject wing, the twist amounted to
about 0.2° at C,=1.0.

Pressure readings were obtained at 225 pressure orifices
distributed among 8 stations located at the plane of sym-
metry and at 3, 10, 30, 55, 75, 90, and 96 percent of the
semispan. A typical chordwise distribution of the orifices
is shown in figure 1. Further details of the orifice locations
and the model can be found in reference 7.

The tests were conducted in the Langley 19-foot pressuro
tunnel at a Reynolds number of 4.0x 10°% based on the
wing mean aerodynamic chord, which, for the tunnel pres-
sure (33 Ib/sq in. abs) used in these tests, corresponded to a
Mach number of 0.19. Pressure distributions were obtained
through the angle-of-attack range from —1° to 30°,

The wing was also tested with two full-chord fences located
at 0.575b/2and 0.8005/2 and one partial-chord fence extending
over the rearmost 65 percent of the chord at 0.8905/2.
Similar pressure measurements were made with this configu-
ration except that no pressure date were obtained at 3
percent of the semispan.

REDUCTION AND CORRECTION OF DATA

The pressure coefficients were numerically integrated at
each station to obtain section data (lift, drag, and pitching
moment). The span loadings indicated that a lift distri-
bution existed at zero lift which, flow measurements showed,
was due mainly to a spanwise stream-angle variation in the
region occupied by the model. Inasmuch as no satisfactory
method for correcting the individual pressure coefficients
exists, the experimental basic loading was subtracted from
the integrated section data. Further details can be found
in reference 7.

The measured twist of the wing due to deflection under
load indicated that the root sections were at about 0.2°
greater angle of attack at a lift coefficient of 1.0 than were
the tip sections. The jet-boundary-induced angle variation,
calculated by the method of reference 8, showed that at the
same Jlift coefficient the tip sections were effectively at
about 0.2° greater angle of attack than the root section.
Thus, the sum of the jet-boundary-induced angle and the
twist of the wing due to load resulted in 2 nearly constant
spanwise angle-of-attack distribution, so that no correction
to the spanwise lift distribution was required to correct
for either angle variation.

Jet-boundary corrections and twist-due-to-load correc-
tions were applied to the total wing forces and moments by
using the weighted average of the remaining spanwise angle
distribution. These corrections which are applied to the
angle of attack, drag, and pitching moments are listed
below. The,following jet-boundary corrections, as calcu-
lated by the method of reference 8, are also listed (although
not, used in this report) for the convenience of the reader:

corrections and twist-due-to-
(ref. 8) load corrections
A@ deg.ceeecan.o 0.387CL 0.4700;
ACD e 0. 00634 (2 Q. 00778013
ACmcccccceeee| Q.00350L 0.000250
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Tare and interference corrections have also been applied to
the force-test data, and force-test pitching-moment coeffi-
cients have also been corrected for the pitching moment due
to the zero-lift wing loading. Spanwise integration of the
section force and moment distributions obtained from the
pressure tests resulted in total wing lift, drag, and pitching-
moment coeflicients.

An indication of the accuracy of the data can be seen in
figure 2, where the total wing lift, drag, and pitching-moment
cocfficients, as determined from both force-test measure-
ments and pressure-distribution measurements, are plotted.
The force-test zero-lift drag coefficient has been added to the
drag coefficients determined by pressure measurements n
an attempt to take into account partially the friction forces.
The agreement of the coefficients determined by the two
methods of testing is very good.

COMPARISON OF EXPERIMENTAL LOADING WITH CALCU-
LATED LOADINGS

In the present section, the experimental loading is com-
pared with loadings calculated by the standard methods
proposed by Weissinger, Falkner, and Multhopp, as well
as by modifications of these methods. These methods
are summarized in table I.

SYSTEM OF IDENTIFYING SOLUTIONS

All the methods of calculation recognize the fact that the
flow through the wing must be zero, and this condition is
fulfilled mathematically at a discrete number of points
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(called control points). The number and distribution of
these points then form a convenient means of identifying
solutions. The identification system used in this report
employs two numbers. The first number following the name
refers to the number of spanwise stations at which control
points are located, while the second number is the number of
chordwise control points at each station. For example,
Falkner 6 X 3 refers to a Falkner solution utilizing 8 chord-
wise control points at each of 6 spanwise stations.

SPANWISE LOAD DISTRIBUTION

As a basis for comparison, the experimental loading at an
angle of attack of 4.7° was chosen. Section lift-curve data
indicate that at this angle the force characteristics are still
linear and tip separation has not occurved. Practically

‘identical loadings were found at lower angles of attack.

For most of the comparisons, data are presented for unit
lift coefficient to facilitate the comparisons of the shapes
of the spanwise load distributions.

Three calculated loadings are compared with the experi-
mental loading in figure 3. These loadings were calculated
by using the procedures recommended by the authors. In
the Weissinger 7 X 1 solution the circulation is assumed to be
concentrated along the quarter-chord line and to vary con-
tinuously across the span. The downwash is then calculated
at 7 spanwise control points on the three-quarter-chord line.
No attempt is made to take into account the discontinuity in
plan form at the root station. The loading calculated by
this method is too high over the outboard portions. In the
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F1gure 2,—Variation of lift coefficient with angle of attack, drag coefficient, and pitching-moment coefficient obtained by total-force
measurements and pressure measurements.
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TABLE I. COMPARISON OF METHODS OF CALCULATING LOAD DISTRIBUTION
Spanwise locatio: Chordsriss location Speclal treatment Chordwiss distribution
Method of control polnts. of control points of root section of vortleity
Welssinger:
[
taerd 0, 0.3827, 0.7071, C.9239 3 Nane Concentrated at
0,0.1951, 0.3827, 0, 3 None Concentrated at <
16X1 O O O, 0,850 i 1
Falkner: ‘
18¢ 19¢ 23¢ e 5c 0c 13¢
m 0.2, 0.5, 0.8 T TS None Concentratedaty-z—iﬁ,w
17¢ 21c
FTET
1 18¢ 23¢
53 0,05,08 A None Ooncentrated at 5 3%, %, 2%,
17¢ 21¢
A
3
1ox1 0 O O o ™ T None Concentrated at §
Multhopp:
8
71 0, 0.5827, 0.7071, 0.9239 T Bent root station | Distributed over chord (ao oot %)
1ax 0,0.1951, 0.3827, 0.5550, 3¢ 0
. 0.7071, L8515, 0.9239, 0.9608 7y Bent root station | Distributed over chord (aa cot E)
1 0, 01851, 0.3527, 05555, 3
tredied) 0.7071, 0.8315, 0.8239, 0.9508 3 None Distributed over chord ((ao oot )
3¢
231 %.% o, 3 (weotd)
standard 0 . 0,905, 0.901. % 4 Bent root station Distributed over chord ( as cot 3
15X2 o 7%,71 Ml%% 0.3455¢ and 0.9015¢ Bent root station Dmﬂhqg‘w over chord
’ (a. cot o-+ar sin a)

1.2 .
el F= g ¥
(‘Fi_’// ."'n-\ ]
Y TR\
N
8 N
X
G¢ N\
(23 o Experimental data (o= 4.7°) \
Weissinger 7x| \\\
4 —— —— Multhopp 23x|
) Falkner 6x3
2
o} | 2 3 4 5 6 7 . 8 9 1.0
F
b/2

F1GURE 3—Esperimental span load distribution compared with span
load distributions calculated by several standard procedures.

Falkner 6 X 3 solution a particular form of a spanwise and a
chordwise distribution of circulation is assumed in order to
define the strength of a number (21) of discrete horseshoe
vortices distributed over the span at each of 6 chordwise
locations. The downwash condition is fulfilled at 3 chord-
wise control points at each of 6 spanwise stations. No
attempt is made to take into account the root-station dis-
continuity. The agreement is fair except at the root stations,
where the experimental dip in loading is not predicted. The
Multhopp 23 X 1 solution assumes & continuous spanwise
and chordwise variation of circulation. The downwash
condition is fulfilled at 23 spanwise control points (approxi-
mately 3 X aspect ratio). The discontinuity is treated by

modifying the geometric characteristics of the wing at the
root.- Good agreement with experiment is obtained with
this method.

All the calculated loadings differ from one another. The
differences are, of course, attributed to the differences in the
assumed loading and the control points used to arrive at a
solution. To check the influence of the number and location
of the spanwise and chordwise control points and the root-
section discontinuity, some of the authors’ recommendations
were disregarded and variations of the methods were used to
calculate the loadings.

Number and location of spanwise control points.—Weis-
singer states in reference 2 that, for straight wings of moderate
aspect ratio, 7 control points are all that are necessary for an
accurate prediction of the load distribution. Schlichting and
Kahlert (ref. 9), however, have indicated that, for swept
wings, if the aspect ratio is increased to infinity, the use of
any finite number of control points will result in a triangu-
larly shaped loading with the minimum at the root. Mult-
hopp states in reference 4 that for accuracy the number of
control points should be about three times the aspect ratio.
To examine more closely the effect of the number of spanwise
control points, several solutions have been carried out in
which this parameter was varied. The Weissinger method
was carried out by using 15 control points and the Multhopp
method was carried out by using 7 and 15 control points.
For each solution, it.was necessary to calculate the con-
stants embodied in the simultaneous equations. The num-
ber of equa,tions to be solved was equal to the number of
control points in & semispan.

Figure 4 () compares the Welssmger 7 X 1and 156 X 1
solutions. Thé 7-point solution predicts too high a loading

-
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(a) Weissinger methods.
(b) Multhopp methods.

F1aure 4.—Effect of number of spanwise control points on the span
load distribution.

toward the tip and too low and broad a loading near the root.
This type of loading results because the control points (at
n =0, 0.3827, 0.7071, and 0.9239) miss the essential varia-
tions in the loading, as can be seen from the experimental
data. In addition, the lower order approximation for the
assumed spanwise loading does not involve enough terms to
describe accurately the load distribution. Increasing the
number of control points to 15 produces & more accurate
loading, since now the spacing of the control points is closer
and more terms are used in the assumed loading.

Figure 4 (b) compares the experimental data with Mul-
thopp’s 7 X 1, 16 X 1, and 23 X 1 solutions. The same
logic applies here—namely, the accuracy of the predicted
load shape increases as the number of spanwise control
points increases.

Obviously, as the number of control points is increased, the
time required to arrive at 2 solution is also increased. From
figure 4, it appears ag if the use of 15 control points for either
the Weissinger or Multhopp method will result in relatively
accurnte loadings with a minimum of time required for the
solution.

In order to predict accurately the loading in the neighbor-
hood of the root, it was necessary to locate control points in
this region. Since Falkner suggests the opposite view in
reference 10, another Falkner solution was carried out, in
which only the location of the control points was varied.
Figure 5 (n) compares the experimental loading with the
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Frgure 5.—Effect of location and number of spanwise control points
on the span load distribution.

calculated loadings obtained with the Falkner 6 X 3 solution
(control points at 7 =0.2, 0.5, and 0.8) and the Falkner 5 X 3
solution (control points at 4 =0, 0.5, and 0.8). Without the
control point at the center section, the center minimum is not
predicted. With the control point at the center section,
however, the drop in loading is carried over too far outboard.
As previously explained, the effect results from too few
control points.

The methods used on unswept wings are such that a
majority of the control points are located at the tip sections
where the loading varies rapidly. Since a drop in loading is
also experienced over the central sections of swept wings, it
was felt that most of the increase in accuracy when the
number of control points was increased was due to the close
spacing of the control points at the root stations. A pre-
liminary study wes made to investigate this point more
fully by using control points at the plane of symmetry and
at 0.1b/2 intervals outboard along the span. The method of
reference 11, which was set up to calculate the downwash
resulting from & given loading, was inverted so that the load-
ing required to induce & given downwash could be calculated.
This method employs & simplified vortex representation
similar to that used by Falkner but does not use the same
mathematical techniques and will be referred to as the
modified Falkner 19X1 method. Twenty-one horseshoe
vortices were distributed over the span along the quarter-
chord line, as in reference 11, and the downwash was calcu-
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lated at 19 control points on the three-quarter-chord line.
Since the loading is symmetrical, only 10 independent
equations, each with 11 unknown loadings, are obtained.
The strength of the tip vortex was assumed to be given in
terms of the bwo adja,cent vortices by a series of the type

Az'24 B2*2, where z is the distance inboard of the tip. The
resulting equation

cic c;c
— =0.995
GLG>v-0.w5 CL

was substituted into the 10 equations to eliminate one
unknown. The equations were then solved for the remain-
ing 10 unknown loadings. No attempt was made to take
into account the root-section discontinuity. The resulting
loading (fig. 5(b)) almost duplicates the experimental
loading

For an accurate prediction of the span loading, it is
apparently necessary that the number and location of the
control points be such that no essential variation of the
loading is missed and that the assumed series for the span-
wise loading be of high enough order to fit the loading curve.

Chordwise distribution of control points.—Figure 6 pro-
vides a comparison of the experimental loading with thai
calculated by the Miulthopp 15X 1 and 15X2 solutions. It
can be seen that the two loadings are in agreement except
at the root stations. In the Multhopp method of calculation
the wing sections are replaced by the mean lines and the
chordwise distribution of ecirculation is given by a finite
number of trigonometric terms. For the 1531 solution,
Multhopp assumes that this distribution is of the form
@y cot 8/2 (which is the theoretical distribution of circulation
on g flat plate at an angle of attack) and calculates the down-
wash at the three-quarter-chord line. For two-dimensional
flow, this assumed circulation will produce a constant down-
wash angle along the chord. However, it can be shown for
two-dimensional flow that, if the chordwise distribution of
circulation is not purely of the cotangent form but is of the

(514

—0.2
0.271 Cit)\mos

7=0.98

form aq cot %-l—al sin 6, where the additional term corresponds

to circular-arc camber, the downwash angle at the three-
quarter-chord point remains unchanged provided that the
same total lift is considered. Effectively, then, using this
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Fiaure 6.—Effect of number of chordwise control points on span load
distribution.
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assumed loading (@, cob 8/2) and calculating the downwash
at the three-quarter-chord line will allow for some camber
effect in the solution. For the 15X2 solut.ion, Multhopp

assumes & distribution of the form a4 cot 5 -I—aq sin 6 (which is

the distribution of circulation along o cu-cular arc at an
angle of attack in two-dimensional flow) and calculates the
downwash at 0.9045¢ and 0.3455¢. Again, the significance
of these two points is that the presence of any proportion of
& third term of the series, a; sin 26 (due to reflex camber),
will not affect the induced downwash at these two points
for a given lift coefficient and pitching-moment coefficient.

The wing investigated was of finite thickness and had a
flat mean line, but three-dimensional effects might be ex-
pected to induce camber. ' A Fourier analysis of the experi-
mental chordwise loading obtained on the wing (three-
dimensional) showed that the induced camber of the wing is
practically constant over the span, except in the vicinity
of the root (and to a lesser degree, at the tip), where the
induced camber was more pronounced. The analysis showed
the terms a, cot 8/2, g, sin 6, and a5 sin 26 to be significant and
of the same order of magnitude. A similar analysis was
made for the theoretical two-dimensional loading on the
NACA 63,A012 airfoil sections as given in the Av,/V tables
of reference 12. (The sections normal to the leading edge
are actually about 16.3 percent thick, but the tables did not
give any values for this thickness ratio.) The relative
values of ag, @1, @z, . . . were found to be very nearly tho
same as for most of the three-dimensional wing. Thus, the
relatively large values of @, and a; arise as a result of thick-
ness and are not due to induced camber (except at the root
and tip). Since the induced camber at the root is more
significant in the experimental loading, it is not surprising
that the 15X1 and 15X2 solutions differ in this region.
However, although the 15X 2 solution should be more nearly
correct, it can be seen from figure 6 that both loadings are
within the experimental accuracy of the data.

Root-section discontinuity.—Experimental investigations
on swept wings have shown that the pressure isobars at the
root sections are continuously curved rather than sharply
bent so that there is no discontinuity in flow. This curving
of the pressure isobars at the root produces a flatter chord-
wise distribution of load with a more rearward center of
pressure. Both Multhopp (vef. 4) and Schlichting and
Kahlert (ref. 9) recommend that corrective measures be ap-
plied at the root sections to take into account this phenome-
non. Only the Multhopp method was available for com-
parison. For the standard solution, Multhopp proposes the
use of an equivalent wing which has the same geometry as
the actual wing with the exception that the root chord is
shortened and shifted rearward in a specified manner so as
to round off the apex of the wing. A modified Multhopp
solution can be found by neglecting this proposal. In figure
7, the experimental loading is compared with two Multhopp
15X 1 solutions. The standard solution shows good agree-
ment between theory and experiment. As would be ex-
pected, the major effect was at the root stations where the
modified solution predicts a lower loading than the stendard
solution. In general, it appears that the Multhopp correc-
tion to take into account the bending of the isobars at the
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Fraure 7.—Effect of the Multhopp treatment of bending at the roof
stations on the span load distribution.

root stations has a small but beneficial effect on the span
loading for & wing of this aspect ratio. For wings of smaller
aspect ratio, however, the correction may be of greater
importance.

Chordwise distribution of ciroulation.—When the Weis-
singer 16X 1 solution is compared with the modified Mul-
thopp 15X1 solution (fig. 8), the effect of the chordwise
distribution of circulation on the span load distribution can
be seen. As previously stated, in the Weissinger method
the circulation is assumed to be concentrated at the quarter-
chord line, whereas in the Multhopp method a chordwise
distribution of the form a, cot 6/2 is assumed. In both
methods the downwash is computed at the three-quarter-
chord line. The effect of the assumed distribution can be
seen to be largest at the root stations where the Multhopp
lifting-surface theory predicts a lower loading than the Weis-
singer second-order lifting-line theory. The total effect
appears to be of small importance, and very possibly, some
of the difference may be due to the differences in the compu-
tational techniques rather than to differences in the basic
methods.

Rapid approximate methods.—The load distributions ob-
tained by two rapid approximate methods are shown in
figure 9. The method indicated by equation (1) of reference
5 predicts a load distribution which is in fair agreement with
experiment. About 10 minutes was required for a solution.
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Fiaure 8.—Effect of an assumed chordwise circulation distribution.
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Figure 9.—Comparison of span load distributions obtained by rapid
approximate methods.

The loading predicted by the method of reference 6, which
is based upon the assumption that wings with similar span-
wise centers of pressure have similar load distributions, has
been presented for two cases. The first loading was ob-
tained by using the center-of-pressure location calculated
by the method of reference 6, whereas the second loading
was obtained by using the experimental center-of-pressure
location. The first loading is in rather poor agreement with
experiment. The second loading is in somewhat better
agreement with experiment. Since the method of reference
6 is based upon results obtained by the Weissinger 71 solu-
tion which has been shown to be inadequate for this wing,
it is not surprising that corresponding inaccuracies exist.
This method is extremely rapid, however, and required less
than 5 minutes for each loading.

Highliftcoeficients.—All the methods of calculation assume
that viscous effects are negligible, that is, that boundary
layers are very thin and, in particular, that the flow is un-
separated. It is of interest to compare the calculated load-
ings with the measured loadings at high lift coefficients.
Figure 10 presents experimental loadings obtained on the
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Frgure 10.—Calculated and experimental span load distribution at
several values of lift coefficients for the wing equipped with fences.
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wing with fences at three lift coefficients. This configura-
tion was used rather than the plain wing because separation
occurred at low values of the lift coefficient on the plain
wing, and, obviously, once the flow separates, the solutions
are invalid. The calculated curve presented is the modified
Falkner 19X 1 solution since it predicts the best loading shape
at low lift coefficients. At the moderate lift coefficient (0.74),
the agreement between the calculated curve and experi-
mental values is still good. At the highest lift coefficient
(1.01), the agreement is reasonable, although tip stall has
begun. It should be noted that the large irregulerity at
0.55b/2 is due to the fact that this station is just inboard
of a fence and is apparently in a localized region of separa-
tion at both the moderate and high lift coefficients.

LIFT-CURVE SLOPE

The experimental lift-curve slope determined from both

force and pressure measurements is 0.069 per degree through
zero lift. This slope is maintained up to an angle of attack
of about 5°, beyond which the slope gradually decreases, as
shown in figure 11.
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Fraure 11.—Comparison of experimental lift~curve slope with
calculated values.

_tion a higher lift-curve slope will result.
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The lift-curve slopes predicted by the various method of
calculation are also indicated in figure 11. The number of
spanwise control points utilized had a marked effect on the
glope predicted by any one method. For the Weissinger
and Falkner solutions, as the number of spanwise control
points is increased, the value of the lift-curve slope is in-
creased. The opposite, however, is true of the Multhopp
method, where an increasing number of control points
causes a decrease in lift-curve slope. It appears as if both
the Weissinger and Multhopp solutions may be converging
toward a common value of lift-curve slope as the number of
control points is increased, although there are not enough
solutions to examine this point further.

Schlichting and Kahlert (ref. 9), in an analysis of the
Mutterperl (vef. 13) and Weissinger (ref. 2) methods, con-
clude that by not locating a control point at the center sec-
A comparison of
the Falkner 6 X3 and 5X3 solutions appears to verify this
conclusion. Each solution uses 3 chordwise control points
in a semispan and an equal number of terms in the approxi-
mation for the assumed span loading. A marked decrease
in the lift-curve slope results partially from locating a con-
trol point at the plane of symmetry and partially from
decreasing the number of spanwise control points. It
would seem, then, that the close agreement between the
Falkner 6X3 solution and experiment, with regard to the
lift-curve slope, depends to a large extent upon the particular

-choice of control-point location.

Reference 9 also points out that, in order for the lift-
curve slope to reach the correct value when a control pojnt
is located at the center section, special treatment must be
given to the center section to take into account the dis-
continuity in plan form. When the Multhopp 15X1 solu-
tion, where the center section is rounded, is compared with
the Multhopp 15X 1 modified solution, the increase is evi-
dent. The addition of a corrective term at the plane of
gymmetry increases the lift-curve slope. In this instance
the increase was only 1.3 percent of the experimental value,
which is of the same order of magnitude as reported in refer-
ence 9.

All the methods of calculation (which are based on thin-
airfoil theory) underestimate the lift-curve slope, and those
methods which result in a fairly accurate load shape under-
estimate the slope by about 8 percent. This difference is
presumsably due to the finite thickness of the airfoil and is,
in fact, equal to the difference found experimentally between
the two-dimensional lift-curve slope for NACA 63-series
airfoil sections of about this thickness ratio (about 16.2
percent normal to the leading edge) and the slope given by
two-dimensional thin-airfoil theory (see ref. 14). The
theoretical value of the lift-curve slope for these thick
sections exceeds that for thin airfoils by about 12 percent.



A COMPARISON OF THE SPANWISE LOAI
CENTER OF PRESSURE

The spanwise position of the center of pressure (fig. 12)
is predicted with the greatest accuracy by the methods that
most accurately predict the spamwise load distribution.
Obviously, then, what has previously been said about an
accurate prediction of load shape applies here—the number
and location of the control points has the largest influence
on the prediction of the spanwise center of pressure.

The chordwise position of the center of pressure is also
shown in figure 12. Except for the Falkner 5X3 and 6X3
solutions and the Multhopp 15X2 solution, the chordwise
location of the center of pressure has been assumed to be
on the quarter-chord line for lack of anything better. This
assumption is equivalent to assuming that the section acts as
a flat plate and that the higher harmonics are zero. For
the Falkner 5X3 and 6X3 solutions and Multhopp 15X2
solution, the wing center of pressure is not necessarily at the
quarter-chord line of the wing. For this wing, however,
the calculations (in which the unknown second harmonic

7
x/c 57

o Experiment (a=4.7°) 0.328 0.458
o Multhopp 7X1 244 434
< Multhopp 15X 1 320 455
& Multhopp 15 X1, modified 339 459
& Multhopp 23 X1 331 457
& Multhopp 15%2 31 458
o Welssinger 7X| 363 466
o Weissinger 15X| 316 454
0 Falkner 19X |, modified 313 453
o Falkner 6 X3 297 449
v Falkner 5x3 390 473

Freure 12.—Location of experimental and calculated center of
pressure.
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was neglected in the Multhopp solution) showed the chordwise
center of pressure to be essentially on the quarter-chord line.

The spanwise variations of the local center of pressure
predicted by the Fallmer 6X3 and 53 solutions and the
Multhopp 15X2 solution are shown in figure 13. For com-
parison, the experimental data for four angles of attack for
both the plain wing and the wing with fences are shown as
unconnected symbols. The lower angle of attack (2.7°) is
representative of the low angle range. It can be seen that,
as the angle of attack is increased for the plain wing, tip
stall causes the local centers of pressure to move rearward.
With fences, this movement is somewhat retarded until the
wing stalls («=21.0°). It is interesting to note that at
a=17.0° (C,=1.01), the shape of the spanwise loading curve
for the wing with the fences is still very similar to the curves
for the lower angles of attack as shown in figure 10, despite
the fact that a considerable rearward movement of the local
centers of pressure is shown in figure 13. The values
calculated by the Multhopp 15X2 method are in good
agreement with experiment and predict the rearward locations
at the root and the forward locations at the tip. The stand-
ard Falkner 6X3 solution is only in fair agreement with
experiment, and it can be seen that, without special handling
at the root section (such as given in ref. 9), the rearward shift
of the centers of pressure is not predicted. The Falkner
5X 3 solution predicts the center of pressure too far rearward
over the inboard portions of the wing and too far forward
over the outboard portions of the span.

WING PITCHING MOMENT

It is of interest to apply the previously mentioned param-
eters to the prediction of the overall wing characteristics.
In figure 14 is plotted the experimental pitching-moment
coefficient against lift coefficient for the plain wing and the
wing with fences, as well as various calculated curves. The

. pitching moment due to lift is a function of the center-of-

pressure location; thus good agreement is obtained for the
more accurate loading methods. It is interesting to note
that the spread of the curves represents a center-of-pressure
variation of about 12 percent mean aerodynamic chord.

INDUCED DRAG

The cealculated variation of induced-drag coefficient with
lift coefficient is shown in figure 15. Most of the calculated
curves fall in & narrow band with about a 5-percent spread.
These calculations are dependent upon both the lift-curve
slope and the load distribution, and it appears as if any
reasonable estimate of these characteristies will predict the
induced drag fairly well. The load shape resulting from
the Fallkmer 5X3 solution combined with the low lift-curve
slope, however, predicts an induced-drag coefficient about
30 percent higher than those predicted by the other solutions.
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Figure 13.—Calculated and experimental chordwise location of the
local center of pressure across the span.

CONCLUDING REMARKS

Experimental force and moment data obtained by pressure
measurements on & wing of aspect ratio 8.02, 45° sweepback
of the quarter-chord line, taper ratio of 0.45, and NACA
63,A012 airfoil sections have been compared with the calcu-
lated loadings obtained by the standard methods of Weis-
singer, Falkner, and Multhopp.

With regard to the shape of the spanwise loading distribu-
tion, the most accurate load shape was predicted by the
Multhopp 23 X1 solution. The standard Falkner 6 X3 solu-
tion did not predict the experimental drop in loading at the
root stations. .

All the methods predicted similar load shapes provide

that a sufficient number of spanwise control points were used .

in the solution. At least 15 were necessary for this wing.

It was found that a slight improvement in lift-curve slope
and loading shape resulted when the Multhopp scheme of
rounding the apex of the wing was used.

The Multhopp method with either one or two chordwise
control points predicted essentially the same spanwise
loading, except at the root stations.

Those methods which predicted the loading shape fairly
accurately predicted the lift-curve slope about 8 percent too
low. The low estimate is probably caused by the finite
thickness of the wing.

The spanwise variation of the chordwise position of the
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Figure 14.—Calculated and experimental variation of pitching-
moment coefficient with lift coefficient.

center of pressure was fairly accurately predicted by the
Multhopp method with 2 chordwise control points.

It appears as if the Multhopp of the Weissinger method
will result in the best overall compromise between lift-curve
slope and load shape, provided enough control points are
used in the solution. For an extremely rapid estimate of the
load shape, Diederich’s method predicted a reasonably
accurate loading for this wing.

LANGLEY ABRONAUTICAL LABORATORY,
NaTioNaL ApvisorRy COMMITTEE FOR AERONAUTICS,
Lanerey Frewp, Va., August 14, 1961.
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Fraure 15.—Calculated variation of induced-drag coefficient with lift
coefficient.
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