REPORT 1223

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF HEAT
TRANSFER BY LAMINAR NATURAL CONVECTION
BETWEEN PARALLEL PLATES*

By A. F. LieTzKe

SUMMARY

Results are presented of a theoretical and experimental
investigation of heat tramsfer involving laminar natural con-
vection of fluids enclosed between parallel walls oriented in the
direction of the body force, where one wall 18 heated uniformly,
and the other is cooled uniformly. For the experimental work,
parallel walls were simulated by using an annulus with an
inner-to-outer diameter ratio near 1.

The results of the theoretical investigation are presented in the
Jorm of equations for the velocity and temperature profiles and
the ratio of actual temperature drop across the jluid to the
temperature drop for pure conduction. No experimental
measurements were made of the velocity and temperature profiles,
but the experimenial results are compared with theory on the
basis of the ratio of the actual temperature drop to the temperature
drop for pure conduction. G@ood agreement was obtained
between theory and experiment for axial temperature gradients of
40° I per foot or larger.

INTRODUCTION

Increased application of heat transfer to and from fluids in
channels has recently required further knowledge as to the
heat-transfer coefficients and temperature profiles occurring
with natural convection. Turbine-blade and nuclear-reactor
cooling are two of the fields concerned with this problem.
Work on free-convection heat transfer over a vertical plate
gave good agreement between theory and experiment. Few
results have been obtained for the similar case of flow in
channels. Reference 1 obtains & theoretical solution for
free-convection heat transfer for fluids enclosed in channels.
The reference uses a postulated velocity distribution to obtain
a solution. References 2 and 3 extend this analytical work to
give an exact solution of the equations in more general form
for constant wall temperature and constant heat flux,
respectively, Reference 3 includes the effect of forced as
well as natural convection. These three references treat the
case of infinite channels with the channel axis oriented in the
direction of the body force and are subject to the same
assumptions; namely, two-dimensional laminar flow, uniform
axial temperature gradient, and constant fluid properties,
except that the density is allowed to vary in the bouyancy
term.

The purpose of this report is to compare the results of
theory and experiment as & check on the assumptions in-

volved in the analytical work. For mathematical simplicity,
the flow between two infinite parallel plates was considered
with one plate heated uniformly and the other cooled uni-
formly. An exact solution was obtained with the assump-
tions cited previously for references 1 to 3. In order to
simulate the case of infinite parallel plates experimentally,
an annulus formed by two concentric tubes was used. For
all practical purposes, the walls of these tubes can be con-
sidered parallel if the ratio of the radii of the tubes is near 1.
This radius ratio limits the spacing between the confining
walls (and, consequently, the range of Grashof numbers
obtainable) unless very large diameters are used.

A comparison between theory and experiment is given in
this report on a heat-transfer basis alone, since no temper-
ature or velocity profile measurements were made. The
work was done at the NACA Lewis laboratory.

ANALYSIS

Steady-state heat transfer through a fluid enclosed by two
infinite parallel plates oriented in the direction of the body
force is considered. One plate is heated uniformly and the
other is cooled uniformly. The flow is laminar and parallel
to the body force. The fluid properties are assumed con-
stant, except that the density is allowed to vary in the
buoyancy term. Viscous dissipation and work against the
force field are mneglected. It is further assumed that the
axial temperature gradient is & constant throughout the
system for any particular set of conditions.

When the aforementioned conditions are applied, the
energy equation reduces to

E % ot
o0, 37 Bz ®1)
(Symbols are defined in appendix A, and a detailed dis-
cussion of the analysis is given in appendix B.)
Slmﬂarly, the Navier-Stokes’ equations reduce to one
equation in the z-direction:

o*w_ gpB

= 00 @7

The reference temperature ¢, is taken at the center of the
channel where the net viscous force is zero (W—())

1 Bupersedes NACA TN 3323, ‘““Theoretical and Experimental Investigation of Heat Transfer by Laminar Natural Oonvection Between Parallel Plates,” by A. F. Lietze, 1954,
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For a closed system of unit width with zero net mass
through-flow and constant density,

fr wdz=0

where z is taken to be zero at the center of the channel.
From these three equations and the appropriate boundary
conditions
(bz zmr

’ (b:c e —r

the equations for the velocity and temperature profiles in
dimensionless form are, respectively,
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The temperature drop across the fluid from wall to wall
is then found from equation (B19) when z=r:

_ g’ sin? p+-sinh? » >
br= kv \ginh v cosh y-}-sin v cos v (B20)

The temperature difference across the fluid for pure con-
duction is

Gr=

03 ——L2 B21)

The ratio of the actual temperature drop to that for pure
conduction is, therefore,

6 1/ sinp--sinh’ )
#r=6,), o\sinh v cosh p+sin v cos »

(B22)

These equations apply equally well to force fields other
than gravitational, if the constant g is replaced by the con-
stant of the force field of interest.

EXPERIMENTAL APPARATUS

A schematic diagram of the experimental equipment is
shown in figure 1. In order to simulate infinite parallel
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plates, an annulus formed by two concentric stainless-steel
tubes was used to contain the fluid. The resulting annulus
was 10% inches long with an outside diameter of 1% inches
and an inside diameter of 1 inch. Thus, the spacing s be-
tween the walls was ¥s inch. The tube walls were Xs inch
thick. The outer tube was heated with a Nichrome-wire
element spiral-wound around the tube, with a wire spacing
of ¥; inch, which probably gives fairly uniform heating of the
hot wall. The inner tube was cooled by forced air. The
cooling-air-passage length-to-diameter ratio was 84. A wire
in the form of a helical spring was inserted in the cooling
passage to increase the heat-transfer coefficient. This
system should provide an essentially constant heat-transfer
coefficient, which is necessary to provide uniform cooling of
the cold wall with & linear variation of wall temperature.
The cooling-air-flow rate was measured with a calibrated
rotameter.
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Figure 1.—Schematioc diagram of experimental apparatus for measuring
heat transfer by free convection in an annulus used to simulate
parallel plates.
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Figure 2,—Dimensionless velocity profiles for various values of product
of Prandt]l number and modified Grashof number.
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Figure 3.—Dimensionless temperature profiles for various values of
product of Prandtl number and modified Grashof number.
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Figure 4.—Theoretical variation of ratio of actual temperature differ-
ence across fluid to temperature difference for pure conduction with
product of Prandtl number and modified Grashof number.
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The electrical power was supplied by a transformer with a
variable secondary voltage and rated at 1 kva at maximum
voltage. The electrical power input was measured with a
calibrated ammeter and voltmeter. All temperatures were

.a8 the fourth power instead of the cube.
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Figure 6.—Temperature measurements of heated and cooled walls of
test section. Heat flux, 1300 Btu per hour per square foot; Prandtl
times Grashof number, 3480; temperature-differance ratio, 0.389.

measured with iron-constantan thermocouples and a self-
balancing potentiometer. The thermocouples used to meas-
ure wall temperatures were set into slots milled axially into
the tube walls. The thermocouple leads were enclosed in
Inconel tubing laid in the slots. The thermocouple junc-
tions were covered with insulating cement, and the slots were
then filled with silver solder and finished off flush with the
tube surface.
RESULTS AND DISCUSSION

ANALYTICAL

The dimensionless velocity and temperature, which can
be calculated from equations (B17) and (B19), respectively,
are shown graphically in figures 2 and 3 for a few values of the
product of Prandtl and modified Grashof numbers. The
equations show that the dimensionless velocity and tempera-
ture depend only on this product and the position in the
channel. The Grashof number resulting from the analysis
differs from the conventional Grashof number insofar as the
temperature difference usually appearing is replaced by the
temperature gradient and the characteristic length appears
The product of
Prandtl number and Grashof number is sometimes referred
to as the Rayleigh number.

The velocity profiles of figure 2 show the point of maxi-
mum velocity moving closer to the wall as the Rayleigh num-
ber is increased. It is felt that this fact, in combination with
the stabilizing influence of the wall, would tend to inhibit
the occurrence of turbulent flow.

The contribution of convective flow in the heat-transfer
process can best be seen from the ratio of the actual tempera-
ture drop across the channel to the temperature drop for
pure conduction. This ratio, which is the same as the ratio
of the molecular to the apparent conduectivity, can be ob-
tained from equation (B22) and is plotted in figure 4. For
large values of PrGr, the actual temperature drop across the
fluid is less than-¥% the temperature drop for pure conduction.

EXPERIMENTAL

A typical plot of measured wall temperatures for large
temperature gradients is shown in figure 5. With uniform
heating of the hot wall and constant heat-transfer coefficient
on the cold wall, the temperature gradients on the hot and



402

cold walls are constant and equal, except for the extreme ends
of the test section. Data were not obtained to verify the
assumption of uniform temperature gradient througheut the
fluid.

For small temperature gradients the wall temperatures
were linear, but the gradient on the heated wall was larger
than that on the cooled wall. The assumption of uniform
temperature gradient throughout the system is, therefore,
invalid for small temperature gradients. With water as the
test fluid and with }e-inch spacing between the plates, the
minimum value for which the assumption of uniform tem-
perature gradient is valid is approximately 40° F per foot.
Additional data are required to determine this limit more
accurately. The data presented in this report are for
temperature gradients of 40° F per foot or greater.

Because of the end effects on the flow and because of the
heat losses from the ends of the test section, it was impos-
sible to obtain a heat balance between the electrical heat
input and the enthalpy rise of the coolant. Measurements
of the radial temperature drop through the insulation sur-
rounding the heater indicated a negligible radial heat loss.
In that section of the tube where the wall temperature varies
linearly, there is no net axial conduction in the wall. Hence,
the uniform heat flux (as calculated by the electrical heat
input) that enters the wall is transmitted directly to the
fluid. The heat loss is limited to the ends of the test sec-
tion and, therefore, does not affect the results of the test.

The calculated temperature drop through the walls con-
taining the water was negligible compared with the tempera-
ture drop across the water, and, therefore, the measured wall
temperatures were taken to be the temperature of the sur-
face adjoining the water.

The temperature drop across the fluid for pure conduction
At, was calculated from the equation for an annulus given
in reference 4:

At, = g: To log;c(ro/rt)

where ¢} was calculated from measurements of the electrical
heat input. '

The physical properties used in evaluating Prandtl num-
ber, Grashof number, and the temperature drop for pure con-
duction were obtained from reference 5 for saturated liquid
water, except for the coefficient of thermal expansion 8S.
Values of the coefficient of thermal expansion of water were
taken from reference 6 and are plotted in figure 6. These
values.are mean values for 1° temperature change. Inas-
much as f is a function of temperature, different mean
values would be obtained for larger temperature increments.
The properties were all evaluated at the bulk temperature
of the water for each test. For flat plates, the bulk tem-
perature is the center-line temperature halfway between the
ends.

Figure 7 shows the ratio of the actual temperature drop
across the fluid to the temperature drop for pure conduction
plotted against the produet of Prandtl and Grashof numbers.

REPORT 1223—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The data points on the figure are the experimentel results
taken with water as the test fluid, and the curve is the result
of analysis taken from figure 4.

COMPARISON BETWEEN ANALYSIS AND EXPERIMENT

Inasmuch as no temperature measurements were made
within the fluid, a comparison between theory and experi-
ment can be made only for the over-all heat-transfer results.
Except for the random scatter of the heat-transfer data shown
in figure 7, good agreement is obtained between theory and
experiment. Inasmuch as the same assumptions were used
in references 2 and 3, the agreement shown here lends sup-
port to the more general analytical treatment given in these
references.
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The effect of the curvature of the walls on the experi-
mental results is unknown; but this effect is believed to be
minimized, because the data are in the form of the tempera-
ture ratio with this effect included in both the numerator
and the denominator. A theoretical investigation for an
annulus is necessary to permit a comparison between theory
and experiment with larger diameter ratios for the annulus.

In order to determine the upper limit for which the anal-
ysis is valid, it is necessary to obtain data at higher values
of the product of Prandtl number and modified Grashof
number,

CONCLUSIONS

For the range of conditions investigated, the simplifying
assumptions used in the analysis for free convection in
channels oriented in the direction of the body force are
reasonable and lead to accurate quantitative results.

Lewis FrLicar PropuLsioNn LLABORATORY
NaTtionar Apvisory COMMITTEE FOR AERONAUTICS
CreveLaND, Ouro, September 8, 1954

APPENDIX A
SYMBOLS
The following symbols are used in this report: i, reference temperature, °F
A, Ay ... constants t, temperature at r=r, °F
4 [gp*Be, Ot g1 i, temperature at z=—r, °F
@ V & 3z u ax/+/2, dimensionless
By, B, . . . constants s [PrGr
c constant of integration L4 ar[2= 64
s specific heat at constant pressure, Btu/(Ib)(°F) w velocity, ft/hr
D operator, 3/0x ot
F, body force in z-direction, 1b/(hr?)(sq ft WpeyS =
d /(hbz (e 1) w* dimensionless velocity, Lz
20’8 325 ) dinate. £ g’
Gr modified Grashof number, ——~—;, dimensionless | ¥ transverse coordinate, ft
' ) I ) z longitudinal coordinate, ft
g acceleration due to gravity, 4.17 X 108 ft/hr? 8 coefficient of thermal expansion, °F-1
o v—1 8 t—i_, °F
k thermal conductivity, Btu/(hr)(sq ft) (°F/ft) 0 t—t . oF
Pr Prandtl number, ¢,u/k, dimensionless ’ Toten . .
P pressure, 1b/sq ft ©:). temperfa,tlue difference across fluid for pure con-
q”’ heat flux at wall, Btu/(hr)(sq ft) duction
qy heat flux at outer wall of annulus, Btu/(hr)(sq ft) | g+ dimepsionless temperature, ¢— t—r)k
r 1/2 plate spacing, s/2 ‘s
7 inside radius of annulus, ft B WSCO.SIty, Ib/(hr) (£t)
o outside radius of annulus, ft p density, Ib/cu ft
8 plate spacing, ft ©r ratio of actual temperature difference across fluid
t temperature, °F to temperature difference for pure conduction
APPENDIX B
DETAILS OF ANALYSIS
For the conditions of the problem stated in the ANALY- | pendent of z and can be evaluated at any va.lue ofz. Itis
SIS, the general energy I:,qgi:tlon reduces to convenient, however, to evaluate aPWheue Sz 2—0 Then,
i ot
o, 02 23z B1) | from equations (B2) and (B3),
Similarly, the Navier-Stokes’ equations for incompressible So="rr B4)

flow reduce to

9P
dz =0
F, =8 az+l" b&: (B2)
The body force under the action of gravity is
Fo=— (B3)

Since the pressure is independent of z, then g% is inde-

where the subscript f denotes a reference condition where

gau:_o Combining equations (B2), (B3), and (B4) gives

*w
gp (1-—-% Y] B5)
From the definition of the coefficient of thermal expansion g,

=148 (—t,) (B6)
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Combining (B5) and (B6) yields
d*w pr
dz (tf_t) (B7)

The reference temperature £, is a function of z and varies
linearly with z as does ¢, according to the assumption of
constant temperature gradient. The velocity w is therefore
only a function of z, and its derivative is written as a total
derivative.

Differentiating equation (B7) with respect to x gives

Fw__goB Ot
da? u Ox (B8)
Differentiating with respect to z again gives
dw__gpp 9%
dat © 0% B9
Combining equations (B1) and (B9) yields
@ gP P PCyp bt
7 A P (B10)
Lot g*=2" #2"" 2. Then
%—I—a‘w=0

The solution of this homogeneous equation can be obtained
by using the operator D:

D*+aHw=0
D*+-1a®(D*—1a)w=0

(D+w%a) (D—iﬁa) (D+Via)(D— i a)w=0

but 1,/— 1= a,n iyi= 1/5 Therefore,

Yoo
(D+"% a) w=0

dw , i—1
dm+4—

(o

aw=0

dw , i—1

w B

log w+% ar=C

C—i:—lu::

e R =y

——adz=0

il v ax

w=ee V2 —-A,e Ve (B12)
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Similarly, from equation (B11),

{ax ar
.I_-— —

w=Aze ¢ 2 B13)
_fez _or

w=Aze Ze¢ V3 (B14)
o o

w=AeeV? B15)

The general solution is equal to the sum of equations (B12)
to (B15), or

w=e" " (A4e¥Aze~ )t e (A 67 %A )
where u=—

Using the Euler formulas
e~'¥=cos u—1 sin u
et*=cos u-}1 sin u
and the conversion formulas
e*=cosh u+-sinh u
e *=cosh y—sinh u
and letting
Bi=4,+ 4,145+ 45
B;=A4,+4,—A4,—
By,=i(A;—A;+A,—4))
=1(44— 41— As+4s)
the velocity equation becomes

w=2DB8,; cos u cosh u4B; cos u sinh 44 B; sin 4 cosh u+ B,
gin « sinh % (B1s)

The constants of equation (B16) can be evaluated from
the boundary conditions. There are four boundary condi-
tions required to determine the four constants. The velocity
at the bounding walls must be zero, while the boundary con-
ditions on the temperature are given by the temperature
gradients. It can be shown from equation (B1) that, for
the case of interest here, the temperature gradients at the
two walls must be equal. Integrating equation (B1) gives

ol o) (). o

For & system closed at both ends, there is no net mass
through-flow; therefore, with constant density,

fr w dz=0

wda;
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Consequently, the transverse temperature gradients at the
two walls must be equal. The boundary conditions are
expressed mathematically as

ot _z
0%/ mr k
ot _z
0%/ 1m ¢ k

Il

wx-r=0
W —-r=0

When these boundary conditions are imposed on equations
(B8) and (B16), the constants of equation (B16) are found
to be

B1=0
Bo— 4q"v sin. v cosh v
= t (sin v cos v+cosh v sinh 1)
Pz,
B.— 4¢"v _ cospsinho
8 Ot (sin v cos v-+cosh v sinh )
oy
.B4=0

Substituting these values for the constants of equation (B16)
gives the equation for the velocity in dimensionless form:
sin=cosh?  sinhZcos ™
r r r

siny , coshy sinhy, cosy
sinho' cosv sino ' cosho

Differentiating equation (B17) and combining with
equation (B7) result in an equation for the temperature in
dimensionless form:

w*=A4yp

(B17)

7 LAMINAR NATURAL CONVEcCTION 405

The actual temperature cannot be determined from this
equation, because the reference temperature #, is also a func-
tion of z.

The difference between the wall temperature and the
temperature at any point in the fluid at the same value of z
can be determined from equation (B18). From the definition
of 6*, equation (B18) becomes :

= —
. . 0X vx . v . VT
ginh v cos v+sinh—cos— cosh v sin v-}+cosh =gin 2=
1 T T r r
20 coshv+sinv sinhv+cosv
cosy sinhop siny ' coshv

(B19)

The temperature difference wall-to-wall can be found from
equation (B19) when z=r:

0=

q°s pin® p}sinh? v ) (B20)

kv \sinh » cosh p+}sin v cos »

The temperature difference across the fluid for pure con-
duction is

6)=—L° (B21)

The ratio of the actual temperature drop to the tempera-
ture drop for pure conduction is

sin? p--sinh? » )

6, 1
=0, v (sinh v cosh y4-sin v cos v (B22)

From the definitions of » and a,
sinZcosh™  ginh 2 cos 2=
tk_tk 1 r r o, r r B18) 20 OF gt
g’s ¢"s 2ol sinhy cosy ' sino  cosho el £°P%2 ) con\__GrPr
sinp 'coshy sinhp' cosp 64 u? k 64
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