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THEORETICAL AND ANALOG STUDIES OF THE EFFECTS OF NONLINEAR STABILITY
DERIVATIVES ON THE LONGITUDINAL MOTIONS OF AN AIRCRAFT IN
RESPONSE TO STEP CONTROL DEFLECTIONS AND TO THE
INFLUENCE OF PROPORTIONAL AUTOMATIC CONTROL*
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SUMMARY

A study has been made of the effects of two nonlinear stability
derivatives, caused by the nonlinear rariations of piching-
moment and lift coefficients with angle of attack, on the longitudi-
nal motions of an aireraft. Theoretical methods involving the
Laplace transformation and the procedures of nonlinear
mechanics have been presented along with electrical-analog re-
sults for the responses of a canard aireraft to step control deflec-
tions and to the influence of two types of proportional automatic
control.

In all cases except the example illustrating the procedures of
nonlinear mechanics, the nonlinear iariations have been ap-
proximated by three linear segments. The principal means of
studying the effects of the nonlinearities were through the charac-
teristics of the time responses in angle of attack and, in some
cases, pitching velocity. The changes in the period and damping
of the oscillations due to the nonlinearities have been discussed.
The effects of the autopilot proportionality constant on system
stability were also investigated. The occurrence of continuous
hunting oscillations was predicted and demonstrated for the at~
titude stabilization system with proportional condrol for certain
nonlinear pitching-moment variations and autopilot adjust-
ments.

INTRODUCTION

In the classical treatments of the study of aircraft dynamics
an assumption is usually made that the forces and moments
resulting from small disturbances in position, velocity, and
acceleration are linear variations with these quantities.
However, some aircraft configurations do not exhibit linear
force and moment characteristics in some flight conditions
and, therefore, the linearized methods cannot be a satisfac-
tory approximation over an appreciable range of the param-
eter involved. This report is concerned with the problem
of aircraft dynamics as affected by nonlinear stability de-
rivatives and, in particular, with the short-period longitudi-
nal mode of motion of an aircraft flying at constant velocity.
Consideration is also given to the problem of applying simple
forms of automatic control to such an aircraft.

The present work is presented in two independent parts.
The first part considers several analytical approaches that
may be used in the analysis and the study of the transient

1 Supersedes recently deolassified NACA RM L30L11, 1951.
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motions of the aircraft. These methods include the use of
the operational calculus (Laplace transformation), the sta-
bility criterion of Routh, and the theories of nonlinear
mechanics. The second part presents some of the results
obtained by using electrical analog equipment. The cases
presented are for a hypothetical canard aircraft assumed to
be flying at supersonic speed.

SYMBOLS
@ angle of attack, positive when nose is above
relative wind vector, radians unless other-
wise noted
da
Q=E
6 aircraft attitude or pitch angle, positive when
noseis above horizontal, radians
9=5§
5 aircraft elevator deflection angle, positive
when trailing edge is down, radians unless
otherwise noted
VvV aircraft velocity, fps
q dynamic pressure, 1b/sq ft
S wing (reference) ares, sq ft
c mean aerodynamic chord, ft
m mass of aircraft, slugs
Iy pitching moment of inertia, stug-ft?
D differential operator, d/d:
t time
Cn pitching-moment coefficient,
Pitching moment/gSe
(65 1ift coefficient, Lift/gS
_ oC,
mq -15—'
031
20,
mE_ac
%
2C,
Om="35
oC,
Cry=55
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ky slope of & linear segment representing a por-
tion of nonlinear () function, per radian

ks slope of a linear segment representing a por-
tion of nonlinear Cr(«) function, per radian

a,b,ed constants used in equations (6) and (9) and
defined in appendix

o, 1 constants used in equations (2) and (3),
respectively

Wy undamped natural frequency of aircraft alone,
radians/sec

¢ nondimensional damping ratio of aireraft
mode of motion

8 Leplace transform variable

K general autopilot constant, ratio of control
surface deflection to applied error angle

)
1—a4—a
8

K’_a,—a

a reference or desired angle of attack for closed-
loop system with angle-of-attack feedback,
radians

0, reference or desired attitude angle for closed-
loop attitude-stabilization system, radians

o, C1 constants required in cubic representation of
nonlinear C,,(a) function (eq. (12))

A slope of trajectory in phase-plane example,

dé/de
ANALYSIS

The analysis of the effects of nonlinear stability derivatives
on the longitudinal motions of a canard aircraft is presented
in three sections: the first is a statement of the problem and
the assumptions involved; the second is a theoretical or
analytical solution for the required transients and the study
of stability; and the third is a discussion of the methods of
nonlinear mechanics for these dynamical studies.

STATEMENT OF PROBLEM

The purpose of this report is to present methods for deter-
mining the nature of the transient responses of aircraft having
nonlinear stability derivatives and to show some qualitative
results of preliminary investigations.

In the present report, consideration is given to the longitud-
inal motions of a canard configuration with the angle-of-
attack transients resulting from step elevator deflections
serving to illustrate the effects of the nonlinear stability
derivatives. Two longitudinal-stability derivatives were con-
sidered to have nonlinear characteristics which were caused
by the variations of pitching-moment coefficient and lift co-
efficient with angle of attack. The main emphasis herein
was placed on the effects of the nonlinear variation of pitch-
ing-moment coefficient with angle of attack since the slope
of this curve is a measure of the static stability of the aircraft.
Figure 1 illustrates the nature of the nonlinearities under dis-
cussion. Such nonlinearities would be apparent from wind-
tunnel tests.

In the analysis and study of the aircraft longitudinal
motions, two degrees of freedom with constant forward
velocity and disturbances from level flight have been as-
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sumed. This assumption results in a consideration of tho
short-period mode of motion only; therefore, only the effccts
of the nonlinearities on this mode will be apparent.

In addition to studying transients of the aircraft in re-
sponse to step elevator inputs, consideration was also given
to the response characteristics resulting when such an air-

LIft coefficient, G, or piiching—moment coefficlent, Gy,
o

Cm

(0]
Angle of attock, a
Flgure 1.—Typical mnonlinearities in pitching-moment and lift

coeflicients.
' (a;-a) A, 8 Aircraft g
(a)
Ky 8 Aircraft 8

(b}

(a) Angle-of-attack stabilization,
(b) Attitude stabilizetion.

Figure 2.—Block diagrams illustrating the two types of proportional
automatic control under consideration.



EFFECT8 OF NONLINEAR STABILITY DE

craft is subjected to simple forms of automatic stabilization.
Two cases were investigated in this respect and are illustrated
by block diagrams in figure 2. In both cases the automatic
control consists of an error-sensing device and a zero-lag
proportional servomotor. In figure 2 (a) angle-of-attack
stabilization is considered with the control-surface deflec-
tion & being proportional to the difference between a reference
angle of attack o; and the actual angle of attack «. In
figure 2(b) attitude stabilization is considered where the
control-surface deflection & is proportional to the difference
between a reference attitude angle 6, and the actual attitude 6.

THEORETICAL METHODS

Equations of motion.—The longitudinal equations of mo-
tion of an aircraft having two degrees of freedom with
constant forward velocity and disturbances from level flight

in terms of the differential operator D=% are

Iy ¢ ¢ -
FEDZB_OMQ 2—I7D0_‘0,, (a)—O,,,& WD(X—C’MJ&
mV

mV

—ég‘ Dﬂ——q'g' Da—OL (a)=0L56

ey

The terms which are nonlinear functions of angle of attack
are written as C,(a) and Or(e) and represent, respectively,
the pitching-moment coefficient and lift coefficient that exist
at the instantaneous angle of attack.

Based on the usual assumptions of linear variations of O,
and C;, with «, equations (1) remain as ordinary linear differ-
ential equations with constant coefficients and are handled
by familiar mathematical methods. The types of non-
linearities illustrated in figure 1, however, obviously make
linearization of these parameters over the entire range of
angle of attack an inadequate approximation. Since the
methods for the solution of linear differential equations are
so well known, an approximation of the nonlinear functions
with linear segments, for which the equations can be written
for o specified range of angle of attack, seems advisable.
Figure 3 is an illustration of this method of representing a
nonlinear function. The three straight lines shown are
used to represent a variation of pitching-moment coefficient
with angle of attack similar to that shown in figure 1 where
the slope at outer «is twice the slope at central «. Kach
segment of this representation can be expressed as follows:

Cnla)=katc

where %, and o must be specified for each range of angle of
attack., In general, therefore, the representation of the
nonlinearities are written as

C',,.(a) =k1a+0' (2)
Ou(e)=kyat+1 ®3)

where the values of ki, %, s, and 4 are constants and apply
only for a specified range of angle of attack.

The substitution of equations (2) and (3) into equations
(1) results in linear differential equations with constent co-
efficients, namely,
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Iy c c
EDSB—O,HQ WDO—k,a—C,,& WDCZ: Om55+d (4)
vV vV
%DB-—%Da—kga=OL68+n

These equations apply only to the region of angle of attack
in which the given constants are as defined.

Aircraft transients.—Since variations in angle of attack
following step elevator deflections may be in regions where
the definition of the nonlinear functions has changed, com-
plete knowledge of the motion is required and solutions of
the equations must be written in terms of necessary condi-
tions existing at an arbitrary time. In other words, the
values of the angles and their rates of change must be known
at the time one set of equations ceases to apply so that the
same conditions and, therefore, continuity may be satisfied
when the next set of equations becomes applicable. With
these considerations the use of operational methods based
on the Laplace transformation affords a means of handling
the -difficulties already noted and provides the required
analytical expressions for the desired transient responses.
References 1 to 4 give adequate discussions of the use of the
Laplace transformation in the solution of differential equa-
tions. Since the usual forms of the Laplace transformation
require the initial conditions at zero time, it is convenient
to make solutions for the required motions for each range
of angle of attack and it may be necessary to redefine the
time as zero whenever the equations must be changed be-
cause of the representation of the nonlinearities. Such a
procedure.is obviously time consuming and tedious since
solutions for all the parameters are required for a complete
definition of initial conditions. A rather complete discussion
of this procedure can be found in reference 5.
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Figure 3.—Illustration of the method of approximating nonlinear
functions with linear segments. Cula)=kaxto.
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Closed-loop stability.—The stability of a complete closed-
loop system consisting of the aircraft and automatic-control
unit, such as illustrated in figure 2, has been theorized by
many authors when the system is linear throughout. (See,
for example, refs. 2, 6, 7, and 8.) Briefly, this procedure is
to plot the frequency response (ref. 9) of the aircraft as a
Nyquist diagram (refs. 2, 7, and 8) or as an amplitude-phase
plot (refs. 2 and 6) and then to determine the autopilot con-
stant K required to make the system stable and give, as
closely as possible, the desired response. Since the fre-
quency-response method requires & completely linear system,
such a method cannot be applied in the conventional manner
and have meaning because of the definition of the nonlinear
functions.

This stability of the closed-loop system, however, can be
examined by the methods of Routh and Hurwitz described
in references 10, 11, and 12. This procedure requires the
characteristic equations that exist for each region used in
the representation of the nonlinear functions. If these in-
vestigations indicate stability in all regions of the parametric
representation, the stability of the closed loop is generally
assured. Such methods could also be used, of course, to
determine the values of the autopilot constant K required
to assure complete stability.

The application of this technique for the cases of angle-of-
attack feedback and attitude stabilization is as follows:

(a) Angle-of-attack feedback: The control equation is
written as follows for the angle-of-attack feedback system
(see fig. 2(a)):

=K (a;—a) . 5)

When equation (5) is substituted into equations (4) and the
Laplace transformations of the resulting expressions are
formed, the solution for « can be written in terms of the
transform variable as

a(8) -Kl(a82+ bS)at(S)‘l— [I- C' (8)]a
sls*-(2¢ wn+Ki@)s 0.+ K b)

where the term {I.C. (8)]. is the function of s (involving
the initial conditions and constants) that results when the
control equation and equations (4) have been transformed
and solved for «(s) and the other coefficients are constants.
These expressions are tabulated in terms of the aircraft
parameters in the appendix.

The stability criteria of the characteristic equation of

equation (6) are
2 g‘ w,+K1a,>0
0.)32+K16>0

The inequalities (7) allow a thorough investigation of the
effects of K; on stability. These criteria must be checked
in each range of « used in defining the nonlinear functions
which appear in equations (1) if the type of motion is to be
completely investigated. The types of motion possible are
similar to those of a simple spring-mass system with viscous
damping, which also has a quadratic characteristic equation
(see, for example, refs. 2 and 13). The equation which
describes the attitude variations as this type of system
operates can be determined by solving for 6(s) after equations
(4) and (5) are transformed as described previously.

®

™
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The angle-of-attack feedback system does not exhibit a
zero error at steady state even for the completely linear case.
This condition may be seen by applying the final-value
theorem (see, for example, ref. 2, pp. 72-73) to equation (8)
and noting that the steady-state angle of attack does not
equal the input «; and, hence, the error a;—a does not tend
to zero. This characteristic also is present when the non-
linear functions are considered. For the nonlinearities
considered herein, all « transients are completely stable, that
is, exhibit steady-state values.

(b) Attitude stabilization: The control equation is written
as follows when attitude stabilization is considered (see fig.

2 :
® 6=K,(0,—6) (8

When equation (8) is substituted into equations (4) and the
transformations are made, the complete closed-loop solution
for 9(s) becomes .

Ki(es+d)0(8)+[1.C.(8)]
o) s3+2§’w.8’+(w.’+ch)8+—;fad ©

where [I.C.(s)]s is the function of s (involving initial con-
ditions and constants) that results when the control equation
and equations (4) have been transformed and solved for
6(s), and the other factors are constants as defined in the
appendix.

The criteria for stability of the cubic characteristic equa-
tion of equation (9) require that all coefficients be positive
and that

(28 wy) (e’ +Kee) —Kod >0 (10)

These criteria allow a complete investigation of the effect of
K, on stability and should be checked for each angle-of-
attack range where definition of the nonlinear functions
changes. The angle-of-attack variation a(s) for this system
can be solved for from the transformed equations (4) after
the control equation (8) is considered.

For the completely linear case when stability is assured,
equation (9) reveals that the system is a zero-error system,
the output tending to equal the input and the error (0,—0)
tending to equal zero. For the nonlinearities considered
herein, two conditions affecting operation of the system can
exist, and these conditions result primarily from the non-
linear C,(«) function. (For normal C.(«) functions where
the slope remains positive and is not greatly changed in the
angle-of-attack regions, this nonlinearity will not affect the
stability or "oscillatory characteristics to any appreciable
extent.) For the system having a nonlinear C,(e) function
and a K, satisfying the stability criteria for all values of «, it
may be shown from the examination of steady-state « and
steady-state 8 following a step input 6; that the system ro-
mains & zero-error system. Consider secondly the case
where the U, () function has an unstable slope at central «
and a stable slope at outer « and a &; such that stability is
assured at outer « but not at central «. The instability at
central « means that the angle-of-attack motion in this
region is divergent to outer «; that is, no steady-state « can
exist at central «. Upon examination of a(s) it will also be
noted that no steady-state « can exist at outer a; however,
the motion at outer a is stable, and the « tends to the region
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of central a where the motion has been shown to be divergent.
This process is summarized as follows:

(1) At central o, the angle-of-attack motion is always
divergent to outer a.

(2) No steady-state « exists at outer o

(3) The tendency of the motion at outer « is toward the
region of central o.

It is concluded, therefore, that the angle-of-attack motion
should, after some initial transients, become some form of
continuous hunting oscillation (nonsinusoidal) rendering the
complete system continuously oscillatory. A constant-
amplitude, constant-period motion would also be suggested
from the summary of the angle-of-attack tendencies when
examined on an energy basis, an energy balance becoming
established between that energy fed in by the unstable
mode and that dissipated in the stable regions.

In summary, the attitude-stabilization analysis reveals
the following significant facts:

(1) The autopilot proportionality constant K, can be
adjusted for complete stability at all values of & and renders
the system a zero-position-error system for the nonlinearities
considered herein.

(2) If the Cu(e) nonlinearity is such that the constant K,
assures stability at outer « but not at central «, continuous
hunting oscillations can exist.

Closed-loop transients,—Equations (6) and (9) are com-
pletely expressed when «,(s) and 6,(s) are known. For a step
function of unit magnitude,

01(3)=¢1t(3) =‘%

Upon substitution into the proper equations, the transform
function is known and the inverse transformation to «(t)
or 6(t) or both «() and 4(f) can be determined.

METHODS OF NONLINEAR MECHANICS

For the types of nonlinear functions represented in figure
1, the use of a cubic equation is suggested as a possible
representation of the nonlinearity over an adequate range
of angle of attack. Such a cubic representation would, of
course, make the differential equations of motion of the
aircraft nonlinear. To many such problems, however, the
methods of nonlinear mechanics have proved a useful means
of satisfactory analysis, although the results are seldom
available as the familiar time responses. References 14 and
15 afford very complete discussions of the methods and
techniques used in applications of the theory of nonlinear
mechanics,

For the present report a single application of the methods
of nonlinear mechanics will be discussed in detail to illustrate
the application and usefulness of such methods to the problem
considered. For the case chosen and, in general, for the
cases where the principles of nonlinear mechanics are readily
applicable, the procedure is to rewrite the differential equa-
tions of motion into an independent system, that is, into a
system of equations in which time appears only as a differ-
ential d¢, Such a representation is possible for many cases
or can be derived by a suitable change in variable. After
such a revision, a phase plane can be defined and the charac-
teristics of the motion can be determined by trajectories in
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this phase plane. The coordinates of the phase plane will
usually allow the trajectories to describe successive states
that the system may take as time proceeds but will usually
not indicate the times at which the various states exist. For
example, trajectories of displacement against rate of displace-
ment would be sufficient to describe the successive states of
motion of an oscillating system having one degree of freedom.
The graphical representation of trajectories in the phase
plane is facilitated by the construction of a family of isoclines
where each isocline is & locus of points where the trajectories
have a given slope (ref. 15, pp. 10-11 and 248-252). Inves-
tigation of the singularities in the phase plane indicates the
type of motions which result from given initial conditions,
such as steady hunting oscillations or aperiodic or oscillatory
responses that are either divergent or convergent. Refer-
ences 16 and 17 are two examples of applications of the
techniques of nonlinear mechanics to cases in which an
automatic-control component has rendered a system essen-
tially nonlinear.

The example chosen for this discussion is an aircraft
having a nonlinear variation of pitching-moment coefficient
with angle of attack under the influence of angle-of-attack
stabilization (fig. 2(a)). The following assumptions are
made: (1) the other coefficients are constants as listed in
the appendix, (2) the reference angle of attack «; equals
zero, and (3) the nonlinear pitching-moment variation has
8 positive slope for small positive and negative values of
angle of attack. As a consequence of the second assump-
tion, the following equation will apply:

o= —Kla (11)

For the representation of the nonlinear function Cy,(«),
consider the €, curve in figure 1 having a positive slope at
small value of @. If the « intercepts are symmetrical about
a=0, a cubic representation of this curve would take the

form
Cu(a)=cocd—c (12)

where ¢o and ¢; are constants.

Considering a simplified notation for the equations of
motion (eq. 4) and substituting equations (11) and (12)
result in

@ D60+ a;D0—coo+-cra=ay(— K@)

5D+ byDec-+ byar=0 (13)

where Cz, and Cn, have been assumed to be zero. The com-
plete definition of constants is given in the appendix. Equa-
tions (13) are rewritten as follows to illustrate that they
can be reduced to an independent system:

db_—az, . Co __ﬁ_asK])

T ettt (14)
da_ ., —bs

where 0=@ and useis made of the equation b;=-—5,. These

dt
equations suggest that the complete motions can be exam-
ined by the instantaneous states of « and 4. This idea is
also apparent from the Laplace transform procedure sug-
gested in a previous section since only the initial values
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of « and 0 are required for 2 definition of the motion.
Therefore, the «,0 plane is the phase plane for these con-
siderations.

Before actual trajectories are drawn in this plane, a
family of isoclines is determined. The slope of any path
in the phase plane is df/de and is determined by the division
of equation (14a) by equation (14b). The resulting equa-

tion is
a3 _l_< C1 (If,K1>
" (15)
-} % @

db a1
da

If dd/da is assigned a constant value A, equation (15) can be
reduced to the form

_ G asK1>

Co a3+<
(16)
A

+a:

which is the isocline representing the locus of all points in
the phase plane where trajectories must have the slope A.
The singularities of the system are defined as the equilib-
rium positions (steady-state values) that the system may
attain and are determined from equations (14) by using

df_de
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When the numerical values for the constants as given in
the appendix are used, the following equation results for
the isoclines:

—300(10)3a®+(4.51A+257) ¢

o A+4.02

where X is the slope in radians per second per radian. The
singularities are found from equations (14) when conditions
of equation (17) are imposed and are

(1) =0, =0

(2) «=0.0278 radian=1.59°, §=0.1254 radians per second

(8) «=-—0.0278 radian=—1.59°, §=—0.1254 radians per
second

Figure 4 is 8 plot of the «,6 phase plane and shows some
isoclines for various A. It is important to note that the
trajectories or paths which describe the motion have a
definite direction that depends on the position in the phase
plane. This direction is determined from equations (14)
by considering the value of equation (14a) to be a vector
component in the § direction and the value of equation (14b)
to be & vector component in the « direction. 7The direction
of the resultant of these two components is the direction of
the trajectory at that point in the phase plane; this resultant
vector is termed the phase velocity at that point since the
vector components determined from equations (14) are them-
selves velocities. The arrows shown on the igoclines are not
phase-velocity vectors but indicate only the direction of the

= —==() 1 . . . .
dt dt a7 phase velocity on the various isoclines.
L A=-2
By
0
A=-8
4 A . 4
|
3 20
3 -
2
R4 0 §
"B ” © =20
< 20 ==
7] -10
4k 3
-8 -4,02"
‘\;4-02 =2
-1.2 i S | I i 1 )
-20 -1.6 1.2 T -8 -4 3 8 1.2 1.6 2.0

0
Angle of attack, a, deg

Fiaure 4 —The phase plane (a, §) for the example illustrating the methods of nonlincar mechanics, Three trajectories are shown; isoclines of
constant A are labeled.
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Several trajectories are shown in figure 4 for various initial
conditions; these were drawn by the graphical method dis-
cussed in reference 15, pages 248-252. It is evident from
these trajectories and from the directions of phase velocity
on the given isoclines that the two singularities (+1.59°,
+0.1254) are points of stable equilibrium; that is, the
motion following a disturbance will oscillate about and tend
to one of these stable states. A singularity of this type is
termed (refs. 15 and 16) a “stable focus’’ which means that
the motion tends to this equilibrium in an oscillatory manner.
The other singularity at (0,0) is an unstable equilibrium
point. This instability is evidenced by the fact that the
slightest disturbance from this point results in a motion to
one of the stable foci. This singularity at the origin is
termed a “saddle point.”

In this brief discussion it is evident that much can be
learned about the characteristics of the system without
resorting to actual solution of the nonlinear differential
equations. The results presented for this case from an
inspection of the nature of the phase plane can also be
verified by the application of the various theorems presented
in references 14 and 15, which allow a determination of the
stability of singularities and of such an important property
as the existence or nonexistence of steady oscillations in the
system. The methods of nonlinear mechanics, however, are
relatively new and, in their present state of development,
they cannot be expected to handle an extreme variety of
problems. The methods become quite involved even for
systems baving two degrees of freedom in which definition of
the motion requires more than two quantities; the methods
become almost impossible when more degrees of freedom are
introduced.

ANALOG RESULTS AND DISCUSSION

As o part of the investigation of the effects of nonlinear
stability derivatives on the transient longitudinal motions
of an aireraft, the problem was studied through the use of
electrical analog equipment. The analogs employed were
the Engine and Control Simulator manufactured by Phil-
brick Researches, Inc., and the Reeves Electronic Analog
Computer (hereinafter designated the Philbrick Analog and
the REAQC, respectively), the units being, respectively, at the
Lewis Flight Propulsion Laboratory and the Ames Aero-
nautical Laboratory of the NACA. Descriptions of the
analog units are available from various sources, for example,
references 18 and 19.

The nonlinearities considered in these studies included
both nonlinear functions represented in equations (4), that is,
the nonlinear variations of pitching-moment coefficient and
lift coefficient with angle of attack. In all problems pre-
sented for both analogs, the nonlinear functions were repre-
sented by straight-line segments although the methods of
representation used in the two analogs differed. The other
basic constants used are tabulated in the appendix, and the
nonlinear functions are defined when presented. The
presentation and discussion of results are given in two sec-
tions: (1) aircraft transient responses and (2) closed-loop
transient responses. The first section contains analog solu-
tions of the transients in angle of attack (and, in some cases,
rate of pitching) resulting from step deflections of the canard

947

elevator control surfaces. The second section presents some
solutions for the closed-loop cases shown in figure 2. In both
sections various types of nonlinear functions were chosen as
being possibly representative of the nonlinearities likely for
the assumed canard configuration.

The results from the Philbrick Analog were obtained by
photographing an oscilloscope; the REAC results were made
with recording elements. Theintent of the Philbrick studies
was to survey qualitatively a wide range of nonlinear func-
tions by observing and recording the more unusual tran-
sient conditions. For this reason high accuracy in aircraft
simulation was not required and the results are discussed in
this light. In the REAC problems more exact solutions were
required, the accuracy in final « and  transients being esti-
mated at approximately 2 percent and the accuracy of
individual REAC components being considerably better.

AIRCRAFT TRANSIENT RESPONSES

The analog results presented herein are aircraft transient
responses in angle of attack (and pitching velocity) due to
step deflections of the canard elevator surfaces. Although
only & few nonlinear situations are discussed in detail, the
remarks which summarize the report are based on a much
larger number of cases for which analog solutions were ob-
tained.

Case I. Nonlinear Op(a): %=n]cl, 0<n< 1, —2°< o< 29

ac,
do
is the pitching-moment coeffcient due to angle of
attack where the slope at values of « less than —2°
and greater than 2° is larger than the value of the slope in the
region —2°< < 2° In this case, the slope is always nega-
tive and stability is assured. Since the frequency of the
transient oscillations is determined principally by this slope,
changes in the frequency (period) are expected as the region
m which the value of the steady-state angle of attack changes
because of various elevator deflections. Little change in the
damping envelope is expected.

Results from the Philbrick Analog are presented in figure
5. In this run the value of k; was equal to —5.14 and the
slope for —2°< < 2° is 0.463k,=—2.38. The « transient
shown in figure 5(a) is the completely linear cese where
Cn(a)=Ekjo. The total transient time shown represents
1.325 seconds. When the described nonlinearity in Cp(e)
1s introduced, the results are shown by the four remaining
records of figure 5. Curves of figures 5(b) and 5(d) are
two « transients, whereas curves of figures 5(c) and 5(e) are
the corresponding nonlinearities. These nonlinearities were
photographed by using the output of the element generating
the nonlinear function as the vertical coordinate of the
oscilloscope and the angle of attack as the horizontal co-
ordinate. Hence, the region of angle of attack covered in
the transients of figures 5(b) aud 5(d) is shown again by the
region of the nonlinearity pictured. The large spots shown
on the nonlinearities represent the trim values of « due to the
old and new & input. Hence, figure 5(c) shows that the
values of ¢ change in such a way as to make the trim values
of « change from one extreme of the nonlinearity to the other.
Since the slopes at these outer values of « are the same as that

=k, a<—2° a>2°—1In case I the nonlinear function
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(a) Linear case,

(b) « transient.
(d) « transient.

dCr_
E‘—' 5. 14.

(¢) Nonlinearity.
(e) Nonlinearity.

Fraure 5.—Philbrick solutions for case I. Aircraft « transients and parts of nonlinearity involved; nonlinear Cu(c), %‘=-—5.14, al—2°,

dCu

dCy,

>2°; FR=—2.38, —2°<a<2%; T X=3.49, all o

shown for the linear case, the period should remain prac-
tically unchanged (compare figs. 5(2) and 5(b)).

Figure 5 (d) is the « transient when the change in § causes
the trim « to change from a point where the slope is large to
one in the region of reduced slope. The ratio increase in
period (reduction in frequency) shown in figure 5 (d) is ap-
proximately equal to the theoretical variation of being in-
versely proportional to the square root of the decrease in
slope. (This variation will apply for lightly damped sys-
tems.) For the three transients shown, the damping envelope
is seen to be essentially unchanged, the time required to reach
steady state being about 1 second in each case.

Two solutions from the REAC for this case (reproductions
of actual recordings) are presented in figure 6. For these
solutions the value of &, was —6.0 and n=0.5, and the cases
shown are the results of moving the elevator in & programmed
manner from 0° to about 8° and after steady state is reached
to about —4°. The variations of 6, «, and & with time are
shown in this figure. The slight phase difference between
control motion and the transients in the REAC solutions are
due to the recording equipment and not to aircraft dynamics.
The £2° (40.035 radian) positions noting the break points
in the nonlinearity are also indicated on the « transient. The
same general characteristics are observed for these two tran-
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Fiaure 6.—REAC solutions for case I. Aircraft transients; nonlinear Cn(a) function with %——60 al—2°% a>2°; %—-—30
— 20 0 2°; @_3 49, all .

sients as mentioned previously, namely, the change in period
and approximately the same time required for both transients
to reach steady state. The steady-state values for « and 6
check reasonably well with those predicted theoretically. In
figure 6 the responses show clearly that when the angle-of-
attack variations are such as to be in the region of breaks in
the nonlinearity, the periodicity is not constant; when they,
however, arein an « region where the slope of the nonlinearity
is constant (near steady state), the period does remain con-
stant, For cases such as this illustration where it is rela-
tively certain that the system is very lightly damped, this
change in periodicity and the eventual constant period near
steady state can be attributed to & nonlinearity in the effec-
tive spring constant of the system in this case Cy ().

Case II. Nonlinear O,(a) =k, a<l—2°, «>2°%; 52

—nlky, 001, —2°<a<2°.—In case IT the variation of the
pitching-moment coefficient with angle of attack is nonlinear
and considered to have a positive (unstable) slope in the
range —2°< a<2° A trim angle of attack for a given ele-
vator deflection & cannot be expected to exist in the region
—2°< < 2° since in this angle-of-attack region the transients
are divergent. (This condition is shown by the presence of
two real roots of opposite signs of the quadratic characteristic
equation of equations (4), the negative root indicating a
damped subsidence and the positive root indicating the diver-
gent aperiodic mode.)

Figure 7 presents some Philbrick solutions for this case
where %;=—0.838, n=~1. The total transient time shown
represents 2.13 seconds. The « transient shown in figure 7 (2)

dC

is for the completely linear case with Cp(a)=%;a. The period
of the damped oscillation is 0.284 second. Figures 7 (b),
7 (d), and 7 (f) are « transients for different & conditions, and
figures 7 (c), 7 (e), and 7 (g) are the parts of the nonlinear
function involved in each transient.

From the nonlinearity shown in figure 7 (¢) the change in
trim angle of attack is large with the new trim angle of at-
tack well into the region of stable slope. Therefore, little
change is expected or noted in the transient of figure 7 (b)
as compared with the linear case in figure 7 (a). As the
value of & is changed and the new trim angle of attack comes
nearer to the break in the nonlinearity (see fig. 7 (e)), the
initial portion of the transient of figure 7 (d) has become
distorted. The characteristics of the oscillations about the
new trim angle of attack, however, remain unchanged. As
the § is changed only slightly, a new trim angle of attack is
found to the left of the region of unstable slope as shown in
figure 7 (g). 'The first overshoot of this transient (fig. 7 (f))
is to an angle of attack in the unstable region, but the
energy of the system is such that the complete unstable
region is not traversed and the oscillatory characteristics
about the new trim position become established.

Only a very slight change in the § was found to be required
for the change in trim angle of attack exhibited in the
transients of figures 7 (d) and 7 (f). Only when the new
trim angle of attack was near the breaks in the nonlinearities
did the transients indicate any peculiarities which might
give an indication of the presence of a nonlinearity in the
system.
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(&) Linear case,

(b) « transient.
(d) a« transient.
() « transient.

d—-—=—0.838

Cu
da
(¢) Nonlinearity.
(e) Nonlinearity.
() Nonlinearity.

F1aure 7.—Philbrick solutions for case II. Aircraft « transients and parts of nonlinearity involved; nonlinear Cy(a), %=—0.838, al—2°

dCan

a>20; 9n_( 838" 90020 "%=3.49, all .

da

The REAC solutions presented in figure 8 for this case
are for a value of ;=—3.0, n=0.5. The two examples
shown start from the same values of 3, trim «, and § with
the first changing from 6=4° to § ~—2° and the second
changing to d=~—4° In both of these conditions, the
angle-of-attack variations are from a point of stable equi-
librium at positive « to a stable trim position at negative a.
The transients indicate that the initial portions give the
only hint of nonlinearity in the system. As noted previ-
ously, this initial part of the « transients becomes more out

of the ordinary as the new position of trim « approaches the
break point of the nonlinearity. These slight slope changes
in the « transient are almost unnoticeable in the second
curve. Examination of the § transients, however, indicates
clearly the effect of the nonlinearity on the rate of pitching
in the initial phase of the response. After this first effect
on the transients, the oscillatory characteristics become very
regular. .
ac

Case III. Nonlinear Ci(a): ——=k;, a<—2°

da a>2°;
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%%—nkg, 0<n< 1,—2°< a< 2°.—In case IIT the variation of

lift coefficient with angle of attack is the nonlinear function
having a larger slope at the outer values of . Since the
aircraft is lightly damped, the primary contribution of the
lift-curve slope to the oscillatory characteristics is in the
damping of the motion. Since, for this case, the slope of
the pitching-moment-coefficient curve against angle of

attack is & constant (%=k1>, no change is to be expected

in the period of the transient oscillations.

In figure 9 three Philbrick solutions are shown. Figure
9 (a) is the completely linear case with k=3.49 (n=1.0)
and k=-—1.90. The transient time is 2.48 seconds, the
period is 0.194 second, and the cycles to damp to one-tenth
amplitude are 3.39. Figure 9 (b) is the transient which
results when the trim « changes from a region of large slope
(dCp/de) to o region of « of reduced slope. The value of »
is 0.328 in this instance, that is, the slope at cenfral « is
about one-third of the slope at outer a«. The period is
essentially unchanged although the number of cycles to
damp to one-tenth amplitude has increased to 4.20. For a
change in trim « from the region of reduced slope to the
region where the slope is the same as the completely linear
case, the transient in figure 9 (c¢) is essentially the same as
the one shown in figure 9 (a) for the linear case.

The change in slope used in this example is much greater
than would be expected in a practical case; thus this change
indicates that the actual effects of this parameter might result
in very little change in the « transient characteristics. It is

also emphasized that & simple examination of the transient
(or even a comparison between figs. 9 (b) and 9 (¢)) could
not indicate that the nonlinearity was in lift-curve slope
because the effect of variation of damping in pitch Cn,

would also be manifested by changing the damping but not
affecting the period. In actual flight tests, however, normal-
acceleration records might help to isolate this effect as a
nonlinear O ().

The REAC solutions shown in figure 10 have k;=4.19 and
n=0.834. The linear equation of Cn(c)=—3.0a was also
used in these runs. The variations of & shown were from
8=0° to §=~8° to 8= —4° The periodicity is constant, for
these cases even though the variations of « in the second run
are about the break point (e=—0.035 radian) of the non-
linearity. Since the two slopes of the nonlinear Cp(«) func-
tion are nearly the same, the demping is practically unaffected
in the two cases; in fact, plots of the logarithm of the peak
amplitudes about steady-state values against time for these
two cases indicate essentially the same slope and, therefore,
the same damping, although the second run has a slight
amount of scatter in the points. These cases, which have a
more reasonable value for n than was used in the Philbrick
solutions, indicate the slight effects of this parameter under
the conditions investigated.

Case IV. Nonlinear Cn(a) and Cr(e).—In case IV the two
nonlinearities used in the REAC solutions for cases I and
II0 were used together in the same run for two transient solu-
tions. These results are shown in figure 11 for & changes of
0° to 4° and 0° to 8°. In the first transient only the first
overshoot is greater than «=2°, the break point of the non-
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(a) n=1.0, completely linear case.

(b) n=0.328.

(c) n=0.328.
Fraure 9.—Philbrick solutions for case ITI. Aircraft « transients;
nonlinear Cu(e); SE=3.49, a<—2°, a>2% “i=n(3.49),

—2°<Ca<2% %%'3=—1.90, all a.

linearities; hence, the transient characteristics are those
defined entirely by the slopes of the nonlinearities at small e.
In the second transient the period becomes constant after
the first two cycles and exhibits characteristics similar to
that of the first transient of figure 6 with the single nonlinear
function Cn(a). These results might have been expected
since the nonlinear Cp(«) had so little effect in case III.
Other runs for cases where two nonlinearities were in the
system indicated that the most noticeable changes in the
transients occurred with changes in the Cn(«) function, as
indicated previously.

Review of effects of nonlinearities on aircraft transients.—
Nonlinear variations of the pitching moment resulted almost

REPORT 1241—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

solely in effects on the period of the transient oscillations.
Differences in the period of the oscillations in the different
regions of angle of attack, due to the different slopes of the
nonlinear function in these regions, were an effective way of
noting the presence of this nonlinearity. Another noticeable
effect was the irregularity in the period of the oscillations

" when the trim angle of attack for the various elevator deflec-

tions was near & break point of the nonlinearity. When the
trim angle of attack is removed from the break in the non-
linearity, the oscillation characteristics become very regular,
that is, constant period and damping. If only moderate
changes in trim angle of attack result from the control motion
and the nonlinearity or a part thereof is traversed, the initial
sections of the transients may indicate the presence of the
nonlinearity through smeall slope variations, although the
final oscillatory characteristics are quite regular. For large
changes in trim angles of attack under the conditions noted,
the small variations in the initial sections of the transient
may become so slight as to be indistinguishable from the
perfectly linear case.

For cases when the nonlinear variation was in lift coeffi-
cient, large slope changes were required before changes in the
oscillatory characteristics became appreciable for trim angles
of attack in the different regions. This nonlinearity affected
only the damping characteristics of the motions, the period
remaining constant. This effect could be expected since
very large changes in damping would be required to alter the
period of this lightly damped system.

When the two nonlinearities were considered simultane-
ously, with reasonable variations in each, the predominant
changes in transient characteristics were similar to those
noted for the single nonlinear pitching-moment variation,
that is, the changes in periodicity previously mentioned with
the time to damp remaining essentially unaltered.

CLOSED-LOOP TRANSIENT RESPONSES

The results in this section are transient response curves
llustrating the dynamics of the two closed-loop systems
depicted in figure 2. The discussion is made in two parts:
the closed loop with angle-of-attack feedback and the atti-
tude stabilization; Philbrick and REAC solutions for several
cases are included. The nonlinear characteristics are those
previously described for the aircraft; the error-sensing devices
and proportional servomotors are considered as zero-lag
systems. The transients are the respomses to step input,
command signals in «; and 4,.

Angle-of-attack feedback.—The block diagram for the sys-
tem with angle-of-attack feedback is shown in figure 2 (a).
Transients from the Philbrick Analog are shown for two
cagses: one where the nonlinear function is Cp(«) and the
other for the nonlinearity Cn{(a). REAC solutions were
made for two different nonlinear functions of pitching-
moment coefficient.

In the Philbrick solutions the value of K; was approx-
imately unity. For the case with nonlinear Cy(e), the
conditions are the same as described for case III of the
previous section where the lift-curve slope at outer values of
ais greater than the slope at small values of «. The tran-
sients shown in figure 12 resulted from changes in «, that
caused the final values of « to be in regions where the lift-
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curve slope is different. TFigure 12 (a) shows the « transient
about o steady-state value of « in the region where the lift-

curve slope is reduced (‘—Z‘-i%=l.14>- The oscillations in
figure 12 (b) are about a steady-state value of « in an «
region of larger lift-curve slope (%%’=3.49)- The increase

in lift-curve slope is seen to improve the damping character-
istics of the closed-loop system with angle-of-attack feed-
back in much the same way as the aircraft transients were
improved. Investigation of the characteristic equation of
this closed loop, the denominator of equation (6), shows that
the principal effect of such a change in lift-curve slope would
be most evident in the damping. Comparison of transients
of figure 12 as well as an examination of the characteristic
equation indicated that the frequency of the oscillations is
constant.

The Philbrick solutions with nonlinear Cn(a) were made
for the case where the slope of the pitching-moment-coeffici-
ent curve was positive (unstable) at small « and stable at
outer «. 'The outer slopes were —1.90, and the center slope
was 0.655. Two « transients illustrating the effects of this
nonlinearity on the closed-loop responses are given in figure
13. In figure 13 (2) the change in reference angle a; results
in o change in the steady-state values of « from one region
of stable slope to the other. In figure 13 (b) the input
change causes the final value of « to be a value in the region
of angle of attack where the aircraft has an unstable pitching-

moment curve, and the transient is satisfactory. The
physics of this change is explained by the action of the angle-
of-attack feedback which causes the control-surface deflection
5 to give a moment proportional to the instantaneous o;
thus, this moment adds to the effective spring constant of
the system. In this instance, the value of K is large enough
80 that this contribution overcomes the destabilizing effect
of the spring in the aircraft at central « and renders the
overall system stable in this region of . This stability could
also be determined from the inequalities (7) which show that
the value of K; used assures complete stability of this closed-
loop system.

REAC solutions were also made for & case where the pitch-
ing-moment curve had an unstable slope at small values of
angle of attack. The same conditions as discussed for
REAQC runs in case IT were used in this solution with a value

of (_ig___3 0 for the stable slopes at outer « and éd% =1.5

da

for —2°<a<2°. The value of K; was 1.0. The three «
transients of figure 14 are for the «; step inputs of 1°, 4°, and
8°. The 2° position noting the break in the nonlinearity is
shown on each curve. For this case, an examination of the
inequalities (7) reveals that the value of K;=1.0 is not large
enough to assure complete stability in the region —2°<a<2°%;
hence, no steady-state value of « is possible in this region.
Therefore, for even the small input a;=1°, the final value of &
is greater than the break point of the nonlinearity. The
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TrourE 11.—REAC solutions for cese IV.  Aircreft transients; nonlinear Cula), %=—6.0, al—2° a>2% E—=—3.0, —2°L a<2°; nonlinear

Cule), s 19, ac—2°, a>2°

measured values of steady-state « due to the inputs involved
are 2.49°, 3.21°, and 4.24° compared with the theoretical
values of 2.50°, 3.26°, and 4.30°, respectively. Since the
value of « is greater than 2° after the first cycle for all the
transients shown, the period of the oscillations is essentially
the same for all cases.

The final REAC solutions are shown for the case where the

C.(c) nonlinearity is the same as case I, namely, %C;i‘=—3.0

where —2°<a<{2° and éd%=—6.0 when a<{—2°, a>2°.
The «, inputs were again 1°, 4°, and 8°, and the value of K,
was 1.0. The resulting closed-loop « transients are given in
figure 15. In these runs too, the steady-state values of «
check satisfactorily with the theoretical values. Note that
figure 15 (¢) for ;=8° has a final value for of about 2°;
hence, the oscillations are about the break point of the
nonlinearity. The period of this transient is very constant
and is different from the period of figures 15 (a) and 15 (b)
which both remain in the region 0<a<(2°. The period of
figures 15 (a) and 15 (b) is about 1.17 times the period of
figure 15 (c). A theoretical value of the change in period,
obtained from consideration of the values defined by the two
glopes of Cn(a), is 1.15; this value is close to the measured
value even though the oscillations were not in the region
where this result could be expected to apply. Stability of
the combination of the aircraft and autopilot with control

dCr
da

=8.49, —2°<a<2°

proportional to angle of attack was obtained by adjustment
of the autopilot proportionality constant, and the effects of
the nonlinearities were similar to those noted for the aircraft
transients to step control deflections.

Examination of figures 14 and 15 indicates that all the
cases shown with nonlinesrities in the system exhibit a
steady-state error between the reference a; and the actual a.
This characteristic is not due primarily to the nonlinearities
of the system. An investigation of & linear aircraft in this
system of angle-of-attack feedback reveals that the complete
system is not & zero-position-error system; therefore, unless
some form of compensation is included in the loop the output
will not equal the input at steady state. For the cases shown,
however, adequate compensation of the system with non-
linearities as described may be no more difficult than that
required to meke the linear system & zero-position-error
system.

Attitude stabilization.—In the results (REAC) to be pre-
sented for the problem of attitude stabilization, the only
nonlinearity considered was Cn(e). In the first example the
Ca(e) function used for REAC solutions for case I, dCy/da
being negative for all @ but having a larger slope at outer a,
was employed. The second example is the Un(a) function
for case II, dCn/da having a stable (negative) slope at outer
« and an unstable slope at —2°<a<(2° and & K, which does
not assure stability at central . The analysis in previous
sections indicated that the first example should exhibit
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(a) Steady-state « in region where %’=1.14.

(b) Steady-state « in region where dd_C 3.49.

Frounre 12,—Philbrick solutions for proportional control system with

angle-of-attack feedback. « transients, nonlinear Cr(a), -4&’=3.49,

al—2° a>2°; dCL =114, —2°<a<2°; ‘1%=-1 20, all «; auto-

pilot constant K; ='1.0

constant steady-state values after transients die out, whereas
the second example should show continuous hunting oscilla-
tions. Ior both cases K,=1.0.

Figure 16 illustrates the first example where the Cp(a) has
2 negative slope at all @. Figure 16 (a) is for §,=4.6° and
figure 16 (b) is for 6,=9°. The upper curves in figure 16 (a)
and figure 16 (b) are the a variations, whereas the lower
curves are of the error ,—6. In both of these cases the
error tends to zero indicating the zero-position-error charac-
teristic of the system. The cubic characteristic equation of
this system, see equation (9), would show an oscillatory
mode of motion superimposed upon the convergent aperiodic
mode and is indicated by the negative real root. From the
characteristics of the system at central «, the oscillatory
mode damps to one-half amplitude in about one-third of
the time required for the aperiodic mode to demp the same
amount, In figure 16 (b), the period becomes constant only
after the variations of « become less than 2°, whereas in
figure 16 (a) the period is constant throughout.

The results for the second example where the C,(a) fune-
tion had an unstable slope in the region —2°<a<(2° are
presented in figure 17. Curves in figures 17 (a), 17 (b), and
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17 (¢) were results of step inputs of 6; of 0.7°, 4.6°, and 8.7°,
respectively. In each set the time variations of « and ,—6
are shown. Though the initial portions of the responses are
different for the three cases, the resulting hunting oscillations
are essentially the same. These curves show the constant-
amplitude constant-period oscillations predicted in the
theoretical analysis for this type of nonlinearity.

Stability of the attitude-stabilization system, when the
control-surface deflection is proportional to the error in
attitude, could be completely assured for the types of non-
linearities considered herein with proper adjustment of the
autopilot proportionality constant. ‘The existence of con-
tinuous hunting oscillations for a particular noulinear
pitching-moment variation and improper autopilot adjust-
ment was predicted theoretically and demonstrated by
analog solutions. Tbe pilot of & conventional aircraft might
apply control in a manner that is approximately proportional,
though probably with a time lag, and such a bunting oscilla-
tion as described might be realized if that aircraft had a
characteristic like the nonlinearity in the data of figure 17.

(8) Steady-state « in region where -‘%‘:—1.90.

(b) Steady-state « in region where %—0 655.
Fiaure 13.—Philbrick solutions for proportional control system with
angle-of-attack feedback. « transients and parts of the nonlin-

ACem 1.0, a<—2%, 2 B2 0,055

—2°Lal2°%; dCL =3.49, all «; autopilot constant X

earity; nonlinear Cu(c),
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Nonlinear Cp(cx),
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CONCLUSIONS

A study has been made concerning the effects of two non-
linear stability derivatives, caused by the nonlinear varia-
tions of pitching-moment and lift coefficients with angle of
attack, on the longitudinal motions of an aireraft. In
addition to the theoretical methods discussed, the excellent
adaptation of analog equipment to this dynamicel study
gave results for the responses of a canard aircraft to step
control deflections and to the influence of two types of
proportional automatic control. From the theoretical con-
siderations and the analog results presented herein, the
following conclusious summarize the investigation:

1. When the nonlinear functions are approximated by a
series of linear segments, the methods of the Laplace trans-
formation allow the transient responses of the aircraft alone
and also with proportional sutomatic control to be calcu-
lated. The computational procedure required, however, is
tedious and time consuming.

2. The most noticeable effects of the nonlinear pitching-
moment variations on the response of the aircraft to step
control deflections was in the periodicity of the oscillations.
The occurrence of an irregular period and of different
constant-period oscillations about the various trim angles
of attack was the most satisfactory way of noting the presence
of this nonlinearity.

3. Nonlinearity in the lift curve affected only the damping
of the transient angle-of-attack oscillations, the period
remaining constant. Large slope changes in this nonlinear
function were required before the effect on the time to damp
became appreciable.

4. Simultaneous occurrence of the two types of nonlinear-
ites considered herein, with reasonable values of each, resulted
in transient characteristics which were similar to those with
the single nonlinear pitching-moment function.

5. Stability of the combination of the aircraft and auto-
pilot with control proportional to angle of attack was ob-
tained by adjustment of the autopilot proportionality con-
stant, and the effects of the nonlinearities were similar to those
noted for the aircraft transients to step control deflections.

8. Stability of the attitude-stabilization system, when the
control-surface deflection is proportional to the error in
attitude, could be completely assured for the types of non-
linearities considered herein with proper adjustment of the
sutopilot proportionality constant. The existence of con-
tinuous hunting oscillations for a particular nonlinear
pitching-moment variation and improper autopilot adjust-
ment was predicted theoretically and demonstrated by analog
solutions.

LaNGLEY ABRONAUTICAL LABORATORY,

NaTionar Apvisory COMMITTEE FOR AERONATUTICS,
LanerLeY Frewp, V., December 29, 1960.

APPENDIX

FACTORS AND COEFFICIENTS USED IN THE ANALYSIS

The complete expressions for the factors and coefficients
used in the analysis section of the report, in the order in
which they appear in the text are as follows:

azh, , as
b—adbz—l-

LC. Gle=a®s+] 5% 0 O+ 0+ p+-It+2L

2§‘wn—_'|'—+ ks
s ks Ky
* mb: @

(When »,>>0 and 2{w, >0, w, corresponds to the undamped
natural frequency of the short-period mode of motion of the
aircraft alone and { represents the conventional nondimen-
sional damping ratio.)

o=t b4
T ab

agks , kib,
¢7/1b2+atba

[L.C. (&)]e=0(0) *+| 6 (0)<9-*-;_"_4+b_2>+,; (0)]s+
o -2k S)eso(Ereo e

A
bao—a.n (1 _'k2‘7+k177>
(I«lbg ' 8 (l1b2
_Ir
c
U= _'qu W
a4=—0,.& 2‘%7
a'5=0513
bl=-b2——ﬂ;—;7
b‘= OL5
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Values used for example of method of nonlinear mechanics

are as follows:
co=—>546

a=—1.5

4,=0.00177

a;=0.00712

a,=0

as=1.045
1=—b,=0.774

by=0

b3="-—"=""3.4:9

K1=10

For the solutions made on the Philbrick and Reeves
Anaslog equipment, the numerical vealues for the afore-
mentioned constants ay, s, a4, as b, bs, and b, were used.
The values for these coefficients resulted from the following
flight conditions and stability derivatives:

Mach number=1.8 qu=9&=—20.43
g
V=2009 ft/sec %5y
=4800 1b/sq ft
g /Sq 017‘!5 =b—a-68’—-=1 .045
S§=2.52 sq ft
C =Cn =0
G=141t e

JIy=30 slug-ft?
m=4.66 slugs
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