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TRANSONIC FLOW PAST CONE CYLINDERS!®

By Georae E. Sovoaon

SUMMARY

Erperimental results are presented for transonic flow past
cone-cylinder, axially symmetric bodies. The drag coefficient
and surface Mach number are studied as the free-stream Mach
number i8 varied and, wherever possible, the experimental re-
sults are compared with theoretical predictions. Interfero-
metric results for several typical flow configurations are shown
and an example of shock-free supersonic to subsonic compres-
sion 15 experimentally demonsirated.

The theoretical problem of transonic flow past finite cones
18 discussed briefly and an approxzimate solution of the axially
symmelric transonic equations, valid for a semi-infinite cone,
is presented.

INTRODUCTION

Transonic flow past certain two-dimensional bodies has
been the subject of several recent papers and the phenomena
are well understood. The theoretical results of Cole (ref. 1),
Guderley and Yoshihara (ref. 2), Vincenti and Wagoner
(ref. 3), and others apply to two-dimensional symmetrical
double-wedge airfoils. The experimental results of Bryson
(vef. 4) and Griffith (ref. 5) substantiate the theoretical work
in a very satisfactory manner. More recently, Vincenti
and Wagoner (ref. 6) and Guderley and Yoshihara (ref. 7)
have analyzed the transonic flow past two-dimensional un-
symmetrical sections, that is, lifting double-wedge airfoils.
Current experiments on lifting double-wedge airfoils (ref. 8)
at the Guggenheim Aeronautical Laboratory of the California
Institute of Technology indicate that agreement between
theoretical and experimental results will again be obtained.

Two-dimensional and axially symmetric transonic flows
are of considerable theorstical and practical interest.since
these two specialized problems are limiting cases of the more
complex problem of the flow about an arbitrary three-
dimensional body.

The study of axially symmetric transonic flow is not so
complete as that of two-dimensional flow. In recent years
several papers, notably those of Von Kérmén (ref. 9) and
Oswatitsch and Berndt (ref. 10), have studied the similarity
rules of axially symmetric transonic flow. Also, Yoshihara
(vef. 11) has calculated the flow about a finite cone at a free-
stream Mach number of 1 by a relaxation technique and has
obtained some experimental verification of the theoretical
result. The hodograph problem for general transonic flow
past finite conesis discussed in reference 8. However, theo-
retical solutions or experimental results for the complete tran-
sonic regime are not, at present, available. The present

paper presents the results of an experimental investigation
of the transonic flow past cone-cylinder bodies. A conical
tip followed by a cylindrical afterbody was chosen as the
experimental model for two primary reasons: (1) The
relatively simple geometry of a cone-cylinder body may
simplify the theoretical problem, and (2) viscous effects are
minimized; that is, the boundary layer on the cone surface
is in a region of decreasing or constant pressure so that the
presence of the boundary layer will not greatly alter the shape
of the body forward of the cone shoulder.

Theoretical results for the supersonic flow past a cone
were first presented in 1929 by Busemann (ref. 12). Buse-
mann’s solution postulates a semi-infinite cone and assumes
that the flow is conical; that is, along rays through the apex
of the semi-infinite cone, the flow parameters such as pres-
sure and velocity are constant. The solution is found by a
geometrical construction in the hodograph plane and it is
readily apparent that a conical solution exists only so long
as a shock wave is attached to the cone apex and, therefore,
the free-stream Mach number is supersonic. It is interesting
to note that Busemann’s solution predicts smooth shock-free
compression from supersonic to subsonic flow for particular
combinations of cone angle and free-stream Mach number.
The conical solution also shows that for a given cone angle
and free-stream Mach number M., the surface Mach number
is always less than the Mach number immediately behind’
the conical shock wave; as M_ decreases, the surface Mach
number decreases and eventually passes from supersonic to
subsonic values. As was mentioned by Busemann, the
conical solution for a semi-infinite cone is completely valid
for a finite cone so long as the flow is everywhere supersonic,
but when the surface Mach number is less than sonic the
perturbation due to the corner or shoulder of the finite cone
is propagated forward through the subsonic portion of the
field destroying the conicity of the flow. Thus, the Buse-
mann solution is completely valid for a finite cone only so
long as M., is large enough so that the surface Mach number
is greater than sonic.

Taylor and Maccoll (ref. 13) in 1933 presented the results
of & numerical integration of the axially symmetric equations
of motion for conical flow about semi-infinite cones and also
presented experimental verification of their theoretical re-
sults. Further experimental verification by Maccoll (ref. 14)
was published in 1937. Both of the above papers noted that
deviations of the experiments from the theoretical predic-
tions, notably in the shape of the shock wave, are apparent
when the surface Mach number is subsonic.

| Bupersedes NAGA TN 3213, “Transonic Flow Past Cone Cylinders” by George E. Solomon. 1954.
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As was mentioned previously, Yoshihara (ref. 11) has
computed, by relaxation methods, the flow about a cone
cylinder at M_=1.00 and has experimentally verified the
calculation. However, theoretical solutions do not exist for
the complete transonic regime. Solutions have not been
developed for the flow past a finite cone when A -is sub-
sonic or when M is between sonic and the value of M _ at
which Busemann’s conical solution becomes valid. Drougge
(ref. 15) has computed the flow field between a detached
shock wave and finite cone by relaxation methods; however,
the position and shape of the detached shock wave were
determined initially from schlieren photographs.

The experimental results reported in this paper cover
several interesting features of the transonic flow about finite
cones. The deviations of the surface Mach number from
the values predicted by conical theory are examined for
values of A such that the flow field is transonic in nature.
The behavior of the surface Mach number for subsonie values
of M_, and as M_ approaches sonic from subsonic values,
is examined in some detail so that an extrapolation to M_=
1.00 may be made. The above surface Mach number data
lead naturally to the evaluation of the drag coefficient, and

experimental values of the drag coefficient in the transonic -

regime are presented.

The physical location of the sonic line in a meridional
plane of the flow about a finite cone is of considerable interest
for a theoretical study of the problem of axially symmetric
flow. With this fact in mind, an interferometric analysis
was made at several typical values of M _ so as to determine
the local Mach number fields about finite cones. Several
examples of supersonic to subsonic shock-free compression
are experimentally demonstrated.

Experimental values of the shock-wave angle at the cone
tip, particularly at values of M _ where the flow field between
the shock wave and the cone surface is transonic or subsonic
in nature, are presented, and a comparison with the values
from conical theory is shown.

The conical solution for flow about a semi-infinite cone
demonstrates that a conical solution does not exist if, for
o given cone angle, M, decreases below a certain minimum
M. This minimum M, is defined to be the 34, for which
shock-wave detachment occurs for a semi-infinite cone.
Whether or not the shock-wave-detachment Mach number
for a finite cone can be determined from conical theory is of
considerable theoretical interest. Experimental values of
the detachment distance of & shock wave from a finite cone
tip, the distance obviously being zero at attachment, have
been collected from several sources and the results analyzed
in this report.

The transonic equations of motion and boundary condi-
tions as derived by Von Kérmdn (ref. 9) for axially sym-
metric flow require several assumptions as to the relative
magnitude of various terms in the exact equations of motion
and the related boundary conditions. To demonstrate that
the transonic equations retain the important features of the
exact equations, an approximate solution of the problem of
conical flow about a semi-infinite cone has been developed
employing the transonic equations and boundary conditions.
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A comparison of the exact Busemann solution and the ap-
proximate transonic solution is presented in the report.

The suthor of this report wishes to express his apprecia-
tion for their helpful advice and criticism to Drs. H. W.
Liepmann, J. D. Cole, and A. Roshko of the California
Institute of Technology. The investigation was conducted
under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.

SYMBOLS

AH=1KIc+1)’—i’—1/k’-—7?
2k+1
a* velocity of sound for M _,=1.00
width of increments of region of integration
cone drag coefficient; reference area is cone base ares
drag coefficient at M _,=1.00

. 2
pressure coefficient, YA g—;—l)

Q8 Qe

pressure coefficient at A _,=1.00

chord of cone

cone base diameter

integers

path length

cone-surface Mach number

free-stream Mach number

Mach number. immediately downstream of a shock
wave

number of outermost increment of region of integra-
tion .

index of refraction of air

Do stagnation pressurs

Ds surface static pressure

Po free-stream static pressure

¢x, ¢ velocities in axial and radial directions, respectively

r radial distance from axis of symmetry to point on
light path

cone base radius

interferometric fringe shift

nondimensional transonic axial-velocity perturbation
in appendix C; 72 in appendix B

SR 0
I

2 RRE"

3

8 0

Us=Ys

v nondimensional transonic radial-velocity perturba-
tion in appendix C; r* in appendix A

v, v on surface of body

w=

x axial distance downstream of cone tip

Y perpendicular distance from. axis of symmetry to
light path :

B shock-wave angls

Buw, shock-wave angle at cone tip

47 ratio of specific heats of air, 1.400

b axial distance from cone shoulder to shock wave

F=M,?

n=rfz .

s tangent of shock-wave angle

m=yfz

] cone semiangle

x Gladstone-Dale constant

o ~. wavelength in vacuum of light employed



TRANSONIC FLOW

E=M,?

P density of air

o) density of undetermined medium
PR density of reference medium

P free-stream density

o=xfr

¢ perturbation potential

EXPERIMENTAL EQUIPMENT
WIND TUNNEL

The transonic wind tunnel at GALCIT is a continuous-
flow wind tunnel. For supersonic testing, the test-section
Mach number may be continuously varied over a wide range
by altering the shape of one flexible wall. The test-section
Mach number is varied by changing the area of a sonic
throat downstream of the test section when subsonic tests
are being performed. The test-section width is 4 inches and
the height is 9 inches. The design of the flexible test-section
wall is discussed in reference 16.

INTERFEROMETER

The interferometer used in the present investigation is of
the Mach-Zehnder type. Both light paths of the inter-
ferometer are passed through the wind-tunnel test section,
one beam passing through the flow region under analysis
and the other beam passing through the undisturbed flow
in the test section upstream of the model. The fringe
shifts due to density variations in the boundary layer are
eliminated since both beams pass through the boundary
layer on the test-section walls and are affected almost
equally. The growth of the boundary layer between the
two beams is not compensated by the above arrangement,
but the effect is of secondary importance. A detailed
description of the GALCIT interferometer and a very com-
plete bibliography on interferometer construction are given
in reference 17. :

MODELS .

The models were conical-tipped brass cylinders of 20°,
25°, and 30° semiangle.
0.30 and 0.50 inch. Thus, the Reynolds numbers for the
tests, with the base diameter of the models as the reference
dimension, varied from 55,000 to 143,000. The tips of the
cones were made as sharp as possible and the maximum tip
diameter of the dullest of the models was approximately %
percent of its base diameter. Also, the models were black-
nickel plated to improve the photographic definition. The
angle of attack and angle of yaw were adjusted to zero by
equalizing the pressure on the cone surface at four annular
points.

EXPERIMENTAL TECHNIQUES
INTERFEROMETRY

An experimental investigation of flow phenomena is facil-
ilitated by the employment of an interferometer to deter-
mine the density fields in gaseous (or liquid) flows. The
interferometer technique possesses the obvious advantage
of eliminating the need for placing any type of probe into
& flow region where the presence of the probe may com-
pletely alter the undisturbed flow field. A disadvantage is
also present, however, since the values of density are not

413672—857——61

PASl CONE CYLINDERS

The base diameters were between

965

immediately available as the test is in progress. A more
serious disadvantage is the fact that the interferometer
integrates the density values on its light paths (see appendix
A) and, thus, the measurement of density is not localized
but is influenced by inhomogeneities in the flow which may
be well removed from the points of interest.

Two general types of flow are amenable to interferometric
analysis, namely, two-dimensional and axially symmetric
flow. This paper is concerned solely with axially symmetric
flow analysis. A discussion of the method employed to
reduce the finite-fringe interferograms, such as figure 1, to
density distributions may be found in appendix A. The
method is essentially that outlined in reference 18. An
excellent discussion of axially symmetric data reduction is
given in reference 19 where several references to earlier
papers in the field will be found.

——— e

i

Fioure 1.—Finite-fringe interferogram for 30° semiangle cone eylinder.
M_,=1.280,

These earlier papers are mainly concerned with evaluating
the interferometer date-reduction techniques for axially
symmetric flow by investigating the flow about cone cylin-
ders at Mach numbers and cone angles where the Busemann
conical solution was known to be valid. Reference 20 pre-
sents some experimental results in the same general flow
regimes as are investigated in this report,

SONIC-LINE LOCATION BY WAVE REFLECTION

The location of the sonic line in & meridional plane of an
axially symmetric transonic flow can be determined experi-
mentally by at least three distinct methods. The first
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Fiaure 2—Wave reflection from sonic line for 20° semiangle cone
oylinder. Af_,=1.297.

o Shock reflection data, My =1.401

o Probe dato, Mg =1.395 ~°
———Taylor-Maccoll (ref 13) '
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Freore 3.—Sonic-line location for 25° semiangle cone cylinder.

method is by static-pressure measurements, the second is
by interferometric analysis, and the third is that of Mach
wave reflection from the sonic line. It should be noted
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that at the point of reflection the Mach wave will be per-
pendicular to the streamline direction through the sonic line.
To locate the sonic line within the flow about a cone, o
small-diameter probe was placed in the free-stream flow
outside the cone shock wave. The probe was in a position
such that the probe shock wave pierced the cone shock
wave and entered the flow field about the cone. The shock
waves formed by the probe closely approximate Mach waves
at large distances from the probe and a typical wave reflec-
tion is shown in figure 2. The perturbations in the flow
about the cone caused by the waves do not appreciably
affect the position of the sonic line as shown by figure 3
where a comparison is made of the location of the sonic line
as found by interferometric analysis and by the wave-
reflection method. The probe method is much more con-
venient than the pressure-measurement or interferometric
method since the phenomenon may be observed with a
schlieren system, so that the result is obtained visually.

PRESSURE MEASUREMENTS

The pressure measurements in this investigation were
made either on a micromanometer (accuracy of +0.01
millimeter of mercury) or on & nomograph Mach meter
(ref. 21).

EXPERIMENTAL RESULTS AND DISCUSSION
GENERAL FLOW CHARACTERISTICS

An analysis of the flow of a compressible fluid about an
axially symmetric finite cone, that is, & cone cylinder, indi-
cates that five distinet regimes of flow are possible. Theso
regimes are given below.

Regime I.—Regime I is subsonic flow at infinity with o
region of locally supersonjc flow downstream of the cone
shoulder. A schlieren photograph of this type of flow is
shown in figure 4. If should be noted that an extremely
weak shock twave originates at the cone shoulder and
terminates at the downstream ‘“normal” shock wave. The
forked appearance of the base of the terminating ‘“normal”
shock wave is an illusion caused by the axial symmetry of
the flow. The light rays which pass near the surface of
the body in the region of the rearward branch of the “fork”
also pass through the outer portion of the shock and the
spurious rearward branch is caused by the light-ray deflec-
tions in the outer portion-of the shock wave. A meridional
section of the shock wave actually includes only the front
branch of the fork.

Regime II.—Regime II is supersonic flow at infinity
with a detached shock wave and subsonic flow between the
shock wave and the cone. Figure 1 is a finite-fringe inter-
ferogram of this type of flow.

Regime III.—Regime ITT is supersonic flow at infinity
with an attached curved shock wave and subsonic flow
between the initial portion of the shock wave and the cone.
A schlieren photograph of this flow is shown in figure 5 (a).
Taylor and Maccoll’s original paper on conical flow (ref. 13)
includes a schlieren photograph of an attached curved shock.

Regime IV.—Regime IV is supersonic flow at infinity with
an attached shock wave and mixed supersonic and subsonic
flow between the shock wave and the cone. A schlieren
photograph of this flow is shown in figure 5 (b).
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Fraure 4.—20° semiangle cone cylinder. - M ,=0.942.

Regime V.—Regime V is supersonic flow at infinity with
completely supersonic flow between the attached shock
wave and the cone surface. The Busemann solution applies
in this regime and has been verified experimentally in refer-
ences 13, 14, 19, and 22.

LOCAL MACH NUMBER CONTOURS

The local Mach number contours in a meridional plane
for the flow about & 25° semiangle cone are shown in figure
6 for flow regimes IT, ITT, and IV. The local Mach number
contours for a 30° semiangle cone in regime II are shown in
figure 7. These data were obtained by interferometric
analysis ag discussed in appendix A.

The local Mach number contours should be normal to the
cone surface since the cone surface is a flat boundary and
any pressure gradient at the surface must be parallel to the
flat surface. However, near the shoulder of the cone
cylinder the surface is curved by the effect of the corner
expansion on the boundary layer, and thus the local Mach
number contours are not quite perpendicular to the cone
surface immediately ahead of the shoulder.

SONIC-LINE LOCATION

The location of the sonic line can be determined by inter-
ferometric analysis, but a more useful method, in the present
investigation, was the wave-reflection method. The loca-
tion of the gonic line in regimes II, ITT, and IV is discussed
below.

967

Regime II.—Examples of the sonic-line location in regime
IT are shown in figures 6 (a) and 6 (b). The sonic line
originates at the cone shoulder and terminates on the
detached shock wave. In figure 7 it may be seen that a
region of supersonic to subsonic compression exists on the
outer portion of the sonic line. The sonic line actually
originates slightly upstream of the cone shoulder. This
effect is due to the rounding of the cone shoulder by tho
surface boundary layer.

Regime III.—Figure 6 (¢) illustrates the case of the flow
with a nearly attached curved shock wave. Again, a small
region of supersonic to subsonic compression is present on
the outer portion of the sonic line. The free-stream Mach
number is slightly less than the detachment Af,, predicted
by the exact conical theory. The question of experimental
detachment Mach number is discussed subsequently.

Regime IV.—Several examples of the sonic-line location
in regime TV are shown in figures 3, 6 (d), and 8. Figure 3
shows the location as determined by interferometric means
and as determined by wave reflection. The sonic line again
originates at the corner and now terminates at the cone tip
and not on the shock wave as in regimes II and III. A
shock-free supersonic to subsonic compression occurs on the
forward portion of the sonic lina. The location of the sonic
line for a 20° semiangle cone is shown in figure 8. The
agreement between the theoretical and experimental location

‘ ’

e g e e e e

(&) M_=1.328.
Figure §.—25° semiangle cone cylinder.
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is satisfactory near the tip of the cone and for some distance
downstream of the tip.?

The question of smooth shock-free supersonic to subsonic
compression has been the subject of much discussion in
recent years. The above experimental results demonstrate
that such a flow is possible. However, the smooth com-
pression is not of primary importance, but rather the
conditions under which it occurs. These conditions are that
the sonic surface bounds & zone of subsonic flow completely
enclosed by a region of supersonic flow and a solid surface.

(b) M_,=1.415.
F1gurE §.—Concluded.

As an example of non-shock-free supersonic to subsonic
compression, consider the flow past & two-dimensional air-
foil at high subsonic speeds. The local supersonic zone on
the airfoil is terminated by a shock wave and smooth com-
pression:through sonic velocity does not occur. In the two-
dimensional case, however, the supersonic zone is bounded
by a subsonic region and a solid surface. This is the op-
posite arrangement to that in the flow about a come, in
regime IV, where shock-free supersonic to subsonic com-
pression does occur. )

The above considerations illustrate that the existence (or
stability) of shock-free compression through sonic velocity
may not be & local phenomenon but mey depend on the
arrangement of the complete flow field.

3 The existence of this type of flow Is indicated by the experimental results of Taylor
and Maoccoll (refs. 13 and 14) and was also discaussed by Tslen (ref. 23).
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(a)

(&) M,=1.229,
Figure 6.—Mach number field for 25° semiangle cone oylinder.
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SHOCEK-WAVE ANGLE

The angle of the attached shock wave at the nose of the
cone was determined for a 20° and a 25° semiangle cone in
flow regimes IT1, IV, and V. The values are shown in figure
9. Similar experiments are reported in references 13 and 14.
Reference 22 presents data for one cone angle at one Mach
number in regime ITI and one Mach number in regime IV.
The agreement between the exact theory and the experi-
mental values at the cone tip is very good even in regimes
T and IV where the exact theory is not applicable for the
complete finite cone. )

80
——— Taylor-Maccoll
{ref.13)

o 20° Semiangle

o 25° Semiangle
70

B,
60
5
?.0 12 1.4 L6

Fiaure 9.—Nose wave angle.

SURFACE MACH NUMBER DISTRIBUTION

The distribution of the surface Mach number A, on a 25°
semiangle cone for various values of AZ,, is shown in figure
10 and that on a 20° semiangle cone, in figure 11. Several
characteristics of these distributions are of particular interest.

(1) Surface Mach number near the shoulder deviates from
the Busemann conical values as soon as M,=1.00 is attained.
* Surface Mach number near the cone tip agrees quite well
with the conical values until the theoretical detachment M.,
occurs. At the corner M, should, except for boundary-layer
effects, always be sonic if M, forward of the shoulder is
subsoniec.

(2) As M. approaches 1.00 from the subsonic or from the
supersonic regimes, 14, at a particular chordwise station ap-

proaches a constont value. This behavior implies that
a, —0
de Meo=1.00
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Frgure 10.—Surface Mach number on 25° semiangle cono cylinder.
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Figure 11.—Surface Mach number on 20° gemiangle cone oylinder.

The same behavior of M, on two-dimensional sections was
noted in reference 24, and thus the concept of stationary
values of M, at M, =1.00 is established for two-dimensional
and axially symmetric flow. Since these two cases represent
limiting cases of the flow about general three-dimensional
bodies, the stationary MM, concept can probably be applied
quite generally if suitable care is taken in choosing the range
of M. about A{,=1.00 in which the so-called “Af, froeze”
is applicable.

(8) As M, progresses from a subsonic value through
M_.=1.00 and on to a value in regime V, the M, at a par-
ticular chordwise station probably varies quite smoothly
with no abrupt variations, even at attachment of the shock
wave, except for a region quite near the tip where large
variations may occur when the shock wave attaches.

DRAG COEFFICIENTS
The drag coefficients for the 20° and 25° semiangle cones

" are shown in figure 12. The values at M,=1.00 were de-

termined by extrapolating the M, data in figures 10 and 11
to M.=1.00.

Using the concept of stationary values of M, at A, =1.00,
the drag-curve slope at M.,=1.00 becomes (see ref. 4 and
appendix B)

dCh | 4 2
dM@lMﬁ.]. v+1 v+1

Op* ey

00
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Fi1gure 12.—Drag coefficients for cone cylinders.

where Cp* is the drag coefficient at M,=1.00. The first
term 4/(y+1) of the drag-curve slope is derived from the
first-order term of the pressure coefficient while the term
[2/(v+1)]Cp* represents the contribution of the second-order
terms. The magnitude of the second-order term [2/(v+
1)]Cp* is shown by the difference in slope of the pairs of
lines drawn through Op* in figure 12.
The experimental results also indicate that

@M,

a2 =0

M o =1.00

This then implies (see appendix B) that

&0 12v+4 , 10746
dM 2 (r+12 ' (r+1)2

Cp*

AMn=1.00

and an estimation can then be made of the range about
M, =1.00 where equation (1) is valid.

SHOCK-WAVE DETACHMENT

Conical-flow theory indicates that for a given cone angle
of a semi-infinite cone & certain minimum M, is reached
below which a conical solution is no longer possible. This
value of M, is defined to be the shock-wave detachment M.
However, a finite cone introduces a characteristic length into
the problem so that curved attached shock waves, which
would provide the necessary pressure gradient to turn the
flow near the cone tip, may exist at values of M, less than
the conical detachment M.

Present experimental results indicate only that shock-wave
detachment for a given cone angle does not occur at an
M., greater than that predicted by conical theory. A col-
lection of data from references 22, 25, 26, and 15 is shown in
figure 13. The ratio §/d, where § is the center-line distance
from the shock wave to the plane of the cone shoulder and
d is the body diameter at the shoulder, that is, the sonic
point, is seen to approach asymptotically the value of &/d
at attachment. The asymptotic bebavior of §/d complicates
the fairing of the proper curve of §/d versus 3., particularly
in view of the paucity of experimental points in the imroediate
vicinity of shock-wave attachment.

In reference 27 data are presented for the shock-wave
dotachment distance of several cone angles at A ,=2.45,
A discrepancy was found between the experimental and
theoretical values of the cone angle at which shock~wave

1.2
6, deg
1.0F- o 25
8 o 35,
A 2 I
5 v 3
8/d v
8
A A ,--Attached shock
B &
6 “A-g._ Conical detachment--.,
. . B i
Limiting 3/d--~
4 1 1 1 1 1
0 ] 2 3 4 5 6

M2

Figure 13. —Shock-wave detachment distance for finite cones. Data
are primarily from references 15, 22, 25, and 26.

detachment occurs for a fixed value of M., detachment ap-
pearing to occur at a cone angle slightly greater than that
predicted by the conical theory. This behavior would cor-
respond to shock-wave detachment for a fixed cone angle
occurring at a value of M., less than the theoretical conical
value of M,. Again, however, the discrepancy may be
caused by the manner in which the experimental curve was
faired.

Thus, the experimental results appear to indicate only that
shock-wave detachment for a finite cone occurs at a value of
M., either less than or equal to the value of Af., predicted by
conical theory but not at a larger M4... The fact that shock-
wave detachment does not appear to occur at & value of A7,
greater than that predicted by the conical theory indicates
that the presence of a boundary layer on the cone tip does
not affect the conicity of the flow near the cone tip to the
extent of precipitating detachment of the shock wave.

Figure 13 also indicates that when the shock-wave detach-
ment distance is large, the position of the shock wave is
dependent only on the diameter of the cone at the shoulder
or sonic point and is independent of the cone angle. When
the shock wave is quite near the cone tip, however, the de-
tachment distance is also dependent on the cone angle. This
manner of behavior of the shock-wave separation distance
was discussed by Busemann (ref. 28) and was shown experi-
mentally for two-dimensional wedge sections by Griffith
(ref. 29).

TRANSONIC SIMILARITY

The transonic-similarity rules for the drag coefficient and
pressure coefficient, as derived in reference 10, cannot be
checked by the experimental results of this report. The
derivation assumes that the cone-surface boundary condition
is the approximate tangency condition which is valid for
relatively small angles. A 20° semiangle cone is the mini-
mum-angle cone for which detached shock-wave flow can be
obtained in the transonic wind tunnel, and thus the experi-
mental models were 20°, 25°, and 30° semiangle cones. The
experimental cone angles are much larger than the cone angles
for which the approximate tangency condition is reasonable,
and, therefore, the transonic-similarity rules of reference 10
are not applicable.
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THEORETICAL CONSIDERATIONS

At the present time, theoretical solutions have not been
found to describe the flow about a finite cone for the com-
plete Mach number range. Theoretical solutions are
available for only two Mach number regimes, namely:

(1) Exact conical theory may be applied if the surface
Mach number is greater than sonic

(2) At M,=1.00, Yoshihara (ref. 11) has calculated
the flow about small-angle cones by a relaxation
technique

No solution has been determined if A/, is less than sonic.
However, Van Dyke’s second-order supersonic theory and
technique (ref. 30) possibly can be applied to the subsonic
case since, if the appropriate changes of sign are made in
the particular solution found by Van Dyke for the super-
sonic case, the particular solution becomes valid for the
subsonic case.

A solution remains to be found for the regime between
M.=1.00 and the value of A4, where M, becomes equal to
1.00. The problem would be greatly simplified if the
transonic equations could be amployed. To test the feasi-
bility of the approximations inherent in the transonic equa-
tions, an approximate solution has been found for conical
flow about a semi-infinite cone using the transonic equations.
The details of the solution are presented in appendix C.

The solution is compared with the exact conical theory in
figures 14 and 15. Figure 14 shows the comparison between
the shock-wave angles predicted by the exact theory and by
the transonic approximation. The surface Mach number
comparison is shown in figure 15. From figure 15 it can be
seen that the transonic approximation is quite satisfactory
and is probably better than slender-body cone theory, since
slender-body cone theory does not consider the presence of
the conical shock wave. Also, figures 14 and 15 show the
agreement of the cone angle at shock-wave detachment as
found from the transonic solution and from the exact theory.

The above comparison of the exact conical solution and
the approximate solution indicates that the transonic equa-
tions contain all the terms of importance in the exact
equations for conical flow about cones, so that the transonic
equations may be employed with confidence in the range of
M, from AM,=1.00 to an M, for which M,=1.00.

SUMMARY OF RESULTS

-

The following results were obtained from an investigation
of transonic flow past cone cylinders:

1. The variation of drag coefficient Cp with free-stream
Mach number 3. was determined experimentally. The
glope of Cp versus Af, at M.,=1.00 agrees with the theo-
retical prediction. The deviation of Cp versus 4/, from the
conical flow value of Cp when A4,<{1.00 is demonstrated.

2. The experimental results for the shock-wave angle,
sonic-line location, and surface Mach number in the region
near the cone tip indicate that the flow is conical near the
tip of a finite cone even when the surface Mach number is
less than sonic. The surface Mach numbers for the rest of
the cone deviate from the exact conical values when A£,<1.00.
Also, a case of shock-free supersonic to subsonic compression
is demonstrated experimentally.

1 1.3
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Fraure 14.—Shock-wave angle for semi-infinite cones.
v, =0.25; M,=1.12,

———— Exact conical solution
Transonic conical solution (eq. (CI7))

Mg

'70 ] 5 10 18
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Fiaure 15.—Transonic conical solution; surface Mach number versus
cone semiangle. u,=0.25; M, ==1.12. (A, is defined as M, =
ViFug.)

3. An approximate solution for transonic conical {low has
been developed and the agreement with the exact conical
theory indicates that the axially symmetric transonic equa-
tions retain the important features of the exact oquations.

4. Present experimental values of the detachment distance
of a shock wave from a finite cone tip do not demonstrate
agreement with the detachment Mach number predicted by
conical theory for & semi-infinite cone and the question of
shock-wave detachment from & finite cone remains undecided.

Cavrrornia InstrruTE 0F TECHNOLOGY,
Pasapena, Cavrr., April 15, 1953.



APPENDIX A

REDUCTION OF INTERFEROMETER DATA

An interferometer determines the advancement or retarda-
tion of a light wave in & medium with respect to & coherent
light wave in a reference medium. Since the wave velocities
are & function of the indices of refraction of the respective
mediums and consequently of the densities of the mediums,
it may be shown that

as—5:[ p0—pe | @ (A1)
where
F103) density of undetermined medium
P density of reference medium
l path length
K Gladstone-Dale constant
i wavelength in vacuum of light employed
S fringe shift; in case of finite-fringe interferograms

this is ratio of displacement of a fringe to interval
between undisturbed fringes

In equation (A1) it has been assumed that the light bea.ms
traverse identical geometrical paths, so that refraction, if
present, is neglected. Also, the relationship between the
index of refraction n and density is assumed to be

n=1:l—rcp A2

If n=1+4a where a1, equation (A2) is obtained by
linearizing the Lorentz law.

For the axially symmetric case, the fringe shrft for a light
path perpendicular to the axis of symmetry becomes

so—2 [ Ll =edid

where 7 i8 the radial distance from the axis of symmetry to
o point on the light path and y is the perpendicular distance
from the axis of symmetry to the light path.

In the present investigation, the density field was bounded
by o shock wave at & distance ¥, from the axis and the refer-
ence density was the free-stream density p.,; thus,

¥ [p(r)— polrdr
v (gD (A3)

Weyl (ref. 31) introduced the assumption that S(y) is a
linear function of 9 in & small interval of . The validity
of this assumption for the present investigation is indicated
by the parabolic nature of the typical fringe-shift curves
shown in figure 16. If the substitutions

v=r3
=y’
U=y,

Se)=

413072—b7——62

3.0

_A-7=1335

)
[e]

7=0.616--1

Fringe shift, S

tn

M =1.401

0 2 4 6 8 1.0
/rg

Figure 16.—Interferogram fringe shifts for 25° semiangle
cone gylinder.

are made, equation (A3) becomes

S(u)=i% Lu' [P(v)v—_f’;]d”

This is analogous to the solution of Abel’s problem. The
solution of equation (A4) for p is

(A9)

I —— (49)

where w=r2. A complete proof of the solution may be
found in reference 19.

If the region of integration in equation (A5) is divided into
equal increments in 7 of width b,

7'¢=7:b
973
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where ¢ is an integer. A numerical evaluation of equation
(A5) is then

o)y 2 S (S Sead A6
where
r,—=Nb
and

VEF P —P—P—3
A SFF1

The above solution of the problem is essentially that of
reference 18 and & table of A,; for 50 intervals will be found
in reference 18.

From the density ratio determined by equation (A6) the
local Mach number may be computed. An approximate
correction to the local stagnation pressure p,” downstream of
the shock wave was made by assuming that on the cone
surface p,” was determined by the nose shock-wave angle
and at a given chordwise station p,” varied linearly with the
value of the shock wave at the given station. If the approx-
imate streamlines are calculated, as in reference 20, & more
refined correction is obtained. From the experimental
values of the local Mach number a topographic map was
plotted, and from this map the desired Mach number
contours are found.

CONICAL FIELDS

If it is desired to determine whether or not a given axially
symmetric field is conical, a simple test can be made. Re-
turning to equation (A3) it is assumed that

p=p(n)

where 5=rfx and z is the axial distance from the conical
origin. Then equation (A3) becomes

S@)_ 2x [ [o(n)—po] 7d7
z N (712—7)12)1/2
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where 7, is the tangent of the shock-wave angle and n,=y/z.
Thus, if the field is truly conical

s0-4(2)

and a plot of S(y)/z versus y/z for various values of z will
yield & group of coincident curves. Examples of this tech-
nique are shown in references 19 and 20. It is interesting to
note that in reference 20 figure 6 (b) indicates conical flow
near a cone tip for flow regime 1V, that is, & 35° semiangle
cone at M.,=1.87, using the above technique.

SUBSIDIARY CONSIDERATIONS

Model size.—From equation (A3) it is evident that the
fringe shift at a particular chordwise and radial station is a
linear function of the model size for fixed values of density.
Thus the model should be as large as is compatible with the

" test-section dimensions with regard to blocking and so forth.

Finite fringe spacing.—The fringe spacing in the undis-
turbed field must be such that a sufficient number of data
points may be determined between the shock wave and the
cone surface at a particular chordwise station. However,
for a given fringe shift S the displacement of the fringe is
proportional to the undisturbed fringe spacing, and the
accuracy of the fringe date will be improved by increasing
the undisturbed spacing. A compromise must be effected
between the desire for many fringe shift points at a given
chordwise station and the accuracy of the individual points.
In the present investigation, this compromise precluded a
study by interferometry of the flow properties in the immedi-
ate vicinity of the cone tip when the shock wave was attached.

Accuracy.—The accuracy of the interferometric method is
affected by refraction, inhomogeneities in the reference flow,
the numerical approximation, and so forth. An estimate of
the accuracy can be obtained by noting the comparison of
interferometer data and shock-reflection data in figure 3
and the values of local Mach number behind the shock wave
indicated in figures 6 and 7. ’

Comprehensive discussions of the accuracy of the method
may be found in references 18 and 19.

APPENDIX B

YARIATION OF PRESSURE AND DRAG COEFFICIENTS NEAR M. =1.00

The pressure coefficient

where p, is the surface static pressure and p_ is the free-
stream static pressure may, in transonic flow, be written as

v—1 s /=0
o [T M
Op—,YM 3 —1 B1)

where A, is the surface Mach number. In equation (BI) it

has been assumed that
APe 0 (2 —1)°
Do
that is, the stagnation pressure loss across any shock waves

may be neglected.
Defining ¢ and £ as

§=M.?
£=M:2
equation (B1) becomes
y—1 y/{r—1)
o [T ¢
=5, ‘E):"y_g- =1 -1 B2)
1+T £
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For a fixed body geometry, M, is a function of M., only;
therefore,

E=£(2)
Thus, the first and second total derivatives of C, with respect

to ¢ are

%q;:p=fr+fe % B3)

and

%%=frr+2frs %l-l—fse( +fe B4
In general, d¢/d¢ and d?t/d* are not known; however, an
argument presented by Liepmann and Bryson (ref. 24)
shows that, for {=1.00, dt/d¢f=0. The same argument,
namely, that 3, has a stationary value at M,=1.00,
cannot be used to evaluate &?£/d¢®. However, an inspection
of the experimental data (see figs. 10 and 11) indicates that
the curve of M, versus M, has an inflection point at M,=
1.00 and, thus, d*/d¢*=0 at {=1.00.

Using equations (B3) and (B4) and the above argument,
the derivatives of ¢, become

dO\*
@)

@ON\*
(o) =
where ( )* indicates evaluation at {=1.00, that is, at M.=
1.00. The derivatives of O, with respect to M, are then

dC; \*
k) =

B0, \*
djfi) =4fp*-2fc*
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The partial derivatives f;r and f; may be calculated from
equation (B2) and thus

dO,\* 4 2

of) = O (B)
PO\ 1274 10v+6
B = o+ tor & (B6)

The fore drag coefficient of a finite cone is given by
1
Co— ﬁ Cy(e) da

where a=(r/ry)3, r is the local cone radius, and r is the cone

base radius. Using equations (B5) and (B6), the derivatives
of OD are
dOp\* 4 2
dM) 1 O (B7)
and
$C0p\*_ 12v+4 , 10v+6
T13) =G Gy O ®8)

A comparison of equation (B7) and experimental data is
shown in figure 12. Equations (B5) and (B7) were given
previously by Bryson (ref. 4).

It should be noted that the first term 4/(y-+1) of equation
(B5) may be derived from the linearized transonic C, (ref. 1)
which is
M 3—Mj3

Gz

The second term —[2/(y+1)]C,* of equation (B5) is then of
the nature of & second-order correction term. However, if
(@*Cyf/dM 2 * is computed from equation (B9), the result
does not agree with the first term of equation (B6) and is,
in fact, of opposite sign.

C,=2—2 ——* (B9)

APPENDIX C

TRANSONIC APPROXIMATION FOR CONICAL FLOW

In discussing axially symmetric transonic flow, the follow-
ing approximations to the exact equations and boundary
conditions are employed.

If ¢, is the velocity in the axial or z-direction and g, is the
velocity in the radial or r-direction it is assumed that

I=0a*+¢;
gr=2¢r

where a* is the velocity of sound at M.=1.00, ¢ is the
perturbation potential, and ¢., ¢,<a*. Then, defining

1+1

U=—f a* d’z

141

the continuity equation is approximated by

'wu,—v,—% =0 A Cy
and the condition of irrotationality becomes
Up—0;=0 (C2)

The exact tangency condition on the body surface is
replaced by
v,=(v+1) tan 6 (C3)
where v, i3 » on the surface of the body and 6 is the inclination
angle of the body surface. The above relations are derived
in greater detail in reference 9.
To test the feasibility of the approximations inherent in
equations (C1), (C2), and (C3) an approximate solution for
the flow about a semi-infinite cone will be developed. This
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approximation will then be compared with the Busemann
solution of the exact equations.

CONICAL SOLUTION

Assuming that « and v are functions of o where
z
o=
r
equations (C1) and (C2) become
(Cla)
(C2a)

Wity o0,—0=0
oUs+0,~=0
A solution of the form
u=f() (CH)
From equation (C4)

du_dudy
de dv do

will be sought.

but from equation (C2s)

do__ du
des 'de
Therefore,

s (C5)

The relationship in equation (C5) is exact (see ref. 32).

Differentiating equation (C5) with respect to o yields
dy 1

= (Ce)
do oj_ofl‘_;z
and, therefore, z
e —;1@ @)
dv*

Substituting equations (C5), (C6), and (C7) into equation
(Cla), the result is

d’u du duw\?
v Gt = (%) (C8)
The following conditions are imposed on equation (C8).

(a) At the shock wave: If u, and v, are the values of  and »
at the shock wave, then, from the transonic-shock polar
relation,

U1
Hel e (C9)

0, =(U . —Us)

where
w=M_*—1

The shock-wave angle 8 is given by

s
Uy

hence, from equation (C5),

du U—Us
p7 e (C10)

(b) On the cone surface: The tangency condition must be
satisfied; hence,

2o=(7+1) tan 6 (C11)

where 7, is v on the cone surface and 6 is the cone semiangle.
From equation (C5)
du

—=| =—tan 8

o, (C12)

An exact solution of equation (C8) has not been found.
However, if the right-hand side of equation (C8) is assumed
to be small, an iteration solution may be found.

FIRST APPROXIMATION

As a first approximation to the solution, set the right-hand
side of equation (C8) equal to zero; that is,

d [/ du
The solution of equation (C13) is
u=A log, By (C14)

Applying conditions (C9) and (C10) to this solution, equation
(C14) becomes

w=1,—U,—u,) log, 1% (O15)

SECOND APPROXIMATION

As a second approximation to the solution of equation
(C8), the right-hand side of equation (C8) is assumed to be
given with sufficient accuracy by equation (C15). Hence,

da( u,(u —u,)? ( =

The solution of equation (C16) is

(C1e)

—,) v
log, o

U= (u —’ZL,) |:""u:+('u —'u:)'l'(u _'u‘3)10g° —:I+010g°Dv
(O17)

Applying conditions (C9) and (C10) to this solution, equation
(C17) becomes

umClem P [ )~ logs 2 |-

(U, +5u,)(u u.) U Uo(Ue—5U,)
2(u,+u,) log o 2Uutus) (©18)

The values of %, and v, appearing in equation (C18) are
not independent of the cone semiangle 8. Applying condition
(C12) to equation (C18) and solving for v,, the result is

+1) tan 0)° (u,-+5u,)
(U +us) (wo—u,)

() hy

log, v,=log, (v+11) tan 9 (&

(C19)
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The transonic-shock polar relation alse must be satisfied;
hence,

U1

v,=(u,, _u:) P

(C20)

Because of the nature of equation (C19), explicit solutions of
equations (C19) and (C20) for %, and v, in terms of %. and 8
have not been found. However, a solution may be found
graphically.

The values of u, and v, thus determined for a given value
of 6 and 2. may be introduced into equation (C18). If the
value of « on the surface w, is desired, then substitution of

v=9p,=(v+1) tan ¢

in equation (C18) yields u,.

It should be noted that, for a given value of  and %, two
sets of values for u, and v, are found. These correspond to
the “strong’’ and “weak’’ shock waves.

COMPARISON OF SECOND APPROXIMATION AND BUSEMANN CONICAL
SOLUTION

Wave angle.—The wave angle § is determined by the

values of %, and v, since

Vs

Uy —Uy

cot f=

The degree of agreement is apparent in figurel14.
Surface Mach number.—In terms of %, and_p,, the surface
Mach number is

2 1
3
M= A <1~7_1 A) (C21)
v+1
where
A—<1 e Y (e
T\ Tl Y+1
8r
St
74
4k _~Apple curve
2
o |
-4 -2 0 2 4

F1gure 17.—Transonic apple curve at 4, =0.25 from
second approximation.

The usual transonic approximation reduces equation (C21) to
Mi=1+, (C22)

Equation (C21) is shown in figure 15. The agreement with
the exact theory is quite satisfactory.

Apple curve.—Two sets of values of u, and v, will satisfy
equations (C19) and (C20). The two solutions correspond
to the “strong’’ and “weak” shock-wave solutions predicted
by Busemann. If the values of %, and v, for all possible
cone angles and for both types of solution are plotted in the
hodograph, the resultant curve is Busemann’s “apple” curve.
The apple curve found in the second approximation is shown
in figure 17.
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