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THE DYNAMIC-RESPONSE CHARACTERISTICS OF A 35° SWEPT-WING AIRPLANE AS DETER-
MINED FROM FLIGHT MEASUREMENTS * ‘

By Wirriaxm C. TrrererT, STUART C. BrowN, and G. ALLAN Saorae

SUMMARY

The longitudinal and lateral-directional dynamic-response
characteristics of a 36° swept-wing fighter-type airplane
determined from flight measurements are presented and compared
with predictions based on theoretical studies and wind-tunnel
data. Flights were made at an altiiude of 35,000 feet covering
the Mach number range of 0.50 to 1.04. A limited amount
of lateral-directional data were also obiained af 10,000 feet.
The flights consisted essentially of recording transient responses
to pilot-applied pulsed molions of each of the three primary
conirol surfaces. These iransient data were converted into
frequency-response form by means of the Fourier transformation
and compared with predicted responses calculated from the
basic equations of motion. The equations, or transfer func-

ttons, that best describe the various measured responses were

evaluated by a curve-fitling process involving the use of tem-
plates and an analog computer. By this method it was generally
possible to find equations, of simple form, that closely matched
the experimental frequency responses between 1 and 10 radians
per second and at the same time adequately described the re-
corded time histories.

Ezperimentally determined transfer functions were used for
the evaluation of the stability derivatives that have the greatest
effect on the dynamic response of the airplane. The values of
these derivatives, in most cases, agreed favorably wiih predwmms
over the Mach number range of the test.

INTRODUCTION

In the design of automatic-control equipment for high
performance aircraft, the dynamic response characteristics
of the aircraft must be considered. It is desirable to express
these characteristics as transfer functions which are expres-
gions that describe the motion of the airplane for the various
flight conditions of interest. The airplane can then be rep-
resented as a single element in a more complex closed-loop
system.

Often these dynamic characteristics can be predicted by
using stability derivatives obtained from wind-tunnel tests.
In many cases, however, particularly in the transonic speed
range, flight-test procedures are desirable to document the
dynamic behavior of the airplane. Flight tests also serve
the additional purpose of enabling comparisons to be made
with predicted results, thus aiding in the development of
more refined prediction methods.

This report describes the results of a flight investigation
in which the dynamic-response characteristics of a 35°
swept-wing airplane have been evaluated through the Mach
number range of 0.50 to 1.04. Responses to transient
rather than sinusoidal control inputs have been chosen for
analysis because of convenience in making flight measure-
ments. Certain useful information can be obtained directly
from data recorded in transient-time-history form; however,
when converted to frequency response form, the dynamic
response of the aircraft is presented in a stendard manner
independent -of the particular input used, and the dynamic
characteristics are more readily apparent. The frequency-
response data are also applicable to analysus by conventional
servomechanism methods. :

Experimental frequency responses will be deseribed by
analytical expressions termed ‘‘ transfer functions” which are
evaluated by a method utilizing a set of frequency-response
templates and an analog computer. Whenever possible, the
coefficients of these tramsfer functions are expressed in
conventional stability-derivative form and compared with
wind-tunnel and theoretical estimates, *

NOTATION
c, lift coefficient
C, rolling-moment coefficient
Cn. pitching-moment coefficient
(4R yawing-moment coefficient
Cr side-force coefficient
D the operator, :iit
Iz, Iy,I; moments of inertia about the X, Y and Z axes,
slug-ft?
Ixe product of inertia, slug-ft? -
M Mach number
R I real and imaginary parts of a complex quantity
S wing area, sq ft
Vv velocity, ft/sec
174 weight of airplane, 1b
b wing span, ft
c mean aerodynamic chord, ft
g acceleration due to gravity, ft/sec? -
i V=1
m mass of airplane, slugs
n

normal acceleration, V(a—g¢), ft/sec® (except as
noted) <

1 Bupersedes recently declassified NACA RM AS51G37 by Willlam O. Triplett and G. Allan Smith, and NAOA RM A52I17 by Willlam O. Triplett and Stuart O. Brown.
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P rolling velocity, radians/sec o0y
q pitching velocity, radians/sec Crs Y > per radian
. d .
q Eq’ radians/sec? L, 2———%'75'}’2 C’;p, per sec
X
o dynamic pressure, Ib/sq ft
r yawing velocity, radians/sec L, g%b’ C.,, per sec
¢ time, sec obe
a angle of attack, radlans (except as noted) Lg qT— Ch,, per sec’
da x
: —.» radians/sec
& a’ /f . M, %'& C’,,a, per sec?
g sideslip angle, radians (except as noted)
e flight-path angle, deg A g.5¢*
8 control deflection, radians (except as noted) “ 2VIy Crgy per sec
8a total aileron deflection, radians (except as noted) 9.5¢*
S, elevator deflection, radians (except as noted) M, 2VIy Cngr per sec
5, rudder deflection, radians (except as noted) g.Sb?
¢ damping ratio N, VL Ca,, per sec
A root of the characteristic equation ¢,Sb?
¢ real part of & complex root N, VT C.,, per sec
) angle of bank, radians - ,,sz
& phase angle, deg N q—I_ Clg, per sec?
v angle of yaw, radians 5
w frequency, radians/sec Y E% Cyy, Der sec
Wi natural frequency of oscillation, radians/sec m
Wa undamped natural frequency, radians/sec Ls 7,50 0., per sec®
37
G, S—abgzlﬁr per radian O{S’b
(pb/2V) N; QT- Chy, Der sec?
C _b_C_l,_, per radian
Ir o(rb/2V) Y, oS per sec
20, . w7 Orv
Ozﬁ Fﬁ_, per radian .S
Zo —mV C:,, per sec
C, er radian
. a(pb/:zV)’ P 2 23
s o Cen» Der sec
C, L» er radian m ’
" 3Go2V) P Ies
rx -
Cy E’—‘: per radian Ix
o8 Tes
r —
Cr, bbC‘; —=F, per radian i Iz
&
C, aac,; 30y ser radian K 77 C0S 7, per sec
g . .
Cuy baca'., per radian = peIn Y, persec
dCL L, L,+r<N,, per sec
Cr “do’ Per radian Ly Lg+rxNj, per sec?
dC, . N/ N,+r;L,, per sec
0‘% &, P radian Ny Ng+-rzLg, per sec?
dC, . Ly Lsy~+rxNs, per sec?
m = dl i
Crne o’ PO TRGUAD Ny Ny+r.Ls, per sec?
c dC,
m, ds, TEST EQUIPMENT
c dCpn » per radian The test airplane was a standard North American F-86A~5
e d(ge/2V) airplane with external instrument booms added as shown in
. dC, L. figure 1, The physical characteristics of this airplane are
Crns TGacj2vy Per radian described in table I.
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37.54' ]

Figure 1.—Two-view drawing of test alrplane.

Standard NACA instruments were used in measuring the
following quantities: Pitching, rolling, and yawing velocities
were measured by rate gyros with direct optical recording.
Normal acceleration was measured by an air-damped vane-
type accelerometer. Elevator, rudder, and aileron deflec~
tions were measured by control position transmitters that
were linked directly to the control surfaces, and were re-
corded on an oscillograph. Angles of attack and sideslip
were measured by a vane-type pickup and recorded on an
oscillograph. True Mach number and altitude were obtained
from the nose-boom sairspeed system described in reference 1.
All recordings were synchronized at 0.1-second intervals by
o common timing circuit.

The rate gyros used to measure angular velocities and the
accelerometer each had a sufficiently high natural frequency
s0 that corrections to the data for instrument dynamics
were not required. Tests of the control position recorders
also indicated negligible dynamic lag through the frequency
range of interest,

1219
TEST PROCEDURES

The flight-test procedures consisted of recording airplane
responses to pulse-type disturbances of each of the three
control surfaces separately. Flights were made at an altitude
of 35,000 feet through the Mach number range of 0.50 to
1.04. The trim lift coefficient varied from 0.51 to 0.12. A
limited amount of data were also obtained at an altitude of
10,000 feet over this range.

During each test run one control surface was deflected and
then returned to the trim position to provide a pulse input
while the other two surfaces were held fixed. After applica-
tion of the pulse, all three surfaces were held fixed until the
oscillatory motion of the aircraft had essentially subsided.
Sample time histories of airplane responses to the three
control-surface inputs are shown in figures 2 and 3. The
variation with Mach number of trim angle of attack and
trim elevator angle are plotted in figure 4.

All flight runs at speeds below a Mach number of 0.95
were initiated from trimmed level flight, but to obtain data
at the higher speeds it was necessary to dive the airplane.
Altitude changes up to 2,000 feet were encountered during
each diving run although there was little variation in Mach
number. For analysis purposes the altitude and dynamic
pressure were assumed constant at their average values
during each run,
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Figure 2,—Sample flight records of normal acceleration, pitching
velocity, and elevator angle at a Mach number of 0.81.
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‘Figure 3.—Sample flight records of yawing velocity, rolling velocity,
and sideslip angle at a Mach number of 0.81.

METHOD OF ANALYSIS

The procedures used in determining the airplane response
-characteristics from the measured transient time histories
.can be divided into three distinct steps which are outlined
‘in the following sections. These are: frequency response
.calculations, evaluation of transfer functions, and a final
.check utilizing an analog computer. Wherever possible,
-stability derivatives are extracted from the coefficients of
:the transfer functions.

FREQUENCY RESPONSE CALCULATIONS

The first step involves the conversion of transient time
‘histories into the frequency domain.

Under certain conditions a time function such as the
-pitching velocity ¢(f) can be transformed into & complex
-frequency function g(iw) by means of the Fourier integral
wrelation

)=, ae s ®
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This integral must be evaluated from time zero to infinity
for each frequency w at which ¢(iw) is desired. Obviously,
the “integration can be accomplished only if the behavior of
¢(t) is known for an infinite time. Since ¢(f) can be measured
only for a finite time 7, it is necessary for the system to
reach steady-state conditions before time I' such that g(t)
may be expressed analytically between the time limits T
and infinity. In addition, the product ¢(f)e~**! must con-
verge as ¢ approaches infinity.

Examination of the data used in this analysis showed that
in every case the responses and the forcing function became
constant after a finite time interval 7. In the case of the
pitching-velocity response to an elevator input these steady-
state values may be expressed as ¢(7) and 5,(7), respectively,
and thus equation (1) may be divided into two parts as
follows:
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The second integral can be evaluated analytically so that
atio) =B e=terp [ ggemtora @
) 0

For computational purposes equation (2) may be divided
into its real and imaginary parts represented by the symbols
R and I, respectively, so that

qGiw)=R+1I
where

r=—1D gn w1y f q(0) cos wt dt

=D o wT—fo of0) sin ot dt

The two integrals involving the transient part of q(f) may
may be evaluated by any of several approximation methods.
In analyzing the data of this report, Simpson’s rule was used
to find the area under the product curves g(t) cos wt and
q(t) sin wf. Values of ¢(f) were tabulated at 0.05-second
intervals and the integrations were carried out at each
integral value of frequency from 1 to 10 radians per second.

After obtaining the numerical values of R and I at each
frequency, g(iw) can be expressed in polar notation such that—

q(iw)=|gle**e

where the amplitude, |q|=1/(R)§—|-(I)’ and the angle, ®,=
are tan I/R.

The above integration process wasrepeated for the elevator
forcing function §,(¢) to determine

8o(iw) = bc)e*ote
418672—b7—17
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The ratio of ¢/3, is then expressed as

_q@w)_
l( V=3

where |g/6,| is the amplitude ratio and ®,4, is the phase
difference between the two quantities, ®,— ®;,.

Similar calculations were made for the normal acceleration
response to an elevator input and for the rolling, yawing, and
sideslip responses to both rudder and aileron inputs.

In order that flight-test results can be correlated directly
with wind-tunnel measurements it is sometimes desirable to
correct the angular velocities measured in flight so that they
conform to the system of stability axes rather than the body
axes about which the recording instruments are alined. The
necessary correction is described in Appendix A.

A further consideration in frequency-response calculations
is the shape of the forcing function. As discussed in Appendix
B, the type of input used in flight definitely places a limit on
the accuracy of the Fourier analysis. In genersl, to obtain
the widest usable frequency range, a pulse input should be
used. When low frequencies are desired, a step input is
preferable, although this type of disturbance may result in
motions that exceed the ranges of linearity.

The final result of the above calculations is a graphical
representation of the airplane transfer function (frequency
response) for a given test condition. This is plotted as
curves of amplitude ratio and phase angle versus frequency.
The remainder of this section of the report is concerned with
the determination of analytical expressions for these curves.

Reference 2 is one of many sources that explain in more
detail the use of the Fourier transform for problems of this
type.

DETERMINATION OF TRANSFER-FUNCTION COEFFICIENTS

_ 1 (‘iq—d’;) —

g
8

e

et®aite

Dynamic-response templates.—A graphical method was
used to find the type of transfer function that best defines
each of the measured frequency responses. Numerical
values of the transfer coefficients were also determined in
the same operation. This method involved the use of a set
of templates developed by C. S. Draper of the Instrumenta-
tion Laboratory of the Massachusetts Institute of Tech-
nology. These templates are described fully in reference 3,
and their design is based on the following considerations:

1. A rational function of complex frequency D can, in
general, be expressed as

_gD+a)(D+a) ..
D+b)(D+0y) . .

. (D+ay)
NOEEN ©)

FD)=

where the a; and b; may be either real or complex, and, if
complex, always appear as conjugate pairs and where K is
any real number. When ¢; is a real number, a factor
D+ay) may be expressed as

L@+m)

When a, and ayy, are a complex conjugate pair

the two factors (D+a,)(D+a) can be expanded, by intro-
ducing new coefficients, into the form (D*4-2fw,D-+w,2)

where 1'=l-
ay
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where wd=a@y, and 2{w,=a+a;;. Factoring out o,

then gives
2 D, D
w, | 13-2¢ m
The terms 1 and «,2 that appear outside the parentheses,

being real numbers, may be grouped together with the
multiplying factor K. When an @ or b, is zero then a factor
D will be present in either the numerator or the denominator.
Then, F(D) in factored form will consist entirely of combi-
nations of the three forms. )

Since we are interested only in the steady-state frequency
response, the complex variable D can be replaced by the
frequency variable iw, (where i=4—1) and each of the
three factors may be written in polar form as follows:

For (1++D),
1+1'?.m=1,/1+'r’? et ’ 4
where
&, =tan™! 7o
D D*f
for (1+2§'w—"+x‘;>:

. . 2 2 2

where o ’
q’g: tan™ ! _‘71 _r((‘::{/‘::ZZ)
and for D
To=we'®s (6)
where

By—tan~! o =90°

2. When 7» is taken as a nondimensional frequency
variable, all first-order terms of the form (1--7iw) can be
defined by a single amplitude curve and a gingle phase-angle
curve as shown in figure 5. In a similar manner all possible

10, [T\
second-order terms of the form 142¢ w—+(c:> can be

defined by a family of curves with w/w, as the nondimensional
frequency variable. There will be a different pair of curves
for each value of damping ratio ¢, as shown in figure 6. For
the factor iw (eq. (6)) the amplitude is simply equal to w and
the phase angle is a constant 90°.

3. Since o typical transfer function may consist-of more
than one of these factors in both numerator and denominator,
it is of great advantage to plot the amplitudes to a logarithmic
scale so that multiplication or division of factors of the type
shown in equations (4) to (6) may be accomplished by mere
graphical addition of the amplitudes. The nondimensional
frequency has also been plotted to a logarithmic scale as
shown in figures 5 and 6. Then as frequency approaches
cither zero or infinity the amplitudes become asymptotic to
straight lines. In both figures as frequency decreases the
amplitudes approach asymptotically the value of unity. At
high frequencies the amplitude of (1+47iw) is essentially
equal to 7w and thus it plots as a striaght line of slope 1 (fig.
5). Similarly, the amplitude of a second-order term ap-

2
proaches the value (wﬂ) as frequency increases and is

asymptotic to a straight line of slope 2. Since & second-order

2 .
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term of this type normally appears in the denominator, it has

been plotted as
[+ GT

and thus theslopeof the amplitude curve is —2 (fig. 6). In
both plots the asymptotes intersect at unity on the non-
dimensional frequency scale. This intersection is termed
“the breakpoint.”

The phase angles are plotted to a linear scale because when
factors of the types shown in equations (4) to (6) are com-
bined, the resultant phase angle of F(D) is merely the alge-
braic sum of the individual angles. It can be seen in figures
5 and 6 that the angles of these first- and second-order terms
approach 90° and —180°, respectively, at high frequencies.
Thus an amplitude slope of 1 corresponds to an angle of 90°,
while a slope of —2 corresponds to an angle of —180°. In
general, as « approaches infinity the amplitude of F(D)
approaches Ko™, where n and m are defined in equation
(3). Then the amplitude slope is equal to (n—m) on the
logarithmic plot and the phase angle is 90(n—m)°.

The templates used in the analysis of the data were accu-
rate representations of the curves shown in figures 5 and 6
cut from tm‘nsparent material with the breakpoints marked.
Twelve paclrs of second-order templates were included in the
set to give values of damping ratio from 0.1 to 1.0 in
increments of 0.1 and in addition values of 0.05 and 0.15.
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The computed frequency-response data (amplitude ratios
and phase angles) were plotted to the same logarithmic scale
a8 the templates, and then by a trial-and-error approach the
template or combination of templates that best matched
the given data was determined. 7To determine the proper
combination, various amplitude templates were positioned
in such a way that their algebraic sum matched the experi-
mental amplitude ratio curve. For each amplitude tem-
plate the corresponding phase-angle template was placed
on the experimental phase-angle curve so that the break-
point of each pair was alined with respect to frequency.
The various pairs of templates were then adjusted until the
sum of the individual amplitudes and phase angles most
noarly matched the test data. The frequency at which the
breakpoint of each pair occurred (wz) was noted and then
the appropriate values of + and w, were determined directly,
since for each first-order term

1

=

wp
and for each second-order term
Wy=—Wpg

In general, each factor will have a different breakpoint.
At first glance, this procedure may seem extremely tedious
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but it has been found that with practice one can determine
coeflicients quite rapidly in this manner, For a more com-
plete description of the principles involved in this type of
graphical representation reference 4 is recommended.
Analog Computer.—As a final step in the calculations a
Reeves analog computer was used to refine the previously
determined values of transfer-function coefficients. This
wag accomplished by placing the actual time histories of
the control motion into the computer by means of an input
table. Then this input was fed into & circuit representing
the equations of motion as obtained in the previous step and
the outputs of the machine were obtained. These outputs
were compared to the actual time histories of the airplane
responses as obtainedin flight. By changing dial settings
on the computer the transfer coefficients could be adjusted
until the output of the computer most nearly matched the
actual flight data. (Such a comparison is shown in figs. 2

“and 5.). Thus, in addition to providing a refinement of the

coefficients obtained with the templates, this step also
resulted in a check of all previous calculations. In general,
operations of this type can be conveniently accomplished
on the computer only when the form of the transfer function
is known.
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RESULTS AND DISCUSSION

In the following paragraphs the longitudinal character-
istics and the lateral-directional characteristics are discussed
separately. Flight-evaluated frequency responses, transfer
functions, and stability derivatives are presented and
compared with predictions based on wind-tunnel data and
theoretical studies.

LONGITUDINAL RESPONSE CHARACTERISTICS

Frequenecy response—Plotted in figure 7 are typical
flight-evaluated frequency responses of pitching velocity
and normal acceleration to elevator inputs. The purpose
of these figures is to show general trends with varying Mach
number, and therefore smooth curves have been faired
through the calculated test points. In most cases more than
one flicht record was analyzed at each flight speed and only
at the highest speeds was there appreciable inconsistency.
Each transient record was analyzed through the frequency
range of 1 to 10 radians per second and some scatter in the
data was noted at either end of the frequency range. For
this reason, as well as for clarity, portions of some of the
responses have been omitted from figure 7.

The amplitude-ratio plots show the increase in natural
frequency and the decrease in amplitude which reflect the
changes in static margin and elevator effectiveness with
Mach number.

To afford & comparison with estimates made from wind-
tunnel data, typical frequency responses for a Mach number
of 0.81 have been replotted in ficure 8. Shown here are the
actual data points obtained from a single transient input.
Also shown as solid lines are responses predicted by use of
the stability derivatives of table IL (ref. 5) and transfer
functions developed in Appendix C. The scatter between
individual data points is typical for responses in the lower
speed range; at Mach numbers near 1.0, however, there was
somewhat more scatter in the individual data points.

Transfer functions and stability derivatives.—The airplane
transfer functions were determined from the frequency re-
sponses of figure 7 by using the templates described in the
Analysis Section. Final values of the coefficients were
obtained from the analog computer by matching the original
time histories. It was found that the airplane responses
could be adequately defined by transfer functions of the
form:

g CiD+0
8. D*-bD+-k

and

n__ G
8 D*+bD+k

As indicated in figure 2 the output of the analog computer
closely matched the transient motions measured in flight.
These equations are also of the same form as the theoretical
transfer functions developed in Appendix C.

The variation with Mach number of the coefficients w,
and § are plotted in figure 9. The damping-ratio curve was
faired in accordance with additional data which more clearly
defined the sharp variations between Mach number of 0.88
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and 0.95. An indication of the consistency of the data is
given by the scatter of the points at each flight speed.
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Freure 9.—Variation of longitudinal undamped natural frequency
and damping ratio with Mach number.

Plotted in figures 10 and 11 are the stability derivatives
Crnar Oy, and Gt Cn,- These were evaluated from the

transfer coefficients as indicated in Appendix C. Because of
the difficulty in finding reliable values of the coefficient
C.,, wind-tunnel values of Cg, (also shown in fig. 10) were
used to calculate C, +Cn,. Comparisons are made with
estimates shown in table IT and in the case of Cx, the results
of this investigation are compared to unpublished static
flight data.

LATERAL DIRECTIONAL RESPONSE CHARACTERISTICS

Frequency responses.—Plotted in figure 12 are typical
flight-evaluated frequency responses of rolling velocity,
yawing velocity, and sideslip angle to rudder and also to
aileron inputs. These were all obtained at an altitude of
35,000 feet; responses at 10,000 feet showed similar character-
istics and have not been plotted. As in the case of the
longitudinal frequency responses smooth curves have been
faired through the calculated test points.

The responses to rudder inputs have not been plotted at
frequencies greater than 8 radians per second because there
was considerable scatter and also a lack of well-defined trends
in the data at the higher frequencies. The aileron responses,
however, are shown to 16 radians per second. Wherever
necessary for clarity or because of erratic data, parts of some
of the curves have been omitted. The §/8, response is shown
at only three speeds because of a failure in the sideslip-angle
recording system.
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(a) Rolling velocity response to rudder input.

I''aurB 12.—Lateral-directional frequency responses at various flight
Mach numbers (altitude 35,000 feet).

With minor exceptions, the curves show consistent and
gradual variations with Mach number. One such exception
can be seen in figures 12 (d) and 12 (e) where the amplitudes
of p/s, and r/5, at a Mach number of 0.61 lack the customary
resonant peaks. 'This is the result of time histories in which
there was no oscillatory motion. This unusual characteristic
can be explained by reference to the predicted transfer func-
tions developed in Appendix C and discussed in the following
section. The predicted p/s, response equation for a Mach
number of 0.6 at 35,000 feet is ‘

D__ 21.1D(D*4-0.455D1-6.74)
8 (D+0.00113)(D+2.203)(D?*-+0.438D-+7.25)

It can be seen that the two quadratic terms are nearly identi-
cal and thus the oscillatory mode is effectively canceled.
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Fiaure 12.—Continued.

Since rolling and yawing motions are coupled, the r/s, re-
sponse must exhibit the same characteristics at this particu-
lar speed. :

Another interesting point with regard to figure 12 (e) is
the wide variation in phase angles at different flight speeds.
Predicted transfer functions indicate that at low speeds
(below 2 Mach number of 0.7) where 0,5¢ is negative, the
phase angles approach —270° asymptotically with increasing
frequency. Unpublished wind-tunnel data indicate that
near & Mach number of 0.7 there is a transition in which
0"5.: becomes positive and consequently three of the co-

efficients in the numerator of the transfer function change
sign. The result is an increase of 180° in the high-frequency
phese lag.
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Frequency,w, radians/sec
(c) Sideslip angle response to rudder input.
Figure 12.—Continued.
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The frequency-response test points derived from flight data
at a Mach number of 0.81 have been replotted in figure 13
which shows all six responses for the 35,000-foot altitude.
These results are typical in indicating the degree of scatter
usually encountered in the Fourier analysis of a particular
flight record. Plotted as solid lines for comparison are pre-
dicted responses that have been calculated using estimates
of the various stability derivatives presented in table II,
which were obtained from reference 6 and also from wind-
tunnel tests by the manufacturer. These calculations were
made as shown in Appendix C, using the exact linear fourth-
order response equations. The agreement between measured
and predicted responses is generally good except, in some

cases, at the extremes of the test frequency range. This is
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(a) Rolling velocity response to rudder input.
Figure 13.—Comparison of esperimental and predicted Ilateral
directional frequency responses at a Mach number of 0.81 (altitude
35,000 feet). .
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particularly noticeable in figure 13 (d) where the measured
frequency response of p/s, indicates & mode of motion not
consistent with the rigid-body equations of Appendix C.
The increase in phase angle and the “up-turn” in the ampli-
tude curve at high frequencies indicate the presence of an
additional mode which is probably related to the primary
bending frequency of the wing (about 8 cps).
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In addition to the pulse-type inputs, a step disturbance of
the rudder was used in one instance at & Mach number of
0.81 in order to define more clearly the low-frequency por-
tions of the p/s, and r/8, frequency responses. Results of
this analysis from 0.1 to 1.0 radians per second are plotted in
figures 13 (a) and 13 (b) and verify the prediction of a sharp
attenuation in amplitude of 7/, at a frequency of 0.4 radian
per second.

Also shown as dotted lines in figures 13 (b), (¢), and (d) are
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_responses computed from predicted transfer functions that

have been simplified as indicated in the following paragraphs.
THEORETICAL TRANSFER FUNCTIONS

It is shown in Appendix C that the characteristic equation
A can be factored into the form

A=DD—N) (D—M) D*+eiD+-¢)

where A; and ), are the spiral and rolling roots, respectively,
and where ¢; and ¢; are coefficients that define the oscillatory
mode. By neglecting \; (which is usually very small) and by
omitting other small terms that appear in the numerators of
the various response equations, three of the six responses may
be reduced to the following simple forms:

___BD 7
r D2+CID+02
___—Bs
D¢ Dtcy ™
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It is also shown that by making additional assumptions as
to relative magnitudes, the coefficients X3, ¢;, and ¢; can be
expressed as L,, —(N,+Y3), and Ng’, respectively. Fur-
thermore, since By=N; ' and 4s=L;,’, equations (7) can be
written as

r_ N;'D @
5 D—(N1T) DNy %)
B_ —N,/
5D —(N 4Ty DNy (8b)
L z?
P_ %
.5_,;._ D= L,, (80)

It can be seen that in equations (8a) and (8b) the spiral
and rolling modes are completely neglected, and yet, as shown
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in figures 13 (b) and (c), these simplified transfer functions
yield responses that are almost identical to those obtained
from the “exact” equations for frequencies greater than 1
radian per second. Similarly, the response computed from
equation (8c¢) closely matches the exact response (fig. 13 (d))
over the frequency range shown except that it omits the small
peak normally associated with the oscillatory mode. The
spiral mode which has been neglected in all three simple
equations appears to have no effect on the calculated air-
plane response except at frequencies well below 0.1 radian
per second.
EXPERIMENTALLY DETERMINED TRANSFER FUNCTIONS

In the analysis of the flight data it was found that the
frequency responses of r/é,, 8/8,, and p/é, could be successfully
simulated by simple transfer functions of the same forms as
equations (7). Solutions of these equations on the analog
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computer, using final “best”’ values of the numerical co-
officients with actual control motions as recorded in flight,
resulted in outputs that closely matched the measured time
histories of r, 8, and » as shown in figure 3. This fact implies
that the modes of motion that are neglected in each case have
very little effect on the time response to a pulse-type input.

By use of the coeflicients that best describe the measured
time histories, frequency responses were calculated for com-
parison with those derived directly from flight data. Ex-
amples of these calculations are shown by the dash-dot lines
in figures 13 (b) and (d). These curves, in general, match
the experimental points closely for frequencies between 1
and 10 radians per second.

It is apparent from equations (8a) and (8b) that the same
information can be obtained from either »/5, or 8/5,. Coei-
ficients evaluated from each of these responses agreed favor-
ably in most cases; however, because of indications that the
yaw rate gyro possessed dynamic characteristics superior to
those of the sideslip vane, only the yawing velocity responses
were used in the final calculations. Natural frequency and
damping ratio of this mode are plotted in figure 14.
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Fraure 14.—Variation of directional undamped natural frequency
and damping ratio with Mach number.

The transfer functions of the three remaining responses
p/[8,, r[és, and B/s, were not amenable to simplification.
However, it was found that the p/s, response could be
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matched satisfactorily by a transfer function of the type

p__ a(D+tay) (D+as)
& (D—N) (D*+eD+cy)

which is the same form as developed in Appendix C except
that the spiral mode has been neglected. As written here,
a, is identical to L, ’ while a; and a; are complicated combina-
tions of derivatives that cannot be readily simplified. Al-
though this equation closely describes the measured time
histories (fig. 3), it was difficult to find unique values of the
numerator coefficients. Changes in one of these could be
compensated for by corresponding changes in the other two,
and the values were not considered to be reliable enough for
presentation.

Definition of the /s, and B/8, responses required fourth-
order transfer functions that include all three modes and,
because of practical difficulties involved, no attempt was
made to evaluate the coefficients of these responses.

STABILITY DERIVATIVES

In addition to the quantities L,, N,+Y4, N4/, Ns’, and
L., that were determined as mentioned in the preceding
paragraphs, the coefficient Ls’ was evaluated from the time
histories of rolling and yawing velocity as outlined in Ap-
pendix D.

The quantities Ng, Lg, N;,, and Ls, can then be calculated
from N4/, Lg’, N; ', and L,/ by using the following expres-
sions ebtained from the relationships developed in Appendix
C:

Ny —reLs

1— 'xT'x

1, L=l

1—rxrs
N; a,'—TzLa,'
T 1—rxrg

LBGI—TX-NBGI

1 —TrxTx

N,

L~

Because rx and rz are very small quantities, wind-tunnel
estimates of L;’ were assumed to be sufficiently accurate
to use in the calculation of N;. The term reN;' was
completely neglected in evaluating L;,.

Finally, from the definitions given in the notation it is
possible to evaluate the derivatives Ci, Cys Cip Cny, and

Cy, -

The analysis methods used herein do not allow the separa-
tion of the damping term N,+Y;. As compared to NV,, the
term Y is small and can generally be predicted accurately
from wind-tunnel measurements. Therefore values of Cy,
given in table II were used in calculating C, from the

quantity N,+ Y.
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The flight evaluated derivatives for both altitudes are
plotted against Mach number in figures 15 and 16. These
are compared to the predicted values listed in table II.
Through the speed range of the test the predictions for both
altitudes are essentially the same, except as noted in the
plot of Ci,.

The correlation between predicted derivatives and those
evaluated from flight at 35,000 feet is generally good except,
in some cases, at speeds near a Mach number of 1.0 where
the predictions are apt to be inaccurate. Unpredicted varia-
tions with altitude are also apparent in the flight values of
Ci,, Cn,, and Cyy . At & Mach number of 0.8 the value of

C.,, for 10,000 feet is less than one half the value at 35,000

feet. Flight date of reference 6 when expressed in this form
show a similar trend. The plot of 0,,,' indicates the same

tendency to a lesser degree, while the 10,000-foot value of
C., (at 14=0.8) is some 50 percent higher than the value at
35,000 feet. A possible explanation for these discrepancies
is that since dynamic pressure varies with altitude, structural
deflections due to aerodynamic and inertial loads may cause
changes in the effective values of the derivatives.

Values of C;; determined in the present investigation agree
favorably with wind-tunnel results, while those reported in
reference 7 (obtained from static flight tests of the same air-
plane) are much smaller in magnitude. It appears, however,
that-the results of reference 7 are subject to error because of
the simplifying assumptions made. A more rigorous ap-
proach would bave resulted in larger values of this derivative.

Examination of figure 16 shows the control effectiveness
derivatives C,, and () to have similar variations with

increasing Mach number, and in each case the measurecd
values are generally smaller than predicted. Values of O'aa

obtained in the present investigation agree closely with those
presented in reference 8 which again were evaluated from
flight measurements of the same airplane.

In this investigation there was no evidence of nonlinear
variations of rolling or yawing-moment coefficients with
p, r, or 8. ‘This was concluded because (1) the period and
damping of the oscillations following a control imput were
essentially constant in every case (no systematic variations
with amplitude), and (2) the experimental time histories

could be matched, in general, by differential equations with

constant coefficients.

No conclusions are drawn as to nonlinear moment coeffi-
cient variations with 3§, or §, because the magnitudes of the
control inputs were not varied appreciably during the. tests.
They were small enotgh, however, so that it could be assumed
that the linear ranges were not exceeded.

CONCLUDING REMARKS

A flight investigation has been performed on & 35° swept-
wing airplane in which the dynamic response characteristics
were measured. Transient responses to elevator, rudder,
and aileron deflections were recorded through the Mach
number range of 0.50 to 1.04. The following remarks can
be made regarding the longitudinal and lateral-directional
characteristics.
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LONGITUDINAL CHARACTERISTICS

Pitching velocity and normal-acceleration responses could
be defined by simple second-order transfer functions as
predicted from linear equations of motion. Except for the
erratic variation in pitch damping between Mach numbers
of 0.90 to 0.95, experimentally determined stability deriva-
tives showed no unusual trends and agreed reasonably well
with wind-tunnel predictions.

LATERAL-DIRECTIONAL CHARACTERISTICS

Airplane responses in yawing velocity and sideslip angle
due to rudder disturbances were represented by second-order
transfer functions that are related solely to the oscillatory
mode. Simple first-order equations adequately defined the
rolling velocity response to an aileron input. In either case
the simplified equations closely defined the measured time
histories while describing the frequency responses through
the range of 1 to 10 radians per second.

Fourth-order transfer functions calculated from the basic
equations of motion using wind-tunnel and theoretical esti-
mates of the various stability derivatives could be simplified
by neglecting small quantities and by making approximate
cancellations until they were of the same form as those
evaluated from flight data. Furthermore, it was possible to
express the coefficients of these transfer functions in terms
of individual stability derivatives. Frequency responses com-
puted from these simplified equations were almost identical
(between 1 and 10 radians per second) to those computed
from the exact fourth-order transfer functions, and when
compared with experimental results there was generally good
agreement. Thus it is concluded that the simplified transfer
functions form a reliable basis not only for estimating air-
plane responses but also for the flight evaluation of stability
derivatives, and the methods used here are felt to be suffi-
ciently general to apply to any conventional airplaine.

Experimental values of the derivatives Cl,, Ciy, O, Ca,y
O,,,r, and 0’% compared favorably with predictions, based on

theory and wind-tunnel measurements, at Mach numbers
below 0.95, while at higher speeds, where predictions are
questionable, there was some deviation. There were also
notable discrepancies in flight values of Cy, and C,, ob-
tained at the 10,000 foot altitude, which were attributed to
structural deformations resulting from aerodynamic and in-
ertia Joads. Additional evidence of aeroelasticity appeared
when the Fourier analysis for p/s, was extended to fre-
quencies beyond 10 radians per second; the frequency
response showed evidence of aeroelastic deformation which
appeared as an additional mode of motion not consistent
with rigid airplane theory.

AxBs ABRONAUTICAL LABORATORY
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APPENDIX A
TRANSFER OF AXES
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The equations of motion normeally used in airplane dy-
namics are based on a system of axes fixed in the airplane
in which the X axis is the intersection of the plane of sym-
metry and a plane perpendicular to the plane of symmetry
that contains the relative wind vector. These are normally
referred to as stability axes. The angular displacement
between the longitudinal stability axis and the reference
axis of the airplane is equal to the trim angle of attack ar.
Since recording instruments are generally alined with the
reference axis, measurements of angular rates may be
corrected to conform to stability axes notation as indicated
in figure 17. Here p and r are vector components of the
resultant rotation of the airplane, and the subscript 1 refers
to the reference or body axes.
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Fiaure 17.—Transfer of axes.
From figure 17 it can be seen that
P=P; CO8 aT—l"T_LSiD. ar

r=nr COS ar—Py sin o

Sldeshp angles can be tr&nsformed by the relation -
.. ~tan B=tan B; cos ap

For most purposes these conversions are required only
when the angle of attack is large. In this investigation it
was found that the corrections to rolling velocity could be
neglected in all cases because of the high roll to yaw ratio
when using either & rudder or aileron input. In the cases
of the yawing velocity: records, however, the correction was
sizable, particularly with thé aﬂeron input. The correctlon
to B was neglected in every case.

Talue
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APPENDIX B
CONTROL INPUTS

When frequency responses are to be calculated from
transient records, care should be given to the choice of a
suitable forcing function. The frequency range through
which accurate transformations can be obtained is definitely
limited by the shape of the control input. Theoretically,
a pure impulse (zero time duration) is the most desirable
input for all purposes because it gives uniform excitation
to the entire frequency spectrum. The transform of a step
input, on the other hand, has a magnitude that varies
inversely with frequency and thus gives infinite excitation
to the zero frequency component at the expense of the
higher frequencies.

The nearest physical approach to a pure impulse is an
input that is roughly triangular in shape as shown in figure 18.
Letting a equal the slope and T’ equal the time base of the
triangle, the Fourier transformation of this input can be
obtained from the relation

8i)= ﬁ  se=terde

Integration results in a transformation with the following
real and imaginary parts:

2a T ©
R—F cos 3 (1'—'008 Tj,) (Bl)
2¢ . oT T
I—Z; s 7‘ (COS —2——'1> (Bz)
14
ap NS :
12 AUnit_impulse 8(!)2 . ;lﬁ%
0 - T=
~_ 0
s LN o 3 o
N IVER <
Al ]
\ N 0
AN N
4 AN N N
< ~
2 Unit step—] ~— ™
oL L1

0O 2 .4 6 8 10 12 14 16 1B 20 22 24 26

Frequency, w, rodions/sec

Fraune 18.—Fourier transform magnitudes of a step, an impulse, and
two triangular-shaped inputs.

The magnitude of the transformation is then
_2a wT
I(SI—F (I—COS '2—

It can be seen that |8[ is periodic and is zero when w=4x/T,
8x/T, . ... At these frequencies the transform of the re-
sponse to this input would also be zero, and thus the ratio of
output to input would be indeterminate. A reduction in
T would increase the period and reduce the number of

REPORT 1250—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

indeterminate points. ‘This is shown in figure 18 where the
transform magnitudes of two triangular pulses are plotted.
One has 7=1 second and a=4, while the other has I'=% and
a=16. The areas under the two triangles are equal so that
the transforms have equal magnitudes at zero frequency. Re-
ducing T from 1 second to % second doubles the period and
moves the first indeterminate point from & frequency of
47 radians per second to 8x. For purposes of comparison,
transformations of a unit step and a unit impulse are also
shown. ,

As T is further reduced, the magnitude of the triangular
pulse more closely approaches the constant value that is
characteristic of the pure impulse. To gain full advantage
from the smaller 7, the slope must be increased to maintain
the same area under the pulse. A practical limitation is
fixed by the maximum rate at which & control surface can
be moved, and any further reduction in 7" results in smaller
over-all magnitudes. The most desirable input, therefore,
is & compromise between large area and short time duration.

From figure 18 it would appear that a pulse-type input is
well suited for determining low-frequency characteristics.
However, the following explanation will show that this is
not true.

Generally it is impossible to return a control surface pre-
cisely to its initial position after application of a pulse input.
Even if a chain stop or other device is used there is still apt
to be a small residual deflection §(77) after time T

If 6(T) is exactly zero, then as w approaches zero (from

egs. (B1) and (B2))
I-0

2
R->——“f

Now if 8(T) is finite, the real and imaginary parts of the
transform of the entire input are

I=2—‘—: sin ol (cos g—-l)—@ cos oT

@ 2 2 )

R=g‘_;./ cos CO_Z: <1'_'GOS ‘."2)_@ sin O)T
w 2 2 %)

In this case as v—0,

I—)aa
2
Ra‘%“-—a(fl’)T

thus the zero frequency magnitude is infinitely lerge regard-
less of how small 5(T) may be. Therefore, even though §(7)
appears to be zero on a flight record (i. e., 6(T)) is less than the
least count of the recording instrument), there is still the
possibility of an infinite error at zero frequency. A step
input is not subject to these large low-frequency errors; an
error of 1 percent in the reading of the step deflection merely
means an error of 1 percent in the transformation.
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APPENDIX C

PREDICTED AIRPLANE RESPONSES

Tor constant forward velocity and only small disturbances
from trimmed flight, the equations that define the motions
of an airplane can be divided into two independent groups,
the longitudinal equations and the lateral-directional equa-
tions. For convenience, these are handled separately in
developing theoretical transfer functions.

LONGITUDINAL RESPONSES

In view of the assumptions made, the longitudinal equa-
tions may be written as

YV (a—)=—0,5(Ca o+ Ci 80 )
- ¢.S¢* .
qu— (loSG (Omaa"i" Onssao) +—2V' (Cmﬂ"l- Om&a> (02)

Dividing the equation (C1) by mV and (Cé) by I, the equa-~
tions may be rewritten as

&—Q=Zaa+ZH‘ao (03)

Q=Maa+M6¢6¢+qu+Ma& (04)

Applying the Laplace transformation for zero initial condi-
tions and solving simultaneously for ¢ and « gives

q__ gloD +C
5. DDtk ©5)
a — OlaD+00a
3D+ bD+k (C6)
where
b=—Z.—M,—M, (874)
k=Z.M,—M., (C8)
Cio=M +Zs M, (C9)
Coy=M.Zs,—M;s 2. (C10)
01a=Z63 (Cl 1)
Coa=M;,—Zs M, (C12)
The incremental change in normal acceleration is defined as
n=V(e—9.
Thus
L a 9
Hald (D 5,
_021D2+013D+00n
== DFtDFE (C13)
where
Cou=V2s, (C14)
Cin=—VZ; (M,+M,) (C15)
Con=—V(MoZy,—M;,Z.)=—VCo {C16)
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In most conventional aircraft C;, and Ci, are very small
compared to O, and thus

n__ Cu
8, D*4+-bD+k

The stability derivatives Cn,, Cu,+Cn,, and C’,,,% may be

obtained from approximate expressions for the transfer-
function coefficients.

The term C,, can be determined from % (eq. (C8)) by
omitting the term Z.M,. Investigation has shown that, in
this case, this term is very small compared to M,. Thus

o Af ¢oSt
k=—M.,=—C,, T

or
kI,

Oma=_ QoSC

(C17)

The damping factor Cn +Cn, can be obtained from equa-
tion (C7) by using known values of b and (.

MAMo=—2Z.—b
or

Ot Oni= 2 (0, 25— C18)

A
The elevator effectiveness derivative Ca, can be deter-

mined from equation (C9). The term Z; M, is, for conven-
tional aircraft, very small as compared with AM;, and thus

M5.= qu
or
I
Crs; =785 Cre (C19)

LATERAL-DIRECTIONAL RESPONSES

Equations of motion.—The three equations that define
the lateral and directional motions of the airplane may be
written as:

(IXD’—qoSb c, %D) qo—l—(—IxzD’—q,,Sb c., %,D)w-
4,Sb Oy p=g,Sb Ciy3  (C20)
(—LeaD*= 085 C, 55 D) o+ 1D~ 0sSb s, 57D )i
goSb o f=0.Sb C\8  (C21)
(—W cos e+ (mVD—W sin v)¢y+
(mVD—g,SCr,) B=¢.SCr3 (C22)

By dividing equation (C20) by Ix, equation (C21) by I,
equation (C22) by mV, and by introducing new symbols, the
three equations become:

(D*—L,Dyp+ (—rxD*—L,Dy—Lgf=Lsd (C23)
(—reD*—N,D)o+ (D*—N.D)y—Ngp=Nsd (C24)
— Ko+ (D—EyW+(D—Y;5)8= Y (C25)
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CHABACTERISTIC EQUATION

The characteristic equation A is formed by expanding the
major determinant to give

A=D(C.D*+GIP+CD*+CD+-C,) (C26)
where
Ci=1—rzrs
Cy=—L,—N,—Y3(1—rgrz)—rxNp,—rgL,
COy= (Nr'l'rZLr) YB'I' (Lp+rpr) YB'I' (Ler_NrLr) +
(Ng+rzLg)
C=—(L,N:—N,L) Y+ (LsN,—NpL,)—EKi(Lg+rxNs)—
K3 (Ng+rzL)

Co=—E,(L:Ng—N,Lg) —Es(LgN,—NpLy)

These coefficients can be further simplified by making the

following substitutions:
Let

Lp,= p+rpr Nr'=Nr+TX‘Lr
Ny =Nptrzlg

Then the coefficients of the characteristic equation are finally
expressed as

Lp' =L3+1’pr

Ci=1—ryry

Cy=L,—N, —Ys(1—rxrs)
Co=(N,/+L,)Yp+(L,N,—N,L,)+Ng
Ci=—(LyN,—N,L;) Y5+ (LsN,—NL,)—K;Ls'—K:N§’
Co=—EK;(L;Ng—N,Lg)—K;(LgN,—NgL,)

In factored form, equation (C26) is
A=D(D—)\x) (D—)\z) (D—)\a) D—N)

where A; and A; are designated as the spiral and rolling roots,
respectively, and where 3; and A, are a complex pair (o¢%w;)
that describe the oscillatory mode.
For convenience in this investigation A has been expressed
as
A=DD—N)D—N)(D*+e:D+e)

where

a=—MNs+A)=—2¢

a=MN=cto
Here ¢, and ¢; are real coefficients that define the damping

and period of the oscillatory motion.
The quadratic term may also be written in the form

3
art (1+2¢ b
where
W= '\[G;
and
=g

n
SIMPLIFICATIONS OF THE CHARACTERISTIC EQUATION

If C, and other small terms are neglected when the flight-
path angle v and when the product of inertia are essentially
zero, the characteristic equation may be written as
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A=DDP—(Ly+N,+ Y ) D+ (LY g+ LN, 4 Np)D— L, Nj]
The cubic term can be factored exactly so that
A=D¥D—L,)[D*—(N+Y5)D+N

This form of the characteristic equation considers only the
oscillatory and rolling modes. It enables the coefficients
C,, Gy, and C; to be expressed directly in terms of aerodynamic
derivatives or simple combinations thereof.

Even when the product of inertia is significant, the char-
acteristic equation may be factored approximately into the
simple form

A=DP(D—Ly)[D*— (N,+ X)) D+N']
While the factorization is not exact, it is nevertheless
justifiable in many cases.
TRANSFER FUNCTIONS

From the three equations of motion the airplane responses
in ¢, ¥, and B can be readily calculated. In the following
equations, & refers to either an aileron or a rudder disturbance.

¢_ ADM+AD*+ AD+ 4,
o A

where
Azg=Ls+trzN;
Ay=—Ly(Yp+N,)+No(L;—rx Y 5)+ YsLg'
A;=Ls(N,Y5+Npg)—Ns(Ls+L,Y)+Ys(L,Ng—N.Lp)
A,=K3(N:Lg—NpgLy)

¥_BsD*+B,D’+B,D+B,
] A

where <o
By=N;+rzL;
By=—Ny(Ly+Y5)+Ls(No—15Y )+ YslNy’
By=N;L,Ys— LN, Y+ Y3(LsNy,—NpL,)
B,=K;(L:Ng—N,Lg)
8_D(E,D*+ E,D*+E,D+E,)
é A

where

Ey=Y(1—rxrs)
E2= - YE(Nr’+Lﬁ,)_LJTz_N8

E\=Y(L,N,—N,L,;)—Ly(N,—r:K3— K;) -+ Ny(r= K, +
Lp+K2)

E0=Kl (NELr_LﬁNr) +K; (L5NP_N5LP)

Simplifications can also be made in these expressions by
neglecting small quantities; however, this can be shown more
clearly in the numerical example that follows,

NUBIERICAL EXAMPLE AT AMw=0.8

By use of values of stability derivatives shown in table II,
and with =0, predicted responses for p=De¢, r=Dy, and 8
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for both aileron and rudder inputs have been calculated and
found to be

A=D(D*+3.652D°+15.16D3+41.26D+0.0289)
=D(D+0.00070) (D+3.078) (D*+0.573D+13.40)

r _—17.60D(D-+3.091)(D?+0.0270D-0.208)
5 A

p_ 516D (D+4.436)(D—5.210)
A

5

B_ 0.0339D(D+3.053)(D+225.3)(D—0.00703)
5 A
r_0.699D(D+3.978)(D*—1.758D+7.358)

% A

p_ 36.4D%D40.655D-13.69)

% A

B8_ 0.0008D(D--0.990)(D—1.094)(D—870)

dg A

When small terms are neglected, /8, can be expressed as

r_ —7.60D¥(D+-3.091)
5 DYD3.078)(D*10.573D+13.40)

and then by an approximate cancellation this reduces to

r__ —7.60D
5, D*40.573D-+13.40

Similarly, 8/3, can be simplified by neglecting small terms so
that

i) 7.64D*(D--3.053) ~ 7.64
8, D*(D+3.078)(D*+0.573D-+13.40)  D*+0.573D+13.40

It can be seen that this expression for £/3, is practically
identical (with opposite sign) to the integral of the simplified
equation for r/5,. It is also possible to simplify p/s, as
follows:

v/ 36.4D*D*4-0.655D-13.68) 36.4

5 DXD+3.078)(D*+0.573D+F138.40)  D13.078

Similar simplifications have been made for other Mach
numbers and found to be equally valid.

APPENDIX D
FLIGHT EVALUATION OF Cj;

From time histories of the free oscillatory responses of »
and r, it is possible to evaluate the derivative (i, as follows.

If the rolling moment and yawing moment equations (C23)
and (C24) are set equal to zero, then the ratio ;% of the free

oscillation may be obtained by simultaneous solution of the
two equations to give

¢__ (@Dt L, D) No+(D*—N,D) Ly
¥ (D*—L,D)Ns+(rzD*+N,D)Ls
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or
o_ L¢D+LN;—N,Ls
v N/D—L,N;IN,L

The quantity L,Ng—N,Ls in the numerator is generally
very small and can be neglected. In the denominator, the
term N, L is small compared to the other terms and can also

be neglected. The ratio, % is then simplified to

o LD
v N/(D—L)

When the complex root Ny=o-iw, is substituted for the
operator D, this expression is the ratic of the free oscillatory
responses of ¢ and ¥ at any time £. The ratio of p to r is
obviously the same and can be expressed as

p_ L (otiwy)
r Np'(o+i—L,)

The actual magnitude of this ratio is

T,
Ni lo—Ly+er

In this form |p/r| is the ratio at any time ¢ of the amplitudes
of the envelopes that enclose the oscillatory motions of 2
and r; o is the rate of damping of the envelope; and w, is the
natural frequency of oscillation. When o is very small as
compared to «; it can be omitted ; thus

_ Liw 1y
NI T or Ny NI Eofor)

If Ny and L, are known, it is then possible to evaluate
Ly from measured time histories of » and r,

4

r

r
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TABLE I.—PHYSICAL CHARACTERISTICS OF TEST ATRPLANE

Wing
Total area _ _ - e e 287.9 8q 1t
Span.__ e 37.1 1t
Aspeet ratio_ .. 4.79
Taper ratio - - - e 0.51
Mean aerodypamic chord . __ o .__._ 97.03 in.
Dihedral. . o oo 3°
Sweepback of quarter-chord line_______._______ 35°14/
Aerodynamic and geometric twist_______.__.___ 2°
Root airfoil section (normal to quarter-chord NACA 0012-64 (modified)

line).

Tip airfoil section (normal to quarter-chord line). NACA 0011-64 (modified)
Ailerons

Area,each. oo ____ . 18.6 8q ft

Span_ e 9.18 it

Chord, aversge. - - e 2.03 ft

Deflection, maximum_ _ . _______ . 14° up, 14° down

Inboard end at. . 51.6 percent b/2
Horizontal tail -

Total area (including 1.20 sq ft covered by 35.0sqft

fuselage).

Span._ e 12.8 ft

Aspect ratio . - - . 4.65

Taper ratio o 0.45

Main aerodynamic e¢hord._ - ______._ 34.7 in.,

Sweepback of 0.25 chord line_ o _____ 34°35’

Airfoil section_ o - - - NACA 0010-64

Taillength_ o 18.12 it
Vertical tail ’

Area, total _______ 34.48q ft

Span._ o 7.5t

Aspect ratio. o ..o 1.74

Taperratio_ .- 0.36

Sweepback of quarter-chord line__._________..__ 35°00/
Rudder

ATe8 e o 8.18q ft

SpAan_ .« e 6.6 ft

Chord, average_ . ___ e 1.23 ft

Deflection, maximum __________ oo 24.8° right, 25° left
Take-off weight (c. g. at 23.0 percent MAC) .. 14,102 1b
Landing weight (c. g. at 21.9 percent MAC)__.___.. 11,612 1b
Average weight for caloulations (c. g. at 22.5 percent 12,800 1b

MAGQ).

Moment of inertia about X axis_ . __ 7,245 slug ft3
Moment of inertia about Y axis_ - ______ 17,480 slug ft’
Moment of inertia about Z axis__ . __ . _________ 23,190 slug t?

Inclination of principal longitudinal axis with respect —2.5°
to fuselage reference axis.
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TABLE II.—PARAMETERS USED IN ESTIMATING AIR-
PLANE RESPONSES

Altitade, 36,000 feet
Mo eeees s 0.6 0.7 0.8 0.9 Lo
) 486 583 681 T8 875 972
- - 87.0 125.2 170.6 222.5 281.8 347.5
38 .28 .16 13 12
5.3 8.8 2.8 2.4 132
~773 —358 -8 28 338
(& 4.15 4.30 4.54 4.98 5.40 4.52
—. 466 —. 514 —. 583 —090 | ...
—. 305 —.302 —.384 —280 | .o
C'.'+0.5 ............ —6.10 —8.20 —6.32 —6.67 ~6.85 | oeeas

—.0857 | —.0778 | —.0741 | —.0721 | —. 0768

1148 .1199 L1278 .1368 1467
—.701 —-.715 —. 783 —. 787 —. 782
—. 867 —.375 —. 885 —.309 ~. 414

—.0225 | —.0160 | —.0120 | —.0002 | —.0068
.130 118 .108 .106 .104

—. 1852 | —.1898 | —.1670 | —. 2085 | —.2170

.0102 0138 . 0165 . 0160 0183
—.0728 | —.0725 | —. 0742 | —.0736 | —.0582

.160 .160 .160 .160 .160

.14 .13 111 .088 043

0020 .0us9 . 0081 0095 . 0105

004 004 004 004 004

D —.00102 |—.00113 |—.00078 |~.00070 |—.00027 (—.00077
—1.809 | —2203 | —2.667 | —3.078 | —3.581 | —4.168

5.24 7.25 0.91 13.40 18.03 23.45
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