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THEORETICAL CALCULATIONS OF THE PRESSURES, FORCES, AND MOMENTS AT
SUPERSONIC SPEEDS DUE TO VARIOUS LATERAL MOTIONS ACTING
ON THIN ISOLATED VERTICAL TAILS'

By KenneTH Marcoris and Percy J. BorriTT

SUMMARY

Velocity potentials, pressure distributions, and stability de-
rivatives are derived by use of supersonic linearized theory for
families of thin isolated vertical tails performing steady rolling,
steady yawing, and constant-lateral-acceleration motions. Ver-
tical-tail families (half-delta and rectangular plan forms) are
considered for o broad Mach number range. Also considered
are the vertical tail with arbitrary sweepback and taper ratio at
Mach numbers for which both the leading edge and trailing edge
of the tail are supersonic and the triangular vertical tail with a
subsonic leading edge and a supersonic trailing edge. For pur-
poses of completeness, analogous expressions and derivatives for
sideslip motion obtained primarily from other sources are
included.

Expressions for potentials, pressures, and stability derivatives
are tabulated. Curves which determine the stability derivatives
for half-delta and rectangular tails are presented which enable
rapid estimation of their values for given values of aspect ratio
and Mach number. In order fo indicate the importance of end-
plate effects, several comparisons are shown of the derived resulis
(based on a zero-end-plate analysis) with those corresponding to
a complete-end-plate analysis.

INTRODUCTION

Detailed knowledge of the loading, forces, and moments
acting on vertical tails undergoing various maneuvers is a
necessary prerequisite for determining the lateral dynamic
behavior of aircraft. The information presently available is,
in many instances, insufficient to enable reliable estimates to
be made of the vertical-tail contributions to airplane stabil-
ity at supersonic speeds. Aside from calculations for several
“glender” configurations, theoretical results to date have
been concerned, for the most part, with tail configurations
either subject to a constant sideslip attitude or performing
a steady rolling motion (see refs. 1 to 13).

TFor the sideslip motion, the effects of Mach number and
nspect ratio on the aerodynamic loads of a number of tail
configurations with both one and two planes of cross-sec-
tional symmetry have already been investigated extensively.
The same effects on tail arrangements in & rolling motion

have also received considerable attention which has mainly
been directed toward tails with two planes of symmetrysuch
as cruciform arrangements. Additional theoretical analysis
devoted to the evaluation of the Mach number and aspect-
ratio effects on the forces and moments acting on tail sys-
tems in roll with one plane of cross-sectional symmetry is
required. Tail arrangements performing a steady yawing
motion or a constant-lateral-acceleration motion have re-
ceived little attention to date in the literature. Yet the
forces and moments produced by these motions are by no
means negligible, and some indication of their magnitudes
is necessary, particularly at supersonic speeds, in order to
evaluate their relative importance on lateral stability.

The primary purpose of this report is to present the results
of a theoretical investigation to determine at supersonic
speeds the pressures, forces, and moments acting on several
families of thin isolated vertical tails subject to various
lateral disturbances. Three motions are treated: steady roll-
ing, steady yawing, and constant lateral acceleration. A
fourth motion, namely, constant sideslip, although analyzed
previously, is included for purposes of completeness. The
basic plan forms considered are: (a) half-delta tail with
either a subsonic or supersonic leading edge, (b) rectangular
tail, (¢) general sweptback tail of arbitrary taper ratio with
supersonic leading and trailing edges, and (d) triangular tail
with & subsonic leading edge and & supersonic trailing edge.
The half-delta and rectangular vertical tails are analyzed in
detail in that forces and moments (expressed in the form of
stability derivatives) and their variations with Mach num-
ber and aspect ratio are presented in a series of simple charts.
Useful expressions and formulas are included for the other
plan forms which enable similar calculations to be carried out.

A secondary objective, in view of the geometric nonplanar
characteristics of tail arrangements, is to consider the esti-
mation of the mutual aerodynamic interference that exists
between the vertical and horizontal tails. In order to gain
some insight into the possible effects of such interferencs,
several of the derived results are compared with correspond-
ing calculations based on a complete-end-plate analysis. (A
complete-end-plate analysis implies that the horizontal tail
acts as a perfect reflection plane.)

18upersedes NACA Technical Notes 3373 by Kenneth Margolis, 1955, and 8240 by Percy J. Bobbitt, 1954,
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SYMBOLS

z,1,2 rectangular coordinates used in analysis (see
fig. 2(a))

0=2z2

&8 rectangular coordinates of doublet

o={/¢

20,20 longitudinal and vertical distances, respectively,
that origin is displaced relative to tail apex
(see fig. 2(c))

UL perturbation velocities in z- and y-directions,
respectively

54 free-stream or flight velocity (see fig. 2)

M Mach number, V/Speed of sound

o,r - angular velocities about z- and z-axes, respec-
tively (see fig. 2)

8 angle of sideslip (see table I)

B rate of change of 8 with time, dg/dt

t time

o density of air .

q frec-stream dynamic pressure, % pV2

AP/q coefficient of pressure difference between op-
posite sides of tail surface due to particular
motion under consideration, positive in sense
of positive side force (see fig. 2)

K constant determining degree of homogeneity of
quasi-conical velocity field

@ perturbation velocity potential due to particu-
lar motion under consideration evaluated on
positive y-side of tail surface (see fig. 2)

Agp difference in perturbation velocity potential
between two sides of tail surface,
¢(I,O+,Z)—¢($,0_,Z)

©p potential of supersonic doublet distribution

oz, potential of line of doublets

A(z,2) doublet-strength function

(o) line-doublet-distribution function

¢, root chord of vertical tail

b span of vertical tail

S area of vertical tail

A taper ratio of vertical tail, Tip chord/Root
chord

A aspect ratio of vertical tail, b%/S

m slope of leading edge of tail; cotangent of
sweepback angle of leading edge (see fig.1)

b 1—+/1—Bm?

Bm

H(Bm)___—\/2(1—1/1—B1m2)

(k)

E' (k)

complete elliptic integral of second kind with

modulus1—%2,

ftl
0

2\/1——(1—18) sin® n dn

K'(k) complete elliptic integral of first kind with
modulus+/1—7#3,
=t dn
0 4/ 1—(1—Fk% sin’n
T,0,0  arbitrary constants (W=wBm)
e VI+EEAHENE (k) + (1 — 4824k B (k)]
? C—k) Q=20 E"(B)*+ B (1+E)K’ (k) B’ (k) — KK (k)*
o= A+EY 2 (A1) B (k) — 2K K" (k)]
P 20@C—EA—2)E k) +FQA+EOK (k) E' (k) — K’ (k)
e kV1+R[Q+E) B’ (k) —2kK’ (k)]
’ Q—E)(A—2)E"(k)*+ (1 +E) K’ (k) E' (k) — k'K (k)?
o A2 —k*+ k) B (k) — (14 -) K (k)]
T 2kQ—E)(1—2°)E (k) + QA +E) K (k) E’ (k) — KK’ (k)7
€ infinitesimally small quantity
_ z2—B2%z¢
Y =Bl Bt
1—B%6

Yo expression for v indicated at y=0,

V1—B/1— B

¥,»  variables used for integrating purposes
Y side force

N yawing moment

r rolling moment

Cy side-force coefficient, ¥/¢S

Cy  yawing-moment coefficient, N/gSbh

C, rolling-moment coefficient, L’/qSbh

oC
Cry= 5—f3y>ﬁ—-o
oC,
Cng= 0B >H
oC
Ciy b—ﬁt 840
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Subscripts:

P refers to rolling condition

r refers to yawing condition
r=1 vrefers to unit-yawing condition

refers to sideslip condition

refers to unit-sideslip condition

refers to constant-lateral-acceleration condition
based on wing dimensions

1,2  components used for § derivatives

Abbreviations:
L. E. leading edge
T. E. trailing edge
All angles are measured in radians.

ANALYSIS

SCOPE

The vertical-tail plan forms considered herein are shown
in figure 1. The leading edge has arbitrary sweepback and
the trailing edge may be either sweptback or sweptforward.
The permissible ranges of sweep, aspect ratio, and taper
ratio for the supersonic-leading-edge configurations are
determined by the conditions (indicated in fig. 1) that both
the leading edges and trailing edges remain supersonic and
that the Mach line emanating from the leading edge of the
root chord does not intersect the tip chord. Also, the tip
chord must be parallel to the root chord. For the subsonic
leading-edge configurations, only the case of zero taper ratio
is considered and the restriction to supersonic trailing edge
is imposed.

Expressions based on linearized supersonic-flow theory
are obtained for the perturbation velocity potentials and
pressure distributions due to steady rolling, steady yawing,
and constant lateral acceleration. For purposes of complete-
ness, analogous results for constant sideslip motion obtain-
able, in general, from references 9 and 10 are included.
The expressions, which are derived for the condition of zero
geometric angle of attack and which are valid for low rates
of angular velocities, small sidelip angles, and small angle-
of-sideslip variation with time, are tabulated so that they
may be utilized conveniently in the calculation of load
distributions and the corresponding forces and moments.

Two important members of the family of vertical-tail
plan forms are considered in detail. These are the rectangu-
lar tail and the triangular tail with an unswept trailing edge,
that is, the half-delta tail. For these tails, closed-form
expressions are derived for the side force, yawing moment,
and rolling moment due to each motion. The resulting
formulas are expressed in the form of stability derivatives
and are tabulated; simple charts are presented which permit
rapid estimation of the 12 stability derivatives for given
values of aspect ratio and Mach number. Tabulation
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of the derivatives for subsonic-edge triangular tails with
trailing-edge sweep are also presented.

Three systems of body axes are employed in the present
report. For plan-form integrations and in the derivation
and presentation of velocity potentials and pressures, the
conventional analysis system shown in figure 2 (a) is utilized.
In order to maintain the usual stability system of positive
forces and moments, the axes systems shown in figures 2
(b) and 2 (c) are used in formulating the stability derivatives.
A table of transformation formulas is provided which enables
the stability derivatives, presented herein with reference to
a center of gravity (origin) located at the leading edge of the
root chord (fig. 2(b)), to be obtained with reference to an
arbitrary center-of-gravity location (fig. 2 (c)).

BASIC CONSIDERATIONS

The calculation of forces acting on the vertical tail essen-
tially requires a knowledge of the distribution of the pressure
difference between the two sides of the tail surface. This
pressure-difference distribution is expressible in terms of the
perturbation-velocity-potential difference or ‘“potential jump
across the surface” Ag by means of the linearized relationship

AP 2 0 0

Inasmuch as for the present investigation thin isvlated tail
surfaces are considered and thus no induced effects are
present from any neighboring surface, the perturbation
velocity potentials on the two sides of the tail are equal in
magnitude but are of opposite sign. Equation (1) may then
berewrittenin terms of the perturbation velocity potential ¢ as

follows:
AP 4 ¢, Op
77 (73 +57)

@)

where ¢ is evaluated on the positive y-side of the tail surface.

The basic problem, then, is to find for each motion under
consideration the perturbation-velocity-potential function
¢ for the various tail regional areas formed either by plan-
form or plan-form and Mach line boundaries. (See, for
example, the sketch given in table 1.)

For time-independent motions, such as steady rolling,
steady yawing, and constant sideslip, the potential functions
are of course independent of time (i. e., the last term in
eqs. (1) and (2) vanishes) and may be determined for the
subsonic-leading-edge cases by the doublet-distribution
method of references 14 and 15. The details of the method
and its application are given in the appendixes. The super-
sonic-leading edge configurations are analyzed by the well-
known source-distribution method utilizing the area-can-
cellation—Mach line reflection technique of reference 16.
The mathematical details are not presented herein, because
it is felt that previous papers dealing with wing problems
(e. g., refs. 17 to 20) have applied the basic method in suffi-
cient detail. The main difference to be noted is that the
root chord of the isolated vertical tail is, in effect, another
free subsonic edge similar to the tip chord and must be
treated accordingly. Actually, tail regions I and III (refer
to the sketch in table I) are not affected by the additional
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tip, and wing results in these regions for constant angle
of attack (ref. 20), steady rolling (ref. 20), and steady pitch-
ing (ref. 18) are applicable to constant sideslip, steady
rolling, and steady yawing motions, respectively, for the
vertical tail, provided appropriate changes in coordinates
are introduced and the proper sign convention is maintained.
The time-dependent motion considered in the present
report, that is, constant lateral acceleration, can be analyzed
in a manner analogous to that used for a wing surface under-
going constant vertical acceleration (e. g., refs. 21 to 23).
By following this procedure, the basic expressions for the
perturbation velocity potential and pressure coefficient
(evaluated at time t=0) may be derived as follows:

o=—4 B,sor-l (t BgV>¢p_1:| 3
4D D), ] ©

Equations (3) and (4) may be deduced directly from equa-
tions (1) and (2) of reference 23, provided the corresponding
tail motion is substituted for each wing motion and, further,

that care is exercised in preserving the conventional system .

of positive forces and moments. The choice of time t=0 in
equation (4) was made for purposes of convenience and
simplicity, inasmuch as the pressure due to constant sideslip
is eliminated, and thus only the increment in pressure due
to time rate of change of sideslip, that is, 8, remains.

The right-hand sides of equations (3) and (4) are composed
of terms involving steady or time-independent motions, in
particular, the motions previously discussed in this section.
Thus, once the potentials and pressures are determined for
steady yawing and constant sideslip, corresponding ex-
pressions may be obtained for constant lateral acceleration
by use of equations (3) and (4).

Derivations of the potentials and pressures for the various
regions of the tail plan forms under consideration have been
carried out for each motion by using the methods and tech-
niques discussed. Tabulations of the potential and pressure-
distribution functions are given in tables I and II for con-
stant sideslip, in tables ITI and IV for steady rolling, in
tables V and VI for steady yawing, and in tables VII and
VIII for constant lateral acceleration.

The forces and moments acting on the vertical tail due to
each motion may be obtained by plan-form integrations of
the appropriate potential and pressure functions and may
be given as follows (the center of gravity is assumed to be at
the leading edge of the root section):

E.
fT"’fT é’idxdz )
Roat
Ti T. B.
N=—gq Bo::f A—Pzd:cdw (©)
1
fBTprEA—Pzd:cdz o

For steady motions, — AP ; g‘e and thus the first integration

with respect to z in equatlons (5) and (7) yields ¢; hence,
equations (5) and (7), when applied to steady motions, reduce
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to essentielly a single integration involving the potential
funetion.

The nondimensional force and moment coeflicients«and
corresponding stability derivatives are directly obtainable
from the definitions given in the list of symbols. Tor
example,

o,
0.,—(0 ré)
V r—0
> /N
1oz
v
[ d [ 1 (™ T AP
_['a_l_l; <—§5 Rootf dde)]
L

Inasmuch as the various pressure coefficients are linear with
reference to their respective angular velocities, attitude, or
acceleration (i. e., linear in p, r, 8, or 8), the partial deliva-

r—0

tive in the preceding example may be replaced by 7 /V
and the derivative C’,.T is then expressed as

C’ﬂr_ Tipf’l‘ E.AP

—:cd:cdz 8)

Sbg r Root

Corresponding expressions for the 11 other derivatives Cy,,
Csgy Ciy Cy,, Ciy Cr,y Cs,y Gy Oyb, O,,ﬁ, and 0’5 may be
obtained in an analogous manner.

In the present report, the triangular vertical tail with
unswept trailing edge (half-delta) and the rectangular ver-
tical tail have been analyzed in detail. The results obtained
upon performing the plan-form integrations and other
mathematical operations indicated in the previous discussion
are tabulated in table IX. Table X presents similar results
for the subsonic-edge triangular tails with trailing-edge sweep.
For convenience, a table of transformation formulas is pre-
sented (table XI) which enables the derived results for the
stability derivatives (tables IX and X) to be expressed with
respect to an arbitrary center-of-gravity location.

Values of the elliptic-function parameters appearing in the
subsonic-edge formulas are presented graphically in figure 3.

COMPUTATIONAL RESULTS AND DISCUSSION

The formulas for the stability derivatives given in tables
IX and X are seen to be functions of the tail-aspect ratio .4
and the Mach number parameter B=+/M?*—1. Use of the
combined parameter 4B for the abscissa variable and appro-
priate choice of derivative parameters for the ordinates allow
the analytical results for most of the stability derivatives to
be expressed graphically by means of a single simple curve;
the stability derivatives due to f-motion require two curves.
Figures 4 to 9 present the results for the half-delta tail and
figures 10 to 14 present the analogous results for the rec-
tangular tail. The lower limit . AB=1 for the rectangular
vertical tail corresponds to the condition where the Mach
line from the leading edge of the root chord intersects the
trailing edge of the tip chord. Values of the derivatives for
the situation where the Mach line from the leading edge of
the root chord intersects the tip chord, that is, values of
AB<1, cannot, in general, be obtained easily because of the
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fact that the calculation involves the consideration of inter-
acting external flow fields. The lower limit AB=1 in this
case is not very restrictive except for very low aspect ratios
at low supersonic Mach numbers.

In considering the curves given in figures 4 to 14, the fol-
lowing facts should be kept in mind: (2) The results are for
a completely isolated vertical tail, (b) the center-of-gravity
location is assumed to be at the tail apex, and (¢) parameters
used for nondimensionalizing purposes are the area and span
of the vertical tail. For other center-of-gravity locations,
analogous curves may be drawn by use of the presented data
and the axes-transformation formulas given in table XT.

Thus far, only the isolated vertical tail has been consid-
ered, that is, the zero-end-plate solution. For comparison
purposes, results for several of the derivatives based on &
complete-end-plate analysis have been obtained and are
presented in figures 15 and 16. The comparisons are shown
for the side-force and yawing-moment derivatives due to
constant sideslip, steady yawing, and constant lateral accel-
eration. The complete-end-plate results for these tail de-
rivatives are obtainable from stability derivatives previously
reported for symmetrical wings (refs. 18, 20, 23, and 24),
provided modifications are introduced to account for (a)
changes in nondimensionalizing parameters, (b) correspond-
ence of wing and vertical-tail motions, and (c¢) preservation
of sign convention for positive sense of motion, moments,
and so forth. The transformations of symmetrical-wing
derivatives into complete-end-plate derivatives for vertical
tails having the same plan-form geometry as the half-wing
may be summarized as follows:

Cyy=—1X (Expression for Cy, with wing aspect ratio re-
placed by 24)

2
Cug= —I;iA }a%-x (Expression for Cn, with wing aspect
ratio replaced by 2.4)
2
0},’=3_2Z ]‘(_I*'T)‘—;Z‘—X(Expression for Cp, with wing aspect

ratio replaced by 24)
c _ 8 (142 +N)?
A2 (14N
ratio replaced by 24)
o 2 LEAEN
YiT 34 (1+N)?
ratio replaced by 24)
o =8 (AN
" 9Ar (1++M*
aspect ratio replaced by 2.4)
where (i, Cn, Ci, Cn, Ci; and Cn. are conventionally
defined wing derivatives (see, for example, ref. 23). Figures
15 and 16 indicate that for a given aspect ratio the effect of
an end plate decreases with increasing Mach number and
that for a given Mach number the effect of an end plate
decreases with increasing aspect ratio. Although these con-
clusions apply specifically to those derivatives presented, it
is felt that similar evidence would be found for the other
derivatives as well. The percentage differences between
zero- and complete-end-plate results vary of course with
center-of-gravity location, as well as with Mach number and

X (Expression for C, with wing aspect

X (Expression for (%, with wing aspect

X (Expression for C,, with wing
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aspect ratio, butin general are not too large for the side-force
and yawing-moment derivatives considered except at the
lower values of AB.

The stability derivatives as presented herein have been
made nondimensional with respect to vertical-tail parameters
such as tail span b, tail area S, and the angles pb/V, rb/V,
and Bb/V. The magnitudes of the derivatives may, there-
fore, appear to be quite large with respect to the expected
tail contributions to the derivatives for a complete airplane.
The following factors should be used in converting the pre-
sented analytical and numerical results to corresponding
derivatives (denoted in the following relationships by sub-
script w) based on wing area S,, wing span b,, and angles
Pbu/2V, 78,./2V, and Bb,[2V:

(o), () =5, 5 (O )
CONCIHCHE 575 (G O C1,)
(o), (@), (0), (0 s (), (35),

S bV
—2§; <E> <C’npy Clpy Onr, C’lf, Cnﬁ’ OI&)

CONCLUDING REMARKS

Velocity potentials, pressure distributions, and stability
derivatives have been derived by use of supersonic linearized
theory for families of thin isolated vertical tails performing
steady rolling, steady yawing, and constant-lateral-accelera-
tion motions. Vertical-tail families (half-delte and rectangular
plan forms) are considered for & broad Mach number range.
Also considered are the vertical tail with arbitrary sweepback
and taper ratio at Mach numbers for which both the leading
edge and trailing edge of the tail are supersonic and the
triangular vertical tail with a subsonic leading edge and a
supersonic trailing edge. For purposes of completeness,
analogous expressions and derivatives for sideslip motion
obtained primarily from other sources are included.

The effects of a complete end plate on several of the side-
force and yawing-moment derivatives have been considered,
and it appears that only for relatively small values of the
aspect-ratio—Mach number parameter AvM2—1 do the
complete-end-plate and zero-end-plate values differ signifi-
cantly enough to warrant further study of finite-end-plate
corrections.

An additional point of interest pertinent to the present
investigation is that the results obtained for the yawing-
moment derivatives due to steady yawing and constant
lateral acceleration C,_ and O’B may be used to approximate

AT SUPERSONIC SPEEDS

the aerodynamic damping of the lateral oscillation in yaw to
the first order in frequency. This approximation to the
lateral damping is given by the expression C, —C, 5 and can

be rapidly calculated from the curves and formulas given
herein.

LANGLEY AERONAUTICAL LLABORATORY,
NaTroNaL Apvisory COMMITTEE FOR AERONAUTICS,
LanerLey Frewp, Va., March 5, 19566.
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APPENDIX A

DETERMINATION OF PRESSURE-DISTRIBUTION EXPRESSIONS FOR A SUBSONIC-EDGE TAIL UNDERGOING YAWING AND
ROLLING MOTIONS

A method for solving supersonic-flow boundary-value
problems governed by the classical, linearized, partial-
differential equation

Ol Qv O
or* oy 0z

has been developed in reference 14 and an application to
rolling and pitching triangular wings is given in reference 15.
This method allows the prediction of the disturbance-
potential function ¢, and hence the pressure distribution, for
planar lifting surfaces. The analysis given in reference 15 is
briefly summarized herein and is applied to the determination
of the pressure distributions on a triangular-vertical-tail
surface (fig. 2) performing rolling and yawing motions.
(Yawing in the zz-plane is analogous to pitching in the zy-
plane.)

B (A1)

DETERMINATION OF THE FORM OF THE VELOCITY POTENTIAL

As is well-known, the potentials of both the supersonic
source and the supersonic doublet and their distributions
represent solutions of equation (A1). For the determination
of the potentials and pressure distributions of lifting surfaces
with subsonic leading edges, a distribution of doublets that
uniquely satisfies the prescribed boundary conditions is
required. The boundary conditions on the vertical tail
for the motions to be considered herein are as follows:

On the rolling vertical tail,
v=pz=zp §=xpﬂ (A2)
and on the yawing vertical tail,
v=—rz (A3)

In addition, the following relations must_be valid on the
surfaces of the tail:
For the rolling motion,
26
7 r

*(3)
a_;2=0 (A5)
aad for the yawing motion,
()
2 =" (46)
()
/e

(A7)

Tt is also necessary that the pressure along the streamwise

edge be zero.

The potential in space produced by a distribution of
doublets, for example, in the zz-plane, with the doublet
axes normal to the plane is

_2
e 9=5; ], Je—o—Fe—D—Fp Y

where the area S is the region of the zz-plane intercopted
by the forecone from the field point (z, y, 2).

The potential on the surface carrying the doublet distribu-
tion is given by

ity [ [ e

As stated in reference 15, this surface potential is directly
proportional to the doublet-strength function A(z,z); that is,

@D (T)2) ymt0= :E?A(x,z) (A9)

The surface-pressure velocity u(z,z) then becomes

O0p (&,2) ymso__ iﬂ_bA(x,z)

S - o (A10)

%(%,2)ym 0=

and the linearized pressure coefficient

éz_ 4u(a:,z),-+o

7 % (A11)

may be written as
AP 47 0A(z,2)
<=V o (A12)

The problem to be considered in this appendix is one in
which the sidewash on the surface is prescribed (see egs.
(A2) and (A3)) and the surface velocity potential has to be
determined. The doublet-strength function A(z,z) then is
an unknown and the determination of this quantity requires
in general the solution of an integral equation. In some
cases the general form of the surface-potential function
A(z,2) is known or can be obtsined by inverting an integral
equation. The problem then resolves simply into an evalu-
ation of the arbitrary constants of the general solution by
making use of the prescribed boundary conditions.

Brown and Adams in their analysis of rolling and pitching
triangular wings with subsonic leading edges (vef. 15) were
able to determine the function A(z,z) by utilizing the concept
that the conical properties of the produced flow gave rise to
potentials and pressures in the crossflow planes that were
similar in form to the potentials and pressures acting on flat
finite segments in a two-dimensional flow; these segments
correspond to & section of the wing in any crossflow plane.
This remarkable connection between linearized supersonic
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conical flow and incompressible two-dimensional flow is
discussed by Busemann in reference 25.

A more general and rigorous approach to obtain the
doublet-strength function may be formulated from an
analysis presented in & later paper by Lomax and Heaslet
(ref. 26) dealing also with conical and the so-called quasi-
conical problems. In this analysis a general surface-pressure-
coefficient expression has been determined for planar lifting
surfaces with prescribed boundary conditions of the form

D~ TG (g) (A13)
This expression is
AP_(z\gR__ bo'
_Q_(B> =0 +/(m—6)(6—m,) (414)

where b, are constants, 0=§, x i8 determined by the boundary-

condition equation (eq. (A13)), and m and m, are the tan-
gents of the apex angles of the two panels of the lifting sur-
face. 'When m,=m, the lifting surface is symmetrical about
the common root chord of the two panels, and when m;><m,
the lifting surface is asymmetrical about this chord. From
equations (A12), (Al4), and (A9) the form of A(z,z) or,
synonymously, the form of the surface potential may be
obtained by a simple integration. It should be mentioned
at this point that reference 26 presents a method for deriving
the arbitrary constants b; in the pressure coefficient (eq.
(A14)). This method is related to that of reference 15
which concerns itself with obtaining the arbitrary constants
in the velocity potential.

By application of equation (A14) to the bounda.ry problem
of the triangular vertical tail (m;=0) and by noting from the
prescribed boundary conditions (see eqs. (A2) and (A3)) that
x=1, the pressure coefficient for both the yawing and rolling
motions is

AP & bytb,0-4 b,
g B flm—o)

The constant b, in this expression must be set equal to zero
in order to satisfy the condition that along the streamwise
edge the pressure must be zéro.

The velocity potential on the vertical-tail surface is easily
obtainable from the pressure expression by the formula

(A15)

V (* AP
=1 — dt

LE. ¢

and has been found to be

o=m4(5)

#(£) =@ = (r0-+-om) ¥5Gn—0)

(A16)
where

(A17)
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The arbitrary constants + and  in the so-called distribution
function f(9) are, in terms of b, and b;,

__V r2h
"—2zB <3m2+m

Vb
“=2xB 3m?
By relating equation (A16) to equation (A9), the doublet-
strength function A (z,2) is seen to be

A=z (%) (418)

A comparison of the potential given by equations (A16)
and (A17) and the potential obtained for the slender, rolling,
vertical tail reported in reference 5 shows, as expected, that
both are of the same form.

EVALUATION OF THE CONSTANTS r AND o

The constants 7 and o in the expressions for the velocity
potential given by equations (A16) and (A17) are still to be
determined. As indicated previously, the expression for
the pressure coefficient, and hence the velocity potential, can
be determined completely through an application of the pro-
cedures developed in reference 26; however, many of the
integrations and integrating procedures required in the
method in reference 15 were already known to the junior
author at the inception of this project and, for this reason,
the analysis herein to determine the constants 7 and w
closely parallels the procedures discussed in reference 15.

The determination of the constants r and w depends upon
satisfying the boundary conditions associated with the verti-
cal tail for the rolling and yawing motions. These boundary
conditions are given by equations (A2) to (A7). The needed
expressions for the prescribed velocities and their derivatives
with respect to 6 in terms of the distribution function f()
are derived in appendix B.

For the rolling motion the constants r and » may be
obtained by replacing f(¢) by its equivalent (eq. (A17)) in

b(v/ z) and then

the equations given in appendix B for »/x and

applying the boundary conditions given by equa.tions (A2)
and (A4). When the intégrations have been performed,
the resulting equations may be solved simultaneously for
7p and o, The yawing constants are obtained in a like
manner with equations (A3) and (A6) replacing equations
(A2) and (A4), respectively.

In the calculation of the quantities »/z and (v/ ) s 8N

value of 6 may be considered. It is advantageous for inte-
gration purposes to let this value of 6 be zero. However,
gince one of the limits of integration is zero and since in
several of the integrands a singular point exists at §=0=0, the
integrations in which these singularities occur must be per-
formed for 6 arbitrary before 6 can be set equal to zero.
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Substituting equation (A17) into equation (B4) gives, for § equal to zero,

v B"l:-—3(TB0'+me) +VBe(Bm—Byg) tanh! 41— 2(TBa+me) 'Bo(Bm—Bo) U(Bo)+
z B A—B*)°F (1—B%5)* I ‘

. . 1 ((3€-9 (:Bo+wBm)+Be(Bm—Bo)(1—B?c8)?+/1 — B
’:L‘?&{hﬂ[fﬁ (—B7(Bo—B0)? d(Bo)+

1 (3 (:Bo+wBm) yBo(Bm—Bo) (1—B%s0)>/1—B°¢ dBo)— _2(+Bo+wBm) JBB(Bm—Bo)Jl—B’B“J} (A10
Bl oo (=B (Bo—B0)° B )

Carrying out the integrations in equation (A19) yields

v — , = B sl \
T BYILR(—I)? {E'(B)[2k 1ok (1+k0)]— E (k) [k (1) —& (1— 42+ )] } (A20)
where
R, o)
Bm
and
- 2k
w=me=w1—_—|_F

These integrations were accomplished with the aid of the tables in references 27 and 28 and are discussed in appendix C.
Substituting the distribution function into equation (B5) results in, for § approaching zero,

d(vfz) _ Bm[3BU(TBa—|—mBm) VBo(Bmn—Bo) tanh™! y1—F%¢* _3Bo(rBo+wBm) yBeBm—Bo) | , )1
o0 Jo =B~ =B l (Bo

Hm@m { f BC¢=9I"Bg(zBo+wBm) yBo(Bn—Bo) _(rBo-+wBm) VBs(Bm—Ba)

60 \end LJO J1—B¢ (Bo—B6)* J1—B%? (1—B%e®) (Bo—Bg) '

2(rBo-+wBm) yBe(Bm—Bo) /1—B*¢ J dBo)+ me Bo(rBo+wBm) VBo(Bm—DBo) _

(Bos—B0)® B6+9 J1—B%¢ (Bs—Bo)?

(+Bo+wBm) Be(Bm—Bo) , 2(rBo+wBm) yBe(Bm—Ba) /1 —B’o“_l A(Bo)—

J1—B%¢ (1—B?%)(Bs—B0) ' (Bo—B6)*

2B0(zB9-+ wBm) /B6(B6—Bm) 2[—4B%*r+ BoBm (3r—2w)+ wBmI /1 —BW}) (A22)

Be J1—B Be+/B8(BS—Bm)

By performing the integrations in equation (A22), the following expression is obtained:

d(v/z) _ T 7O (rtem = , 97— Sk rl
Y] 1',EL?(I_IC,),[/%’*K k) (r-+1k24-20k) 4- B’ (k) 21k — 27— ok — 21k — k)] (A23)

Consider the rolling case for which =7, and w=w,. Also from equations (A2) and (A4), for §=0, v/z=0 and

b(v/:c)

Solving equations (A20) and (A23)for 7, and w,, with o=Bmw,=—=w,, gives

1+k’

—pVI+E [ +E) K (k) + QA —4k* -k B (k)] (A24
A —FEK G+ EAFOE B E &)+ C—F) 1 =2 E’ (k)] )

W= p(L+E 2K (k) — (1+ED) E’ (k)] . (A25)
P2 [—FE B+ RAHOE R E (k) + C— (1—2) E" (k)%
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(17/ ),

For the yawing case r=r,, 6—1 7 On and, from equations (A3) and (A6) §=—r and =0, respectively. Solving

equations (A20) and (A23) simultaneously after making these substitutions yields

BrieJ1+ 2K (k) — (1+E) E’ (k)]
T A FE B FEAFPE M E® +C—F) -2 E &)1

s —Br(+E)° A +E) K’ (k) —2(1—k+ k) B (k)] (A27)
T2k —FE B EAHOE B B+ @—F) 1—2k) E )]

It is convenient for plotting purposes and in expressing the aerodynamic coefficients to make the following definitions:

, Br )

Tr=Tr —

(A26)

> (A28)

wy= wp'gj

so that 7./, o/, 7/, and w,” are functions of the Bm only. The variations of these four parameters with Bm are shown in
figure 3.

The velocity potentials for the rolling and yawing motions, completely defined by equations (A16) and (A17) and the
constants given in equations (A21), (A24), (A25), (A26), (A27), and (A28), may now be written as

. Pp=p2*(7,"0+ w,"m)/6(m—6) (A29)
ang

or=Bre(r,/0+ v,/ m)~/6(m—0) (A30)

The pressure coefficients for the rolling and yawing motions found from equations (A29), (A30), (A10), and (A11) are
2p m,'m2i+3mie, x2—2mw,’ 2
(A31)
< P> +z(mz—2) .

and

(A32)

(A_lf) _2Br 7'm22+3miu, 22— 2mw,” 22
Vz{maz—z)
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APPENDIX B
DEVELOPMENT OF EQUATIONS RELATING THE p-VELOCITY TO THE DISTRIBUTION FUNCTION f (¢) IN THE y=0 PLANE

Equation (A8) gives the expression for the velocity potential (everywhere in space) resulting from a distribution of
doublets in the zz-plane with the strength of each doublet in this distribution being governed by the doublet-strength function
A(z,2). The derivative of this velocity potential with respect to any one of the coordinates z, ¥, or z will give the perturbation
velocity in that direction. Of primary interest herein is the v-velocity or the y-derivative of this potential

ola,0) =20t ®1)

for points on the zz-plane. Brown and Adams in reference 15 have constructed the velocity potential in space of & distribution
of doublets by the following approach. First, by using equations (A8) and (A18), the potential of a line of doublets in the
zz-plane at an angle tan~!¢ to the z-axis is determined. This-potential is given by

__ By@—Bo) Y NE—B
I T —Brr (3 coth™y =25 +232y(1_326%;:+z2) (B2)

where
z—B3sz

YTVI—B A E—B @+ 2

The velocity potential of a distribution of line doublets (i. e., & surface distribution) in the zz-plane, on the vertical tail, with
strengths governed by the distribution function f(s) may then be written as

o= f f (&) pudo (B3)

where tan~!m is the apex angle of the vertical tail.
Substituting equation (B2) into equation (B3) and differentiating with respect to y yield the following equation for the

v-velocity as By/z approaches zero (see ref. 15):

20=0[ Bf(o)y1—B%*(1—B%0)* _3Bf(c) 1 —Bat)coth™'yo . 2Bf(o)y1
z e—>0{f (1—B%%)*(Bo—Bg)* 1—B)" == U,) Za@a+
Bn [ Bf(o)V1—B*¢(1—B*s6)* _3Bf() (1—B*f)coth 'y, , 2Bf(c)y/1—B7" 201 r—gz
f3(8+c) (1—B%*)*(Bs—B0)*: (1I—BF)R + a— 03) d(Bo)— } (B4)

The singularity which occurs in the ,y,—i- term of equation (B2) when y is set equal to zero has been accounted for in equation

1
(B4).
By taking the first and second derivatives of equation (B4) with respect to 6, two other useful relations are obtained.

They are given in the appendix of reference 15 as

b(v/a:) —lim { fﬂw ?[8B°f(c) coth yo_B*(3Bo+2B0+B0B")f(s) , __ BoBY(o) B¥(o)
(1—B' VI—B@#(1—B*??  1—B®Bo—B6)* 1—B®(1—B") (Ba—Bo)
2B (o) I—BF i(Bo)+- Bn '3B%f (o) coth™ v BX(3Bo+2B9+BoB%")f (o) L BOB* (o)
(Be—Bo)® B+ (1—B*")%* JI—B(1—B%*)? J1—B%6*(Bo— Bo)?
J1—B%®(1—B*) (Bs—Bo)  (Bo—B6)* e/1—B% e

and

—azé’;/f)a%{s‘/r—‘y_aﬂ ﬁ e (Bl?i(goy AB)+VI=FF | (B]fi(gey dBo)—1—BF [6 0,450 (0)]} (B6)

The factor multiplying the f//(¢) term of the expression for ( / ) as it appears in reference 15 is slightly in error and has

been corrected in equation (B6). (The symbols f/(8) and f// (0) denote the first and second derivatives, respectively, with

respect to 4.)

Considering equations (A5) and (A7), it is evident that equation (B6) must be zero for both the rolling and yawing cases.
This equation has already been satisfied by f(8) (eq. (A17)), since equation (B6) is in essence the integral equation which was
inverted to obtain the general pressure expression from which f(f) was derived (see ref. 26).
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APPENDIX C
INTEGRATIONS TO OBTAIN v/x
The expression for v/z is, for 6 approaching 0 (see eq. (A19)),

v 1 IBH[—3(TBa+me) +Bs ('B'm' 1—Bo) tanh~1/I—B%* |
CD—B 0 r

(1—B")*"
®
2(rBo+wBm) Bs(Bm—Bo)
=5 | @B+

|
. . [ 1 B9 (+Bo+wBm)Bs(Bm—Bs) (1—B%0)2/1—B*
E—%{l}—% [Ej; (1—B*):(Bo—B6)* d(Bo)+

®b
fﬂn (+Bo+wBm) yBe(Bm—Bo) (1—B%#8)*/I—B¢ d(Bo)—
B(6+¢) (1—B**)*(Bc—B0)*
® ,
2(<Bb+wBm) JBoszljm—Bﬂ) V1 —Bfe’J} (C1)

This expression has been broken into parts as indicated by the circled numbers with the third part being broken into two
additional parts ®a and @b because of the singularity in the integrand. Since (@ and () are elementary integrations similar
to those found in most integral tables (see ref. 27), only @ will be dealt with in detail. Performing the integrations & and
® and combining the results yield

+/1—B%? {2(1B0+5)1/B0(Bm—B0) #lr(—7B0Bm—2+10B9—Bm)+w(4—7Bm-+-4B6— BBBm)]
B Be 8+1—Bm(1—B6)
m[7(—2—10B6+Bm—17B6 Bm)+&(—4--4B6—7Bm-+B0 Bm)]
8+/1-+Bm(1+B6)
where w=wBm. The first term of expression (C2) exactly cancels (@), so that the total of @), 3, and @) for §—0 is
7 [7(2+Bm)—&(@4—7Bm) , 7(—2+Bm)—w(4+7Bm)
8B NI—Bm ) VI+Bm
The following two integrals comprising @ remain to be evaluated:
—3 ("®® B Bm— Bo) tanh~1/1—B%s?
3 f BoyBo(Bm—Bo) ﬂfl _j,fza,)m d(Bo) (C4)
—3fB" @+ Bo(Bm—Bo) tanh~'+/1—B%s*
(1_320,2)512

It might be mentioned at this point that the integrands of expressions (C4) and (C5) are finite and continuous over the interval
0 to Bm and therefore must yield a finite quantity when integrated.

(C2)

(C3)

d(Bo) (C5)

The integration of expression (C4) by parts gives

~rBoB B il =BT [ [ (BB sk ([T n \BolBn—B0)
[ BU=F7y* DI = = LR T SR

Integration of expression (C5) by parts gives

—&Bs(Bm—Bo) tanh~11I—B%s r"_ Bn  GBm tanh~'/1—B%’ @yBo(Bm—Ba)
[ BBo(1—B's)% o 2BBa(1—Bfo’)%1/Ba(Bm—Bcr' d(Be)— f B2 (—Bo 1B ©D
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Combining expressions (C6) and (C7) results in

| —(wBo+w) vBes(Bm—Bo) tanh~!4/1—B%* | Bm (TBo'—i-?o)m
®_|: BBqs(1—B25%)%* —fo BB (1—Bc)? d(Bo)+

Bm [+Bg(Bm—2Bo) —w.Bm] tanh—1/1—B%s?
I 2BB.(1—_B " Be@m—B ) (C8)

The first term of equation (C8), when evaluated at the limits, is either zero or infinity. The integrand of @, as was noted,
is finite over the whole interval; therefore, infinities introduced as a result of parts integrations must, in the end, cancel

themselves.
The second term of equation (C8) is an elementary integration which when evaluated (with infinities neglected) yields

ks 2-r—|-45—STBm—5§Bm_—-45—5EBm—I—2-r+3TBm (C9)
8B J1—Bm ~J1+Bm
Tt is now convenient in integrating the third term in equation (C8) to introduce the variable substitution
_ Ytk
Ba’————l_l_hb (C10)
go that Bm and k are related by
2k

The third term in equation (C8) when transformed by equation (C10) may be written in the form

—1 7
BYRG—R) = N

where

1= | G Fay

=— [ ke+IFW

k(B 36k
1= [ OEOLE ryay

[(F akE—2)
L—f_kw F()dy

_[* 3akdy
1= FEh Fwy

[ ara—k) ]
I= | oy O

[ skQ—E)y
IR = RO

-1 ‘\/l_kg‘\ﬁ:yz
R "oy
VA=) -9

The integrals I,, I;, and I; are elementary and may be determined by an integration by parts. If the multiplicative factor
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before the summation sign in equation (C12) is neglected until all the components are totaled, these three components become

Il+Is+I7=_Tk1(i‘,t,k4 )r_ ok 51_-21:2) = (C13)

Consider the integration required for 75, that is,

-1 ’\/(l—kz) (1_‘»02)
ft tanh 1+ky | ay (C14)
T AE—P

Let =k sin 9; then expression (C14) becomes

o | YA —F) A —F* sin’)
f,,, tanhl[ el | gy
- (C15)
—x/3 1—k2? sin%

It can be shown that

L /0=Ba— k’sin’ﬂ)] o V1B _J1—Fsin 6
tanh-! —tanh-! —tanh 1 X2 SRY g<p<n/o
[ 1+ sm 6 P O mmy  0=0= 16
JI—R 1-—Jl—lc*sin@Oggg_m&

=tanh ™ e T tanh T T A=

This fact allows expression (C15) to be written as

=

£ h‘( J1—E sin § o
f-r/s A 1—F2 sin%

+[ I—Fan% (C17)
V17 st i /I Pen®

The last two integrals of expression (C17) cancel each other and leave

tanh™! ( )
, ﬁkg— (C18)
6 V1—Ek%sin?
After the inverse hyperbolic tangent is replaced by its logarithmic equivalent and the additional variable transformation
. g 1—R?
R B (C19)
is introduced, expression (C18) becomes
/2 14-sin » dv C20
J;lmﬁ:’ﬁ(logal—sin v/ +/sin? v— (1—E%) (C20)
It is now convenient to make the substitution
d=sin~1/1—k*
Expression (C20) then becomes
=f2 1+sin » dv
S (et e (2

which is exactly in the form of the fourth integration formula of table 335 in reference 28. This formula gives the value of
expression (C21) as #K’(k). The integration of I; may now be expressed as

Li=—k(r+ak) =K’ (k) (C22)

Using the same integrating procedure for I;, I,, and I, as just outlined for I; and the integration formulas in tables 335 and
336 of reference 28 leads to
__ [ (Q+E) 30k [1+ K (k) — B’ (k)=
L= 1—2
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Lt Lmr3(— B[ — (19, T, § |51~ e ) - A G = B (0]

where II[— 1—r),v1-F, g:l is a complete elliptic integral of the third kind with modulus y/1—#* and parameter — (1—#%).

Summing all the various parts contributing to the third term in equation (C8), including the common factor, gives the
following expression:

{ﬂks I (] e e )

B(— 1F‘“1+k2‘ 1=k
=B QRS AU | sy gy — 029,18, _g]} (C23)

The addition of expression (C23) to expression (C9) completely evaluates 0. Expression (C3) gives the evaluation of ®, (®,
and @. Before writing the total integration, that is the sum of expressions (C23), (C9), and (C3), it is desirable to combine
expressions (C3) and (C9), which are functions of Bm, and transform them by equation (C11) to functions of . This pro-
cedure yields
T (@k2+7k%)
_meraTR) | C24
B+1+E(1—F) (C24)

The total integration may now be written in terms of the parameter £ as

{K’(k)[2k31+6k2(1—|—k2)]—E'(k)[2k25+rk(1+k’)]+5k2(1—k’)’H[—(l—k*),l—k’,’—zr]} (C25)

—7
BJ1+E (1—k?)?
By use of the process commonly known as interchanging the amplitude and pa.rameter (see pp. 133 to 141 of ref. 29) the elliptic

integral of the third kind appearing in equation (C25) is found to be equivalent to —3= E &),

5 This operation permits the expros-

sion for v/z (eq. (C25)) to assume the form given in equation (A20).
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Limited Range of Supersonic Speeds. NACA Rep. 971, 1950.

FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO CONSTANT SIDESLIP

zZ

g

TABLE I

Second ed., George Bell and Sons (London), 1895.

/

v
(Tail is in zz-plane; B is positive; V as shown is in zy-plane)
Region (see
?l::let Ch) ?’(xy0+y z)
I _Yemz—2)
\/321711: 1
Ve [(m_z) cog1 TE=2(2Bm—1) |
I Bim3—1 mr—z
2zm({z— Bz) (Bm— 1)]
_ Vg { (mz—1) cos-1 m:q—z—l—2(1-|-Bm)(2—-b)+

I Brmi—1 e

2v (z—b) (Bm+ 1) [Y(1 + Bm) —m(z+ Bz)] }
Iv Z (II4+111—-0)

VB8H(Bm)v z(mz—z)

v - Bm
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TABLE II
FORMULAS FOR PRESSURE-DIFFERENCE COEFFICIENT DUE TO CONSTANT SIDESLIP

Z, / /

m/

Y
(Tail is in zz-plane; £ is positive; V as shown i8 in zy-plane)
Re{on (see AP
sketch) q @2)
I __4gm
Btmi—1
1 48m cos—1 mz—z(2Bm—1)
=yBimi—1 mr—z
1 ___4Bm o1 mE—2+2(+Bm)(z—b)
Bm*—1 mr—e
Iv Z (II+11I-1)
___2BzH(Bm)

Byz(mz—2)
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TABLE III
FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO STEADY ROLLING

e

i / /

// / /
e IS e
e N/ /

z

o

v/
(Tail is in zz-plane; positive rolling)
(s00 ehotah) #(@,0%2)

’ mz(4Bm—1) +2(2B*m*—2Bm—3) [mz(z—Bz)

. "f’—{ . 3Bm—1) Y Bmt1i
(mz—2)[mz—2z(2B*m?—1)] | mz-+2(1—2Bm)
2B — 1) cos mr—z }

P { (mz—z)[—mz+z2Bm*—1)] _ mz—z+2(1+Bm)(z—b) _

- T(Bmi—1)h 2 cos mr—z
(1m:—b)(4Bm—1)+(z—-b)(3;2B’m’—2Bm)—6b(B2mi—-1) V(z—b)(Bm+1)[b(‘1+Bm)—m(z+Bz)]}

IV 2AI4+11I-1)
v (7530, mz)vz(mz—1z)
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TABLE IV
FORMULAS FOR PRESSURE-DIFFERENCE COEFFICIENT DUE TO STEADY ROLLING

i/

(Teil is in zz-plane; positive rolling)

Region aP
(see sketch) q (@2)
1 _%Bni(B’m’z— mz)
V(Bimt—1)32
4p 2Bm? / zm(@z—Bz)
I =V LB —1) YV Bm+1
m2(z— Btzm) mz+z(1—2Bm)
0z ——-

_ ( 4pm 5 { (Btmdz—mz) cos! mz—z+2(1+Bm)(z—b)

mr—=z
111
2B =) BmF DIAFBm) —mG+ B }
v SII+II1—T)
2p 7' mzt+ 3mie,z2—2mw,’ 22
AY v

Ve(mz—z)



http://www.abbottaerospace.com/technical-library

THEORETICAL AERODYNAMICS OF THIN ISOLATED VERTICAL TAILS AT SUPERSONIC SPEEDS

TABLE V
FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO STEADY YAWING

z _ / / ,
1 )\m I/‘,‘-"Moch lines / / /
. PN /

’ /e |/

|4 Is) ¥
s
(Tail is in zz-plane; positive yawing)
Region
(see siietch) #(2,0%,2)
r
T {:c(SB’m’+4..Bm—6) —B¥mz(2Bm-+1) mz(z—DBz) |
- x 3(Btm*—1) V Bm+1
(mz—z)[mzBt+4-x(miB1—2)] g1 me—z(2Bm—1)
2B — 1)~ o )
5Btmt—4Bm—6) + B*m*(z—b) (2Bm—1) + Bmb(44- B
. f{m( = 3m(Bi(1:zz_)1§xn D+ BrbG+Bn) 5 B DA+ By —m@ B+
(mz— 2)[B*m*(mz -+ z) — 2mz] , mx—z+2(1+Bm)(z—b)
2m(Bmi— 1) cos™ mi—z }
IV Z(II4III-1)
v

Br(r z-+ w,/ mz) yz(mz—z)
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FORMULAS FOR PRESSURE-DIFFERENCE COEFFICIENT DUE TO STEADY YAWING

Z

TABLE VI

/ A / x
4 o x
Y,
(Tail is in zz-plane; positive yawing)
Regi AP
(see sﬁgtltl:h) q @,2)
4r
I V(B —1)iA [mz(B*m?—2) + 2]
f——V(Bzir:—nx = {[m(B‘xmz—z) +2] cogt PEE@BMD)
II
2(B*m2-+Bm~—1) Vmz(Bm—1) (z— Bz) }
4r —24+2(14B —b
1 Ea— | e+ B —2)] cost TEZ A EAE WD)
2(Bm?—Bm—1) V@—b) BmT DBA T Bm) —m(z+Bz)]}
Iv >UI+III-D
ZBI 7/ m2A+ 3mie, 22— 2mw,” 22

v 14 Vz(mz—z)
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TABLE VII
FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO CONSTANT LATERAL ACCELERATION

1 / /
o e | S S

z

405

y
(Tail is in z2-plane; positive 8 in positive y-direction)
e ;
(sce 8 g?ch) (2,0,2)
B (mz—2) mM?(mz—2z)
I VB [V

B , M*mz(4—Bm)— M*mBz(2Bm+-1)

, _W_’—‘i{ VmaG—BABm—D | 2V+ AL R 1+
me—z(2Bm—1) M2m(z—mz)
l:cos—1 i—2 ] [ 2 (Bmi— +tV] (mz—z)}
B — — , M3(4-4-Bm) (b—mz) - M*Bm(z—b) (2Bm—1)
. — = | Ve DB DR Byt 52 [ 2474 UL 1+
[cos—-l z+2(1+Bm) (Z—b)] [tV } ﬂgzg’.("zﬂ m)] (m_z)}

IV Z(II4-1III-T1)
v — = | TED /2t o/ may+ [ i EEDE] K |
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Z

TABLE VIII

= K /
/\/m S /

4

(Tail is in zz-plane; positive 8 in positive y-direction)

(see sﬁl etch)

A—qP @,2)

4f(mz—2) (1+m?)
VBt~ 1)"

II

48 {B’(l-l—m’) (mz—2) oy mz—2(2Bm—1)
*B VA Btmi—1 Btm*— mr—z

2 [1- G Bn )] mn}

111

48 {B’(1+m’) (mz—z2) _, mz—z+2(1+Bm)(z—b) 4
=B VBt 1 Bm? mr—zg

M¥B*m*—Bm—1
| 1- =) | G h Bt DB T B —mi B

IV

SAI4+III-1)

__ 28 [(B*+1)B(r/mz2+3mw, 'v2— 2mew, 2%)
BV Vz(mz—z)

(B*4-1)zzH(Bm) 2H (Bm)-\,/ z(mz :I
Byz(mz—12)

/
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STABILITY DERIVATIVES FOR HALF-DELTA AND RECTANGULAR ISOLATED VERTICAL TAILS

TABLE IX

VERTICAL TAILS AT SUPERSONIC SPEEDS

Half-delta tails
Derivative . Rectangular tails
(a) AB=1
0=AB<2 ABZ=2
T 4 AB 4 1 .
Cry —p H(Bm) ~BV4iB+2 ~B (1_2_43)
18 [ 4B 2 2
Crg 545 HEm 3ABV 4AB+3 B (1__3AB>
x 4  AB+1 2 1
Cy —55 HBm) ~3B JI5AB T B (l—m)
AB 4 AB(AB+3 24B—1
Cy Tw (7" +2w;") —3B _(A'LST)-EH) AR
_3x 2(AB+3) 34B—2
C’p 8 (Tﬂl+2("vl) m(A_B+2)3H 3A’B’
p xAB (5 "t ) _ 24°B*4-64B+3 _ 1+44B—244B*4-3243B
b 4B \8™ 7% 3BYAB(AB+2)¥t 244381
TAB , 8(24AB+5) 2(34B—1)
CY, (Tr'+2"’ ) 3 ’_—AB(AB+2)‘” 3AB:
_ 3B, ___4B(24B+5) __B(8AB—3)
G, g (2 [B(AB+DF" T8
¢ rAB (g '+ ) 2(342B*+94B+5) 34B—1
r 4 \gTrrer 3[AB(AB+2)ph 34°B?
ABx [ +o s 16H(Bm)
— | 420, — —
c T 7 g 8 B—AB—1 _2(B*+2—-34B)
Yh ABx[ , ,_8H(Bm) 3B \JAB(AB+2)? 34381
B [” 20—
*BT3 , SH(Bm)]
4 o Tr 3"’:-
c 1 [2 't 70 4 B —A4B—1 3B1—84B+6
"3 * 3 ,,. , 12H(Bm) B yBBUAB T2 643Dt
iB [— R 7 o
ABar [24’ ,+_ Tr,_ﬁH(Bm) .
c 4B} 2 B+ AB1434B+3 _B4+2-34B
U ABx[. ,,5 , SH(Bm) 3B JV&B(AB+2)} 3428
TR [2&1 +—- 7 —
8B | “ T T T At

* Angular velocities and moments measured about the system of body axes shown in figure 2 (b).
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TABLE X

STABILITY DERIVATIVES FOR TRIANGULAR ISOLATED VERTICAL TAILS
WITH SUBSONIC LEADING EDGE AND SUPERSONIC TRAILING EDGE

Derivative Formula’
(@) (b)
Cr, ot AB o (Bm)
x(34B+2Bm)
Cos 6Bm+/2BmAB H(Bm)
x
—=* [4B g
c 22 am
o FVIBAB (% + g o
5BmA [ s 5 1 5 , 1 , 3Bm
Ces —=V2B ["’ (323m+16AB)+“”'(323m+4AB+8A=B=>]
C'v lﬁBv 2BmAB (2“'::'“*‘“"’9 +3‘fén°’vl
wr
Cr, VIBmAB (AL s o
5 1 5 1 , 3Bm
N ~+BV2BnAB | (gt 155+ (gammt a5 Hoam) |
Cl' %m(zfr,'l' %’+§Z€2wr,)
[ —— _H(Bm) _ HEm_
¢ BB+ (1+ 55 )~ w3
-
B
= er—nl 2Bm _H(Bm)__H(Bm)
gV2BmAB| (1+ 4B*'m*  2BmAB
1 , 3Bm
~BV2B [" (32Bm 16AB)+“" 32Bm BT3B
IS S0
598 T 8PmeAB T 8Bmars) BB |+
C
8
x 5 1 R 1 , 3Bm
pgV2BmAB ["' <3ZBm+16AB>+°" (3zBmT4AB+8A’B’
. 1 3
(32B‘m‘ i 4_B’m’AB+&BmA’Bﬁ) H (B”‘)]
-Lm[sff+swf+63_mmf_(_5 fZ )me)]-
c 32 r O TR “ \Bind ' BmAB
.

g2 VIBTAB [ 51/ 6 + 0 o) — (it g ) B |

» Angular velocities and moments measured about the system of body axes shown in figure 2 (b).
b Formulas valid for triangular plan forms with either sweptback or sweptforward trailing edge provided the edge is supersonic,
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TABLE X1
TRANSFER-OF-AXES FORMULAS
Stability derivatives | Formulas for transfer to a body system
in a body system of of axes with origin disple dis-
axes with origin at tances x, (positive forward) and z
tail apex (see fig. 2 (positive downward) from the tail
(b)) apex (see fig. 2 (¢))
Cr, Cyr,
0
C.‘ Cl"—‘—b‘ CYﬂ
2y
Ctﬁ Cxﬂ-|-3 C’y‘
Cr, Cr,
o
Cs, C"n—3 Cr,
C; » Cz’-l-% Cyp
Cy, CY,—%O Cr,
2
Cs, Ca 3 (C"ﬂ+ CYr>+<%o) Cr,
20\ (%o
G Gt Cri=% Ou=(3)(3)
Cr; Cry
. . _To
C"a C"ﬁ—f Cy
C’ﬁ Ctﬁ+%° C’Yg
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r'NC) ‘w

(0}

(a) nNQ)

(b)

) v

! (a) Plan forms of vertical tails analyzed. (Trailing edge may be . Aﬂ]]]]mm
either sweptback or sweptforward provided it remains supersonic.)

rY
(b) Speoial cases (rectangular and half-delts vertical tails) for which . % / 2
stability-derivative curves are presented. . S0 *o — T

F1GgureE 1.—Tail plan forms and associated data.

(c)

(a) Body-axes system used for analysis. Free-stream velooity V.

(b) Principal body-axes system used for presentation of stability
derivatives. Entire systemm moving with flight velocity V.

(¢) Same type of axes system as (b) with origin translated.

FiaUure 2.—Systems of body axes. Positive directions of axes, forces,
and moments indicated by arrows.
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Fraure 3.—Variation of the parameters E'_(lk)’ wy'y Bme,’, 7,/ and ./ with Bm.
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Fiaurs 4.—Curves for determining the stability derivatives due to constant sideslip Cr,, C.,, and Cy, for isolated half-delta vertical tails. Deriva-
tives based on vertical-tail parameters b and S; principal body-axes system with origin at leading edge of root section.
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Fraure 5.—Curves for determining the stability derivatives due to steady rolling Cy,, Ca,, 8nd Ci_ for igolated hali-delta vertical tails. Deriva-
tives based on vertical-tail parameters b, S, and angle pb/V; principal body-axes system with origin at leading edge of root section.
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F1gure 6.—Curves for determining the stability derivatives due to steady yawing Cy,, C.,, and C_ for isolated half-delta vertical tails. Deriva-
tives based on vertical-tail parameters b, S, and angle rb/V; principal body-axes system with origin at leading edge of oot seotion.
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F1aure 7,—Curves for determining the stability derivative due to constant lateral acceleration C’yé for isolated half-delta vertical tails. Deriva-
tive based on vertical-tail parameters b, S, and angle 8b/V; principal body-axes system,
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F1cure 8.—Curves for determining the stability derivative due to constant lateral acceleration C,.‘i for isolated half-delta vertical tails, Deriva-
tive based on vertical-tail parameters b, S, and angle 8b/V; principal body-axes system with origin at leading edge of root section,
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Fioure 9.—Curves for determining the stability derivative due to constant lateral acceleration C’xé for isolated half-delta vertical tails, Deriva.
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tive based on vertical-tail parameters b, S, and angle gb/V; principal body-axes system with origin at leading edge of root section.
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Fioure 10.—Curves for determining the stability derivatives due to constant sideslip Cr,, C.; and Ci, for isolated rectangular vertical tails.
Derivatives based on vertical-tail parameters b and S; principal body-axes system with origin at leading edge of root section.
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Frgure 11,—Curves for determining the stability derivatives due to steady rolling Cy,, C., and Cy, for isolated rectangular vertical tails.
Derivatives based on vertical-tail parameters b, S, and angle pb/V; principal body-axes system with origin at leading edge of root section.
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TF1gure 12.—Curves for determining’the gtability derivatives due to steady yawing Cy,, Ca,, and Ci_ for isolated rectangular vertical tails, Deriva-
tives based on vertical-tail parameters b, S, and angle rb/V; principal body-axes system with origin at leading edge of root section,
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Figure 13,—Curves for determining the stability derivatives due to constant lateral aceczleration Cy. and C’,'.] for isolated rectangular vertical

tails., Derivatives based on vertical-tail parameters b, S, and angle 8b/V; principal body-axes system with origin at leading edge of root
section,
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Frgupe 14.—Curves for determining the stability derivative due to constant lateral acceleration C-; for isolated rectangular vertical tails,
Derivative based on vertical-tail parameters b, S, and angle b/V; principal body-axes system with origin at leading edge of root seotion.
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(a) Constant sideslip.

Figure 15.—Comparisons of zero- and complete-end-plate solutions for the side-force and yawing-
moment derivatives due to several lateral motions for half-delta vertical tails. Derivatives
based on vertical-tail parameters b, S, and angles pb/V, rb/V, and £b/V; principal body-axes
system with origin at leading edge of root section.


http://www.abbottaerospace.com/technical-library

REPORT 1268—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

B 2
6 §

Cy, _~Complete end plate ;
a4 "\

e

Sp e

N | ---Complete end plate

e N M s e N A e e B B h

(O . —

A8

(b) Steady yawing.
Figure 15.—Continued.
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(c¢) Constant lateral acceleration,
Fiaure 15.—Concluded.
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(a) Constant sideslip.

Fiaure 16.—Comparisons of zero- and complete-end-plate solutions for the side-force and yawing-
moment derivatives due to several lateral motions for rectangular vertical tails. Derivatives
based on vertical-tail parameters b, S, and angles pb/V, rb/V, and gb/V; principal body-axes
system with origin at leading edge of root section.
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(b) Steady yawing.
Ficune 16.—Continued.
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(¢) Constant lateral acceleration.
Fraure 16.—Concluded.
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