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CORRELATION, EVALUATION, AND EXTENSiON OF LINEARIZED THEORIES FOR TIRE
MOTION AND WHEEL ' SHIMMY !

By Rosert F, SauLey

\

SUMMARY

An evaluation is made of the existing theories of linearized
lire motion and wheel shimmy. It 18 demonstrated that most of
the previously published theories represent varying degrees of
approximation to a summary theory developed herein which s a
minor modification of the basic theory of Von Schlippe and
Dietrich. In most cases where strong differences exist between
the previously published theories and the summary theory, the
previously published theories are shown to possess certain
deficiencies. .

A series of systematic approximations to the summary theory
18 developed for the treatment of problems too simple to merit the
use of the complete summary theory, and procedures are dis-
cussed for applying the summary theory and its systematic
approximations to the shimmy of more complex landing-gear
structures than have previously been considered.

Comparisons of the existing experimental data with the
predictions of the summary theory and the systematic approxi-
mations provide a fair substantiation of the more detailed
approximate theories. However, some discrepancies exist
which may be due to tire hysteresis effects or other unknown
influences. Thus, further work may be needed to explain these
discrepancies. .

INTRODUCTION

In the ground maneuvering of aircraft equipped with
swiveling landing gears there sometimes arises the problem of
violent oscillations or shimmy of the landing gear which may
lead to failure of the gear. In the past this problem has been
handled largely by means of various measures based on
practical experience. However, this empirical approach has
not proved entircly adequate. Moreover, for radically
different types of complex flexible landing gears it is highly
doubtful whether any empirical approach based purely on
past experience could always safely and optimumly take into
account all of the possible conditions which a landing gear *
might be subjected to in actual operation.

A considerable amount of theoretical and experimental
work on wheel shimmy has been done, mostly in the past 25
years. (Most of the existing papers on this subject are
listed in ref. 1, which also presents a historical discussion of
the development of the wheel-shimmy problem.) However,
most of these theoretical papers have not been correlated
with each other or with the available experimental data, so

1 Bupersedes NACA Technical Note 3532 by Robert F. Smiley, 1855,

that essentially there exists at present a large number of at
least superficially different theories of wheel shimmy and a
fair amount of experimental data which has not been cor-
related with many of these theories (refs. 2 to 23).

The primary purpose of the present report is to clear up
this partial confusion of theories by demonstrating that
most of the previously published theories represent various
approximations to one basic general linearized theory
derived herein and that most of the previously published
linearized theories which do not represent approximations

~to this general theory possess certain undesirable charac-

teristics. This basic’ general theory, which is henceforth
called the summary theory, is derived in such a manner that
it makes use of and is compatible with the soundest features
of practically all the previously published theories, insofar
as this is possible at present; however, in the main this
summary theory is & minor modification of the theory pro-
posed by Von Schlippe and Dietrich in references 3, 4, and 5.
A second purpose of this report i3 to develop a series of
systematic approximations to the summary theory suitable
for use in the treatment of problems too simple to merit
the use of the complete summary theory and to examine
both these systematic approximations and the previously
published theories to determine how these theories are
related to the summary theory and how the predictions of
these theories agree with the available experimental data.
A final purpose of this report is to illustrate procedures
for applying the summary theory and its approximations
to complex types of flexible landing-gear structures.
Although the primary purpose of this report is concerned
with the wheel-shimmy problem, most of the material
presented is directly applicable to the more general problem
of the motion of elastic tires under arbitrary rolling condi-
tions. Thus this material is pertinent to the study of
veering-off or ground looping, ground handling, and cata-
pulting stability of aircraft. i
The material in this report is arranged as follows. First,
a detailed statement of the problem is given, together with
a detailed outline of the manner in which it is treated herein.
Then, after a brief discussion of the restrictions on the
analysis, & linearized derivation is made for the general
Von Schlippe-Dietrich type of kinematic equations govern-
ing the motion of elastic tires rolling without skidding.
This analysis proceeds essentially in accordance with the
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theoretical analysis of Von Schlippe and Dietrich except
that the present analysis considers the subject of tire tllt
in slightly greater detail.

Next, the primary forces and moments acting on a rolling
tire are discussed and used to establish the equations of
motion for arbitrary rolling conditions. Then a systematic
procedure is developed for forming approximations to the
summary theory.

The previously published theories are listed, discussed,
and compared with the summary theory and these system-
atic approximations. Finally, the application of the sum-
mary and approximate theories to several simplified landing

gears is discussed. The first example is chosen primarily

to demonstrate the correlation between theory and experi-
ment, the second example to demonstrate the correlation
between the summary theory and its systematic approxima-
tions, and the remaining example to illustrate the applica-
tion of the theory to complex problems.

Some of the material presented herein was submitted to
the University of Virginia in partial fulfillment of the
requirement for a Master of Aeronautical Engineering
degree.

SYMBOLS
a trail (perpendicular distance between ground-
contact center point and swivel axis)
a'=a—tLh sin &
Ay, 45,45 coefﬁcients defined by equations (115b)
B,,B; coefficients defined by equations (115b)
¢ lateral distance of center of pressure of vertical
force from XZ-plane
a change in lateral distance of center of pressure
) of vertical force from XZ-plane per unit of A,
Cy change in lateral distance of center of pressure
" of vertical force from XZ-plane per unit of v
a distance from wheel center to center of gravity
- of swiveling parts of landing gear
¢ distance from center of gravity of swiveling
" parts of landing gear to swivel axis
dyd; hysteresis constants used in equation (128c¢)

D tire parameter used by Bourcier de Carbon

D( ) differential operator with respect to distance,
2 or Dy )

D.( ) differential operator with respect to time,
o o( )

EoE,, ... coefficients of linear differential equations

E energy dissipated per cycle

b frequency, v/2%

Fo,Fy, coefficients of linear differential equations

Fy lateral force due to hysteresis effects

Fy lateral inertia force resulting from lateral de-
formation of tire

Fyu net lateral tire force acting on wheel

Fis net lateral structural force acting on wheel

F . lateral force on tire due to lateral distortion of
tire

A

Izw

I,,.\

M,
Mo,

M
My,
M,

- M,

M,
M.,

lateral force on tire due to lateral tilt of tire

vertical load on tire

lateral force on swiveling parts of landing gear
due to linding-gear strut

linear damping constant (Damping moment=
g Dy)

half-length of tire-ground contact area

imaginary part of ( )

moment of inertia of the swiveling part of a
landing gear about an axis parallel to the
swivel axis and passing through the center of
gravity of the swiveling part

polar moment of inertia of wheel and tire about
an axis perpendicular to the wheel axlo

polar mément of inertia of tire (excluding solid
wheel parts)

total polar moment of inertis of wheel and tire

moment of inertia of the swiveling part of a land-
ing gear about the swivel axis ’

excess of number of zeros over number of poles

parameter in stability-determination plots
(appendix C)

lateral spring constant of landing-gear strut

parameter used in appendix A

torsional stiffness of tire

total effective change in tire torsional stiffness
due to tire inertia effects

effective change in torsional stiffness of tire due
to lateral acceleration of tire

change in tire torsional stiffness due to centrif-
ugal forces

lateral tire force due to tilt per radian of tilt angle

lateral stiffness of tire

total effective change in lateral stiffness of tire
due to tire inertis effects

effective change in lateral stiffness of tire due to

lateral acceleration of tire :
change in lateral stiffness of tire due to centrif-

ugal forces
__(nL4-Rh)h*!
nl

relaxation length ;

mass of swiveling parts of landing gear

mass of tire

mass of wheel including tire

mass of nonswiveling parts of landing gear

constant friction-damping moment

net structural- tilting moment acting on wheol
center

gyroscopic moment due to swiveling

twisting moment due to hysteresis effects

inertis moment resulting from lateral deforma-
tion of tire

net structural swiveling moment acting on
wheel center

torsional moment on tire due to twist of tire

gyroscopic moment due to tilting

tire constants; l,=
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My, gyroscopic moment due to lateral distortion of
tire
M, torsional moment on the swiveling parts of the

landing gear due to landing-gear strut and
damper unit '

M, damping moment about swivel axis

N cornering power (lateral tire force per radian of
yaw angle during steady yawed rolhng for
yaw angle approaching zero)

N parameter used in appendix A

P complex roots of characteristic equations

LD functions defined in appendix D

Pre, D2, D1, P13, P, P22 functions defined in and after equa-
tions (80)

0n parameter used in appendix A

r {ree fire radius

Ty polar radius of gyration of tire

73 vertical distance from wheel axle to ground

4 radius of cross section of tire torus

B tire parameter used by Bourcier de Carbon

R() reel part of ()

3 circumferential coordinate on tire (fig. 1)

S wave length, 2x/y

S tire parameter used by Bourcier de Carbon

t time

At time lag due to tire hysteresis

T Moreland’s time-lag constant

T tire parameoter used by Bourcier de Carbon

T,T, ... functions of D, correlating structural forces,’
moments, and deflections

T, time-lag constant for hysteresis moment

VN time-lag constant for hysberegis force

w,=c\Iy(al; cos x—a)sin «
wa=0cr\Fy(l; cos k—a)sin x

v rolling velocity ‘

w width of tire-ground contact.area

w, density

w,= (e, —aF,+c,F, sin x)sin «

2 horizontal distance parallel to mean direction of

rolling motion

XYz space-fixed coordinate axes; the -X-axis is hori-
zontal and parallel to the mean direction of
rolling motion, the Z-axis is vertical, and the
Y-axis is perpendicular to the XZ-plane. -
The XTY-plane is the ground plane.

Y lateral distance of tire equator from XZ-plane

z vertical distance up from XY (ground) plane

Yo, Y1,Y2, lateral deflection of tire equator from XZ-plane;

Yi,Ve subscript 0 refers to the center of the ground-
contact area, 1 to the foremost point of the
ground-conta,ct; area, 2 to the rearmost point
of the ground-contact area, 7 to equator points

, off the ground, and g to equator points on the
ground

@ twist in tire, radians

A half-width of twisting-moment—angular-deflec-
tion hysteresis loop of tire

¥ lateral wheel tilt, radians

0 lateral tire tilt resulting from lateral deforma-

tion, radians

€ " pneumatic caster, K./N

1,M0,m,m,  lateral deflection of center plane of wheel with

Nay Ny Tg respect to the XZ-plane; subscript 0 refers to
the point corresponding to the center of the
ground-contact area, 1 to the point cor-
responding to the foremost point of the
ground-contact ares, 3 to the center point of
the wheel, @ to the point of attachment of the
swiveling parts of the wheel to the swivel axis,
1 to wheel-plane points off the ground, and g
to wheel-plane points on the ground

Ny inertia-force parameter (eq. (46))

N2 inertia-moment parameter (eq. (49))

bysteresis-moment parameter (eqs. (62))

hysteresis-force parameter (eqs. (60))

angle of votation of wheel about the vertical

Z-axis, radians
K inclination of swivel axis, radians (fig. 5)

g @

Mg, A, lateral distortion of tire equator with respect to

g, M)A the solid parts of the wheel; subscript 0 refers
to the center of the ground contact area, 1 to
the foremost point of the ground contact
area, 2 to the rearmost point of the ground
contact area, 1 to equator points off the
ground, and g to equator points on -the
ground

ANy half-width of lateral-force—lateral-deflection

: hysteresis loop of tire

v circular frequency of shimmy motion, 2«f or v

" path frequency of shimmy motion, »o~!

E tire tilt parameter (eq. (13))

spring constant for a linear restoring moment
p,—(a,K —aF,+tac\F;+¢, F, 8in k) sin «

e=1+¢Lh “m £
01,03 constants representing phase shift
T constant defined by equations (33) and (50)
T constant for gyroscopic moment (z%)
NULT?
Te I"
¥ ; angle of rotation of wheel about the swivel
axis, radians

w angular velocity of wheel about its axle (“;)
Subscripts:
¢ critical
maz maximum

STATEMENT OF THE PROBLEM AND GENERAL

APPROACH

The purpose of this section is ‘to define specifically the
problem considered in this report and to clarify further the
correlation between the various parts of the report.

The basic problem to be considered is the rolling motion
and wheel shimmy of & rigid wheel equipped with an elastic
tire, when the wheel is attached to some supporting structure
such as a landing-gear strut. The motion of the rigid wheel
can, of course, be completely described by six independent
variables corresponding to the three degrees of freedom in

4
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translation and rotation of the wheel. In addition to these
six degrees of freedom, there exists a seventh degree of free-
dom which is associated with the distortion of the elastic
tire or the track of the tire on the ground which results from
the application of & given motion to the rigid wheel. Thus,
in general, the motion of a rigid wheel with an elastic tire
represents a system of motion involving seven variables, and
seven equations correlating these different variables are
required to solve for the motion of a landing gear under
arbitrary rolling conditions. Six of these equations will
usually be the equations expressing the sum of the forces or
moments acting along each of the three principal coordinate
axes; the seventh relation will be an equation, usually a
kinematic equation, which correlates the tire distortion with
the other variables.

The present report is not concerned with all seven degrees
of freedom. Most of the report is restricted to a considera-
tion of cases of wheel motion in which the wheel is rolling
at an approximately constant velocity v without braking,
and consequently with constant angular velocity o, and
where no strong vertical oscillations are involved. Thus,
for example, effects of acceleration or deceleration, which
are known to have at least some influence on the rolling
motion (gsee, for example, the experimental evidence of ref.
17) are not considered. Similarly, fore a.nd aft oscillations
of the wheel are excluded.

When these three restrictions are applied, the seven-
variable problem of a rolling wheel becomes reduced to the
consideration of & system involving the following four degrees
of freedom: (1) swiveling of the wheel about a vertical axis
through the wheel center point, designated by the symbol 8;
(2) lateral tilting of the wheel with respect to a vertical
plane parallel to the direction of undisturbed motion, desig-
nated by the symbol v; (3) lateral displacement of the wheel
with respect to a space-fixed reference axis parallel to the
direction of undisturbed motion, designated by the symbol 3
with various subseripts; and (4) lateral displacement of the
tire footprint on the ground (which is a measure of the tire
distortion), designated by the symbol %. (These coordinates
and their positive directions are llustrated in fig. 1.)

In order to obtain four equations correlating these four
variables 8, v, 5, and 7, the following procedure is used:
After some remarks on general restrictions, a-kinematic
relation between the four variables is derived in the section
entitled “Kinematic Relations for the Rolling Tire.” Next,
the primary forces acting on the wheel from the ground,
including wheel inertia forces, are discussed in the section
entitled “Forces and Moments on the Wheel.” By utilizing
these ground forces and moments, the four basic equations
of motion for the wheel, including the kinematic equation,
are set down in the section-entitled “Equations of Motion.”

For many applications these equations of motion in their
most general form are relatively complicated and, although
they are by no means insolvable, it is profitable to simplify
the equations for those problems which do not require the
detailed equations of the summary. theory. Therefore, a
number of systematic approximations to the summary theory
_are formulated in the section entitled ‘“Systematic Approxi-
mations to the Summary Theory.” A second reason for
establishing these systematic approximations lies in the fact

REPORT 1299—NATIONAL ADVISORY COLEMI’I'I‘PE FOR AERONAUTICS

that they furnish a framework for comparing the summary
theory with the other existing theories of wheel motion,
most of which are closely related to these systematic approx-
imations. Such a comparison of the summary theory and
its systematic approximations with the' existing theories of
wheel motion is carried out in the section entitled ‘‘Classifi-
cation and Evaluation of Existing Theories.”

In the last major section of this report the summary
theory and its systematic approximations are applied to -
three illustrative types of landing-gear configurations which
are chosen either to illustrate agreement between theory
and experiment or to illustrate methods for applying the
theory to complex problems of wheel shimmy.

GENERAL RESTRICTIONS

Before entering upon the detailed derivation of the equa-
tions of motion, some further restrictions on the analysis
should be discussed. First of all, the present report is
limited almost exclusively to linearized theories. However,

_there is some question as to whether a linearized theory is

sufficient to describe the important features of wheel shimmy.
It appears at present that a linearized theory will provide at
least a fair qualitative desgription of stability boundaries
for shimmy and will indicate whether a given motion is
stable or not. However, agreement between theory and
experiment, presented in a subsequent section, is still not
good enough quantitatively to warrant the conclusion that
nonlinear effects can always be neglected or replaced by
equivalent linear effects.

Another limitation of the linearized theory is that it does
not permit calculation of the maximum steady-state shimmy
amplitude for those steady-state self-excited shimmy motions
which sometimes occur on actual landing gears.

Although the preceding considerations suggest that non-
linear effects in landing-gear motions mp.y possibly be of
importance for, some practical prob,lgms,,t};nem consideration
is beyond the scope of the present report snd henceforth
only linearized theory is discussed. .The only concession to

- nonlinearity is made in appendix A Wh}ch presents a con-

ventional approximate method for converting a nonlinear
shimmy damper to an equivalent linear damper. It should,
however, be noted that some attention has been given to the
development of nonlinear tire-motion theory in references
18 to 21.

Another restriction arises in connection with the assump-
tion adopted throughout this report that the finite width
of the tire need not be taken into account in developing a
tire-motion theory for single tires of conventional cross
section. This assumption appears at present to be at least
partly justified on the basis of an experiment by Von Schlippe
and Dietrich (ref. 3); on the other hand, since their investi-
gation of this matter was extremely limited in scope, their
axperimental result may not be completely typical. Conse-
quently, a more thorough evaluation of tire-width effects
seems desirable. Some theoretical work, on this subject has
been done by Von Schlippe and Dietrich (vef. 3) and later
by Rotta (ref. 2), but the matter is beyond the scope of the
present report.

KINEMATIC RELATIONS FOR THE ROLLING TIRE
In this section the kinematic equations for the motion of o


http://www.abbottaerospace.com/technical-library

-THEORIES FOR TikE MOTION, AND WHEBL SHIMMY

_-Tire equator

- N T
rs tP
¢ -
©) ~ }_I—s sin l(z%z)l

143

L& 4

—

“Tire equator

(b)
Y

(a) Side view.
(b) Bottom view for tilted swiveled conditions.

v {c)

— Intersection of wheel center plane with ground plane

Intersection of wheel center plone with o horizonial
plane through the wheel center

(¢) End view for tilted unswiveled conditions.

Ficure 1.—Geometrie relations for a rolling elastic tire. (For the sake of clarity parts (b) and (c) of this figure are drawn to different scules.
The positive X-axis is the direction of undisturbed motion.)

rolling tilted elastic tire without skidding are derived in
accordance with the theoretical analysis of Von Schlippe
and Dietrich (ref. 3 or 4). This derivation differs only
slightly from that analysis in that it omits some refinements
of the theory which are necessary for very wide tires and it
includes some influences of tilting of the tire in more detail.
While the modifications that are made in regard to tilt may
not necessarily be of practical importance in most cases,
they may be of interest in a few problems.

Specifically, the object of this section is to obtain a relation
correlating the absolute lateral deflection of the center point
of the tire ground-contact area 7, with the corresponding
wheel coordinates of lateral deflection » (for example, 7, or
n3), swivel angle 6, and ¢ilt y. (See fig. 1.) First, some
geometric relations are set down and some background
information regarding tire distortion is discussed. 'Then this
information is utilized to obtain a kinematic relation between
the lateral deflection of the tire center line or equator at the
forward edge of the ground-contact area 7, and the coordi-
nates 5, v, and 6. Next, a kinematic relation between the
lateral deflections of the tire equator at the center and for-
ward edge of the ground-contact area (designated 7, and 7,

respectively) is established. These two relations are com-
bined to obtain a basic kinematic equation correlating 7,
with 5, v, and 4. -

The derivation of these kinematic relations is based upon

- the following physical concept: As a tire moves forward, the

tire material on the circumference just ahead of the ground-
contact area is laid down or developed on the ground without
skidding and becomes the new forward portion of the ground-
contact aree, so that the track of the tire is completely
determined by the lateral-distortion coordinate of the fore-
most ground-contact point y; and the slope of the distorted
center line or equator of the tire at that point.

= GEOMETRIC RELATIONS

The primary geometric quantities involved in the problem
of a rolling tire are shown in figure 1, which gives an instan-
taneous view of & distorted tire with respect to an arbitrary
space-fixed XYZ coordinate system, the X-axis being
horizontal and parallel to the mean direction of wheel motion,
the Z-axis being perpendicular to the ground, and the
Y-axis being perpendicular to the X- and Z-axes. Parts
(a) and (b) of this figure represent side and bottom views,
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respectively, of a rolling wheel that is swiveled and tilted.
For the sake of clarity, part (¢) of this figure, which shows
an end view of the rolling tire, has been drawn to a different
scale from part (b) and represents the unswiveled condition.
In discussing the geometric quantities, the following termi-
nology and symbols are used: The wheel center plane is the
plane of symmetry of the wheel perpendicular to the wheel
axle.
poinis which on the undistorted tire are located at the
intersection of the tire outer circumference with the wheel
center plane; under the action of moments and lateral forces
these tire points are deflected laterally by an amountX with
respect to the wheel center plane. The symbol A, designates
the lateral deflection of tire equator points which are not in
contact with the ground and A, designates the lateral
deflection of points which are in contact with the ground.
The point at the center of the ground-contact area is desig-
nated by Aq.

The lateral distance of the wheel plane from an arbitrary
space-fixed XZ-plane is designated by 7, for points off the
ground at & vertical height z and by n, for points on the
ground. The lateral distances of tire-equator points from
this XZ-plane are similerly designated by ¥, and y,. The
difference between y and 7 is the lateral distortion A of the
tire, or

M=Y;—n €))
and
Ae=Yr— 2)

The tire contacts the ground in a finite area having a
finite width and a length 2h. The width of this area is
assumed to be negligibly small; that is, the ground-contact
ares is assumed to be reduced to a ground-contact line.
The foremost ground-contact point (in the direction of
motion) is designated by the subscript 1, the rearmost
point by the subsecript 2, and the center point by the subscript
0. Except for braking and accelerating effects, the center
point O has approximately the same horizontal z-coordinate
a8 the wheel axle.

Distances about the tire equator or circumference are
measured in terms of the circumferential coordinate s whose
origin is taken at the point 0. ;

The wheel is assumed to move at constant velocity v
approximately in the direction of the X-axis. The wheel is
laterally inclined with respect to the vertical Z-axis by the
tilt angle v and is swiveled with respect to the XZ-plane by
the swivel angle 6. Both tilt and swivel angles are assumed
to be small; that is, cos §=scos y=1, sin #=~0, and sin y=1.

The center point of the wheel axle is located at a vertical
distance ry from the XY (ground) plane, & lateral distance
ryy from the intersection of the wheel plane and the XY -plane,
and & lateral distance s from the XZ-plane, where

Mm="7n0—T3Y (3)
TIRE DISTORTION

This section contains a short discussion of the features of
tire distortion which are pertinent to the derivation of the
basic kinematic relations of this report.

The tire center line or equator comprises the tire.
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Experimental and theoretical considerations (for example,
gee refs. 3 and 2, respectively) indicate that, if the tire
equator in the ground-contact region is subjected to arbitrary
lateral distortion, the lateral distortion of the tire equator
off the ground \; tends to die out as an exponentially decaying
function of the circumferential displacement s (for example,
see fig. 2(a)). Thus, near tire point 1 off the ground the tire
distortion .will tend to approach the pattern described by
the equation

s=h

MN=Ne T @)

and a similar equation will apply near tire point 2. The
exponential constant L is a tire characteristic having the
dimension of length and is called the relaxation length.
The relaxation length near point 2 is not necessarily exactly
the same as that near point 1; however, since the former

. relaxation length will not be used in this report in any

critical calculations, this difference will not be taken into
account,.

In regard to the accuracy of equation (4) very near point
1, it should be emphasized that this exponential variation is
only an expression of the equilibrium condition which the
tire-equator distortion would reach in the absence of any
restraints. However, it is obvious that conditions exist for
which this distortion curve cannot be completely exponential
in form. For example, for the case of pure lateral deflection
of a stationary tire, the tire equator in the ground-contact
zone i8 (neglecting skidding) & straight line parallel to the
wheel center plane and extending from point 1 to point 2
(see solid-lines in fig. 2 (b)). Comnsequently, the existence
of an exponential curve just to -the right of point 1, and
including point 1, would imply the existence of a sharp bend
in the tire at point 1 such as is indicated in figure 2 (a).
Since a sharp bend is impossible because of finite tire stifl-
ness, it follows that, in general, on & stationary tire the
exponential variation given by equation (4) cannot be valid
close to point 1. However, experimental evidence indicates
that beyond a short transition region ahead of point 1 the
tire-equator distortion curve does have an essentially ex-
ponential character (see solid lines in fig. 2 (b)). As the
wheel rolls ahead the nonexponential transition region of the
tire equator is laid down or developed on the ground as it
passes into the ground-contact zone, and the more nearly
exponential part of the equator curve moves down toward
the ground (see dashed lines in fig. 2 (b)) and is eventually
developed on the ground, so that after rolling a short distance
from rest and during normal rolling conditions (fig. 2 (c)) the
tire-equdtor distortion at the front end of the tire can
approach the assumed exponential variation of equation (4).

At the rear end of the tire the equator distortion curve
during rolling does not so closely approximate an exponential
variation, since at the rear end there is no process of laying
down or development such as is responsible for the exponen-
tial variation at the front end. However, since the rearward
section of the tire equator is not used in any critical calcula-
tions in this report, its equator curve is also, for simplicity,
assumed to be exponential.

If equation (4) is accepted as the basic equation for
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_.-Tire equator

A
{a)

Transiticn reglon . _Exponential region

(n) Assumed theoretical shape of tire equator distortion for a stationary
twisted tire. v»=0.

(b) Actual shape of tire equator distortion for an untwisted tire at rest
(solid lines) and just after starting to roll (dashed lines).

() Actual shape of tire equator distortion for a rolling tire.
Ficure 2.—Tire equator distortion.

tire-equator Jateral distortion near point 1 under rolling
conditions, the total lateral displacement of the tire from
the XZ-plane in this region can, by use of equation (1), be

written in the form .
s—h

Yi=nt+he T (5)

Substituting the geometnc relation 5= n,~—vyz (see ﬁg 1)

into equation (5) gives
—h

Yi=1—vZ+Me £ (6)
KINEMATIC EQUATION

By making use of the physical concepts discussed pre-
viously, together with equation (6), it is now possible to
establish as follows the basic differential equation relating
the tire deflection at the center of the ground-contact area
o with the wheel coordinates %, 9, and v.

There is assumed to be perfect adhesion between tire and
ground, that is, no skidding. As the tire rolls forward
(arbitrarily swiveling, tilting, and moving laterally) a dis-
tance dz, a new element of the tire of circumferential length
ds above and in front of point 1 is l2id down or developed on
the ground. This tire element, before being laid down on
the ground, had the lateral-distortion variation given by
cquation (6). This equation, after differentiation with
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respect to s, yields for a given instantaneous position of the
tire the following rate of change of distortion:

e~k .
dy; dn, dz 1, 7L @)
ds—ds Tds LM

At point 1, where s=h and y,=y: .
) (7Y _ (%) 1
<d8 1 d8 1 ¥ d8 1 L )\l (8)

The term <%§> is simply the sine of the angle between the
1
ground and the tire equator at point 1. (See fig. 1.) Just

to the left of point 1 the tire is flattened on the ground, or

éz—=0. If <@> were not zero, the tire would bave to have
d8 d8 1 !

s sharp bend at point 1. However, because of the finite
bending stiffness of an actual tire, a sharp bend is impossible;

thus (%) =0 and equation (8) reduces to
1

Further, since <§> =0, s is a horizontal coordinate near
1

point 1. The rate of change of wheel lateral displacement. 7,
with respect to the horizontal coordinate z at any given
instant is just the swivel angle 8; hence

If the tire is assumed to have no sharp bend at point 1,

<dy) (dy > at this pomt Then, since ‘fii‘

of the tire equator on the ground at point 1 and since no
skidding is assumed to exist, this slope must coincide with

the track of the rolling tire on the ground, which is %l’

is the slope

Thus, °

Bip— I

or, if differentiation with respect to z is designated by the

-

operator D=i and the terms are rearranged,
p az g

L Dy,=Lo—\ (11)

(Alternate derivations of this equation are presented in refs. 3
and 4.) A slightly more convenient form of equation (11) is
obtained by substitution of the geometric relations \=7y,—
and g =n-+h8 (see fig. 1) to give

(1+L Dyp=no+(L+h)8 (12)
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Equation (12) is the basic equation for ¥, previously ob-
tained by Von Schlippe and Dietrich (refs. 3 and 4). It
should be noted, however, that no tilt terms appear in the
equation. Although it is not known whether.the effect of
tilt on the validity of equation’ (12) is important, in view of
the present lack of a reliable method for taking this tilt
effect into account, the following argument is presented to
afford at least o crude approach to the problem.

Equation (8) contains the tilt term (%) which was set
1

equal to zero on the grounds that the factor (Z——:) is zero
1

because of the finite bending stiffness of the tire. (See fig. 1.)
On the other hand, if it is assumed that the bending stiffness
of the tire is zero and if radial tire distortion is neglected,

(Z—: will be equal to h/r and the tilt term vh/r will enter into
1

equations (9) to (12). As a somewhat questionable approxi-
mation, it will now be assumed that a term of this type, but
smaller by the reduction factor <1, should appear in the
differential equations (9) to (12). Equation (12) then
becomes '

#L, (13)

(1+L Dyyr=ne+6(L+h)—>—

A similar tilt term was derived by Greidanus (ref. 7) on the
basis of a slightly different argument. (Greidanus’ term is
discussed in a subsequent section of this report.) However,
apparently no other detailed tire-motion theory has included
such a term.

Equation (13) is the fundamental kinematic relation for
tire point 1. The kinematic relations for points 0 and 2 are
determined by the condition of perfect adhesion between tire
and ground. During the rolling process each tire circumfer-
ential element first contacts the ground at point 1, later
proceeds to point 0 and then to point 2, after which it leaves
the ground. Consequently, with perfect adhesion each tire
clement at point 2 has the same lateral deflection that it had
when it entered the contact zone at point 1 a dlstance 2h ago;
that is,

‘y2(3)=y1(ﬂ7—2h) (14)
Similarly the kinematic relation for point 0 is

Yo(@)=v:1(z—h)
or -

(@) =yo(z+h) (15)

Finally, by combining equations (13), (15), and (3) the
equation

(1L Digala-+h)y=no@)-+ L+ Hom)— s z)

-

=@+ LA =2 B o)
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is obtained. This is the basic kinematic equation correlating
the tire lateral deflection 9, under rolling conditions with the
swivel angle 8, the wheel lateral displacement », or 73 and
the lateral tilt v for arbitrarily applied variations of 8, 5, or
ns, and v. However, this transcendental form of the kine-
matic equation is not the most convenient form for some
purposes in this report. In particular it is expedient to
remove the transcendental expression from ecquation (16)
by use of a series expansion.

SERIES EXPANSION OF KINEMATIC EQUATION

The expression y,(z—+h), after expansion in a Taylor series,
gives :

#o GA+R)=ys )+ Dyo (@)+22 Doy () + .

= @+33 2 Dy o) (172)
n=1
where the operator D™ represents 347 An alternative form
of equation (17a) which is useful later is
Yo (@+h)=e"y, (2) (17b)

since the infinite series in AD is the series oxpansion of the
exponential function. A third useful form of this equation
is obtained by expressing equation (17b) in terms of a limo
derivative D, instead of the space derivative D. Since it
is assumed throughout this report that the rolling velocity
v is constant, the correlation between these two derivatives
is given by the equation

D )= ( ) %%—)— d(dx) —»D( )

" and hence equation (17b) can also be written in the form

o+ Y= Piyia) (17)
Differentiation of equations (17) gives the result
Dys(a-+1)=Dyu(@)+h Dyo@) +3 D@+ - .
o pa-t
=ﬂZﬂ; =i Dy(z) (18a)
or
Dyofz-+hy=DePy(x)=0"1D " ' Piyyo(a) (18b) .

Substitution of equations (17) and (18) into equation (16)
gives after rearrangement, with y,(z) written simply as ¥,
and similar treatment of 5o, 73, 0, and «:

"lo+l13—£L_h‘Y—"73+l10+ r3— ELh

=(1+l1 D+l2 M"‘l' . .)yo
= 1+Z‘°> lnDn Yo

n=]l

(19a) _
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where

ll=L+h

b= QL+h)s

hn—l

ly=(nL+h) T

or
L
770+llg—§‘f—h v=n3+0L0+ Ta“—gr—h
=(14+.L D)e*Py,

=(1-+Lo~'D,) " Py, (19b)

Equations (19a) and (19b) are alternative forms of the basic
kinematic equation (16) which are useful in subsequent
sections of this report.

This concludes the derivation and discussion of the basic
kinematic equation correlating the lateral tire deflection
7o with the wheel coordinates 0, 5o, and y. Next, attention
will be directed to the relationships existing between these
coordinates and the forces and moments acting on the wheel.

FORCES AND MOMENTS ON THE WHEEL

In this section the primary forces and moments acting on
a rolling wheel are discussed and, where possible, equations
are set down for these quantities. These equations are then
utilized in later sections, together with the preceding kine-
matic equation, to establish the equations of motion for a
rolling wheel. )

The forces and moments considered fall into five general
categories: elastic forces and moments due to tire distortion,
gyroscopic moments, tire inertia forces and moments,
hysteresis forces and moments, and structural forces and
moments,

Throughout this discussion, forces along the coordinate
axes are considered positive if they tend to move the wheel
in the positive directions of the coordinate axes; moments
about the coordinate axes X, Y, and Z or other parallel
axes are considered positive if they tend to produce wheel
rotation from the positive Y-axis toward the positive Z-axis,
from the positive Z-axis toward the positive X-axis, and
from the positive X-axis toward the positive Y-axis, respec-
tively.

ELASTIC FORCES AND MOMENTS DUE TO TIRE
DISTORTION

LATERAL ELASTIC FORCE

The lateral elasticity properties of a tire will be considered
first. If a static untilted tire is laterally deflected at its
base with respect to its rim by a lateral force F},, it produces
an equal spring reaction force roughly proportional to the
mean lateral distortion Ay..s, or, inversely, o lateral tire dis-
tortion Ape. creates a proportional ground force F,. If the
Interal distortion of the center of the ground-contact line A
is taken as the mean distortion, then the elastic ground force
is

Fa=EKN=EK\(Yo—10) =Bro—ns—757) (20)
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where K, is the lateral spring constant or side stiffness of the
tire. This relation is used by most investigators. However,
in references 2 to 5 a slightly different expression is used.
In these references the miean lateral distortion of the tire is
defined as the average of the distortions at the leading-edge
and trailing-edge points of the ground-contact area (points
1 and 2). The resulting equation for F, is

Fomg Es(MHha) 1)
instead of equation (20). The true equation for F,y is prob-
ably more complicated than either of these two equations;
however, since no plausible means of obtaining a better
equation is available, it appears advisable to select one of the
above equations for use in this report. Equation (21) may
be slightly the better equation for a few special cases of wheel

- motion, but equation (20) is much simpler to work with, and

in most cases of wheel motion it makes little difference
which of the two equations is used. Therefore, for the sake
of simplicity equation (20) is adopted hereinafter as the
basic equation for the lateral force on a wheel due to lateral
deformation of the tire.

TORSIONAL ELASTIC MOMENT

The torsional elasticity properties of a tire will be con-
sidered next. If a tire is twisted on the ground about a
vertical axis through an angle «, there arises a restoring
ground moment that is roughly linearly proportional to
the twist:

Mia=Koc (22)

The tire twist « is equal to the mean angle between the track
of the tire on the ground and the wheel plane; that is,

a=DYpmear—0. Taking the value of Dyppen 88 Dyp gives
a=Dy,—0 (23)

and thus .
M, o=K.(Dyo—8)=EK(07'Dyo—0) (24)

Most investigators of tire motion use thisrelation. However,
in references 2 to 5 the mean angle is taken equal to
(M—2Xg)/2h and thus the moment equation

M—E2 ) (25)
is obtained, which leads to relatively more complicated
equations of motion than does equation (24). Since there
is no strong reason for believing equation (25) to be a
significant improvement over the simpler equation (24), the
latter is used in the analysis of this report.

Melzer (ref. 10) has used the less accurate relation that the
moment due to tire twist is

Me=—K.f (26)

which implies the relation &3> Dy, (See eq. (24).) Since
this relation is not true in all practical cases, Melzer’s
theory should be viewed with some caution.

TILT ELASTIC FORCE

If & tire is tilted from the vertical Z-axis by an angle ¥
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without lateral distortion of the equator (\y=0), there arises
a restoring ground lateral force that is approximately linearly
proportional to the tilt angle (e. g., see ref. 2);

Fo=—K,y @n
where K, is the constant of proportionality. Most authors
(excepting Rotta in ref. 2) have not considered the effects of
this force term although they have considered other effects
of the same order of magnitude.

VERTICAL-LOAD CENTER OF PRESSURE

Under some circumstances the vertical load F, influences
the wheel motion. In order to consider this influence it is
necessary to know the location of the center of pressure of
this force. In the XZ-plane (fig. 1) this center of pressure
lies approximately below the wheel axle in line with the point
0. In the YZ-plane the center of pressure is shifted laterally
from the intersection of wheel plane and ground x; as a result
of lateral distortion X and tilt v. As a first approximation,
this shift may be taken as linearly dependent on X, and « so
that the lateral distance ¢ of the center of pressure from the
XZ-plane becomes

=1yt oxNo—Cyy
=C>-?/0+ (A—e)ne—cor

=ayet (1—e)nst [(I—edrs—ely (28)
where ¢\ and ¢, are constants. (The signs of the terms are
chosen s0 that ¢ and ¢, are positive numbers.) .

GYROSCOPIC MOMENTS
GYROSCOPIC MOMENT DUE TO LATERAL DISTORTION OF TIRE

The origin of gyroscopic moments on a rolling untilted
wheel with lateral distortion of the tire at the ground (fig. 3)
is considered next. While the solid rim and axle parts of
the wheel are untilted, lateral deformation of the elastic tire
causes the tire, on the average, to be tilted with respect to
M1y
r+r;
the tire radius and =; is a correction factor which indicates
the effective fraction of the total tire mass that is tilfed at
this angle. Kantrowitz (ref. 8), apparently the only in-
vestigator who has considered this at least theoretically
significant factor, has suggested that r;=~1/2. This tilting
action produces en angular velocity D,7x=?_‘?‘;;‘
indicates differentiation with respect to time. This angular
velocity, together with the rotational velocity of the tire w,
produces a gyroscopic moment about the Z-axis of magnitude

the wheel center plane by an amount = » where r is

» where D,

Ma=—I,w Dm (29)
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Ficure 3.—Effective tire tilt due to lateral distortion of tire.

where I,, is the moment of inertia of the tire (excluding the
solid rim and axle) about the wheel axle. By using the
relation D,( )=v D( ), equation (29) can also be expressed
in the form

Ma=—I,0*Dn (30)

where the ratio v/w is, to a good enough approximation for

this secondary term, equal to the tire radius r. Then,
substituting for v and /v in equation (30) gives
. Lo®
Moa—— Tidyt
Moo= tr ™ 6D

For later convenience, the result can be expressed in several
alternate abbreviated forms:

M =‘—TUZD)‘0=—T172D(110—770)=—TD D (yo—m—ryy) (32)
where
_ nly N
5 5

Another method for deriving an expression for = is discussed
in a _subséquent section.
GYROSCOPIC MOMENT DUE TO TILTING OF WHEEL
If the entire wheel structure tilts at an angular velocity
Dy, another gyroscopic moment arises of magnitude

M= “hy  (34)

in addition to the term of equation (29). Here I, is the
total polar moment of inertia of the wheel (including the
tire) about its axle.
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GYROSCOPIC MOMENT DUE TO SWIVELING OF WHEEL

If the wheel swivels at an angular velocity D4, a tilting
gyroscopic moment also arises of magnitude

Mu=—TIu0 D~ I';”D,a (35)

TIRE INERTIA FORCES AND MOMENTS

This section is concerned with an examination of the in-
fluence of tire inertia forces and moments on a wheel rolling
at high speeds. Two types of such inertia effects are evalu-
ated now in separate sections: inertia forces and moments
associated with lateral distortion and twisting of the tire, and
centrifugal forces and moments. Then the overall effects

of these two types of inertia forces and moments are con- -

sidered in another section.
INERTIA FORCES AND MOMENTS DUE TO LATERAL DISTORTION OF TIRE

At high rolling or shimmy velocitiée, tire inertia forces and
moments arise which are proportional to the relative ac-

celerations of the different parts of the tire (including the

previously discussed gyroscopic moment due to tire lateral
distortion, discussed here from a slightly different point of
view). A rough estimate of these forces and moments can
be made as follows: One-third of the total mass of the tire
m, is assumed to be located on the periphery of the tire and
to be subjected to the same accelerations with respeet to the
wheel hub as are tire particles on the equator line, while the
remaining tire mass is assumed to be substantially undis-
turbed. The “active’”’ mass of the tire per unit circumfer-
ential length is then m,/6xr. The lateral acceleration of tire
particles on the right-hand side of the tire and off the ground
in figure 1(a) will be considered first. The lateral distortion
of the tire in this region is given by equation (4). The
lateral relative velocity of & tire particle, obtained by differ-
entiating this quantity with respect to time, is
2—=h

.D')\g=<D;A1—%D;8>G_ B

The quantity D.s, which represents the peripheral velocity
of tire particles with respect to the wheel axle, is approxi-
mately equal to the negative of the rolling velocity », so that
the velocity expression becomes

s=h

Dt>\1=<Dt)\t'|—z )‘1>€_ z

Differentiation of this result to give the relative acceleration
of the tire particles yields the result

D,’A,=(D,’Al+ 2 D2 )e

The corresponding inertia force AF for this part of the tire
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is obtained by integrating the product of this acceleration
and the active mass per unit length to obtain the force

‘term ~ Gt f D,X ds. Evaluation of this integral,

after replacing the upper limit by infinity for simplification
of the result (which introduces no significant error because
of the rapidly decaying exponential function in D2\,), yields

AP——P D+ DA+ T ) (36)

The correspondmg inertia moment A} is given by the
expression
mt J%I"f .
~ar . r8in o D2\ ds
where r sin ¢ is the moment arm (see fig. 1 (a)), ¢ is related
There-

fore, the moment 1nteg1&1 may be Wntten in terms of ¢ in
the form

AM=—Te f r sin ;o(D )\I-I%D,kl—l—%)q)e
?

to ¢ by the relation s;h=r(¢—¢1), and ¢1=sin“%-

T{p—e1)
L rdp

Evaluation of this integral, after replacing the upper limit
by infinity (which introduces no appreciable error), yields
the expression -

maL (h+L1 [1—— )
AM=

6T

In a similar manner, for tire particles off the ground on
the left-hand side of the tire in figure 1(a), the following
expressions are obtained for the inertia force and moment:

2 (DanAE DTN @D

mrL <h—I—L
MM +Vr,) :(Dm 2Dt Th) (30)

In these two expressions it is assumed, for reasons previously
discussed, that the relaxation length L is the same for both
sides of the tire.

In obtaining the inertia forces and moments for tire par-
ticles in the ground-contect area, it is recognized that in
practically all cases where inertia forces are important the
ground-contact line is almost a straight line, so that the
lateral distortion for tire particles in this region can be
expressed fairly well by the equation

=N T8
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‘The corresponding velocity and acceleration are
DA =DN+-8 Dia—va
DA =DN+s Dla—20 Dia
‘The total inertia force for this region is then

ah
D2 ds

$m—h

___ .
AF= 6ar

——— (Dx”\o —2» Dy) (40)

and the inertia moment is

~

s=h
AM=—7 f " sDands
3
=2 Dia , 1)

The total inertia force F3;, obtained by summing the force
terms in equations (36), (38), and (40), can be stated
conveniently in terms of N and « by using the relations
NFHN=2N and A\ —A:=2he, which are valid for a sub-

stantially straight ground-contact line. The result is

' o

Fu=—2% (1 Dot 0a) %)
swwhere [;=L-h. Similarly, the total inertia moment is
2, my [th <h+L V! ) h{l
B L2
(h +L -‘/ ’
s (20 Dt ) 43)

The significance of these inertia expressions will now be

partly evaluated by considering the inertia force for sinu-
soidal oscillations; that is, where Ng=DX,,,, sin » and there-
fore D2y=—1*N\;, so that equation (42) may be restated as

=gt (5=t ) %o “4)

(An equation similar to eq. (44) has been derived by Mar-
strand in ref. 20. Marstrand’s equation, however, is based
on a cruder representation of the shape of the lateral dis-
tortion of the tire.)

In order to interpret the mgmﬁcance of the inertia force
it is noted that the tire force quantity which is of importance
for the subsequent analysis is the net tire force F,, acting
on the wheel, which is equal to the sum of the ground force
Fa and the inertia force F,:

F,,= yx"_F,-{
For a static tire, F, was set equql to Kao (eq. (20)). In

(45)
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the dynamic case the relation between ground force and
lateral distortion of the tire may be modified by the inertia
effect. As a first approximation, it will be assumed that the
modification of the ground force is proportional to the inertia

force, or
F1R=KA)\0—771FH (46)

where 7, is & number whose absolute value will be less than
unity if the modification of the ground force due to the
inertia force is less than the inertia force itself.

After combining equations (44), (45), and (46), the follow-
ing equation for the net tire force F,, is obtained:

02
FrumFock Fo=| Bim(1—n) 22 (1) %0 (40)
From the form of equation (47) it can be seen that, insofar

as the ratio of net tire force to lateral deformation is con-
cerned, the effect of the inertia force can be considered equiva-

lent to a change in tire lateral stiffness AK), equal to

A = 1) 22 (St “9)

Similarly, from an examination of the terms containing «

~in the inertia moment equation (43), it can be concluded

that part of the effect of this inertia moment is to change the
tire torsional stiffness by an amount AK,, which ig defined

by

ma,; (d—ndm [Th (h+L V" )(”’ —L#)- ’“’{, (49)

v

where 7, is & number representing the.torsional stiffness
similar to 7, for the lateral stiffness. The remaining inertia-
moment term in equation (43), which is proportional to
D\, 1s simply the previously discusssed gyroscopic moment
due to lateral tire distortion. By comparing this term with
equation (32) it is seen that the coefficient » may be expressed

by the equation
2m,r (h—l—L—‘/ )
, (50)

3n(L*r?)
Equation (50) gives approximately the same result as equa-
The

discussion of the velocity range in which these stiffness
changes are important is postponed until after the effects of
centrifugal forces have been considered.

tion (33) with Kantrowitz’ assumption that r, z%.

EFFECTS OF CENTRIFUGAL FORCES

Another inertia effect that may become significant at high
speeds is produced by the centrifugal forces acting on the
individual mass elements of the tire. These centrifugal
forces appear to increase the tire stiffness, as will be demon-
strated by a crude analysis which gives o qualitative idea of
this effect but which should not be regarded as possessing any
strong quantitative merit.

For the purpose of this estimate, one-half the mass of the
tire 1s- assumed to be concentrated in the side walls and the
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other half is assumed to be concentrated on the periphery.

If the tire lateral and torsional stiffnesses K, and K, are

assumed to be directly proportional to the tension in the side
walls of the tire, there will be two sources of tire stiffness:
inflation pressure, which produces a side-wall tension approx-
imately equal to wp per unit circumferential distance (where
a is the tire width), and centrifugal force, which produces the

side-wall tension ( >( )(Di) corresponding to the pe-

ripheral tire mass L m,. Thus the lateral stiffness of the

2
tire may be expressed in the form
Kyocdnr*wp+mp?
or, equivalently, as '
) m
:1atic<1+ :
mgsz)‘ e
K)‘muc I 4,,7-210;“

Ttis evident from this equation that centrifugal force increases
the tire lateral stiffness by an amount AK,

m’vQK)‘ualic
Anr*wp

and the torsional stiffness by an amount AK,:

m ‘ngas tatic
4xriwp (52)

SIGNIFICANCE OF TIRE INERTIA EFFECTS WITH RESPECT TO TIRE
STIFPNESS

The significance of the two just discussed tire inertia effects
on the tire stiffness will now be considered.

For the lateral stiffness of a tire, the effective change
AK, from the static value of K, is obtained by adding the
two increments given by equations (48) and (51). The
resulting effective overall change in tire lateral stiffness as a
function of rolling speed and shimmy frequency is

AK}\J= (51)

AK =

AK (I—=n)mdp? (1—n)mao?® | M K":tauo
3wr gL T 4nr*wp

The first term, which involves the shimmy {requency,
appears to be small enough in comparison with K, so that
it can probably be neglected for most practical conditions.
The last two terms have opposite signs if %,<{1 and thus
may represent two partly counterbalancing effects. The
second term arises from the previous considerations of the
lateral acceleration of tire particles and tends to reduce the
effective lateral stiffness of the tire with increasing rolling
velocity if 5,<{1. The last term arises from the previous
considerations of centrifugal forces and tends to increase the
lateral stiffness. These last two terms indicate that at high
rolling speeds, if 5,<{1 ,the tire stiffness may either drastically
decrease or drastically increase, depending on which of the
two terms is larger. However, both terms happen to be of
the same order of magnitude and the derivations of both

(53)

460194—058——11
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terms are based on concepts too crude to justify conclusions
regarding which term is larger. Thus, the only conclusion
that can be drawn is that at sufficiently high rolling speeds
drastic changes in tire lateral stiffness may occur. Whether
the stiffness increases or decreases can probably be settled
only by experiment.

In order to give some quantitative measure of the velocity
at which these inertia effects become significant, some caleu-
lations were made to determine the velocity at which the
magnitude of the second term in equation (53) becomes equal
to K. By making use of the static tire data in reference 24
for several modern aircraft tires and assuming that 5,=0,
it was found that this velocity averaged approximately
400+/r fps =~270~/r mph, where r is expressed in feet. Similar
estimates for the velocity at which the third term in equation
(53) becomes equal to K yielded approximately this same
velocity. Moreover, since this velocity is rather high com-
pared with normal present-day landing speeds, the inertia
effects on tire lateral stiffness considered here can probably
usually be neglected.

For the torsional stiffness of a tire, the overall effective

- change in torsional stiffness AK, due to tire inertia and

centrifugal forces is obtained by adding the two increments
given by equations (49) and (52). The result is

st A2 0y ],

JEE

mﬂﬂKaﬂaHt ‘ (54)
4drriwp
This equation is parallel to equation (53) for the lateral
stiffness, so that statements made prevmusly concerning the
lateral stlﬁness apply here also.

OTHER INERTIA EFFECTS

The preceding discussion suggests that the effects of tire
inertia are to change tire stiffness at high speeds and to
introduce & gyroscopic moment. However, it should be
recognized that other inertia effects will come into play,
probably at velocities close to those at which the previously
mentioned inertin effects arise. For example, the basic
kinematic equation depends on the assumption of an expo-
nentially distorted tire-equator line corresponding to a
definite ‘“‘static” relaxation length. This assumption is valid
(if it is valid at all) only when the elastic forcesin the tire
predominate over the inertia forces. Where inertia forces
are strong in comparison with elastic forces, it is at least

"doubtful whethér the relaxation length remains constant.

Although there are undoubtedly other effects of tire inertia
in additien to the ones discussed here, it appears probable
that the importance of many tire inertia effects can be
assessed by means of the following summary statement:
The major effects of tire inertia on the rolling motion appear
to come into play at a velocity of an order of magnitude of
400+/r fps~270+/r mph where r is expressed in feet. For
considerably smaller velocities, most inertia effects can
probably be safely neglected; for velocities of this order of
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magnitude or higher, many of the basic assumptions of this
report, and of most other papers on this subject, may be
subject to considerable error.

HYSTERESIS FORCES AND MOMENTS

In addition to the -forces and moments previously dis-
cussed, certain damping forces and moments .arise as &
‘consequence of the sometimes considerable hysteresis losses
which arise in the distortion of elastic tives. Apparently
the only significant attempt to deal with this hysteresis
problem is reported by Von Schlippe and Dietrich in refer-
ence 5.2 This reference provides some valuable insight into
the fundamental mechanism of the hysteresis process and
presents an equation for the hysteresis moment acting about
the swivel axis of a shimmying wheel. However, even
though use of this hysteresis-moment equation leads to good
agreement between theoretical and experimental stability
boundaries for a limited amount of experimental data (as is
shown subsequently in the present report), some parts of
the analysis seem so unrealistic that it is questionable whether
much confidence can be placed in the final results of refer-

ence 5. Apparently, the only other significant contribution-

to the hysteresis problem is provided by the analysis of
Moreland in references 11 and 12. In these references tire
hysteresis forces as such are not considered, but-the idea is
introduced that a tire possesses & characteristic time-lag
constant. In a subsequent section of the present report it
is shown that this time-lag constant may be, at least in part,
8 consequence of hysteresis effects. However, the interpre-
tation of Moreland’s time-lag constant as a hysteresis effect
presents some questionable features that are also discussed
subsequently.

No completely satisfactory solution of the hysteresis prob—
lem has been found yet. However, the following crude
analysis of this problem offers another point of view with a
few qualitative merits not possessed by the two preyious
analyses. ’

Consider the case in which a standing tire is subjected to
a periodical lateral deformation A, of the form

No=No, SID %

Under these conditions the lateral ground force Fi, on the
tire is experimentally observed to vary with time in the
menner indicated in sketch 1 and the corresponding varia-
tion of lateral ground force F,, with lateral tire distortion
2o, shown in sketch 2, appears in the form of a typical
hysteresis loop. As can be seen from sketch 1, the lateral

1528
RN //j'vx
7
0/ q\o-xo sin v? I»xom.
,\’2 /—L“A"o °
\ // “AXO

Sketch 1 Sketch 2

* Although Von 8chlippe and Dietrich considered hysterests effects in an earller paper
(ref. 4), this earller analysis leads to some conclusions which are not in agreement with the
results of the later, more detafled analysis of reference 5.

-
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tire deformation X\, lags behind the lateral ground force Fy
by a time increment Af, where Af is approximately equal to
the ratio of AN\, to the maximum slope of the curve of A
plotted against time (which is ), » for the assumed varia-
tion of N\g):
AN
A o
As a first approximation for quantitatively including this
time-lag concept in the present analysis, a tire is assumed to
behave somewhat like a combination of a linear spring and
s damper unit such as is indicated in sketch 3, where the

(65)

K\
2N
al v
Ao

/

Sketch 3

spring constant corresponds to the previously discussed tire
lateral stiffness Ki and a; is the coefficient of an equivalent
linear damper. Inertia forces are neglected for the present
argument. The differential equation for this system is

Kk}‘o_l_ (5] Dt>\0=Fﬁ

and its solution for the case of Ay=2,,,,, sin v¢ gives a hystere-
sis loop of the form indicated in sketch 2 where the time lag
Af becomes

(56)

tan~1 2

PR ;<
Yy

(67)

After equdting equations (55) and (57), @, can be expressed

K tan(ANg/ N
14

llﬂt)

by the relation a,= so that equation (56) can

then be written in the form
Fp=EKNt Fp=E0+ Ti :>\o) (68)

where Fy,, the lateral force resulting from hysteresis effects,
is

Fo=K\T\ D)=EK\T5» D), (69)
and where
T)-—t{m (A)\o/}\o maz) _ M
)4 y
0
AN (60)

m=tan —
Mnaz
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With the same type of reasoning the hysteresis twisting
moment i8 given by the equation

M,h=K¢Ta D,a=KaTa‘D Da (61)
(compare with eq. (59)), where
Ta=ttm (Afotnz) _ 7Ma
14 14
(62)
Ax
"Ia=f:11n -
oy

It is now seen that the determination of the hysteresis
force and moment from equations (59) and (61), respectively,
depends on the determination of two quantities T and T,
which have the dimension of time and which will be called
time-lag constants. The quantity 73, in particular, can be
considered closely analogous to Moreland’s time-lag constant.
In the present case equations have been derived for the time-
lag constants as functions of the three variables m, 74, and ».
(See eqs. (60) and (62).) However, it should be clearly
recognized that equations (60) and (62) are based in part on
arguments valid only for a standing tire. These arguments
may no longer be valid for a rolling tire, and even if the idea
of o time-lag constant is still valid, it is likely that the time-
lag constants will not be adequately predicted by equations
(60) and (62), particularly if the quantities 5, and 7, are
evaluated from static hysteresis loops. Moreover, it is basi-
cally unsound to assume that the hysteresis force is dependent
only on the tire Jateral distortion Ay and is independent of the
tire twist @; actually the hysteresis force (and the hysteresis
moment) will in general depend in a complex manner on both
X and «, and even for a first approximation the interaction of
these two variables cannot necessarily be neglected. Thus it
appears that the preceding hysteresis equations are based on
rather speculative and perhaps unsound assumptions, at
least from a quahtitative point of view, and for this reason
these equations will not be incorporated into most of the
derivations in subsequent parts of this report. On the other
hand, the preceding derivation may be sufficiently plausible
to give some idea of the order of magnitude of hysteresis
effects, particularly since Moreland has indicated in reference
12 that his experimental date (mostly unpublished) demon-
strates the existence of a time-lag effect in tire motion; con-
sequently, in a few parts of this report some mention will be
made of the consequences of introducing the hysteresis force
and moment terms that have just been derived into a wheel-
shimmy analysis.

STRUCTURAL FORCES AND MOMENTS

The preceding discussion covers the major ground forces
and moments and the gyroscopic moments acting on the
wheel. In addition, forces and moments are exerted on the
wheel by the supporting structure. These will be designated
a8 F,, for the net structural force parallel to the Y-axis, M,,
{for the net structural lateral tilting moment, and M, for the
nef structural swiveling moment. These forces and moments
include shimmy damper moments, spring restoring moments,
inertia forces in a landing-gear structure (exclusive of the

1563

wheel inertia force), and spring forces arising from the
flexibility of & landing-gear strut or of the fuselage of an air-
plane. In general, most of these forces and moments can
probably be considered approximately linear except shimmy
damper moments; however, even ‘these moments can be
replaced as & first approximation by equivalent linear damp-
ing moments.” (See, for example, appendix A.)

Within the scope of a linear theory, these structural forces
and moments will depend in & linear manner on the wheel-
center coordinates m, 6, and v according to expressions of

the type

‘ Fou=Ti(D)nst+ Ta(D )0+ Ts(D.)y (63)
Mey=T(D st Ts(D )6+ To(Do)y (64)
M=T:(D a5t Te(D Yo+ To(D )y (65)

where the T's are functions of the differential operator I,
sometimes called transfer functions, whose specific forms
will depend on the type of landing gear in question.

This concludes the discussion of the forces and moments
acting on a rolling wheel. Now these quantities will be
utilized to set up the basic equations of motion for a rolling
elastic wheel.

EQUATIONS OF MOTION

DERIVATION OF THE EQUATIONS OF MOTION
In this section the linearized equations of motion for a
rolling elastic wheel are set down with the aid of the equa-
tions from the preceding sections.
The sum of the lateral forces acting on the wheel parallel
to the Y-axis is set equel to the inertia reaction to give (see
egs. (20) and (27))

Fn—I_KX(yo_’Ta—Ts'Y)_"K'fY:mw Dy (66)

or, rearranging, 7
Fort Kayo— (Bt my Dms— (Borgt Ky Jy=0  (67)

The first term in equation (66) is the structural force, the
second term is the net force on the wheel resulting from tire
elastic and inertia forces (Bh=K,,,,, +AK where AK, is
given by eq. (53)), the third term is the lateral ground force
resulting from tire tilt, and m,, is the mass of the wheel (in-
cluding the fire). Hor reasons previously discussed, hys-
teresis forces and moments are not included either in this
equation or in the following equations. 7

Setting the sum of the lateral tilting moments about the
wheel center equal to the inertia reaction gives (see egs.
(20), (27), (28), and (35))

M +F eyt Q—e)nst(1—e)rs—edy—ns} +

[ (o rs—re0) —Eplr—222 Dp=L, Diy (68)

or ’
Mt (Bure+ Fao)go—[Bars - Frslng—2222 D p—
(B +Kyrs—Firs(1—e)+Fiey + 1o Dfly=0 (69)
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The first term in equation (68) is the structural moment,
the second term is the moment resulting from the vértical
ground load, the third term is the moment of the ground
forces resulting from tire lateral distortion and tilt, the
fourth term is the gyroscopic moment resulting from the
swiveling motion of the wheel, and I, is the moment of
inertia of the wheel about an axis through its center parallel
to the X-axis.

Setting the sum of the swiveling moments about the wheel

center equal to zero yields the equation (see egs. (24), (32),
and (34))

Mot K o Diy—0)—r0 Diygo—ms~rs)— 22 Dy=T,,D 20

(70)
or

Mo+ Ko™ —70)Diyot+-10 Ding— (Kot Low D 50—

(I:" rrs)vD,'y=0/ (71)

The first term in equation (70) is the structural moment,
the second term is the net moment resulting from tire elastic
and inertia forces exclusive of the gyroscopic moment due
to tire lateral distortion (K,=K., ,. +AK, where AK, is

static
given by eq. (54)), the third term is the gyroscopic moment
resulting from tire lateral distortion, and the fourth term is
the gyroscopic moment resulting from wheel lateral tilt.

Equations (67), (69), (71), and (16) or (19), together with
the three auxiliary equations (63) to (65), are the basic equa-
tions of motion for an elastic wheel. If the 7-functions in
equations (63) to (65) are known for & particular landing
gear, these equations can be solved simultaneously to deter-
mine the rolling behavior of the gear.

Next the question arises as to the most profitable method
of solution of these equations for practical landing-gear
problems. Essentially, the choice is between exact and
approximate solution of the equations. In the past, exact
solutions (omitting some of the less important terms pre-
viously mentioned) have been made only for the simplest
case of a rigid swiveling landing gear attached to a rigid
fuselage (refs. 2, 4, and 5). Although the exact solution
of these equations for more complex problems does not
appear to present any insurmountable difficulties, relatively
. complex transcendental equations may be involved, so that
it is worthwhile to examine the possibility of finding simpler
systematic approximations to the general equations.

A second reason for investigating systematic appfoxima-
tions to the summary theory arises in connection with the
correlation of the summary theory with the other existing
theories. Superficially, in its present form, the summary
theory does not closely resemble most of the other existing
theories. However, the approximations that are presented
subsequently make the correlations between the different
theories fairly easy to see.

Subsequent sections of this report will be concerned with
the problem of establishing a series of systematic approxi-
mations to the general equations and the correlation of
ihese approximations with the other existing theories of
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wheel motion. However, before proceeding with these two
matters it is convenient to digress slightly to consider the
exact solution of the general equations for the case of steady
yawed rolling, in order to establish several relations which
will be useful in later sections.

EQUATIbNS FOR STEADY YAWED ROLLING

For an untilted wheel which rolls at constant velocity al a
constant small swivel or yaw angle, y(z-+h)=y,(2z)=
Constant, §=Constant, and 7,=v=0, so that equations
(2) (with y, for y,), (16) (67), and (71) reduce, respectively,
to the relations

M=o (72)
Yo=(L+h)0=00 (73)
Fyut Koyo=0 (74)
M, —K =0 (75)

By combmatlon of equatlons (72) and (73) the tire lateral
distortion is found to be

By combination of equations (73) and (74) the lateral

force on the wheel is found to be
F,,=—Z1K).9

The quentity [,K,, which represents the lateral force per
unit yaw angle, is an important tire characteristic called the
cornering power or lateral guiding characteristic of the tire.
Later in this report it is found convenient 1o represent
this quantity by a single symbol &, where

N=LK, , (77)

Another property of the steady yawed rolling condition
that is of some interest is the distance of the center of pressure
of the lateral force behind the center of the tire, which is
sometimes called the pneumatic caster e=—A4,,/l,,. This
quantity, according to equations (73) to (77), is equal to

M, K,
€= —'-'F—,y: =]§v- (78)

- SYSTEMATIC APPROXIMATIONS TO THE
SUMMARY THEORY

In this section the possibilities for simplifying the preced-
ing equations of motion are discussed, and a series of sys-
tematic approximations to the general equations of the
summary theory is set down.

All but one of the equations of motion (eqs. (16) or (19),
(63) to (65), (67), (69), and (71)) are usually simple linear
equations and present no great difficulties. The exception is
the kinematic equation, which was originally transcendental
in form (eq. (16)) and was later expressed as an infinite series
of linear terms (eq. (19a)). The most promising way to
simplify the kinematic equation appears to be to assume that
the series expansion in equation (19a) is a rapidly convergent
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series in which all terms above a certain value of 7 can be
neglected. The rapidity of convergence of the series and its
significance cannot be fully determined without a knowledge
of the particular landing-gear configuration considered.
However, some insight into this question can be obtained by
considering the case of purely sinusoidal oscillations of the
form yy=e¢'"%, where the quantity » is the path frequency.
Substitution of this expression into the infinite series in ¥,
in equation (192) yields

(LD = tipdn @)

plm‘:l—l‘zyln_l—l,ﬂ’l'l— “ ..

P1m=l1V1—laV13+lsV15— o ,
Another form for the p’s can be obtained by éubstituting the
relation gy=¢'"% into equation (16). The result is

Pre=008 vh— Ly, sin »h
Pro=810 b+ Ly cos »h "

where

(80a)

(80b)

The rate of convergence of the p series of equations (80a) can
be tested for any given frequency by substituting numerical
values of I, h, and », into equations (80a) and (80b) and
comparing the individual terms. A typical comparison is
shown in figure 4 for the conditions L==0.8», and k=0.5r.
The abscissa of this plot represents the oscillation’s wave
length S=2x/y, and the ordinate represents the p functions.
The label p;; means that this curve represents the sum of the
first two terms in the p;,, series, and the other labels are
analogous.  (The approximation symbols will be explained
later.) TFrom this figure it is seen that the series converge

2.0 -— s

Py, approximations B, Cl, and CZ:_V P, _,summary -1
e 2" theory
1.6} P = ~ ’
s :
s s .

Py Pap, 0pproximation A
L2 s i
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Z

8 }

Al | \

-4 P approximations A and B

—.8| P\ o, Summary theory
— 2L I 1 -l b1
"0 04 .08 l2 16 .20
r/S
TS L 1 1
©® 50 2015 10 8 6 5
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TF1aurE 4—Variation of p, and p; with shimmy wave length.
L=0.8r; h=0.5r.
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very rapidly. From a purely qualitative point of view the
figure seems to indicate that, in dealing with shimmy wave
lengths greaterthan approximately 4 tire radii, two terms in
each series are sufficient to represent fairly well the exact vari-
ations, for wave lengths greater than approximately 6 radii
one term in the p, series and two in the p, series are sufficient,

_and for wave lengths greater than about 20 radii one term

in each series is sufficient. (The wave lengths cited here
represent. only order of magnitude and are not necessarily
quantitatively significant.) To correlate these observations
with the conditions of wave length likely to be encountered
in practice it can be stated that the experimental data of Von
Schlippe and Dietrich (ref. 4 or 5) and Kantrowitz (vef. S),
which are probably fairly typical in this respect, demonstrate
wave lengths which are about 4 radii long at zero rolling
velocity and which increase with increasing rolling velocity.
Thus it appears possible that the use of only a few terms in the
series expansion may lead to a reasonable prediction of
shimmy characteristics for practical operating conditions.

With the preceding considerations in mind the following
approximations to the general wheel-motion equations were
established.

APPROXIMATION A

As a first approximation to the general kinematic equation
(19a) all terms for n>3 will be neglected. This gives the
approximate differential equation

ok Dyl Dy s Deygomnt Lo— 20y

=93+00+( r— E‘Eh

(81)
This equation, together with all the general force and moment

equations previously discussed, is referred to hereinafter as
approximation A.

APPROXIMATION B

A second, less exact approximation for equation (19a) is
obtained by setting [,=0 for »>>2. Thus

Yo+U Dyo+1, D2y0=7lo+l10*‘gfl'gb‘)’

th

=ns+1:0+H{ ra— (82)

This equation is referred to as appronmutlon B.
" APPROXIMATION C1'

Another, cruder approximation for the general differential
equation (19a) is obtained by neglecting all terms in the
series for n>> 1. This gives the differential equation

Yot+1 Dyo=ﬂo+l19~%£7 L
=ns+10+ Ta—gg Y (83)

which is referred to as approximation Cl1.
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APPROXIMATION C2

As a slight simplification of approximation C1, the rela-
tively unimportant, or at least questionable, term involving

{ may be omitted from equation (83). This gives the
differential equation :
Yot+h Dyo=no+hb=ns+10-+ryy (84) .

which is referred to as approximation C2.
With the aid of equations (2) and (23), equation (84) can
be written in the more easily interpreted form

)o=_l1a (85)
or, by using in addition equations (20), (22), and .(77), as
N, Fa_ NM.

M_ Ka_-Kﬂk_ KXKG (86)

Thus, in this approximation the lateral distortion of the tire
is directly proportional to the angular distortion.

The physical meaning of this approximation can be
obtained by considering that equation (86) can also be
arrived at by letting the ground-contact halflength %
approach zero in the general differential equation (19a) (as
was mentioned by Rotta in ref. 2), since all terms in the
series for n>1 and the tilt term are multiplied by A. Then
equation (19a) (with £=0) becomes

Yo+ L Dyo=no+1L8 (87)
or, by using in addition equations (2) and (23),
A=—La (88)
Also, equation (77) for the yawed rolling becomes
N=K,\L (89)
and the combination of equations (88) and (89) gives
=—ga (90)

Equation (90) is the same as equation (86) for any given
combination of N and K,. Thus, when written in the form
of equation (86), approximation C2 formally corresponds to
the assumption of A=0.

Reliable qualitative results should be expected from
approximation C2 only when the neglected quantity % is small
with respect to the characteristic length of the rolling motion
in question (for example, the wave length S of a sinusoidal
oscillation). Fortunately, this condition is at least some-
times satisfied for practical rolling conditions.

APPROXIMATION D1

Before considering the next approximation it should be
remembered that all of the terms neglected in the preceding
approximations were multiplied by the tire ground-contact
half-length %; thus these approximations implied the assump-

tion of progressively smaller ground-contact length or -

progressively larger wave length. In order to simplify the
equations further, it is necessary to make some assumptions
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about the other tire properties. Three such assumptions
will now be made to simplify further the equations of
approximation C2. For the first approximation, to bo
called approximation D1, the simplification

L=0 (91)

is adopted. Then it follows from equation (85) that, for
finite a,

N=0 (92)
which is the basic equation for this approximation. Thus
for this approximation the tire is free to twist but not to
deflect laterally. Infinite lateral stiffness is, therefore, also
implied:

K=

For the simplest form of wheel shimmy, due to tire
elasticity rather than structural elasticity (to be considered
subsequently), equation (92) does not provide accurate
information. For wheel shimmy due largely to structural
elasticity rather than tire elasticity, this approximation
may be of some value; actually most existing theories .
corresponding to this approximation have been developed
for the primary purpose of considering the influence of
structural elasticity on wheel shimmy.

APPROXIMATION D2

- As a second simplification of approximation C2, tho
assumption

(93)

L=

can be adopted. The corresponding theory is designated
as approximation D2. From equation (85) it is evident that
this approximation implies that, for finite ,,

(94)

o a=0 (95)
which in turn implies that
N=o
K,=eN=o (96)

Thus for approximation D2 the tire is considered to be
torsionally rigid but laterally flexible.

APPROXIMATION D3

A third simplification of approximation C2 can be obtained
by keeping the quantity [, finite but considering the tire to
have both infinite lateral stiffness and infinite torsional
stiffness, or

K=K,=N=o

This approximation, which is designated as approximation
D3, thus represents the case of a rigid tire and consequently
also implies that a=X=0. (Formally, approximation D3
can also be interpreted as the limiting subcase of approxima-
tion D1 where N= « or as the limiting subcase of approxima-
tion D2 where Kiy=c. However, it should not be con-
cluded that approximation D3 is necessarily inferior to these
other two approximations.)

A choice of seven simplified approximations based on the

(97)
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summary theory is now available. The problem remains of
determining which, if any, of these approximations is the
simplest one which can be used for any particular tire-
motion problem. While it is not yet possible to give 2
completely satisfactory answer to this question, some insight
into the answer can be gained by comparing the various
approximations with the previously published tire-motion
theories, which are at least partly successful and most of
which are closely related to these approximations.

CLASSIFICATION AND EVALUATION OF EXISTING
THEORIES

In this section the major previously published theories of

wheel motion are briefly reviewed, evaluated, and, wherever
possible, correlated with the preceding summary theory of
this report and its approximations. Each of the major
existing theories is first considered individuelly and then an
abbreviated overall summary classification is presented in
tabular form.

INDIVIDUAL REVIEW AND EVALUATION OF EXISTING
THEORIES
VON SCHLIPPE AND DIETRICH

The tire-motion theory of Von Schlippe and Dietrich

(refs. 3 to 5), of course, corresponds. directly to the-summary- |~

theory of this report, since the summary theory was taken
from their theory with only minor modifications. These
modifications included a more detailed consideration of
some of the influences of lateral tilt and of tire inertia forces
and moments, It should be noted, however, that the Von
Schlippe-Dietrich theory is more advanced than the sum-
mary theory of this report in that it partly takes into account
the width of the ground-contact area. However, as was
previously noted, this factor is probably not of great practical
importance.
ROTTA .o

Rotta’s tire-motion theory (ref. 2) corresponds to the
summary theory of this report beceuse it also is based on the
Von Schlippe-Dietrich theory. Rotta’s theory represents a
slight extension of the last theory to take into account more
adequately most of the effects of tire tilt and the width of the
ground-contact area. No inertia forces due to tire lateral
distortion or centrifugal forces are discussed.

BOURCIER DE CARBON ADVANCED THEORY

Bourcier de Carbon (ref. 6) has developed two closely
related theories of tire motion which are similar to approxi-
mations B and C2. The first of these will be referred to as
the Bourcier de Carbon advanced theory and the second as
the Bourcier de Carbon elementary theory.

Bourcier de Carbon’s advanced theory uses five basic tire
properties which are correlated with those of the present
report through the following relations:

= 1

=% (982)
Tl (98b)
J e}

MMY 157
§=Kia (980)
o=t (08d)

s b __2(L+h) (o8

LK. EK.hCLYh)

Bquations (98) were obtained by comparing this theory
with the corresponding approximation B. The symbols of
Bourcier de Carbon are overscored and do not necessarily
bear any relation to other symbols in this report designated
by the same letters. Although the symbols D, T, lgj and
€ bear a simple relation to the symbols used in the deriva-
tions of the present report, the symbol E bears a more com-
plicated relation which is worth some detailed consideration.

Bourcier de Carbon defined the tire property B as follows:
If an untilted wheel is rolled forward while exposed to a
constant turning moment about & vertical axis and with no
side force, it will move in & circular path of a definite radius;
R is defined as the reciprocal of the product of the turning
moment and the path radius. Unfortunately, however, this
constant-moment circle-rolling experiment is not easily
performed. Therefore, equation (98e), which expresses E

in terms of the more easily measured fundamental quantities

L, k, and K,, is of importance for the use of the Bourcier de
Carbon advanced theory.

In treating the subject of tilt, Bourcier de Carbon omits
many of the details considered in this report. For example,
he implicitly assumes that K,=e=c,=£=0 and that the
inclination angle « is small (teking cos x=1).  However,
these omitted tilt terms may be as important as the terms
considered (as will be shown later); therefore, Bourcier de
Carbon’s considerations of tilt are incomplete.

It should be noted that in reference 6 certain misconcep-
tions occur in the parts of the paper that deal with com-
parisons between theory and experiment. In particular,
some of the experimental data quoted by Bourcier de
Carbon from reference 3 of the present report appears to
be either misquoted or misinterpreted. Consequently,

.Bourcier de Carbon’s conclusion that the experimental data

of reference 3 provide a remarkable check of his theory is
not completely justified; actually these experimental data
provide only a fair indirect check of the theory.

GREIDANUS

Another theory similar to approximation B, except for
the influence of tilt, is that of Greidanus (ref. 7). Greidanus
considers the influence of tilt in much greater detail than
does Bourcier de Carbon; however, he also fails to consider
the force term proportional to K,, and thus his results also
do not fully describe the influence of tilt.

In addition, Greidanus’ kinematic equation differs from
equation (82) for approximation B in that he has introduced
a slightly different term associated with tilting of the tire.
In the present terminology Greidanus’ equation reads

Yo+l Dyotla Dzyo=770+lla—l'z"—:: (99)
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The difference between the two equations lies in the co-

efficient of 4. For approximation B (eq. (82)) the coeﬂicienE

is
%ﬁ (100)

and for Greidanus’ equation (after substituting for 7; from

eq. (19a)),
(=)
T

If ¢ is set equal to (L—l-g) L, the two coefficients are iden-

tical; thus Greidanus’ kinematic equation can be considered
to be a particular case of the corresponding equation of
approximation B.

No subsequent detailed discussion of Greidanus’ theory is
included in this report because no complete translation of
reference 7 is available. : )

BOURCIER DE CARBON ELEMENTARY THEORY

Bourcier de Carbon’s elementary theory corresponds to
approximation C2 of this report except for the minor short-
comings which were discussed in connection with the Bourcier
de Carbon advanced theory. The only difference in Bourcier
de Carbon’s two theories is that the coefficient R is taken as
infinity in the elementary theory but is finite (see eq. (98e))
for the advanced theory. The infinite value for B corre-
sponds to the assumption Z,=0, which was previously made
in passing from approximation B to approximation (2
(compare eqs. (82) and (84)). The physical significance of
R=w is obvious from equation (98). It means that A=0.

MELZER N

The Melzer theory of tire motion (ref. 10) is also similar
to approximation C2 except for details of the tilting process.
Otherwise Melzer’s kinematic equation is identical with the
kinematic equation of approximation C2 and of Bourcier de
Carbon’s elementary theory. However, Melzer’s theory
differs in that it treats the moment due to tire twist as pro-
portional to the swivel angle —@ rather than to the tire
twist angle Dy,—6. This assumption would appear justified
only if Dy,<6, which is not true in general. It is interesting
to note that for the simplest case of wheel shimmy (see sec-
tion entitled “Application to Wheel-Shimmy Problems—
Case I"") the Melzer approximation leads to one of the same
stability boundaries and to the same limiting high-speed
shimmy frequency as the more nearly correct approximation
that included the term in Dy, This restricted agreement,
however, hardly justifies the use of Melzer’s approximation,
since predictions made by means of the two approximations
differ with respect to divergence of the shimmy oscillations
and with respect to another stability boundary. Moreover,
for simple problems the Melzer approximation is not sig-
nificantly easier to solve than the more nearly correct form
including the Dy, term.

MORELAND ADVANCED THEORY

(101)

Moreland has proposed three versions of a tire-motion

theory in references 11 and 12. The most advanced of
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these versions is governed by the equation

(102)

or

Tl Dy, Dyo+2/o=ﬂo+ Tl Do-1,6 (103)

where T is a time-lag constant. This theory corresponds {o
a generalization of gpproximation C2 (with pneumatic caster
neglected, that is, e=0), since for 7'=0 equation (102) is
identical with the basic equation for approximation C2,
However, for T'><0 this theory is not directly compatible
with the summary theory and its approximations.
Moreland uses the following reasoning to establish this
equation: First, it is known that in steady yawed rolling a
yaw angle « is developed as a consequence of the application
of a lateral force Fy according to the relation .

Fa

a= ——5

(104)

which is the basic equation for approximation C2. How-
ever, for the dynamic rolling case this equilibrium yaw angle
obviously cannot be established immediately upon applica-
tion of a given side force; rather, a finite amount of time will
be required for the equilibrium yaw angle to develop.
Moreland has attempted to take this finite time lag into
account by modifying equation (104) to the new form of
equation (102). In the latter equation the constant T is a
measure of the.time lag of the yaw angle behind the apphed
force Fi.

This time-lag term introduced by Moreland does not
correspond exactly to any of the terms in the summary
theory, and to this extent Moreland’s advanced theory is
apparently incompatible with the summary theory. How-
ever, a partial reconciliation of the two theories can be
obtained through the following considerations of hystoresis
effects as applied to approximation C2: According to equa-
tion (58) the lateral ground force, if tilt and inertia forces
are neglected, is given by the equation

_Fp

)‘0+TX t —'I_{; (105)

and the kinematic equation for approximation C2 is (eq. (85))
— -—-lla

Combining equations (105) and (85) to eliminate A, and
substituting Ky;=N yields the equation

we T2

(106)

Equation (106) is formally identical with Moreland’s basic
equation (102) if the hysteresis time constant T).is con-

‘sidered equivalent to Moreland’s time constant 7. The

important points to be noted here are: (1) according to both
views, the tire twist « lags behind the applied lateral force
Fy, and (2) Moreland adopts the lateral-force equation
Fpa=K>, which implies that the lateral force and lateral
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deformiation are in phase (although lateral force and twist
are not in phase), whereas according to approximation C2
(see eq. (105)) the lateral force lags behind the lateral de-
formation as a consequence of the kinematic relation A=—1I,c.
In regard to the second point, since there are apparently
no pertinent experimental data available, it is not possible
to conclude which point of view, if either, is correct.

Why Moreland’s time-constant concept has not been in-
corporated directly into the derivations of the summary
theory should be clear from the preceding discussion: It is
not certain whether Moreland’s time-constant terms are
really independent of the terms already contained in the
summary theory or whether they are, rather, another way
of looking at some terms which are already included in the
summary theory. More specifically, Moreland’s analysis
does not include inertia forces and moments due to tire
lateral distortion, hysteresis forces and moments, or the
higher 7, terms (I3, s, . . .}, and for certain conditions any
of these factors could be interpreted as a time-constant
effect., In view of these factors and in view of the lack of
pertinent experimental data, a completely satisfactory -eval-
uation of the relative values of the summary theory and
Moreland’s advanced theory cannot be made in the present
report.

MORELAND INTERMEDIATE THEORY

As a simpler approximation for his advanced theory,
Moreland has implied (vef. 11) that the influence of the time-
lag term in the basic equation for his advanced theory (eq.
(102)) can be approximated for the usual range of shimmy
frequencies by using the simpler kinematic equation

400 a=—N (107)

Inasmuch as approximation C2 has the kinematic equation
(85)
lla=—)\0

and approximation D2 has the kinematic equation (95),
which could be written in the form ‘ '

o —N

it follows from & comparison of these last three equations-

that Moreland’s intermediale theory falls somewhere be-
tween approximations C2 and D2. Since Moreland has not
offered any concrete justification for this approximation,
further detailed ‘discussion does not appear warranted here.

MORELAND ELEMENTARY THEORY

Moreland’s most elementary theory corresponds directly
to approximation D3, the case of a completely rigid tire, ex-
cept that it, like Moreland’s other two theories, does not
talke into account the pneumatic caster (e=0).

TEMPLE ELEMENTARY THEORY

Temple has proposed an elementary theory for the motion
of tires which is identical with approximation D1 (ref. 13).
Temple has chosen the most general form of this approxima-
tion in that he has considered both the tire torsional stiffness
K, (indirectly interpreted as an increase in trail) and the
cornering power N,

480194—08——12

WHEEL SHIMMY - -

159

This theory was developed before experimental evidence
pointing to the need for more detailed considerations of tire
lateral stiffness was available. Subsequently, Temple has
indicated a need for more refined considerations of the tire
(ref. 25) and has developed independently a theory (unpub-
lished, but partly described in ref. 21) similar to the theory
of Von Schlippe and Dietrich,

MAIER

Maier (ref. 14) has proposed a simplified theory similar to
approximation D1, with the difference that he makes the
added assumption that the tire torsional stiffness K, is zero.

" This theory, too, was developed before there existed much

experimental evidence pointing to the need for more refined
considerations for shimmy behavior.

TAYLOR

Taylor (ref. 15), in-a brief paper, suggested another tire
motion theory which corresponds to approximation D2
except that details of the tilt process are omitted.

KANTROWITZ AND WYLIE

The preceding theories for tire motion, which include
most of the known theories, may all be considered as closely
related to the summary theory of this report. However,
two other well-known theories, one by Kantrowitz (ref. 8)
and one by Wylie (ref. 9), apparently cannot be derived
from the summeary theory and thus cannot be accurately
classified here with respect to the other theories. They
possess some of the merits of approximation B but in other
respects are less adequate than approximation C2. To
point out the deficiencies of these two theories it is sufficient
to consider two simple cases of tire motion as follows:

The first case to be considered is the steady straight-line
motion of a nonswiveling, untilted, rolling wheel which is
not yawed with respect to its direction of motion (x=0),
which is inclined by an angle 6 (equal to the swivel angle)
to the reference X-axis, and which has no lateral forces or
moments acting on the wheel. (See sketch 4.) Obviously,

T X
~ 8 )
~

Sketch 4
for this case there will be no lateral distortion of the tire, or
=0
On the other hand, Kantrowitz’ basic equation, which is
N+L Dn=L8—1, D8 (108)
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gives for this steady unyawed case (with D)\=D§=0)
N=L8

This equation is obviously incorrect, since it implies that the
lateral distortion of a straight rolling wheel, which actually
must be zero, depends on the choice of the coordinate axes
to which 4 is referred. Only for the special case of a wheel
running along the reference axis (that is, for 6=0) is
Kantrowitz’ theory correct in this respeect, and in an actual
shimmy problem this condition is possible only for the case
of zero trail; hence Kantrowitz’ theory cannot necessarily
be expected to give reliable results for trails different from
zero. Thus Kantrowitz’ theory is of at least doubtful value
for practical shimmy calculations.

In order to evaluate the Wylie theory, consider the case of
steady untilted yawed rolling of a wheel moving parallel to
the X-axis. (See sketch 5.) Obviously, the lateral distor-
tion of the tire A, will depend only on the swivel angle 8

X

Direction of
wheel motion

—_—

Y
Sketch 5

(6=a) and not at all on the absolute lateral displacement of
the wheel 7. On the other hand the basic equation of
Whylie, which in the present terminology is -

Yo+L Dyo=L6—1; Do (109)

gives for this steady case (where Dy,=D8=0) the relation
9,=L# or, by using equation (2), )

)‘0=L9— o

This equation states the obviously incorrect conclusion that
the tire distortion is dependent on 7, or, in other words, that
it depends on the choice of the coordinate axes. Thus, only
for the special case 5,=0 is Wylie’s theory plausible in this
respect, and 7,=0 implies that the reference axis must pass
through the path of the wheel. Since this condition is
satisfied in an actual shimmy motion only for the special
case of zero trail, Wylie’s theory, like Kantrowitz’, can be
fully valid only for zero trail and, consequently, this theory
is also of doubtful value for practical shimmy calculations.

It might be noted that the preceding difficulty concerning
Wrylie’s theory could be removed by the logical procedure
of adding the term 75, to the right-hand side of Wylie’s
equation (109) to give the new basic equation

Yo+ L Dyy=L6—1; Do+, (110)
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Another questionable point in these two theories is that
the Kantrowitz theory, as previously noted, predicts that
the lateral distortion in yawed rolling parallel to the X-
axis (see sketch 5) is

N=L0

and so does the Wylie theory if the reference axis is chosen
to give 7,=0. On the other hand, the summary theory has
for this yawed case the relation

= (L+R1) -

(See eq. (85).) The difference arises from the fact that
Kantrowitz and Wylie did not explicitly consider the ground-
contact length 2% in their derivation.

OTHER THEORIES

In addition to the just discussed theoretical papers dealing
particularly with the subject of landing-gear shimmy, o
number of relevant papers exist which are either largely of
historical interest, which deal. particularly with automobile
shimmy problems, which deal only briefly with landing-
gear shimmy problems, which deal with other tire-motion
problems such as yawed rolling and veering-off or ground
looping, or which deal with the determination of tire stiff-
ness parameters. Although these papers are of some interest,
they do not appear to contain any important contributions
which are not contained in the theories just reviewed. The
reader is referred to reference 1 for a substantially complete
listing and brief discussion of most of the papers in this
class.

Of particular historical interest among the investigations
not considered here in detail are the work of Broulhiet (ref.
23) and the work of Fromm (discussed in ref. 22). These
two investigators independently were apparently the first
to recognize the importance of lateral distortion and corner-
ing power of tires in the wheel shimmy problem. Taking
these factors into account, both authors developed tire-
motion theories whose kinematic relations correspond to
that of approximation C2 of the present report.

TABULAR CLASSIFICATION OF EXISTING THEORIES

In order to permit easier visualization and comparison
of the merits of the theories discussed, the major assump-
tions of the various theories of tire motion are collected in
table I. This table lists the nature of the assumptions
made in regard to the primary tire parameters N, K, K,
¢, and I, for each of the theories discussed.

APPLICATION TO WHEEL-SHIMMY PROBLEMS

In the preceding sections of this report a set of basic
differential equations for the motion of an elastic wheel has
been derived and compared with the corresponding equations
of. most of the previously existing theories. These com-
parisons have indicated that, from a mostly qualitative point
of view, the summary theory of this report and the system-
atic approximations to it incorporate the major merits of the
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TABLE I—PRIMARY ASSUMPTIONS FOR THE VARIOUS THEORIES OF TIRE MOTION1!

Theory

2
g
R

h

o
o

1a(n>3) Remarks

Bummary theory. ——
Approximation A....
Approximation B_.__..
Approximations Cland C3_ .o ... ..
Approximation D1
Approximation D2
Approximation D3

boblek ]

88

Assumes laterally rigid tire
Assumes torsionally rigid tire
Assumes laterally and torsionally rigid tire

Von 8chlippe-Dictrich and Rotta._ ... _____
gourcinr e Carbon advanced ___

roldan
Bourcler de Carbon elementary. . ooo oo
Melzer.

Moroland elomentary. ... oo oeeeen
Templa ol itary.
Maler. oo emiceas

iy 8 8 8 ity | 8 8 iy
8 o8 ooy | 8 8 ituiyhyy
Yoo to ooy | iy

I7d
I
%
=]
&
wn 8 a8 Ty

Assumes tire twist angle=swivel angle
Introduces time-constant term

5

'8 oo ey | 8 oty
coocoooocooco | cooo 'y
coococoocococcook ocoéoﬁw

mally rigid tire
or {rall not equal to zero both of these
theories can lead to erroneous conclusions

1 Tho symbol F indlcates a finite number.

existing theories of tire motion and avoid some of their dis-
advantages. However, it still remains to investigate how
best to apply the theory to specific landing-gear problems,
to investigate the question of the absolute or quantitative
accuracy of the summary theory and of the other theories,
and, if the summary theory be found satisfactory, to es-
tablish the simplest systematic approximation to it which
will glve reliable information regarding any particular prob-
lem in tire motion. The best way to accomplish these
various aims appears to be through a discussion of the
shimmy of several particular landing-gear configurations.
In this section three particular landing-gear configurations
are discussed which range in complexity from the simplest
case of a rigid swiveling landing gear to the most general
case of a gear of arbitrary complexity.

DESCRIPTION OF PARTICULAR CASES CONSIDERED

The first landing-gear configuration considered, which is
designated case I, is illustrated in figure 5. It consists of a
rigid landing gear whose only degree of freedom other than
tire distortion is rotation of the wheel about an inclined
swivel axis, which may be opposed by a linear spring or
damper. This particular configuration is chosen because
most of the existing experimental data have been obtained
for such a configuration. Thus; this configuration makes it
possible to discuss and evaluate the summary theory, its
systematic approximations, and the existing’ theories with
respect to agreement with experiment in regard to the various
important characteristics of a shimmy motion, such as
stability boundaries, shimmy frequency, and divergence.

The second landing-gear configuration, case II, is an
untilted landing gear possessing two degrees of freedom aside
from tire distortion. This landing-gear configuration, which
is illustrated in figure 6, consists of a wheel free to swivel but
not to tilt, which turns about a rigid vertical swivel axis
attached by a spring % to the supporting structure. (This
spring is an idealized representation of the lateral flexibility
of an actual landing-gear strut.) This configuration is dis-
cussed for two purposes: (1) to illustrate the effect of struc-
tural elasticity on wheel shimmy behavior and (2) to provide

¥ Direction of motion

_—Swivel oxis

Side view

X

------ Ground projection of
a wheel center plane

e,

~- Ground~contect area

Fy\ + Fyy

Y. ) Bottom view
Figure b —Conﬁguration of landing gear for case I.

an example which is better suited than case I for bringing out
the relative merits of several of the systematic approxima-
tion theories for a case involving structural flexibility.

The third landing-gear configuration considered is a
modification of the gear of case II. In case II the landing
gear was considered to be connected to its supporting struc-
ture by a single spring; in case ITI this single spring is
replaced by a more complex structure described by some
transfer function. This case is chosen mainly to demon-
strate the application of the theory to complex problems for
which the transfer-function concept may be of value.
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7

4 Side view “ End view
Verheol swivel ows;
e

m
k

Center of gravity of §
Y swiveling structure”

Fraure 6.—Configuration of landing gear for case II.

CASE 1 -
GENERAL DERIVATION

In this section the basic equation of motion will be derived
according to the summary theory for the special case of an
inclined, rigid, swiveling landing gear (case I), which is
illustrated in figure 5. This equation of motion could be
obtained by making use of the previously derived equations
of motion for the completely general case; however, it can
more casily be derived here in o slightly different form. for
this particular problem.

The geometric quantities which enter the discussion of this
particular landing gear are indicated in figure 5. This gear
has a swivel axis lying in the XY-plane and is inclined
forward from the vertical Z-axis by a constant angle . The
perpendicular distance a between the ground-contact center
point 0 and the swivel axis is called the trail. The swivel
axis is assumed to move with constant velocity » along the
N-axis without lateral motion from the XZ-plane.

Rotation of the wheel structure about the inclined smvel
axis by an amount ¥ results in & component 6 of angular

rotation about the vertical axis of magnitude
9=y cos x (111)

2 component v of rotation about the X-axis (tilt) of magni-
tude

y=—y 8ln & (112)
and & lateral deflection #, of magnitude
n=—ay (113)

where all angles except « are considered small.

The sum of all moments about the swivel axis must equal
the inerfia reaction Iy D Ay=1Tww*D*p, where Iy is the moment
of inertia of the wheel structure (including the wheel) about
the swivel axis. * The moments about the swivel axis are
assumed to consist of the moments resulting from the
previously discussed forces and moments that arise from
tire distortion and ground loads plus the moments applied
to the wheel by the supporting structure, which are assumed

to consist of a restoring spring of moment py and a linear
damper of moment g Dy=gv Dy, where p and g are con-
stants. Thus, summation of the moments about the swivel
axis gives the differential equation

—[Ex(yo—n0) —Kyvla— Filexyo+ (1 —e\)e—Cyy] 8in x4+
K. (Dyy—8) cos k— 02D (17,—1,) €08 k—pp—gv Dy=I*D*}
: ) (114)

where the first term is the total ground force dué .to tire
lateral distortion and tilt (see egs. (20) and (27)) times its
moment arm a; the second term is the vertical force times
its moment-producing fraction sin x times its moment arm
(see eq. (28)); the third term is the moment about the
Z-axis due to tire twist (see eq. (24)) corrected by cos y for
the component about the swivel axis; the remaining terms
on the left-hand side represent the gyroscopic torque due
to lateral tire distortion (see eq. (32)), the spring restoring
moment, and the linear damper moment. Now by making
use of equations (111) to (113), equation (114) can be
written in the form

A; D+ Ay Dy+ A+ By Dyo+Byypo=0
Ai=Ip*
=arv? cos k+gv
As=a*K\+ K, cos? k+p+p.
By=—K, cos k-}+71v* cos
By=aK\+o\F, sin « J

(116a)

where
-

(115b)

- Y

and
pe=aK, sin k—aF, sin k+ae\F; sin k+¢, [, sin? ¢ (116¢)

The general relation between ¢ and v, for this case is found
by substituting for 7y, v, and 9, according to equations (111)
to (113) in the general kinematic equation (19a). Thus

w33l Dryo=—ap+ 1y cos ey gin

or, abbreviating,

a—l—]— t&n (116)
. and rearranging,
(ol cos x—a)yl/=yo—l-il z,,Dnyo=z°°% LDw — (117)
since ly=1. Differentiating this result gives
(oly cos x—a)Dyb=Zw;‘,) l, D**y,
n=
which can also be written as
(ol cos K—a)w=il Lo_s Dy (118)
and, similarly,
(ol cos x—a)m/,=§32 Le—z Dy, (119)
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Substituting these relations into equation (115) and multiply-
ing through by ¢l; cos k—a gives

4, g In2 Dyp+A, g l|n—1 Dryot-4, ,é lx D™yot-

B, (ol; cos k—a)Dy,+ B (oly cos k—a)y,=0

Tinally, after adding all terms of like order, substituting‘

N=LK, (eq. (77)), substituting for some of the A’s, and
using equation (116), there results the equation

SN P, DYyy=0 (1202)
n=0
where J
Fy=0aN co0s k+ K, cos? k+p+petux
Fi=a*)N+a'K, cos k+ply+ pdy +go-+alym0* cos? «
(120b)
F2=4‘11+A211+Asla
o= Aln g+ Azl Al (n>2)
and
U=\ (al; cos k—a) sin «
(120c)

¢’ =a-t}(1—o)l, cos x=a—%’—b sin x

SYSTEEIA'I:IC APPROXIMATIONS

Equations (120) provide the general differéntial equation
of free motion for case I. The corresponding equations for
the systematic approximations A to D3 are obtained as
follows,

Approximation A,—The basic equation for approximation
A is obtained by setting 7, equal to 0 for n>3 in equations
(120). The resulting equation can be stated in the following
form: .

ED Dr‘.’lo'|‘E'1 D“Z/0+E2 D3y0+-E3 DR%—I—EZ Dyo+E5y0=0 (121&)

where

E0=Iwgla )
B =T,0%34 (amv? cos k+-go)ls

Ey= I 4 (art? cos k4-gn)la+- (Kn+
K, cos? k4 p+p)ls

=10+ (arv? cos k+gv)l+ (PR
K, cos? k+p4pls

Ei=a*)N+a’'K, cos k+ply+pdy+gv-+ ol rv* cos? «
Is=galN cos x+ K, cos? k+p+ p+ux J

T (121b)

and A .
o= (aK,—aF,+ae Fy+-c. F, sin «) sin «
(121¢)

we=0c\Iy(cl; cos k—a) sin x
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Approximation B.—In order to obtain approximation B,
set I3 equal to 0 in equations (121b). This gives the differ-
ential equation

Ey Dyo+-Ey Dyo+Bs Do+ By Dyt Ege=0 (1220)
where T ‘ .

Ey=1ywl,
E=I,+(atv® cos k-+go)lg

-~

| By=Iy+(artcos k- go)ly-+ @K+ Kacosttptpdls +(122D)
. E=aN+a'K, cos‘:c—il—pl1+p.!l1-l—gv—|—o'lla-v2 cos? k

w=0aN cos k+ K, cos® k+p+ petuc J

" (The corresponding equation with inclusion of hysteresis

effects is listed in appendix B.)
Approximation C1.—The equation for approximation C1 is

obtained by setting /, equal to 0 in the equation for approxi-

mation B. The resulting differential equation is

E, D’yo+E1 D?yo+-E, Dyo+Eyyy=0 (123a)
where
Ey=1x'h
Ey=Iy*4 (ar0® cos x+go)l;
(123b)

s=@*N-+a'K, cos k-}+ply+ pdi+gv+ olym0? cos?
Ey=caN cos x+ K, cos? k4 p4-pe+u. -

Approximation C2.—The equation for approximation C2 ig
obtained by setting £ equal to 0 in the equation for approxi-
mation-Cl. The resulting differential equation is

Ey DPyo+-Ey Dyo4-E, Do+ Eyyo=0 (124a)
where
Eo=I;
Ey=I,0*4 (arv? cos k+gv)l, \
(124b)
E;=a*N+aK. cos s+ pli+pdi+gv+4ro° cos? «
Ey=aN cos x+K, cos® k+p+ peta
and
Ua=e\Fy(l; cos x—a) sin & (124¢)

(The corresponding equation, with hysteresis effects in-
cluded, is listed in appendix B.)

Approximation D1.—The differential equation for approxi-
mation D1 is obtained by setting I, equal to 0 in the equation
for approximation C2. The result is the differential equation

Ey D*yy+Ey Dyy+ Egyo=0 (1252)
where
BEy=1Ix#
Bi=a’N+aK, cos x+gv (125Dh)

E,=aN cos x+ K, cos? k4pw,
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and

w,=(aK,—aF;4¢.F, sin x) sin « (125¢)

Approximation D2.—The differential equation for approxi-
mation D2 is obtained by dividing all terms in equations
(124) by [, and then setting /; equal to « and using the
relations N/;=K, and K./l;=eK,. The resulting equation is

Ly D¥yo+E, D?o-+-E; Dyot+-Egyo=0 (126a)
where X
Fy=I"
By=are® cos k+gv

126b
Ey;=a?K+aeK, cos k+p+p+70° cos? x ( )

Ey;=akK, cos k+eK, cosik-+enF sin & cos k
Approximation D3.—The differential equation for approxi-
mation D3 is obtained by dividing the E’s for approximation

D1 by N and then setting NV equal to =. The resulting
differential equation is

a Dy, cos k=0

PREVIOUSLY PUBLISHED THEORIES

127)

In the preceding section the differential equations are
set down for case I according to the summary theory and
the systematic approximations thereto, complete with all
pertinent details, including a number of second-order terms
so as to enable the direct application of these equations to
actual problems. In the present section the differential
equations for the previously published theories are listed
for the purpose of making clear the differences in the basic
structure of the differential equations resulting from the
application of these theories to case I. In order to avoid
obscuring the more important differences between the
equations of the various theories, all terms are omitted
whose inclusion in any shimmy theory should be completely
straight-forward (such as the spring restoring-moment
coefficient p and the damping coefficient g) and also all
inclination effects. Although the latter effects are not
necessarily negligible, they do appear to be of second-order
importance and their omission here should not alter the
basic structure of these equations. With these omissions—
that is, for g=p=r=0—the differential equations for case T
according to the previously published theories are as follows
in the terminology of the present report:

Von Schlippe-Dietrich and Rotta theories.—The basic equa-
tion of motion for this case according to the Von Schlippe-
Dietrich theory, after neglect of the effects of tire width,
corresponding to equation (120a) for the summary theory, is

> o/ Dyo=0 (1282)

REPORT 1299—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where

Fo’=aN+K; ' -
F/=a’N+aK.+g0
B =Ll e stgiol a1+ (@ Ex+Ko)l s+
[7% aJL"K,\(ll—a):I
) n=2,4,...) r (128)
P =Ll stg:0la 1+ (@ Er+-Ko)la—

1 n—1
i El—a) |

(n=3,5,... ))

The symbol g, is a hysteresis damping coefficient defined
by the equation
di

=T

where d; and d; are hysteresis constants. Aside from the
omission of some inclination effects and other terms, as
discussed previously, the only differences between equations
(128) and equations (120) for the summary theory lies in
the inclusion of the hysteresis term involving g; and in the
addition of the terms in brackets in equations (128b),
Rotta’s corresponding equations, after neglect of tire width
effects, would be the same as equations (128) except that
Rotta omitted the hysteresis term. As was previously
noted, the Von Schlippe-Dietrich theory and Rotta’s theory
differ only slightly in their respective considerations of the
influences of tilt and tire width, neither of which effects are
considered here.

" Bourcier de Carbon advanced theory.—The Bourcier do
Carbon advanced theory leads to the fourth-order differential

(128¢)

- equation

Ey Diyo+Ey D¥yot+E, D¥yo+-E; Dyo-+Ego=0 (129a)

where ‘

' ‘ Ey=1Ip"
E=1, W’ll
E=I'+ (@®K+ Kl
E,=ad'N-+aK,
Ei=aN+K,

(129b)

Y

J

Bourcier de Carbon elementary theory.—The coefficients
for the Bourcier de Carbon elementary theory are obtained
by setting /; equal to 0 in equations (129) for the advanced
theory. The resulting third-order differential equation is

Ey Da?/o'i'El D*yo+Ez Dyot+Eqyf=0 (130a)
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where
B=Iw,

E=I14
E=d’N+-aK.
E,=aN+K.

(130b)

Melzer.—Melzer’s theory gives the third-order differential
equation

E, Dal/o‘l‘El D*y+-E, Dyo+Esye=0 (131a)
where
Ey=1I,
E1=I¢D’
(131b)
B=®N+LK,
BEy=aN4-K,

Moreland advanced theory—Moreland’s advanced theory
leads to the fourth-order differential equation

Ey D4yo+Ey Dyo+-Ey Dyo+Es Dyo+Ego=0 (1328)

where .
Ey=1I,Tly* A

Ey=TI s

E=I+a*TNv

E;=a*N+aTNv
=alN

v—

(132b)

7

Moreland elementary theory.—Moreland’s elementary
theory gives the differential equation

a Dyo+10=0 (133)

Taylor.—Taylor’s theory leads to the third-order differ-
ential equation

E, Dyt By D3t By Dyit Egyo=0 (134a)
where .
Ey=Iv*
E1=0 )
- (134b)
- By=Kya?
.E3=K)‘(L

Temple elementary theory.—The second-order differential -

equation for the Temple elementary theory is
Eo Dzyo'l'El D?/o‘l' Ez’!lo=0

(135a) °

where
Ey=Ip*
E=a*N+aK, (135b)
E,=aN+ K,
Maier.—The second-order differential equation of Maier's
theory is. .
By Dot Ey Dygt Eqyjo=0 (136a)
where
Ey=1I*
Ey=a’N (136b)
Ey=aN

Kantrowitz.—Kantrowitz’ theory leads to the third-order
differential equation

E, D*yit+ B, Dyt E; Dyet Ezyo=0 (137a)
where .
BEy=IvL
’ E1=Iv7"|‘ alﬂN-I_ l&Ka
R ) (137b)
E=0
E,=aN+ K,

Wylie.—Wylie’s theory leads to the third-brder differential
equation )

By Dyt By Dzyo+Ea Dyo"l'Ea‘.l/o:O (138a)
where
Ey=Iv*L h
E=Ivt+ad, N+ LK,
E=atN+ oK. > (138b)

= (aN+ K <1+%) ,

STABILITY OF MOTION

The basic equations of motion having been established
according to the various theories for a rigid swiveling landing
gear, attention will be directed next to the meaning of these
different equations with respect to prediction of the shimmy
behavior of the landing gear. However, before going into
this subject in detail it may be useful to discuss briefly what
sort of information is desired about the motion of a landing
gear. Basically, the most important question is whether
or not the motion is stable—that is, does the wheel tend to
move in & straight line (with decaying shimmy oscillations
or decaying aperiodic motion) or does the tire tend to move
laterally out from its rectilinear course (with divergent
shimmy oscillations or divergent aperiodic motion). To
answer this question of stability for linear systems, the
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analytic methods of Routh (ref. 26) or Hurwitz (ref. 27) or
graphical methods similar to those introduced by Nyquist
(vefs. 28 to 31) are available. A brief discussion of these
methods is given in appendix C. Any of these methods-will
provide for most cases a procedure for determining whether
any particular combination of landing-gear parameters and
rolling velocity is stable or unstable.

In general, for complicated problems, rather than inves-
tigate the stability of a landing gear by these methods for
all possible conditions it may be more convenient and some-
times more valuable to draw various types of stability dia-
grams describing the system in question. For example, for
case I o typical experimental type of stability diagram is
shown in figure 7, which presents boundaries between the
regions of stability and instability as functions of trail and
rolling velocity for a specific landing-gear model. Another
useful type of stability diagram for some problems might
be & plot of boundaries between stable and unstable regions
as functions of damping moment and rolling velocity.

In determining these stability boundaries, use is made of
the well-known fact that the motion of a linear system can
change from a stable to an unstable condition only where
the motion is purely oscillatory—that is, where any variable,
for example ¢, is of the form

y=yn"" (139)
or where the motion is purely uniform, of the form
V=vn (140)

Thus all possible stability boundaries can be obtained by
directly substituting expressions of the form of equations
(139) and (140) into the basic differential equations. In
‘connection with the question of what form of the differential
equation to use, it is of some importance to note that the
final form, where the equation is expressed in terms of one
variable, is often not the most convenient form to use. For
example, for case I the purely oscillatory boundaries are
most advantageously obtained by using equations (115) and
(117) with the substitutions

Y=yme"*
(141)
Yo="Yo, 6 1=HD
24
g6
(3]
c
& : .
= 8 Unstoblg region
Stable region
1 ] ]
o 50 100 150 200 250

Velocity, v, km/br

Figure 7.—Experimental stability boundary for a tire 29 em in
diameter (from ref, 17).
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The advantage of this particular choice arises from the fact
that it leads to two algebraic equations, one of which does
not include the demping parameter g. This isolation of the
parameter g usually easec slightly the mathematical labor
of solving for the purely oscillatory boundaries.

The equations governing the stability boundaries for case I
for the general theory and for the systematic approximations

.are listed in appendix D.

COMPARISON AND EVALUATION OF THE SUMMARY THEORY AND IT8
SYSTEMATIC APPROXIMATIONS

The dual object of the present section is (1) to assess fur-
ther the value of the summary theory by comparisons
between the predictions of this theory and the available
experimental data for case I conditions and (2) to determine,
by comparison of the relative predictions of the summary
theory and its systematic approximations, what is the
simplest satisfactory systematic approximation to the sum-
mary theory. Discussion of the previously published theo-
ries, as applied to case I conditions, is contained in a subse-
quent, section. \

For convenience the following discussion is divided into
separate considerations of stability-boundary conditions and
unstable shimmy conditions.

Stability-boundary conditions.—The present section dis-
cusses theoretical and experimental stability-boundary con-
ditions insofar as they are influenced by the tire parameters
l, (where n=1, 2, . . ), £ K,, &, NV, and 7 and by hysteresis
effects. In the major part of this discussion the stability
boundaries to be considered will be of the type obtained by
plotting curves of trail against rolling velocity for those
trail conditions that separate regions of stability and in-
stability. The general shapes of these stability boundaries
for case I, according to the summary theory and the sys-
tematic approximation theories A to D3, are sketched in
figure 8 for the special condition of no damping or gyroscopic
moments (g=7=0). It is seen that the summary theory
and approximations A to C2 each predict that at high speeds
the motion is stable for large trails and unstable for small
trails; the horizontal boundary line is the same for each case,
and is generally located at a trail roughly equal to the tire
radius. (This boundary is theoretically completely indo-
pendent of the spring restoring moment p D,y and isrelatively
independent of swivel-axis inclination x.) Approximations
D1, D2, and D3 fail to predict this boundary. Also, these
three approximations, together with approximations C1 and
C2, fail to predict any effect of rolling velocity on the low-
speed stability boundaries, whereas, according to approxi-
mation B, for sufficiently small speeds the motion becomes
stable for all small trails and, according to the higher theories, -
for most of the small-trail region. Also, at low speeds and

‘large (usually impractical) trails the higher theories (B and

above) indicate that the motion becomes unstable at suffi-
ciently small speeds. The effects of the omitted damper

‘and gyroscopic-moment terms would be to reduce the size

of the regions of instability.

(2) Effect of higher /, terms: As a first test of the sum-
mery theory and its systematic approximations there are
availablo the experimental data of Von Schlippe and Dietrich
(vefs. 3, 4, and 5) which were obtained with a small model
landing gear equipped with a pneumatic tire of 26 cm
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Unstable Stable Unshbky Stable
o
.. [Stable Stable
o .
E Unstable Unstable
Velocity, v Velocity, v
Summary theory and Approximation B
approximation A
Stable
o
= Stable Unstable
£ Unstable
/
Velocity, v Velocity, v - Velocity, v

Approximations Cl and C2 Approximations DI and D3

Fragne 8,—Qualitative comparison of the stability-boundary predic-
tions for case I according to the summary and systematic approxi-
mation theories neglecting damper and gyroscopic moments

=r={)),

Appradmation D2

(10 in.) diameter. This model landing gear was tested at
relatively low speed conditions where the higher I, terms
(la I, . . .) are of some importance; consequently, these
data provide an opportunity’ for testing the relative and
absolute validity of the summary theory and the higher
approximations A to C2 (which differ essentially only by
their inclusion or omission of the higher I, terms.)

The basic landing gear and tire.constants for the Von
Schlippe-Dietrich model, which was tested only in the un-
tilted condition (x=0), as taken from references 3 and 5, are
as follows:

k=p=g=0
Iy =~0.53 +0_.0025CL2 cm-kg-sec?
L=10 cm
N= 640 kg/radian
K.=3,040 cm-kg/radian
Ky=45 kg/em

The quantities ;, h, and the higher /,’s were calculated from
the previously discussed relations ,=N/K,, h=[,—L, and
l,=mL+h)k*nl. (See egs. (77) and (19a).)

The experimental data obtained by Von Schlippe and
Dietrich for this model are shown in figures 9 and 10, to-
gether with the corresponding predictions of the summary
theory and the systematic approximations A to C2. (Also
shown are the predictions of the theory of Von Schlippe and
Dietrich which are discussed in a later section.) Figure 9
presents stability-boundary plots of trail against velocity,
and figure 10 presents the frequency at these stability bound-
aries as’'a function of velocity. No theoretical curves are
shown on these figures for approximations D1, D2, and D3
since these approximations are too crude to give any de-
tailed information for this problem; they predict either com-
pletely stable or completely unstable motion for all positive
trails (see fig. 8). The equations used to calculate the
theoretical curves in these two figures are given in appendix
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20
Von Schlippe-Dietrich theory
———————— Summaory theory
—_— Approximation A +g=7=01 Stability
—_— - Approximation B boundortes
6 Approximations Cl ond G2

o Experimental data

Trail, @, cm
© o

(Unstable motion on lower right-hond
side of stability boundories)

1 1 I [
o} 200 400 600 800 1000 1200
Velocity, v, cm/sec

F1aurs 9.—Comparison of theoretical and experimental predictions of
the stability boundaries for the Von Schlippe-Dietrich test model of
referen;:es 3to5. (Hysteresis effects are neglected in these theoretical
eurves,

20

II o o
a !
(&]
JN2F p o
b
- o]
>
2 &
@ /
= /,
s 8r v/ ©
[T // °
/ —————— Von Schlippe-Dietrich theory
F O Summary theory
4l ° — Approximation A
’ —_— - Approximation B
4 ———---—— Approximations Cl and C2
o Experimental data
L 1 ] 1 1
o 200 ¥ 400 600 800 1,000 1,200

Velocity, v, cm/sec

Figurp 10.—Comparison of theoretical and experimental shimm
frequenci? on the stability boun for the Von Sch]ippe-Dietricﬁ
test model of references 3 to 5. ysteresis effects are neglected
in these theoretical curves.)

D. In these calculations the gyroscopic torque term in-
volving 7 has been neglected since 7 is unknown for these
data. A rough value of + could perhaps be estimated, but
such a dubious estimate did not appear necessary because
the term involving 7, according to any reasonable estimate
of 7, would be of no importance in the velocity range of these
experimental data.

In comparing the theoretical curves in figures 9 and 10 it
is observed that approximation A gives a boundary very
close to that of the summary theory. Approximation B
does not give as close agreement but it is still fairly good
and, more important, for most of the trail range the difference
between approximation B and the summary theory is small
as compared with the difference between the summary
theory and the experimental data. As was previously noted,
approximations C1 and C2 (which are identical for the
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present condition of x=0) predict a trail-velocity stability
boundary which is independent of velocity so that this
approximation is an inadequate representation of the
summary theory at low velocities. However, at high speeds
approximations C1 and C2 give the same stability boundary
and frequency as the higher approximations.

As a further 2id in comparing the different systematic
approximations with the summary theory, figure 11 presents
2 plot of thelinear damping coefficient g required to stabilize
the motion of the Von Schlippe-Dietrich model at a medium
trail of 7 cm as calculated according to the summary theory
and the various systematic approximations (the equations
used are presented in appendix D). This figure confirms
the conclusions drawn from figures 9 and 10 that approxi-
mation A is a very good representation of the summary
theory and that approximation B is also a good representa-
tion of the summary theory. However, more importantly,
figure 11 demonstrates that approximations Cl1 and C2
also give a fairly good representation of the summary theory
with respect to prediction of the maximum amount of damp-
ing (i. e., the maximum value of g) required for stabilizing the
motion. Approximations D1, D2, and D3 are seen to give
inadequate Tepresentations of the summary theory.

The preceding conclusions are, of course, only proven to
be valid for the specific conditions of the Von Schlippe-

Dietrich model tests. However, they are believed to be -

valid for most practical rolling conditions.

In considering the correlation between theory and experi-
ment for the Von Schlippe-Dietrich test conditions, it is
noted that the experimental stability boundary in figure 9
is of the same general shape as that given by the summary
theory and approximations A and B but that it lies to the
right of the theoretical curves and thus indicates that the
experimental system is more stable than the theoretical
system. Similarly, the experimental frequency-velocity

30
Summary theory
I —————— Approximation A
25 :' ——-——— Approximation 8
——=~-—— Approximations Cl and C2
§ I ——---—— Approximation D2
£ 20} |
= | |
-
5 H
E I5-I
2 .
3 e
2 ol |
= |0~i i
§ va t
oA
r 1 ] 1 1 1
) i 2 3 4 5 6 x 103
Velocity, ¥ cm/sec
Fiaure 11.—Theoretical calculations of the damping required to

stabilize the motion of the Von Schlippe-Dietrich model landing gear
at a trail of 7 em. (No damping required according to approxima-
tions D1 and D3.)
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curve in figure 10 falls below the theoretical curves. These
discrepancies are perhaps a result of the neglect of hysteresis
damping in the calculation of the theoretical curves of figures
9 and 10 and are discussed more fully in the next section.
(b) Effect of hysteresis: In order to investigate whether
the discrepancies between theory and experiment shown in
figures 9 and 10 might be explained by a consideration of
hysteresis effects, some results of calculations involving
hysteresis effects are shown in figures 12 and 13 for the same
test conditions as in figures 9 and 10. Figures 12 and 13
present theoretical calculations of trail-velocity and fre-
quency-velocity stability boundaries, respectively, both with
and without consideration of hysteresis effects, together
with Von Schlippe and Dietrich’s experimental data. The
curves for the Von Schlippe-Dietrich theory were calculated
by using Von Schlippe and Dietrich’s theory with their
hysteresis equations (see eqs. 128), whereas the curves for

20
Von Schlippe-Dietrich theory
(0, =900 kg-cm/radian, dp » 0065 cm™! | Stabllity
18 - —-— Approximation B (ny= Ol, 7y = 02) boundaries .
o Experimental data
I~ o
i
12+ " ________
Hysteresis not ——
5 considered =3
v i
!
=8 I/
2 /
'_
7
/
4 {Unstable motion on lower right hond
side of stabllity boundorles)
1 ] ] |
o 200 400 600 800 1,000 1,200

Veloclty, v, cm/sec

Ficurs 12.—Effects of hysteresis on the stability boundaries for the
Von Schlippe-Dietrich test model of references 3 to 5.

20
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16f- | =
Hysteresis not
Y onsidered "\\}I 7 e °
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> / / (]
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§ ol 7/,
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7 /o
/ ———— Von Schlippe -Dietrich theory
a4 (¢ =900 kg-cm/radian; dp 20065 cm™l)
~——— Approximation B (7, 20.l; 7°0.2)
o Experimental data
] 1 1 1 1
(o} 200 400 600 800 1,000 1,200
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Figure 13.—Effects of hysteresis on the shimmy frequen%y for tho
Von Schlippe-Dietrich test model of references 3 to b.
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approximation B were calculated by using the equations
for hysteresis effects derived in the present report (see appen-
dix B). The values of . and 5. indicated in these figures,
which were used in these calculations, were estimated from
static hysteresis-loop data, partly unpublished and partly
published in reference 24. The values of d, and d; used were
taken from reference 5. It is observed from these figures
that there is & considerable difference betwéen the calcula-
tions according to either theory, depending on whether

hysteresis effects are included or omitted. Moreover, it is -

seen that either theory provides fairly good agreement with
the experimental data when the hysteresis effects are taken
into account. These facts suggest that hysteresis effects
may be an important factor which must be taken into account
in order to obtain good agreement between theory and experi-
ment. On the other hand, neither the Von Schlippe-Dietrich
nor the present report’s consideration of the hysteresis effects
seems to rest on a completely sound foundation. Thus it
appears safe to conclude only that since two different ap-
proaches to the hysteresis problem indicdte that hysteresis
effects are important, a more rigorous analysis of the
hysteresis problem would be worthwhile.

(c) Effect of /;: The next test of the summary theory makes
use of the experimental data of Melzer (ref. 10), who per-
formed g series of tests with an untilted (x=0) solid rubber
tire 7 em (3 in.) in diameter at sufficiently high speeds so
that his data would be expected to fall considerably to the
right of the curved-line low-speed stability-boundary curve
in the first two sketches of fizure 8. For this velocity range
the predictions of the summary theory and approximations
A to C2 are identical; they all predict that the undamped
(g=7=T=T.=0) motion is stable for all values of trail a
greater than [;=N/K,; that is, the critical value of trail a, at
which the motion changes from an unsteble state to a stable
one is given by the relation a.=I;. (Even if gyroscopic
moments are taken into account, this equation is only
slightly modified throughout a relatively largerange of rolling
velocity; however, for very large velocities this relation
breaks down as a result of the gyroscopic moment and the
motion becomes stable for all positive trails. This phenom-
enon will be discussed in a subsequent section.) The predic-
tion a,=I, is well confirmed by Melzer’s tests, as is llustrated
in the following table of data taken from reference 10, which
lists the experimental values of I, together with the frail
required for stability for several "conditions of vertical
loading:

Y - S 1 2 28 3.6
L=N/K,,em_._.__| 2.8 2.85 322 3.4
[ FO 2.3 3.0 a1 3.4

These particular data were taken for the case where no
spring restoring force acted on the model landing gear (p=0).
Similar good agreement was obtained for the case where a
strong linear spring restoring moment was present (p>K,).
For this case, according to the summary theory and approxi-
mations A to C2, the stability boundary for the positive trail
condition is the same as for the case of no spring restoring
force. This prediction is well confirmed by Melzer’s tests, as
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is illustrated in the following table of datae also taken from
reference 10.

Fokg__.......| 1 2 2.8 3.6
h=NJK,,em | 198 2.60 290 2.01
T@, Mmoo 20 | 2225 | .~27 ] =28

(The difference between the values of [; in these two tables
is merely & consequence of changes in fire characteristics
between the corresponding tests.)

In order to assess the significance of the preceding compari-
sons of theory and experiment it should be noted that the
theoretical relation a,=l;, calculated for g=7=T=T.=0,
is independent of spring restoring moment p and tire tor-
sional stiffness K, and, in the velocity range discussed, can
be shown to be not strongly influenced by gyroscopic or
hysteresis moments (r, T, and 7,) or by the higher l,’s
(L, &, . . .). Consequently, this comparison tells practi-
cally nothing about the correctness of the manner in which
these important quantities have been inserted into the
summary theory. On the other hand, the theoretical rela-
tion a.=!; depends almost entirely on the correctness of the
kinematic equation of the summaery theory which, for
Melzer's test conditions, reduces to the kinematic equation
of approximation C2 (eq. (85)): .

M:——-lla

Thus, the results of the preceding comparison indicate that
there exists a range of rolling speeds in which the kinematic
equation of the summary theory, as well as of approximations
A to C2, is reasonably correct (except possibly for the terms

involving £, which are as yet not evaluated and are not very
important).

It can be said with safety that the range of velocity for
which the theory gives good agreement with Melzer’s model
data corresponds to full-scale conditions somewhere inside
the practical rolling speed range and possibly covering much
of the practical range. However, the preceding comparisen
definitely does not prove anything about the adequacy of the
summary theory for small velocities or for the highest
velocities which may be encountered in practice.

Further confirmation of the preceding conclusions is pro-
vided by the experimental data of Schrode (ref. 17) who per-

formed tests, similar to those of Melzer, for realistic pneu-

matic tires as large as 39 cm (15 in.) in diameter, as com-
pared with the small 7 cm (3 in.) solid rubber tire tested by
Melzer. Schrode obtained trail-velocity stability-boundary
plots of the type illustrated in figure 7. These stability-
boundary plots indicate the same result as Melzer's data,
namely, that there exists a range of velocity in which the
motion is stable above a certain critical trail ¢, and unstable
below it. (This velocity range for the data in figure 7 is
approximately 60 to 160 km/hr.) It is not possible to check
quantitatively the theoretical stability-boundary equation
a.=l, for Schrode’s® data because Schrode provides no in-
formation suitable for accurately evaluating l;,. However,
some qualitative confirmation may be found, since the quan-
tity [, always appears to be of the order of magnitude of the
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tire radius » and for Schrode’s data a, is found to be of this
same order of magnitude (e. g., see fig. 7). Thus Schrode’s
experimental data appear to confirm the previously drawn
conclusion that there exists a velocity range in which the
kinematic equations of the summary theory and approxima-
tions A to C2 are valid. .

Dietz and Ha.rﬁng liave presented some similar stability-
boundary curves in reference 16 which also confirm the fore-
going conclusions.

(d) Effect of £ Some insight into the effect of the tilt
parameter # can be obtained by an examination of the effects
of swivel-axis inclination « on the stability boundaries ac-
cording to the predictions of approximation C1 for the con-
dition where damping, spring-restoring, and gyroscopic
moments are neglected (g=p=+=0) in order to isolate the
effects of inclination. (These assumptions appear to be
justified for the experimental conditions discussed in this
section.) Under these assumptions one theoretical stability
boundary is given by the equation”

a.=l, cos K-I-E—Lrllsin K (142)
Experimental data suitable for testing this relation are avail-
able in reference 16 for an inclination range of —20°<x<20°
for one constant-velocity condition. These experimental
data, some of which had to be slightly extrapolated from the
date in reference 16, are shown in figure 14 together with
the predictions of equation (142) for values of £ equal to 0
and 1. Although reference 16 does not supply the values
of L, h, and /; needed for calculations, the assumed values
indicated on the figure are probably accurate enough to
justify the following more or less qualitative observations.
(The value of /; was chosen so as to make the calculated and
experimental values agree for the case xk=0.) It is noted
that the experimental variations and the theoretical variations
for £=0 are in fairly good agreement and also that these two
variations are more or less symmefrical with respect to
positive and negative values of x. On the other hand, the
theoretical curves for £>0, such as the indicated curve for
t=1, will all be unsymmetrical. Thus, it appears that ¢ is
probably close to zero. In this connection it might be

8
,/’// o £=0
- [}
el
(3]
S
o
24T
E o Partly extrapolated experimental data from reference 16.
E |====}Equation (142); assuming L=5cm, U =7.5cm, .
S
21 . h=2.5¢cm
0 t 1 21 | 1
=30 -20 19] 0 1@ 20 30

Inclination of swivel axis, x, deg
Figure 14.—Influence of swivel-axis inclination on the stability
boulbdiry/.h Tire approximately 12 cm in diameter; F,=6.25 kg;
v=19 km/hr.
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noted that Greidanus’ theory, which is the only known theory
that uses a term corresponding to £, implies a value of £>1
(compare eqs. (100) and (101)).

(e) Effects of K, and cx: In order partly to assess the im-~
portance of the tire parameters K, and ¢,, the special case of
approximation C2 where r==p=0 and [; cos x—a=0 will be
considered. While this particular case is of no practical
importance in itself, its examination permits some insight
into the effects of the tire parameters K, and ¢, For this

"case the damping required to stabilize the motion is given

by the inequality
[a(aN+ K, cos k)+pdi] goly+ LgP+-g20*, >0

where p, is given by equation (115¢). It is evident from this
relation that p, is & stabilizing term if positive and destabiliz-
ing if negative. Also, according to reference 2, K, may be
as large as F, and, according to reference 24, ¢,=~0.75. Thus,
according to equation (115c¢), if the small sin* term is neg-
lected, p, may be positive for positive x, whereas if the I,
¢, and ¢, terms are neglected (as has been done in all pre-
vious investigations except ref. 2) then p, is always negativo
for positive x. Therefore, if situations should arige where-
in p, is important, it is not necessarily safe o neglect the
terms involving ¢, and K, that are used in the determination
of p.. (Seeeq. (116¢).)

(f) Effect of cornering power N: As & rough check on the
variation of the tire cornering power N under dynamic con-
ditions, there are available experimental frequency data ob-
tained by Melzer in conmection with his previously men-
tioned tests on an uninclined (x=0) model landing gear
equipped with a solid rubber tire of 7 em (3 in.) diameter
(ref. 10). For the higher velocity conditions of Melzer’s
tests, the predictions of the summary theory and approxi-

‘mations A to D1 lead to the frequency equation

1 @N+KQ+P
R T (143)

for an uninclined and undamped landing gear, that is, for
k=7=¢g=0. (Inclusion of the effect of finite + in this equa-
tion would not significantly alter this equation for the test
conditions to be discussed herein.) Some of Moelzer's ex-
perimental data are compared with the predictions of this
equation in the following table for the condition p=0. Tho

Foy g 2.8 3.6
. T 047 078 | 0.4 | 0.73 | 0.88
Jeatesteted, OPSemmnomnne a8 4.5 4.0 4.8 6.1
fczp-r{-uul’cpﬁ ------- 3.3 3.5 27 4.1 4.7

experimental date shown represent Moelzer’s data for tho
highest velocity conditions tested. The theoretical and ox-
perimental values are seen to be in fair agreement. How-
ever, the experimental values are somewhat smaller than the
corresponding theoretical values. This discrepancy is be-
lieved to be largely due to the fact that these experimental
tests were not conducted at sufficiently small values of
shimmy amplitude for the assumptions of a linearized theory
to be valid. Specifically, all of Melzer’s frequency data
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were obtained for maximum swivel angles of 5° or larger.
(The data shown in the preceding table correspond to the
condition 6,=5°) Moreover, Melzer’s data indicate that
there is a fairly definite decrease in shimmy frequency with
increasing maximum swivel angle. A sample plot of Mel-

zor's data illustrating this effect is given in figure 15. Also-

gshown is the theoretical calculation, which is valid only for
0,=0° If allowance is made for a certain amount of
experimental error, extrapolation of the experimental data
to 0,,=0° could be considered as confirmation of the theory.
It should be noted, however, that much of the rest of Mel-
zer's data, while not necessarily disputing this conclusion,
do not so clearly support it. Also, plots of the type of
figure 15 are of limited significance since each test point
shown corresponds to a different rolling velocity. In view
of these considerations, the only rfeasonable conclusion that
can be reached appears to be that Melzer’s data roughly
confirms the theoretical frequency and does not conclusively
dispute its quantitative accuracy.

Melzer has also conducted frequency tests on the same
model with an additional strong restoring spring (spring
sliffness several times the tire torsional stiffness). A com-
parison of theoretical and experimental frequencies for this
test is shown in the following table:

) 2PN S, 2.0 2.8 3.6

7 T 0.77 | 0.69 | 0.8 | 0.69 | 0.88
Seateutated, €PSeennno 5.2 54 | 87 55 5.8
fupniluuul, CpS.._._..| 4.9 b.45 5.9 5.8 5.85

The much better agreement obtained for this case is ex-
plained by the predominant influence of the spring restoring
moment, since for large values of p the model system ap-
proaches the condition of a simple torsional oscillator with
moment of inertin J; and spring constant p, for which con-
dition the well-known frequency equation is 2xf=+/p/I;..

In order to assess the significance of the preceding com-
parisons, the quantities involved in the theoretical equation
(143)—a, N, K., p, and I;—will be considered. The quan-
tities a, p, and Iy are easily measured constants and, for most
of Melzer's data, K, is much smaller than aXV; therefore,
the preceding fair agreement between theory and experiment
indicates that the quantity IV (the tire cornering power),
which was considered to be a constant in the preceding cal-
culations, actually does not vary extremely with rolling

velocity and shimmy frequency—at least not for Melzer’s

test conditions.

K

§ o o
a
" b 8
ger
g o Theorefical colculafion for GO
L. o Experimental dota from reference 10
) ] I ]
0 10 20 30 - 40 50

Maximum swivel angle, &y,

Fraure 15.—Influence of shimmy amplitude on the shimmy frequency.

(g) Effect of gyroscopic torque: The next question to be
considered is the influence of the gyroscopic torque resulting
from lateral distortion of the tire. All pertinent experi-
mental data obtained at very high speeds (e. g., ref. 10; see
also fig. 7) demonstrate that at sufficiently high speeds the
previously discussed conclusion that high-speed motion is
unstable for trails less than [; is no longer valid. Instead,
the experimental data show that at these very high speeds
instability at any given positive trail ceases above a certain
critical velocity. The existence of this critical velocity will
now be shown to result, at least in part, from the gyroscopie
action which was previously included only in Kantrowitz’
theory (ref. 8) but was not specifically mentioned there.
The simplest systematic approximation that adequately pro-
vides for this effect is approximation C2. In order to isolate
the gyroscopic effect, the special condition of no tilt (x=0)
and no spring-restoring force (p=0) or damper (g=0) will be
considered. For this condition the equation for the sta-
bility boundary of approximation C2 (or.C1) reads

(Lyol+arelly) (PN+aKo+hrod) =Tl (aN+Ko)  (144)

where the underlined terms ave the gyroscopic terms. For
the computation of the critical velocity o, this equation may
be simplified still further if it is realized that the quantity
a=l, is-small in comparison with the moment of inertia Iy
about the swivel axis; hence, for an approximate calculation
the term arv?; can be omitted. . Then solution of equation
(144) for the critical velocity ». above which the system 1s
stable yields the expression -

pe \/(ll——a) (@NT Ko

l]_T

(145)

which is observed to give an infinite critical velocity for
zero gyroscopic action (r=0).

The only available experimental data containing enough
information on the tire constants that are necessary for
checking the validity of equation (145) are Melzer’s data
(ref. 10) and even these data do not provide the required
gyroscopic moment; therefore, it can only be crudely esti-
mated as follows: The mass of the tire will be of the order
of magnitude w;[27(r—r,)}arZ, where r is the overall tire
radius, 7, the radius of the cross section of the tire torus,
and w; the average tire density. The moment of inertia
will be the mass times the radius of gyration », squared;
thus, with =¥ according to Kantrowitz, r (eq. (33))
becomes )

s e )

. r(r-}rs)

For the usual tire r;=0.3r, r; is slightly smaller than »
(say 73=0.97), and r, is probably around 0.8r. Then, to a
crude approximation, 7=0.21w;. For Melzer’s solid
rubber tire r=3.5 ecm and w, is probably about 107° kg-
sect/cm* (specific gravity of 1); thus 7=10"° kg-sec’/cm.
Critical velocities calgulated from equation (145) with this
value of r are compared in figure 16 with some of Melzer’s
experimental data for one test condition at various values
of afl;.  The calculated and experimental values of critical
velocity are seen to be of the same order of magnitude.
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Fiqeure 16.—Comparison of theoretical and experimental variations
of critical trail with rolling velocity. r==3.5 em; ,=3.22 om,;
N=123 kg; K.=5.9 kg-cm; n=.0;1 .=

Since neglect of the gyroscopic moment gives, theoretically,
an infinite critical velocity, this agreement indicates that the
gyroscopic moment is an important factor in producing
stablhty at high velocities. Also, the theoretical calculation
is conservative, that is, the unstable region is overestimated.
The quantitative agreement batween theory and experiment
is fair but far from excellent One probable reason for some
of the disagreement is the relatively crude procedure used
for estimating the parameter . Another possible explana-
tion may lie in hysteresis effects, as follows:

If the differential equation for approximation C2 (see eq.
(1244)) is modified to take into account hysteresis forces
and moments in the manner suggested in this report, a
modified differential ‘equation results (see eq. (B2)), which
has the stability boundary equation

(o2t arv?h+ N o+ a K To ) (a:N+a K.+
hrodt+aNTwA K. Too) =Tl (aN+K,) (146)

for the same conditions as the corresponding equation (144),
namely, k=p=g=0. Afterneglecting the underlined terms,
which are relatively small at large velocities, this equation
can be expressed in the simpler a.nd more easﬂy interpreted
form

poy NBAET. _ (h—a)(@N+K.)

I % I (147)

This equation indicates that the effect of finite hysteresis
" (that is, T5540; T.5<0) is to reduce the critical velocity be-
low what it would be for no hysteresis effect (Ih=T,=0).
This result is also indicated in figure 16, where calculated and
experimental curves are shown for the previously discussed
high-speed conditions of Melzer’s model tests. (The values
of T\ and T, needed for these calculations were obtained
from equations—(60), (62), and (143), by using the previously
mentioned estimated values of ;»=0.1 and 5,=0.2, based
on static hysteresis loops.) In figure 16 the experimental
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data lie between the theoretical curves for “hysteresis con-
sidered” and “hysteresis not considered.” The theoretical
calculation that includes hysteresis is extremely unconserv-
ative. Two conclusions can be drawn from these obser-
vations. First, if the actual hysteresis effect at high speeds
is only a fraction of the calculated effect, this fact might
explain the difference between the experimental curve and
the theoretical curve that does not include hysteresis. Secc-
ond, as was previously noted, it is evident that the treat-
ment of hysteresis effects in the present report is inadequato
and unconservative at high velocities.

In concluding this discussion of gyroscopic torque, it
should be noted that for the case of a rigid landing gear the
critical design condition (velocity at which shimmy is most
intense) occurs at low rolling speeds where the gyroscopic
moment is insignificant. *Thus, the inclusion of this gyro-
scopic moment in the theory is of somewhat academic interest
(at least for case I) and it probably could be safely omitted
in practical design calculations.

Unstable shimmy conditions.—As a further overall check
of the summary theory and its systematic approximations,
the experimental data of Kantrowitz (ref. 8) for unsteady
shimmy conditions are available.

The significant features of unsteady shimmy motion are
the divergence and frequency of the oscillation, which are
simply the real and imaginary parts of the roots of the
characteristic algebraic equation corresponding to the differ-
ential equation in question. Kantrowitz has made measure-
ments of these quantities for a model tire of 4-inch diamoter
at inclination angles x of 5° and 20° with corresponding
trails of about 0.08r and 0.31r, respectively (ref, 8). His
experimental results for x=5° are presented in figure 17,
together with corresponding theoretical calculations made
according to approximation B, which is the simplest systom-
atic approximation to the summary theory which describes,
at least qualitatively, the shimmy phenomena throughout
the complete range of rolling velocity. The theoretical and
experimental frequencies are seen to be in fairly good agrec-
ment. The theoretical and experimental divergences are in
fair qualitative agreement, but the experimental variation
is sometimes considerably below the corresponding theoreti-
cal one. This quantitative disagreement may be due to
several factors. First, hysteresis effects are mneglected in
the theoretical calculations. Although use of the hysteresis
force and moment equations derived in this report would not
completely explain the disagreement, it is believed that
these hysteresis equations are not accurate enough, par-
ticularly at small trails (a=0.08» for the data in fig. 17),
to justify the conclusion that the disagreement cannot be
explained by hysteresis effects. A second partial explanation
of the disagreement arises from the fact that the theoretical
calculations may be based on insufficiently accurate values
of the necessary tire parameters, since Kantrowitz did not
make direct measurements of all of the most fundamental
tire parameters, such as &, @, N, and K,. Specifically, he
measured only the quantity L, a quantity approximately
equal to alV cos x4+ K, cos? « for 2 values of x, and the path
frequency »; and trail a for kinematic shimmy (shimmy with
velocity approaching zero). The basic tire parameters used
for calculating the theoretical curves in figure 17 were
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Figure 17.—Comparison of theoretical and experimental shimmy
fre%uency and divergence for Kantrowite’ expenmental data.

approximately deduced from these quantities as follows:
The quantity % was obtained from equation (D1) after
setting v equal to 0 and substituting Kantrowitz’ experi-
mental values of L, »;, and @ for kinematic shimmy. This
procedure for determining the quantity % is not necessarily
accurate since equation (D1) neglects hysteresis effects.
The tire deflection needed for calculating the trail was
estimated from figure 8 of reference 2. The trail was com-
puted from the tire radius, the tire deflection, and the
inclination. With the aid of this estimated value of trail
the tire parameters N and K, can be obtained from Kantro-
witz’ approximate values for aV cos x4+ K, cos’. In addition,

most tire tilt effects were neglected; specifically, ¢ and p, .

were taken equal to zero. While the foregoing procedure
will probably give roughly correct values for most of the
fundamental tire constants, it is believed that the limita-
tions of this procedure and the neglect of hysteresis effects
are sufficient to prohibit the making of any strong point out
of the discrepancies between theory and experiment in figure
17. Thus, to summarize, it appears that Kantrowitz’ data
furnishes only a rough overall confirmation of the summary
theory. Although quantitative agreement is poorer than for
most of the previously discussed experimental data, this
poorer agreement is not necessarily significant.

This completes the discussion of case I with respect to
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the summary theory and its systematic approximations.
Next, attention will be directed to a discussion of case I
with respect to the predictions of some of the previously
published theories.

PREDICTIONS OF SOME OF THE PREVIOUSLY PUBLISHED THEORIES

Some interesting features of the previously published
theories in relation to case I are discussed in the following
paragraphs. Comments on the influence of swivel-axis
inclination will not be repeated here.

The theory of Von Schlippe and Dietrich gives predictions
which are substantially the same as the predictions of the
summery theory, as can be seen by a comparison of the
predictions of these two theories in figures 9 and 10 for Von
Schlippe and Dietrich’s model test conditions. Hysteresis
effects were neglected in computing both sets of theoretical

curves. In comparing these two theories it should be noted

that the only difference in the two sets of theoretical curves
arises from a slight difference in the expressions used for the
elastic forces and moments of the tire (see section entitled
“Forces and Moments on the Wheel”” and the comments
after eq. (128)). The Von Schlippe-Dietrich theory also
provides for some tire width effects, but these effects are
believed to be relatively small for the present test condi-
tions and were not taken into account in computing the
theoretical curves in figures 9 and 10. From these figures
it is seen that the differences between the stability bound-
aries and frequency .curves for the Von Schlippe-Dietrich
theory and the summary theory are usually small in com-
parison with the differences between the theoretical curves
and the experimental data. Thus, it seems reasonable to
conclude that there is no significant difference between the
main features of the summary theory and the Von Schlippe-

- Dietrich theory.

Bourcier de Carbon’s advanced theory provides essentially
the same predictions as approximation B and will thus
probably give a reasonable prediction of shimmy behavior
for the complete velocity range. Similarly, Bourcier de
Carbon’s elementary theory, corresponding to approximation
(2, will probably give reasonable predictions for the high
velocity range.

Melzer’s theory correctly predicts the existence of the
large-trail stability boundary given by the equation a.=I,,
but it also predicts the existence of stable motion in the
small negative trail region between zero trail and a trail
equal to —e=—K,/N. The latter prediction is in dis-
agreement with the experimental data of Von Schlippe and
Dietrich (ref. 5) who conducted some tests in this trail range
and found the motion there to be unstable.

The stability boundary according to Moreland’s advanced
theory for the case of no damping or spring-restoring forces

‘(see eq. (132a)) is given by the equation -

. \/T» 1/ 1 _a
¢ -Z\Tll3 'JTQ l_la’g ll (148)
L
where
NI, T®
T9— I‘,

This equation is plotted in figure 18 for zero time constant
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FI1GURE 18 .—Variation of critical trail with rolling velocity according
to Moreland’s advanced theory.

(for which case Moreland’s theory reduces to the subcase

of approximation C2 for which e=K,=0) and for several
finite values of the time-constant parameter T,.
that if =, is large, a large-trail stability boundary no longer
exists at the trail a,==I;. Since the actual existence of this
large-trail stability boundary has already been demonstrated,
it appears likely that 73 cannot be very large. On the other
hand, if 75 is small the introduction of the time-constant
term produces an almost linear decrease of critical trail
with increasing velocity until & certain limiting velocity
(equal to 5;/T) is reached; above this velocity all motion is
stable. Thus, the influence of the time-lag constant term is
somewhat like that of the previously discussed gyroscopic
moment due to tire distortion or the hysteresis force and
moment, which may also produce stability at high velocities.
However, in regard to the general shape of the critical
trail-velocity curve, the variations predicted by considera-
tion of the gyroscopic or hysteresis effects (see solid and
dashed lines in fig. 16) appear more like those of the experi-
mental data (figs. 7 or 16) than does the nearly linear
variation predicted from Moreland’s time-lag term for
small T2. .

Moreland’s elementary theory, Temple’s elementary
theory, and Maier’s and Taylor’s theories are too crude to
give any details for case 1.

Kantrowitz’ theory incorrectly predicts instability for all
positive trails in the absence of damping or gyroscopic
moments. (This prediction is a consequence of the fact
that the third coefficient in Kantrowitz’ differential eq.
(137a) is zero.) - )

Wylie’'s theory (see eqs. (138)) correctly predicts the
existence of stability at large trails; however, the predicted
value of critical trail is given by the equation

a.(a.+ ) Ny=Ir'L (149)

for k=0. This relation implies that the critical trail is a
continuously increasing function of velocity, whereas the
previously discussed experimental data clearly indicate that
the critical trail rapidly reaches the maximum value ;.

Also it is noted that the last of Wylie’s equations (138b) con- -

tains the factor 14-a/L, which does not appear in any of
the other theories. This term appears as a consequence of
the earlier mentioned fact that Wylie’s theory does not
correctly predict the influence of trail for the yawed rolling

It is seen
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condition. It might be noted that if Wylie’s theory wero
modified to remove this difficulty, as suggested in equation
(110), then this factor 14+a/L would be replaced by 1; thus
the modified Wylie theory would be more consistent with
the other equations. Also, for high velocities the modified
Wylie theory would more correctly predict a definite critical
trail according to the relation a,=L.
PRACTICAL APPLICATION

Before concluding the discussion of case I, it is perhaps
pertinent to comment on whether the preceding theoretical
predictions for this idealized case can be applied to practical
landing-gear problems. Moreland has demonstrated that
neglect of the torsional and lateral elasticity of the landing-
gear strut can sometimes lead to false predictions of stability
in an actually unstable system (ref. 12). For example, for
too large torsional damping the torsional damper unit
effectively locks the swiveling structure against torsional
movement with respect to its point of attachment to the
landing gear strut, so that torsional movement of the
swiveling structure is possible only as a consequence of the
always finite torsional stiffness of the strut. In other
words, for too large damping the damper unit and strut
combination behaves like a pure torsion spring and is thus
ineffective for damping purposes. In regard to lateral strut
stiffness Moreland has pointed out that for a rigid tire,
corresponding to approximation D3, if the strut is pro-
hibited from lateral motion, as is assumed for case I, tha
motion is stable; on the other hand, if the strut is assumed

‘to be of stiffness approaching infinity, the system may be

unstable. While this particular criticism of the practical
value of case I for infinite stiffness applies only to approxi-
mation D3, still for finite strut stiffness of the same order
of magnitude as the tire lateral stiffness the theoretical
equations of the other approximate theories may also be
unconservative.

CASE II

This section is concerned with the idealized landing goar
shown in figure 6. This landing gear consists of a wheel
free to swivel about an uninclined always-vertical swivel axis
that is attached by a horizontal linear spring, of spring
constant %, to the supporting structure. This configuration,
case [T, is discussed here for two reasons: it illustrates the
effect of structural elasticity on wheel shimmy, and it is
better suited than case I for evaluating approximations
D1, D2, and D3 as applied to landing-gear problems in-
volving structural elasticity. (It may be recalled that theso
three approximations were of little value in dealing with o
rigid landing-gear strut (case I); however, for a flexiblo
strut these approximsations may sometimes be of value.)
In discussing case II, and also later cases, no further men-
tion will be made of the previously published theories or of
the question of agreement between theory and experiment;
all discussion will be restricted to the summary theory and
its systematic approximations.

The discussion of case IT proceeds as follows: The equa-
tions of motion for case II ‘are derived according to the
summary theory and its systematic approximations. As
for case I, it is more convenient to rederive these equations
of motion in & slightly different manner rather than to gpply
the equations derived earlier for the completely general
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cnse, After these derivations are made the equations for
the stability boundaries are established. Finally, the
damping required to prevent shimmy is presented in curves
a8 a funetion of strut stifiness and rolling velocity for a
specific sample landing-gear configuration according to the
predictions of approximations C, D1, D2, and D3. (For
the present case approximations C1 and C2 are identical
and are henceforth referred to collectively as approxima-
tion C.) These curves are utilized to obtain some insight
into the accuracies of the predictions of approximations
D1, D2, and D3 with respect to the more advanced approxi-

mation C.
GENERAL DERIVATION

The derivation of the equation of motion for the summary
theory proceeds as follows. The details of the landing
gear considered are illustrated in figure 6. This gear has a
rigid symmetrical swiveling part having a mass m and a
moment of inertia about its center of gravity I, The
nonswiveling part of the landing gear consists of a spring
of stiffiness & with an attached mass m;. The lateral dis-
placement of the swivel axis is desugnated as n,.

Setting the sum of the lateral spring and inertia forces
acting on the swiveling part equal to the inertia reaction
of its center of gravity m D,*(n,—cs6) yields the relation

K)\)‘O_kﬂa_ml Dl27la=m thﬂa—mcﬂ D120 (150)
Substitution for A, from the relation '
M=Yo—N=Yo—Na1al (151)

(sce fig. 6) yields, after rearrangement,
Byyo— (my D2+m D E+EBy+k)ne+(me; DE+aKy)0=0 (152)

Setting the sum of the moments about the center of
gravity of the swiveling part equal to the inertia reaction
yields the result

I(ga—I(A}\oCl g D,G—pﬁ-—rv Dgxo

=L, D (153)
(see fig. 8) where I, represents the moment of inertia of the
swiveling structure at its center of gravity (Jy=I;—me?).

Substituting for @ and ), according to equations (23) and
(151) then yields, after rearrangement,

(0 D —Ev7' D+ EKsey Yo+ (M DE—10 D Akey—EKie)na+

—knaeo—my D Pqacs—

(Io D3 +g D+rav D1+P+Ka+aclK?\)0=0 (164) -

The third equation for this system for the general case
is given by the kinematic relation of equation (192) or
(19b), When v is omitted, the space derivatives are re-
placed by time derivatives, and 7, is set equal to n,—aé,

» this relation becomes

'—(1 +llv—lD‘+l‘)D—2Dgz+ . . .)yo—l" (l1—~a)0+na=0 (155&)
from equation (19a) or
— (LoD )™ 2 yot- (h—a)0+n—=0  (155b)

from equation (19b),
The three equations (152), (154), and (1552) or (155b)
completely deseribe the motion of the landing gear according

to the summary theory in ferms of the three variables
Yo, 1, 80d 6. The corresponding equations for the system-
atic approximations are obtained as follows.
SYSTEMATIC APPROXIMATIONS
Approximation A.—For case II, the three governing equa-
tions of motion for approximation A are the force and
moment equations (152) and (154) and the kinematic
equation:

— (1+1o™D 172D 2+ 1D Pyt (b~ @)+ ma= -0 (156)

Equation (156) is obtained by omitting all I,’s for n >3 in
the general kinematic equation (155a).

Approximation B.—The three governing equations of
motion for approximation B are the force and moment
equations (152) and (154) and the kinematic relation

—(1+4o™' D +Lv~° Dy + (hi—a)o+n.=0  (157)

which is obtained by omitting the /; term in equation (156).
Approximation C.—The kinematic equation for approxi-
mation C is obtained by omitting the 4 term in equation

(157). The resulting relation is
—(1-+L07 D)yt (ll—a')0+71a= 0 (158a)
or
—1
na=<1+N v D, )y (K a) (158b)

The force and moment equations (152) and (154) also apply
for this approximation. However, a slightly simpler form
of these equations can be obtained by substituting for 7,
according to equation (158b), in the terms containing
Kin, and 7n, in these two equations. With this substitution,
the force equation becomes

— Nv'Dgjo— (my D24m D24+ k)n,+ (mey DEN)I=0  (159)

and (using the relation K.=eN) the moment equation
becomes

l: N;{D —No e+ E)Dz:l Yot-(maca Di*+-keo)nat

[Io Dig DA

+p+<c1+e>N] 6=0  (160)

Equations (158a), (159) (or (152)), and (160) {(or (154))
describe the motion for approximation C.

Approximation D1.—The equations of motion for approxi-
mation D1 are obtained by setting A, equal to 0, or

Yo=1,—0ab (161)
and
KA=®
in the force and moment equations (159) and (160). Thus

— (my D*+m D2++No'D;+k)n.+-
(mey D2+aNvD,-+N)§=0 (162)

[mico D2— No~'(e,+€) D, +kesl na+[1L D9 D,+
alNv (e, +e)D,+p+(e;+€)N] =0 (163)

Equations (162) and (163) completely describe the motion for
approximation D1.
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Approximation D2.—The equations for approximation D2
are obtained as follows. In the force equation (152) set «
equal to 0, or

0=v"1Dy, (164)

which gives the relation-

 Amegp™'\D P +a B0 D+ K )yo—
* (my D24+m DA+ Ea+E)n.=0 (165)

For the morﬂent equation (153), set « equal to —Nfl; (eq.
(85)) according to approximation C, and apply equations
(151) and (164). -The result is

U™ Dé+go'Dé+tar D410 Dot po7'Ditalei+ ) Kw Dot
(19K yot-Imuce D2—m0 D— (e, + ) Kn+-cok] n.=0  (166)

Equations (165) and (166) are the basic equations for
approximation D2. ‘

Approximation D3.—The basic equation for approxima-
tion D3 is obtained by first solving the equations (162) and
(163) of approximation D1 simulteneously to eliminate
either », or 6 and then letting N approach e so that all terms
not multiplied by N vanish. The resulting equation, after
dividing out the factor N and using the relation ¢;,+c:=a,
can be expressed in terms of 6 as

{[Ly-+ma(a+e)+me(eit+e)] D34 {[mi(a+e)+
. m(e+6) v+g1 D24 [ptak(ate)) D 4-vk(a+¢€))6=0 {(167)
STABILITY BOUNDARIES .
The stability boundaries for case 11 are obtained in the

same manner as those for case I. For the summary theory

they are obtained as follows.

From equation (155b),

—P10(Yo,ne; CO8 Uz)'l‘l_’xw(%w 80 03)+F (lh—@)0nast ey, CO8 o1)=0

and

~P20(Yomgs €08 93)—P1o(Yo,q, SID 03)+ 74, 81D 01=0
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Purely oscillatory boundaries.—The equations for the
Purely oscillatory motion boundaries are obtained by substi-
tuting into the differential equations the expressions

0="0 """

Na=Tapg 6 T TP =1, €7 (cOS o111 8in 01) (168)

Yo=Yoneef’ " TP =0, .. (COS 31 8N 07)

Substitution of these relations into equations (162), (154),
and (155b), differentiation and cancellation of e, and
separation of real and imaginary parts into separate equations
yields the expressions:

From equation (152),

Ero,,,, €08 03)+ (mp?+mpt— Er—Ek) (a,,,, €08 1)+
(@By—mep?)0,,_=0 (169)

and

E(¥o,p,, 810 03) + (M +mit— By —k) (n4,,,, 80 01)=0  (170)

From equation (154),
aEr@o,,,, €08 02)— (10v—K07W) (Yo, SIN 02)+

(— e+ k=1 Kn) (a,, €OS 01) 700 (1, BiD-0y)+

(—I*+p+Kuatae. K3 )0maz=0 (171)
and

1 BA(Yo, g SN 03)+ (10— Ko7 %) (Yo,,,, COS 02)
(—mesr* +kes— Key) (Ma,,,, BID 01)—
T (Nag gy COS 61) 4 (g¥-+7a0%)0pa;=0 (172)

173)

(174)

Equations (169) to (174) can be considered as six linear simultaneous algebraic equations with no constant terms in the
five variables ¥, . €08 03, Yo, S0 02, %lay,, COS 01, 7a,,, SO 01, &0d Onee.  Then for this system of equations to have solutions

other than zero it is necessary that the determinant of the coefficients of any group of five of these six equations should equal

Zero.
oK — v+ Koy —mycart+ ok — ek
B0 (my+m)r—K—Fk
0 E 0
—P Ds 1
—D: - 0

The determinant for equations (169), (170), (171), (173), and (174) is

TV —I*+ p+Ko+ac Ky
0 aK\—mceg?
(m+m)»*—EK\—k 0 =0 (175)
0 h—a
1 0
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and the determinant for equations (169), (170), (172), (173), and (174) is

rov— K07 a kK, — 710
K 0 (my+m)r— K —k
0 K 0
—h Ps ’ 1
—D: —p1 0

—megt+ke;— Ko gv-t+ravy
0 aKr—mep?
(mx+m)v2—IK>\—k‘ 0 =0 (176)
0 lLi—a
1 0

where py=p9:, and p,=p,,, for the summary theory. The corr%]:;)onding equations for approximation A are obtained by
setting p; equal to 1—Ly?® and p. equal to liyy—Ly?, for approximation B by setting p, equal to 1—L»? and », equa.l to Iy,
and for approximation C by setting p, equal to 1 and p; equal to l;»,.

The two equations (175) and (176) completely describe
the conditions governing purely oscillatory modes of motion
according to the summary theory” and approximations A
to C (other groupings by fives of the equations merely lead
to repetition of these two relations). The procedure for
obtaining the stability boundaries for each of the other
systematic approximations (D1, D2, and D3) is similar to
that just outlined. The resulting stability-boundary equa-
tions for the other approximations are listed in appendix E.

Purely uniform motion.—For purely uniform motion all
variables will have constant values which may be represented
as

0="10,0r
Na= Mo
Yo=Yo,02

Substitution of these relations into equations (152), (154),
and (155) yields the results

B 0mas— (Bo+k) 0 g+ KoY 10, =0
(p+ KA 00 B bpast (03— 6B o, -+ 01 BY0,0, =0
(li—a) omaz'l'ﬂaw—"yo,,,a,: 0

For nonzero solutions of these three equations the determi-
nant of the coefficients of 0xas, 7a,,,, 20d ¥, must be zero.

Evaluation of this determinant gives simply

atetl F=0 @77

CHARACTER OF THE MOTION BETWEEN STABILITY BOUNDARIES

In order to determine the character of the landing-gear
motion (stable or unstable) between stability boundaries it
is first convenient to solve the equations of motion for each
approximation simultaneously to obtain a single linear
differential equation in one variable for each approximation.
From these differential equations the stability of the motion
may be determined by examining the corresponding char-
acteristic equations by any of the methods discussed in

appendix C. Theﬁe characteristic equations for case II,
according to the various systematlc approximations, are
listed in appendix F.
+« EVALUATION OF APPROXIMATIONS DI, D2, AND D3

In the ecarlier discussion of case I it was not possible to
present a fair relative evaluation of the three parallel
approximate theories D1, D2, and D3 since for case I none
of these theories provides any realistic information. How-
ever, for case II such a comparison can be made between the
predictions of these three approximations and the more
accurate approximation C, and a specific example will be
discussed here for a sample landing-gear configuration having
the relative dimensions and properties L=0.8r, h=a=0.5r,
ci=c3=0.25r, ¢=0.3r, m;=0.35m, Iy=mr?, and r=p=0.
The actual calculated behavior of this landing gear in terms
of damping requiréd for stability as a function of rolling
velocity according to approximation C is shown in figure 19
for four values of the ratio of strut stiffness to tire stiffness
EIK,. Tt is seen from this figure that as the stiffness of the

1.6

3

R

n

Dimensionless damping constant, g/ mNr
©

- 1 1
2 3 4 5

o

v/m/Nr

Dimensionless velocity,

Freurs 19.—Influence of strut stiffiness on damping required for

stability according to approximation C for a sample landing gear.
L=0. 86, h=a=0.5r; c;=c2=0.26r; ¢=0.3r; m1=0.35m; Iy=mr3;
T=p=
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strut is decreased {rom infinity the damping requirement is
increased. Also, for large values of strut stiffness the region
of maximum damping required lies at low speeds, whereas
for small values of strut stiffness it lies at higher speeds.

The theoretic predictions of the three theories D1, D2, and
D3 for this sample landing gear are compared in figure 20
with the corresponding predictions of the more accurate
approximation C (from fig. 19) for three values of strut
stiffness, k=0.2K,, 1.0K,, and 5.0K,. Itisseen that for each
strut stifiness approximations D2 and D3 provide a con-
siderable overestimate of the damping required for stability-
On the other hand, approximation D1 gives results in good
agreement with those of approximation C for the ratios
E/Ky=0.2 and 1.0, but this approximation greatly under-
estimates the damping for the large value of strut stiffness
kK =5.0.

In view of the comparisons of figure 20, it appears that
approximations D2 and D3 will not, in general, give reliable
quantitative estimates of the damping required for stability.
It appears that approximation D1 may give reasonable
results for some cases in which the lateral stiffness of the strut
does not greatly exceed the lateral stiffness of the tire. Since
this latter coneclusion is based on only one set of landing-gear
parameters, the degree to which it is valid in general would
require & more extensive investigation for a range of landing-
gear properties.

PRACTICAL APPLICATION

One limitation on the practical application of the preceding
equations for case I lies in the assumption that the damping
is simply proportional to the angular swiveling velocity D.#.
As was previously mentioned, Moreland has demonstrated

- following generalizations.

REPORT 1299—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

a neglect of the torsional flexibility of the landing-gear strut,
which in turn can sometimes lead to a false prediction of
stability for heavily damped systems (see ref. 11 or 12).
Thus, for systems in which torsional flexibility of the strut is
important, it will be necessary to replace the damper unit of
case 11 by a damper and spring in series, as has been done by
Moreland (refs. 11 and 12), where the spring represents the
strut torsional stiffness. This particular case of & series
damper-spring unit-applied to the landing gear of case IT is
not considered separately in this report; it is, however,

included in the mare general case III to be tonsidered next. -

CASE 111

The next type of landing-gear construction to be con-
sidered is chosen largely to illustrate the application of the
summary and approximate theories to more complex problems
than have previously been considered by now making use of
transfer-function concepts. This landing gear is assumed to
be of the same general type as that of case II except for the
In case II the lateral deflection
characteristics of the landing-gear strut were represented by
2 single spring and mass combination, or, more precisely, the
force exerted on the swiveling part of the landing gear by the
strut was set equal to

Fn=—(k+ml Dtg)nu

For case III it is assumed that the strut (or, more generally,
the supportmg structure) is & more complex linear system
than is & spring-mass combination, so that the strut force-
deflection relation of equation (178) can be generalized to the
new form

(178)

that this assumption is sometimes unrelizble since it implies 7=—T1(D)na (179)
28 2.8 2.8
7?%‘0'2 7{T=|'0 -kk—)\-uso
24r // 241 // 24 / /
E' /:,' E ' . ";:_ -
20t / § 20F // N //
\Q I \b- 1 o 1
e - 1 X s ()
5 i 5 : // 5 / /
2 2 R
€ 1.6+ 2 1.6 2 18-
8 3 1 8 ®
o x 'n' . ! Il
£ g g
g g / g
32t § 12t € 12l
I3 © o © L
3 / 3 / ~ ¥ '
< = - = /
= o — [=}
s gl / s 8f = B 8F /
g \\{ g y g /" (No domping required for DI
= —_— a ~/ a in this velocity ronge)
4 4 Approximation C 4ar
- ~—— —— —— Approximation DI .
~—— - —— Approximation D2
—— ~~ —— Approximation D3
1 ! 1 1 1 1 I 1 1
0 1 2 3 4 (o} 1 2 3 4 0 | 2 3

v/ m77Ur

Dimensionless velocity,

VVm;Wf

Dimensionless velocity,

Dimensionless velocity, v./m/Nr

F1curB 20.—Comparison of damping required for stability according to approximations C, D1, D2, and D3 for a sample landing gear.
h=a=0.5r; c;=c:=0.25r; 6=0.3r; m1=0.35m; Iy=mr?; r=p=0.

L=0.8r;
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where Ty, is a function of the differential operator D, which
represents the transfer function correlating F;, and 7,2 Sim-
ilarly, the moment on the swiveling part due to the strut,
which was previously set equal to

My=—(o-+gD)0 (180)
for case II, is now generalized to the form
.RIB=—T11(D{)0 (181)

The differential equations for case III are easily obtained
from the corresponding differential equations for case II by
replacing k+mD?2 by Ty and p+gD, by Ty. For example,
for approximation D1 equations (162) and (163) are replaced
by the new relations

—[mD 24 Nv™'D + T1o(D )Ina+ (me:D #24-alNv D+ N)6=0
(182)

["'Ayp_l(01+E)D1+02T10(Dt)]77a+[I0D12+¢LNU_1 (e.+eD+
(a+eoN+Tu(D)]6=0 (183)

which lead to a characteristic equation of an order depending
on the order of the 77s. If the 7”s are analytically defined
funetions, the calculation of the stability of the motion and
the stability boundaries proceeds exactly as for case IL.
However, if the T’s are not analytically defined functions
(for example, if they are determined by experimental tests)
a slightly different procedure of the following type is needed.

In order to determine partial information about 13y, the
swiveling part of the landing gear can be removed and the
remaining strut can be subjected to a periodical lateral
foree Fy=F, e (either by calculation or by actual vibra-
tion tests), The resulting lateral-deflection response of
the structure will have a certain amplitude and phase shift
which are given by the relation

1

M= F, (184)

which is obtained by substitution of the sinusoidal variation
for -F, into equation (179). The function 1/Ty(iv) is a
complex function of the circular frequency », the absolute
value of which represents the amplitude response and the
argument of which represents the phase shift; it is generally
called the frequency-response function of the system.

Similarly, a frequency-response function is defined for the
response of the landing-gear strut to torsional moment oscil-
lations by the relation (see eq. (181))

1
= M, 18
6 T ) f (185)
With the aid of the experimental or calculated functions
To(iv) and Ty (iv), the stability boundaries for any of the
theories may be obtained by the usual procedure of sub-

stituting expressions of the form e** into the corresponding

3 Moreland, in reference 11, has advanced a shmilar generalization of the strut lateral-defleo-
tion characteristies by means of a concept of “virtual elasticity.” However, Moreland’s
generalization 13 less general In that it does not provide for the existence of steut structural-
domping forces,
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differential equation together with the 7”s. For example,
for approximation D3 the basic differential equation is

{[Lo-+-mey (141D 2+ [m(er+e) o]D 2 -[Tu(n) +
a(a+¢) T1o()]1D,+-v(a+¢) Tio(iv) }6=0 (186)

(obtained by converting eq. (167) to apply to case III), and
the stability boundaries for purely oscillatory motion
(obtained by setting 6 equal to e** in eq. (186) and separating
real and imaginary parts) are given by the simultaneous
equations

—m(er+ o’ —vI[Tu () +ala+¢ Tio(in)]+
v(a+eR[Tw()]=0 (187)

— I —mei(er+€)*+rR[ T (0v) +ala+e) Tio(iv)] +
v(a+9I[Tw(i»)]=0 (188)

where R and I represent the real and imaginary parts of the
bracketed functions. Analogous equations are obtained in
a similar manner for the other approximations.
In regard to the question as to whether any particular
motion between stability boundaries is stable or not, case
_IIT may present a more difficult problem if the forms of the
T-functions are not know1t in terms of ratios of polynomials,
that is, if only the frequency-response variations are known.
In this event, for example, the usual form of the Routh-
Hurwitz stability criteria (which is applicable to poly-
nomial forms only) cannot be applied and criteria of the
Nyquist type must be used. A brief discussion of these
criteria is contained in appendix C.
. The procedure for applying the summary and systematic
approximation theories to cases of arbitrary complexity is
essentially the same as the procedure discussed above for
case ITI, the only important difference being that for the
general case the equations of motion (eqs. (16) or (19),
(63), (643, (65), (67), (69), and (71)) are more numerous
and more complicated. No new concepts need to be
discussed.
CONCLUDING REMARKS

This report has presented & correlation and evaluation of
the previously published theories of linearized tire motion
and wheel shimmy and has demonstrated that the major
merits of all of these theories are contained in a summary
theory which represents a minor modification of the basic
theory of Von Schlippe and Dietrich. In cases where there
are strong differences between the existing theories and
the summary theory, the previously published theories have,
in the main, been demonstrated to possess certain deficiencies
except for Moreland’s advanced ‘theory, for which no ade-
quate evaluation was possible.

A series of systematic approximations to the summary
theory has been developed herein for the treatment of
problems too simple to merit the use of the complete sum-
mary theory. These systematic approximations have been
shown to resemble closely the previously published theories
except that in some details they avoid some of the limitations
encountered in these theories.
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Comparison of the existing experimental data with the
predictions of the summary theory and its systematic
approximations has indicated a fairly good degree of cor-
relation between the higher approximations and the existing
experimental date for the cases investigated. However,
since the agreement is far from perfect in some respects and
since most of the limited amount of existing experimental
data was obtained with small models there still remains the
question as to whether the theory is safely applicable to
full-scale conditions. In particular, the - importance of
hysteresis damping remains undetermined.

In regard to the determination of the various tire constants
required for theoretical shimmy calculations, it is noted
that the existing pertinent experimental data, mostly con-
tained in references 21, 24, and 32 to 37, are extremely limited
and apply mostly to small, obsolete, or foreign tires. Fur-
thermore, although various attempts have been made to
correlate and to reconcile theoretically, the experimental
data (e. g., ref. 2 or 38), there still apparently does not
exist any fully reliable theoretical means for predicting all

REPORT 1299—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

of the needed elastic characteristics of tires. In view of
these considerations, s mneed exists for additional experi-
mental data on modern tire characteristics and also for a
more adequate evaluation of the existing data to determine
whether these data can be applied by scale laws to predict
the characteristics of any tire with tolerable accuracy.

In regard to the adequacy of a linearized theory of tire
motion, it can be stated only that there is as yet no strong
indication that e nonlinear theory is required for prediction
of the stability boundaries. If, however, a knowledge of
the large-angle (nonlinear) behavior is required, & theoretical
system for dealing with this problem could be developed on
the basis of assumptions of the type advanced by Kelley,
Rotta, and Temple (see refs. 18, 19, and 21 (p. 36), respec-
tively). '

LANGLBEY ‘AERONAUTICAL LABORATORY,
- NaTioNAL Apvisory COMMITTEE FOR ABRONAUTIOS,
LancLey Fiewp, Va., January 13, 19566.
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'APPENDIX A
CALCULATION OF EQUIVALENT VISCOUS DAMPERS

GENERAL CASE

In the derivations and equations in this report, only
linear demping terms were introduced so that the resulting
equations would remain linearized. However, the damping
moments caused by friction, hysteresis losses, and the ordi-
nary shimmy dampers are nonlinear and therefore it is nec-
essary to replace these nonlinear moments with equivalent
linear viscous moments. The equivalent viscous moment is
usually determined by assuming that linear and nonlinear
damping moments are equivalent if they dissipate the same

amount of energy during each cycle of shimmy oscillation.’

For a linear damper of moment g D,y the energy dissipated
per cycle of sinusoidal oscillation is (for Y=y sin »t)

2x
E=["yD.vay
and, since D, y=ymav c0s ¥t and dy=ypnav cos  di,

2x
E=gvipn.? f cos? vt d(t)
0 ;
which gives
v E=‘ﬂ'gV¢mu3

Therefore the linear damping constant g is related to the
energy loss per cycle by the relation

E
g=ﬂ‘l’mu2

(A1)

By using this relation an effective value of linear damping
constant can be calculated for any nonlinear damper if the
energy dissipation per cycle is known.

VELOCITY-DEPENDENT DAMPING

By using equation (A1) Rotta (ref. 2) has calculated the
effective damping constant for damping moments of the type

My=(Mort g Dbl ) B

The first term represents friction damping and the second
represents fluid damping. The exponent n; will probably
alweys be between 1 and 2.

(A2)

Rotta’s calculations proceed essentially as follows: First,
the total energy dissipated is calculated from the relation

E—t L Yo M, dy (A3)

where
(A4)

After combining equations (A1) to (A4) and integrating, the
followmg equa.tron for g is obtained:

V=Vmas sin »t

7,1 pul %J; COS’JI_H vt d(”t') (‘A5)

maz

It is seen that the dampmg constant depends on the ampli-
tude Ymes; for n;>>1 it is large at small angles due to the first
term and is large at large angles due to the second term.
The minimum value of the equivalent damping constant

<obtained by setting dj—g equal to O) occurs at the angle

- o " ag)
™ (m—1) Jo cos™H ut d(vt)

and the corresponding minimum damping constant becomes

-1
g=M, ™ gl"E, (A7)
where
b [ ﬁ 2 o™t 4 d(vt):lu " (A8)

w(m—1) ™

For the special case of velocity-squared da.mpmg (n=2)
equation (A7) reduces to the relation

g=3_ﬂ_’v 6M0q2

FRICTION DAMPING

The equivalent damping constant for friction damping
(constzmt moment M,), obtained by setting ¢, equal to 0
in equation (A5), is

(49)

_ 4,
Wiz

g (A10)
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APPENDIX B
DIFFERENTIAL EQUATIONS FOR CASE I WITH INCLUSION OF HYSTERESIS EFFECTS

If the differential equations of approximations B and C2 for case I (see eqs. (122) and (124), respectively) are modi- -
fied to take into account the hysteresis force and moment expressions derived in this report, the following differential
equations are obtained:

For approximation B,

Ey DYyo+E, D¥yo+E; Do+ Ey Dyot+Eiyo=0 (Bla)
where .
Ey=Is, ' )
Ey=Ip™ + (ari? cos k-+go)l+ (2 En Th+- Ko T cos? k)l
Ey=1Iv*+-(arv® cos k+-go)li+H(a*Ba+ K., cos? s+ p+poly+ (2N Th+a’ K. T cos &)y r B1b)
Ey=a*N+a'K, cos x+pli+pdi+gv+oli70? cos® k+ (@aNTy cos k+K.T. cos? k)v
Eiy=calN cos x+ K, cos®k+p-+ptu. J
For approximation C2, ‘
Ey DPyo+Ey DYyo+E; DyotExye=0 (B2a)

where
Ey=I*l

E=I2+(art? cos k+go)ly+ (@2 NTh+a K, T, cos x)o
Ey=a’N-+aK. cos k+pli+pd,+go-+170* cos? k+ (aN'Th cos k+K. T, cos? «)p
Ey=aN cos k+K, cos? xk+p+pctitg

(B2b)
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APPENDIX C
STABILITY CRITERIA

In this appendix a brief review is presented of most of the
existing methods for examining the stability of motion of
gystems whose motions are governed by linear differential
equations of the type

J(D)o=0 (C1)
The solution of this type of equation consists of terms of
the form
f=e?* (C2)
whence
D ro=prer'=p™9 (C3)
Substitution of equation (C3) into equation (C1) yields the
algebraic equation
J@)=0

for the p’s. Equation (C4) is called the characteristic
equation of the differential equation (C1).

The type of motion for the linear system is determined by
the character of the complex roots of the characteristic
equation. Most important, the motion is entirely stable if
and only if the characteristic equation possesses no roots
having positive real parts. Several procedures are available
for determining whether a particular characteristic equation
has such roots with positive real parts.

One procedure which is useful in cases where the charac-
teristic equation (C4) can be written in the polynomial form

ap*+ap*t+ ... +a,=0 (C5)

(C4)

is the well-known Routh-Hurwitz criterion which makes use
either of the Routh test functions (ref. 26) or of the equiva-
lent Hurwitz determinants. In Hurwitz’ form the require-
ment for stability (or no roots with positive real parts) is
that a; and all of the n determinants

Dy=aq,
a a3 as Aan—1
QG O3 @ Q2u-3 .
Di=|0 a as Ugu-3
. Gy
for u=1, 2, ... n must be greater than zero, or, in the alter-

nate form of Cremer (ref. 39), all of the a,’s and either the
even or the odd Hurwitz determinants must be positive.
This criterion is particularly suited for examining the sta-
bility of linear systems with polynomial-type differential
equations of low order. However, for high-order polynomial-
type differential equations this criterion may mnot be the
460104—53——13

easiest to use and for nonpolynomial-type equations the
criterion is not directly applicable. For such cases use can
be made of the graphical-type criterion originated by
Nyquist (refs. 28 to 31). Some discussion of criteria of
this type is contained in most books dealing with servo-
mechanisms or feedback amplifiers (for example, refs. 29 and
31). These references provide the necessary theoretical in-
formation for applying these criteria and the theory will not
be repeated here; however, it may be useful to set down
here, together with an example, one mechanical procedure
for applying this criterion and a few pertinent comments.

Consider & differential equation with the characteristic
equation (B4) for a case where the function f(p) cannot
necessarily be easily expressed in a simple polynomial form
which can be handled by the usual Routh-Hurwitz criterion.
(This may be the case, for example, where part of the func-
tion f(p) is evaluated from experimental frequency-response
data.)

The function f(p) is assumed to be a single-valued func-
tion of » which is real when p is real. It is also assumed
that the function f(p) has no poles in the region of the com-
plex p-plane where the real part of p is greater -than zero.
When the equations of motion are set up in the manner fol-
lowed in this report, the condition of no poles in this region
is usually satisfied for actual landing gears since this condi-
tion implies only that the landing-gear strut, as represented
by equations or experimental curves, possesses some damp-
ing or is at least not inherently an unstable structure. For
example, for the equations of case IIT, only the poles of the
functions T(p) and 71 (p) could lead to such poles. How-
ever, if, for example, T(p) had such a pole, equation (161)
would indicate the possibility of a steady or divergent oscil-
lating force F, corresponding to this pole, even if the lower
end of the landing-gear strut were held fixed (%,=0); this
obviously cannot occur in actuality.

In order to decide whether the motion of the system de-
scribed by equation (C4) is stable, the following procedure
may be followed:

(1) Determine the variation of f(p) in equation (C4) for
the case of pure sinusoidal oscillations, that is, for p=1ir in
the range 0<p< =.

(2) Plot the real part of f(4») against the imaginary part
for the complete range 0<{y<». This will give & curve
such as is illustrated in figure 21 for a sample case. As »
varies from 0 to « this curve will move about the origin
through a mnet angle of Jr radians, -this angle being con-
sidered positive in a counterclockwise sense. (J=1 for the
case illustrated in fig. 21.) .

(3) Determine the asymptotic behavior of the character-
istic function f(p) of f(iv) for p—> = or r—>w; at this limit
the function will behave as f(p)ocp? or f(iv) ¥, whence j can
be determined.
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(4) Under the preceding restrictions f(p) being a single- 1[fun]
valued function of p, real when p is real, and having no
poles in the half-plane R(p)>0, it can be shown that the v =10
motion corresponding to the differential equation is stable
if and only if 2J=j. (In the sample case of fig. 21, where
J=1 and j=2, the motion is therefore stable.)

In conclusion it might be noted that, although either the 3
preceding Nyquist type stability criterion or the Routh- R\ 20 Rl
Hurwitz criterion can usually be applied to most of the ap- Nrew ey il
proximate equations discussed in this report, they cannot be
directly applied to some equations of transcendental form
such as those of the summary theory, since such equations
may correspond to infinite-order linear differential equations | Ficure 21.—Variation of the function f(i) for the linear differentinl
(for example, see eq. (120)); hence, an infinite number of equation having the characteristic equation

LvET

Hurwitz determinants would bave to be evaluated or the 5 0
Nyquist type plot would circle the origin an infinite number 7(?) p‘—l—ﬁpsz;i- +321;__|_I-250p +80_
of times,

APPENDIX D

STABILITY BOUNDARIES FOR CASE I

The following equations describe the conditions under which purely oscillatory motion is possible for case I for the sum-
mary theory and the systematic approximations.
For the summary theory and approximations A to C2,

vg_(az-Kk_l—Ka cos® k+4-p34-p.) (220 [(@Ent-an F, sin €)pi—v,p:K, cos «] (ol cos K—a) (1)
T 2(p* 55— 1vi5(0ly cos k—a) cos «

(ol cos k—a) [po{a Ent-anF, sin &) v p1(K,—70%) cos «]
g voloitpd)

and
—arv €08 K (D2)

where, for the summary theory,
P1=DP1o=C08 v;h— Ly, sin »h
Pe=7P3.=8in k4 Ly; cos »k
for approximation A,
p1=1—Ly?

Pe=lp—lyy®
for approximation B,
n1=1—bnt

D=l
and for approximations C1 and C2,
=1
Pr=ln

For approximations D1 and D3 purely oscillatory motion does not exist.
For approximation D2,

3 2
P BK+-aeK, cos ;;I—p-l—p;-l--rv’ cos?x (D3)
__ [ 1i(@Kn cos k4K, cos’c+-anF, sin « cos x)
g=r GErT-aeKy ¢08 kptpt1o® cosix O °08 K:l (D4)

The stability boundaries for uniform motion are obtained by setting the coefficient of the y, terms in the various differ-
ential equations equal to zero. For example, for the summary theory and approximations A and B the equation

oaN cos k+ Ky cos?k+p+ pet+u.=0
describes this stability boundary.
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APPENDIX E
STABILITY BOUNDARIES FOR CASE II

The equations governing purely oscillatory modes of oscillation for case IT are as follows for approximations D1, D2, and D3:
For approximation D1,

=N [Lotmeieit o+mialat 6] —[o+ak(ate)] E1)
[(my-+-m)—E){ — [ Lo(mo+m)Fmmie A [Tk mEe+mN(a+ &+ mN (e:+ o+ p(ma b )P —K[pF N (at+e]}

— _ N1 Umert9+miat Ol —k(a+€) } [(mia+me)v*+ N—ak]
g=—Hv [t mA—FP-L o557 (E2)

For approximation D2,

[Lo(mi~+m)-+mmye? v — [ To(Ba+-E)+p(m,+ ﬁ)+mca’k+m1Kxa(a+ +mExci(er+ O+ [p(En+k)+ERala+ €]
v'= Ay m)— 1k (B3a)

—v{(rami+-rem)v*—[ark+m Kna+ o+ mEer+ )+ kKaa+ o)} (E3b)
g Al m)— & B
Tor approximation D3,
_ ptaklate
”2_Io+m1a(a+ &+mei(e e (Baa)
g=vlk(a+ v—2—mle,+e)—m(ate)] (E4b)
APPENDIX F

CHARACTERISTIC EQUATIONS FOR CASE 1T

The characteristic equations for case IT are as follows for the summary and systematic approximation theories:
For the summary theory and approximations A to C2,

Ky — (m+m)p*— Ky —k mespi-aky
(—EKao™)p+aky  mep*—rmptka—Ke  ILp*+(g+ran)p+tpt+-Katae Ky =0
—f(») 1. h—a

where, for the general theory,
F@)=(+Lrip)ews

J@)=1+lo p+Lv *p*+Lv~5p°
J@)=1+lLv p+Lv2p?
f (P) =14 llv‘lp

Tor approximation D1 the characteristic equation is

for approximation A,
for approximation B,

and for approximation C1 or C2,

[Lo(my~+m) +mmefJpt+- {g(my+m) +No-To+ma(a+e)+me, (ertollp*+ [(Lo+me?)e+-p(my+-m) +mN(e;+€)-}-

mN(a+e)+gNo~p*+ {[a(a+e) Nv'+glk+oNo-1} p+-[o+ (a+ &) NJe=0
For approximation D2,

[Lo(my+m)+mmies o~ 1p5 -+ [rmya -+ rmey +glmy +m)o UpA+ Iy (K +E)oi -+ p(m, +m)v‘1+rv(ﬂ;1+m)+m%‘1+m1a(a+e)mv‘l+
mey(c+-€) Knop*4-[rak -+ g (Bo+-E)o 1 -+-m (e, + &) Ka+ma (a+ ) Kalp*+[rvk+p(Ba+E)o - ak Ka(a+€) v~ p+- kK (a+€) =0

For approximation D3 see equation (167).
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