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TORSIONAL STIFFNESS OF THIN-WALLED SHELLS HAVING REINFORCING CORES AND
RECTANGULAR, TRIANGULAR, OR DIAMOND CROSS SECTION !

By Harvey G. McCougs, Jr.

SUMMARY

A theoretical investigation has been made of the Saint-
Venant torsion of certain composite bars. These bars are
composed of two materials—one material in the form of a
thin-walled eylindrical shell and the other material in the form
of @ core which fills the interior of the shell and is bonded to it.

An approximate boundary-value problem s formulated on
assumptions similar to those of the theory of torsion of hollow
thin-walled shells (Bredt theory). This boundary-value prob-
lem 1s solved exactly for a rectangular cross section and approxi-
mately for slender triangular and slender diamond cross sections.
Resulis for the torsional stiffness constanis are presenied
graphically.

INTRODUCTION

Certain airframe components such as wings, stabilizing
fins, control surfaces, and helicopter rotor blades have been
fabricated by employing a high-strength shell bonded to &
core made of some light-weight material. The shell is
formed in the external contour of the component and the
core fills the interior and acts to stabilize the shell against
local buckling. Such a structure has been called a “foam-
filled shell” because the core is often a foamed-plastic
material. Metal honeycomb and balsa wood have also been
used for cores.

A large amount of literature exists on the problem of
torsion of homogeneous isotropic cylindrical bers, but rela-
tively little work has been done on the torsion of composite
cylinders. A few exact solutions to problems in the torsion
of composite sections are presented in references 1 and 2.
Solutions for other cross-sectional configurations are desir-
able, and the methods used in references 1 and 2 do not
appear to be applicable for sections of the type considered
in the present report. ‘

In this report an approximate boundary-value problem
for the torsion of foam-filled shells is formulated. The
fact that the thickness of the outer shell is small relative to
overall dimensions of the cross section allows an approxima-
tion similar to that of the Bredt theory for the torsion of
hollow thin-walled shells with free warping. (See ref. 3,
pp. 298-302.) For a rectangular cross section, an exact
golution to the approximate boundary-value problem .is
obtained. For slender triangular and slender diamond cross

¥ Bupersedes NAOA Technical Note 3749 by Harvey G. McComb, Jr., 1956,

sections, approximate solutions which appear to be reasonably
accurate are obtained. Finally, the results are compared
with results based on an elementary concept of the torsional
stiffness of foam-filled shells.

SYMBOLS
A,B arbitrary constants
a,b,c cross-sectional dimensions (see fig. 4)
C curve defining boundary of a region
f®),e® arbitrary functions
G,G; shear moduli of shell and core materials,
respectively
Do () Fourier coefficient (see eq. (21))
J1,Ja torsional stiffness constants
gl
r=Gb_"2
Glt Glt
Feimykon arbitrary constants
M moment on cross section
m index in equations (37) and (61),
n summation index
R region .
8 direction tangential to a curve in cross
section
t thickness of shell wall
to dimension of cross section (see fig. 4)
U total complementary energy per unit
length
ﬁ=G2U
2,2 coordinates along X-, Y-, and Z-axes,
respectively
a8 arbifrary constants
v shear strain
e=bja
] angle of twist per unit length
Ax eigenvalues ..
p=+1+¢ ;
v direction normal to & curve in cross
section
£n nondimensional coordinates in - and
y-directions, respectively
T ghear stress
¢ stress function
Q - constant of integration
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Subscripts:
1,2 refer to regions and curves indicated in
figure 1
Prime denotes differentiation with respect to the mdlcated

variable.
. . BASIC EQUATIONS ,

In this section equations of elasticity are established for
the Saint-Venant torsion of certain cylindrical bars composed
of two materials. These equations are then particularized

to the case of foam-filled thin-walled shells. Finally, the

energy approach to the torsion of foam-filled shells is dis-
cussed briefly.

. TORSION OF CYLINDRICAL BARS CONSISTING OF TWO MATERIALS

Consider a long cylindrical bar composed of two.isotropic
materials in which one material surrounds the other. A
cross section of such & bar is shown in figure 1. For torsion
with free warping, the stresses are given in terms of a stress
function ¢ as follows:

_O%;
rn—by .
o4, ey
T o

where =1 or 2. HEach function ¢, must satisfy Poisson’s

equation .
Vi¢,=—2G0 @

in its corresponding region R,. :

The boundary conditions can be expressed in terms of the
stress function by consideration of the components of shear
stress normal and tangential to a curve in the cross section.
These components are, respectively,

L
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Fraure 1.—Cross section of cylindrical bar composed of two materials.
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The condition that the external boundary of the section must
be free of stress is obtained by integrating the first of equa-
tions (3) along Ci:

¢1|cl=91= Constant 4)

The conditions which must be satisfied at the interface ;
can be seen by referring to figure-2. The tangential strain
must be continuous across C.. In terms of the stress func-
tion, this condition is

1 ad’l 1 0¢;

Gg DV (5)

Lastly, the shearing-stress component normal to C; must be
continuous across Ck, or

ad’l
T8 e

%
08 ¢

(6)

When equation (6) is integrated, the following equation
Tesults:

‘#zla,=¢’1|a,+92 )
The problem is to find stress functions ¢, and ¢; which satisfy
equation (2) in their respective domains and the boundary

conditions (eqs. (4), (5), and (7)).
The total moment on the cross section is given by

M= ()R ()

inl

This equation can be written in terms of ¢ as follows:

Rl o
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F16ure 2.—Shearing stresses on an element at the interface betweon
the materials. Superscripts on symbols correspond to regions
indicated in figure 1.
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TORSION OF THIN
Integrating by parts and making use of equations (4) and (7)
gives

M=33 0. (—zdyty i+ fxgqsf iR,  (10)

The stresses and moment on the cross section are independent
of ©,; therefore, these constants may be chosen arbitrarily.
Tor convenience, &, and @; are both taken to be zero so that
the expression for the moment is analogous to that for the
torsion of a uniform cross section; that is, moment equals
twice the volume under the ¢ diagram.

TORSION OF FOAM-FILLED SHELLS

The equations of elasticity are particularized for the case of
a cylinder made of a thin-walled shell of one material filled
with a core of another, that is, a foam-filled shell. - In figure
3 a general cross section for such a cylinder is illustrated.
Because the thickness of the shell wall is small compared
with the overall dimensions of the cross section, the stress
in the wall can be assumed to be uniformly distributed over
the thickness. This stress is equal to the normal derivative
and is given by

(1)

where 7, represents the stress in the shell wall. With the
use of equation (11), equations (4), (5), and (7) can now be
written as

¢rlcl=0 (12)
and
Odsl __Gady| __Gads
bv C, Gl i c:— Gl t C, (13)

Let the curve C in figure 3 be the middle surface of the
shell wall. If the shell wall is assumed to be concentrated
at its middle surface, then C can be thought of as represent-
ing the interface, middle surface, and outer boundary of the
wall. Consider R as being the region bounded by C. The
problem can now be formulated as follows. Find a function
¢ satisfying the equation .

Vi¢=—2G:0 (14)
in R and the equation

24| __Gyo

o "G 1l (1)

Fraurs 3.—Cross section of a composite thin-walled cylindrical shell.
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along C. The moment on the cross section is equal to
twice the volume under the ¢ diagram, or

s [

ENERGY APPROACH

(16)

Approximate solutions for the torsion of foam-filled shells
can be obtained by the energy method. The complementary
energy for such a body is the sum of the stress energy of the
core, the stress energy of the shell wall, and the negative
of the work done by the external moment acting through
the angle of twist. For the composite cross section shown
in figure 3 the complementary energy per unit length is

1 1
U=ger f fR(rn’+r,,§dx Iyt fc (rean)tt ds—M8  (17)

where 7., and r,, represent the shear stresses in the core
and 7., represents the shear stress in the shell wall. In
terms of the stress function ¢, U becomes

U=2i6,2 f f B(¢xf+¢,’—4ase¢)dz aly+2i671 L ¢2|cd—f (18)

where the subscripts on ¢ denote the partial derivative with
respect to the indicated variable. ,
‘When the variation of U is equated to zero and integrations

by parts are carried out, the following equation is obtained:

GlT=0— fc (g—f“*%f?)ﬁ ds— f fR(¢n+¢W+2020)6¢dx dy
(19)

It is seen that, if 8¢ is arbitrary in R and along C, equations
(14) and (15) must be valid.

The torsion of a foam-filled shell is analogous to the
problem of the deflection of & membrane stretched over the
region R, subjected to lateral pressure, and supported along
the curve C by infinitely many springs which are constrained
to distort only in the direction normal to the plane of R.
Some discussion of approximate solutions of problems of this
type is given in reference 4.

SOLUTION OF SPECIFIC PROBLEMS

In this part of the report an exact solution for a rectangular
cross section is obtained by satisfying equations (14) and
(15). For the slender triangular and slender diamond cross
sections, exact solutions do not appear feasible, and ap-
proximate solutions are obtained instead by using equation
(18). Two approximate procedures are utilized in each
cage; the first is the Rayleigh-Ritz method and the second is
a more general variational procedure, herein called the
“variational method.” This latter procedure is applied,
for the most part, in cases where the Rayleigh-Ritz method
becomes cumbersome. These two approximate methods
may be applicable to other sections of practical interest for
which solutions are not available.
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RECTANGULAR CROSS SECTION

The notation for a rectangular cross section is shown in
figure 4 (a). The thickness of the shell wall is assumed to
be constant. The problem is to find a function ¢ which
satisfies equation (14) within the rectangle and the following
boundary conditions:

- G -
—E= :F-G—l 2— (at = :[:G,) (2-0&)
[« Gio _

The function ¢ is, of course, symmetric about both the X-
and Y-axes. The symmetry condition about the X-axis is
satisfied when ¢ is taken in the form

¢=Z(‘§h.(:c) €8s Ay (21)
=
Y
a g
1 l " x
I
| b
[ I |
(0) c
Y
!
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X
(b) gandc
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|
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o
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<= = | x
\\\ LA /// L
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(c) c

(&) Rectangular cross gection.

(b) Triangular cross section.

(¢) Diamond cross seclion.
Fraure 4.—Notation used in analysis.
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where the functions cos Ay form an orthogonal set. The
right-hand side of equation (14) can be expanded in & Fourier
series of the functions cos Ay in the interval —b Sy <), and
this expansion yields

e 4G0sin N -
vie= ,?:') MbFsin b cos nb COS MY

(22)

Substituting the assumed solution (eq. (21)) into equation
(22) and equating coefficients of like terms gives the following
ordinary differential equation.for ka(z):

4G40 sin \,b

ha@) M@= =5 S eos b (23)
The solution to equation (23) is
L . 46,0 sin A b
hj("’) =Fix 8inh Aszt-kan cosh Mty oS T cos Wb
(24)

The constants k,, vanish because of symmetry. The con-
stants ks, and the eigenvalues X\, can be found from the
boundary conditiong at z=a and y=>J, respectively. Con-
sider first the condition at y=>4. The substitution of equation
(21) into equation (20b) yields

N
A, sin A b= G cos AD (25)
Therefore, the eigenvalues are given by
K
tan )\,b=m (26)
where
. Ggd
=1

At z=ag, the substitution of equation (21) into equation (202)
yields

. & 4G40 sin A0

Fanh, sinh k.a——-al—z [Icz, cosh Az A 0LhEsm N5 005 W.5)
(27)

Therefore,

P —4KG:0b sin \,b
T N2D* (M0 sinh N\ ,a 4K cosh \a)(\,b4sin N6 cos \,b)

(28)

Consequently, the stress function is

= 4G,0b% sin A\b cos My
=2 N FF (M BT5in Mb €08 M)
K cosh \z
(1 A0 sinh \,a+ K cosh k,.a) (29)

The moment on the cross section is given by the formula

M=8 f ufbdada: dy (30)
0J0
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TORSION OF THIN-WALL?

The torsional stiffness can be expressed in terms of either G,
or Gg
M

7=G1J1=G2J2 (31)

The torsional stiffness constants o/, and J; are obtained upon
substituting equation (29) into equation (30) and carrying

out the indicated integration. When the results are expressed
in the form of equation (31), it is seen that

}

1=4ct it KA
J = 2¢ tosA (32)
where

o

A=2]

n=0

sin\,b x
A03(Nsb+-sin N, b cos \,0)

I:l__é K sinh \a ] (33)
@ MD(Asb sinh Ma+K cosh \,q)

The series A converges very rapidly. For various values of

K, the eigenvalues are easily located from the intersections

of the hyperbola K/\b and the curves tan \,b as indicated

infigure 5. Plots of J; and J; against the cross-section aspect

ratio %/c for various values of K are presented in figure 6.
As the stiffness of the shell-wall material vanishes, K

2n+ )=
2

approaches infinity and \,b approaches It can be

shown that the limiting value of J; is the solution obtained
by the theory of elasticity for the torsion of a homogeneous
rectangular cross section as given in reference 3 (p. 278).

As the stiffness of the core material vanishes, K approaches
zero and the solution should approach that of the Bredt
theory for the torsion of hollow thin-walled shells with free
warping. As K approaches zero, \.b approaches nx. It is
obvious, then, that all the terms in A vanish for which #>0.

WITH REINFORCING CORES 775

approach the result given by the Bredt theory which is
44, 2ty

ds 5)
P (1%

Wgﬁre 4, 18 the area enclosed by the median line of the shell
wall.

E-0

SLENDER TRIANGULAR CROSS SECTION

If the energy approach is used, two approximate solutions
are obtained for & cross section in the shape of a slender
isosceles triangle with a constant-thickness shell wall as
illustrated in figure 4 (b). One solution is obtained by the
Rayleigh-Ritz method and another solution is found by
utilizing the calculus of variations and the boundary-layer
technique of reference 5.

Rayleigh-Ritz method.—In terms of nondimensional co-
ordinates, the complementary energy (eq. (18)) can be
written for the triangle as follows:

ﬁ=G2U
= [} [orror—sqorerianat e[| at
0Jo € € Jo =f

K f ‘qb“, dy (35)
0 13534
where

17=% e=— p=A+/1+4+¢

Note that the equation of the sloping side of the triangle in
nondimensional coordinates is simply n=¢.

The stress function ¢ must be an even function through
the thickness, and for slender sections it is usually sufficient

Investigation of the term for which 2=0 shows that J; does

to assume & parabolic variation in the thickmess direction.

“
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F1cure 5.—Dstermination of eigenvalues in exact solution for rectangular cross section.
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(a) Constant associated with shear modulus of core material.
(b) Constant associated with shear modulus of shell-wall material.

Ficure 86.—Torsional stiffness constants for a composite thin-walled oylindrical shell of rectangular cross section,

lo
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M/0=G1J1=G3J3; K=‘G—'
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TORSION OF THIN-WALL-ED SHELLS WITH FEINFORCING CORES

For thick sections, however, it may be necessary to include
additional terms in the thickness direction to get satisfactory
accuracy. Suppose now that ¢ is assumed to be a poly-
nomial

—> g B 36
¢ nZﬂ%d g8 (36)
When equation (36) is substituted into equation (35) and U

is minimized with respect to the parameters «,, and B, the
following r-2 equations result:

U _ )
E—O

L g mn ,

=,,Z=.;')a" m-+4n' m+n+1 ! KE>+ﬁ<m+3
maﬁb’ L(37)
o0_
Y
Ke Kp K _1_ ____]:
=2 (st 5 (T g

where 0=Sm <.

Solution of the system of simultaneous equations (37)
vields «, and 8. From equation (16), the moment is

M=ab

8
> ts) (38)

The stiffness can be written in the form of equation (31) and
J; and J; are easily calculated. The results are

ctto B
TR (1 n=-0’”f+2 il G’zBlF)

(39)

Cto ( 1 B >
,,-on+2 Ggﬁb’T2Ggﬁb’

When K is large compared with unity a large number of
equations may be required for reasonable aceuracy. An
approach which avoids this difficulty is developed in the
succeeding section.

Variational method.—Instead of assuming for ¢ the poly—
nomial of equation (36), suppose arbitrary functions of £ are
allowed to remain and ¢ is taken to be of the form

o=f(O)+rg(®)

When equation (40) is substituted into equation (35) and
the variation of U with respect to admissible variations in
f and g is equated to zero, two simultaneous ordinary differ-
ential equations for the functions f and g are obtained as
follows:

(40)

'Y +5 () —Eulf +5i0)=—26,00%
e e ) 4 2 (4D
L@y +e @) ~Eug+e)—5 =3 Gt

777

and the following boundary conditions are obtained:

(!;‘f '-l—3g g'>5*0=0 (422)
(er+iee) = (42b)
(ef' +EKf)er=0 (42¢)
(2/ +Kg)tmr= (42d)

where the primes denote derivatives with respect to £.

The differential equations (41) are linear with variable
coefficients, and it appears to be a difficult task to find an
exact solution to the system. For the case of slender cross
gections, however, an approximate solution is possible by
utilizing the ‘‘boundary layer” technique discussed in refer-
ence 5. Notice that the differentiated terms in equations
(41) are multiplied by €, a quantity which for slender cross
sections is small compared with unity. Differential equa-
tions having the most highly differentiated terms multiplied
by a small quantity are characteristic of the type of bound-
ary-layer problems considered in reference 5.

Suppose, initielly, that f and g are slowly varying functions
throughout the region 0<¢<1. The term “slowly varying”
is intended to mean that the maximum values of the func-
tions f and g and their derivatives which appear in equations
(41) are of the same order of magnitude. Then, as long as
K is at least of the order of unity, the terms in equations
(41) which contain ¢ have little influence on the solution.
Consequently, & good approximation to a particular solution
is obtained by ignoring the terms in equations (41) which
contain €.

When this procedure is carried out, it is found that the
approximate particular solution satisfies the boundary con-
ditions at £=0 but does not satisfy the boundary conditions
at £=1. It can be concluded that the required solution is
such that the functions f and g are not slowly varying every-
where in the region 0<t=<1. Somewhere the derivatives
which appear in equations (41) must take on values which
are of the order of ¢ % so that the terms containing € can
have an appreciable influence on the solution.

It is assumed that the region where the derivatives of
£ and g have values of the order of €2is confined to a so-called
boundary layer in the neighborhood of #=1. On the basis
of this assumption, the particular solution alone is a good
approximation to the exact solution away from ¢=1. Then,
by focusing attention on the boundary layer close to =1,
it is possible to obtain an approximate homogeneous solution
to equations (41) which modifies the particular solution in
such a manner that the boundary conditions at #=1 can be
satisfied.

It is convenient to get a particular solution as a power
geries in ¢ instead of ignoring completely the € terms in
equations (41). Assume that a solution can be expressed

in the form
Fe@®=fr@®+mnE)+fe®+ . . }
. (43)

gr(E)=gpo(£)+egrm(§)+gr(®)+ . .
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where the subscript P denotes a particular solution. When
equations (43) are substituted into equations (41) and
coefficients of like powers of ¢ are equated, pairs of simul-
taneous equations are obtained for the coefficients in the
power series. -For example, when the coefficients of the
zeroeth power of ¢ are equated there results

Ku(fpo+E2p0)=2G-00%
4: 2 (442)
K#(.fm+52gm)+§ Egm=§ G.0b%

When coefficients of the first power of e are equated the
result is .

Fer+8ep=0
4 (44b)
K#(f?1+f2gpl)“l—3' £gm=0

When coefficients of the second power of e are equated the
following equations result:

(&r0) -+ (E'gr0) — Kl fes-+Egr)=0
- (449)

L 10Y 5 () — K@i Eeed —5 Eem=0

Similar equations are obtained when coefficients of higher
powers of e are equated.

Solution of equations (44) results in the following expres-
sions for f» and gp:

= 2 p 2 A e) ...
frmai [ ot (Gtiite) + -] -
gr=— GO L+ - - )

Coefficients of the odd powers of ¢ vanish. This particular
solution satisfies the boundary conditions at =0 but not
at &=1.

A homogeneous solution can be obtained which modifies
the particular solution in the vicinity of {=1 in such & way
that the boundary conditions at #=1 can be satisfied. In
order to determine the homogeneous solution it is convenient
to put equations (41) into & form in which, in the neighbor-
hood of =1, the terms containing derivatives are of the
game order of magnitude as the remaining terms. Such a
conversion is provided by the coordinate transformation

t=1+e (46)
When the transformation (eq. (46)) is introduced into
equations (41) and the right-hand sides are set equal to zero,

REPORT 1316—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the following equations are obtained:
[+DFT+5 [+ T —Eu [+ 1+ D=0

L+ Dy QDT —RulQ+ D | 6D

1+ gl—5 (1+D%=0 |

where the primes now denote differentiation with respect
to £
The homogeneous solution can be expanded in powers of ¢

fx®=fm@ + efam(B) +&fm(®)+ - - } )
22 =gm®) +eem® +em@® + - - -

where the subscript H denotes 8 homogeneous solution. If
these expressions are substituted into equations (47 ) and the
coefficients of like powers of e are equated, systems of
ordinary differential equations are obtained. For the terms
Fao end g, & set of homogeneous equations is obtained:

fm"'l‘ %gEOH_KI-‘ (fro+Em0)=0
(49)

1 1, 4
'gfm:”'l‘ ‘5‘gzm '— Ky (fro+8gro)— ggﬂo=0

For the terms fm and gm; the following nonhomogeneous
equations are obtained:

-

fa'+ %gm"'—Kﬂ- (fartem)=— @fuo') ! — @guol) "+

2K#§guo
- (60)

%fm""l‘ %gm"'—K#(fm‘l‘gm)'— %gm= - @fm’) f—
Gé’m’) "+ 2Kl‘§ (fHo + 2530) + 428}10 J

Additional sets of nonhomogeneous equations would result
for the coefficients of higher order terms.

It is found that neglecting terms of the order of ¢ in equa-
tions (48) is equivalent to neglecting terms only of the order
of & in the final result for the torsional stiffness constants.
Therefore, & final result which includes all terms linear in
¢ can be obtained by solving only equations (49) and dropping
all higher order terms in the homogeneous solution. Solu-
tions to equations (49) are of the form

on=Ang

gm,:Ba"?
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TORSION OF THIN-WALLED SHELLS WITH REINFORCING CORES

Substitution of these functions into equations (49) yields

A=K+ B(5—Kr)=0
(51)
A ——Kp)—l—B();) Kp.-—

This system of equations has a solution only if the deter-
minant of the coefficients vanishes. When the determinant
is set equal to zero a biquadratic equation for X is obtained.
The solution to the biquadratic equation is

N \/15+6Kp. + 1/(152>+6Ky)’—60Kp 59)

The homogeneous solution must vanish as the absolute
magnitude of £ increases, and since £ is always negative or
zero, only the two positive roots for \ are required.

From the first of equations (51) the B coefficients can be
written in terms of the A coefficients

MoKy 4 (53)

B=—3y—3x, N—3Ku

When the £ coordinate is transformed to the £ coordinate and
terms of the order of € are dropped, an approximate general
solution to equations (41) is obtained

R
f=ﬁl Age ‘e‘E—!—Gngi( 25-[—5’)
n= 54
— Da, (54)
213 3K, A ‘et —G,Gb’

This solution satisfies the boundary conditions at £=0.
The boundary conditions at £=1 are used to determine
Al and Ag.

When equations (54) are used, the stress function ¢
becomes

Ay Ay
¢=Gzob’[" A (1 I 2__3% n’>e ) Tf4|—“—‘§+e32—n:| (55)
where
- A,
A.=m

and where terms of the order of ¢ are dropped. The moment
is calculated by substituting ¢ into equation (16) and per-
forming the integration. The results for the torsional
stiffness constants J; and .J; are

Ji= °t° 2KT
(56)
Cto
Jo= 7] T
where
_ 4 —2Kp
I‘-—1+E+6 ;?;: A PV o (57

779

.and where terms of the order of ¢ have been dropped. Tt

is seen now that in calculating the arbitrary constants A,,
terms of the order of ¢ may be neglected. When equations
(54) are substituted into the boundary conditions (egs.

(42¢) and (42d)) the following expressions for A4, are obtained
after dropping terms of the order of e:

Gerpose
A+ E)W(15+4+-6Kp)*—60Ku

G+K>x,2—2K
(A +E W(154+-6Kp)*—60Ky |

1=

-~

(RR

Zg=

In the limiting case where K approaches zero the boundary-
layer technigue becomes invalid. Therefore, the solution
cannot be expected to approach the proper result for a hollow
thin-walled shell. When K approaches infinity, an approx-
imate solution for a solid cross section is obtained; and T
is given by

lim 1‘=1—4:\/2 € (59)
Koo 5

SLENDER DIAMOND CROSS SECTION

Rayleigh-Ritz method.—For the slender diamond cross
section the notation is shown in figure 4 (¢). The comple-
mentary energy becomes

T=2 f l f E<€2¢'52+¢v2—402952¢>% dy det2 B f P
0Jo . € Jo =

Substitution of the polynomial (eq. (36)) into equation (60)
and minimization with respect to a, and g yields the r4-2
equations

d¢ (60)
£

G.9b*

U mn_,
D_Zz— (ezm-l—n m+n+l>+ﬁ m—|-3 m+9
U

n+3+6 (Ky“L")"' G00*

n=0

(61)

where 0Sm=sr.

The moment and the torsional stiffness constants J; and
Jy are found by utilizing equation (16). The expressions
for the torsional stiffness constants turn out to be precisely
the same as for the triangular cross section given in equations
(39). Of course, for the diamond cross section, «, and 8 are
obtained from equations (61).

Variational method.—Through the use of the calculus of
variations and expression (40) for ¢, the differential equations
(41) are found to be valid also for the diamond cross section.
The bouundary equations at £=0 (eqs. (42a) and (42b)) also
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hold for the diamond cross section. The boundary condi-
tions at £=1, however, are now given by

Flgm1=0
(62)
g |£-1=0}
where the primes denote differentiation with respect to &.
The boundary-layer technique yields a general solution of
the same form as that obtained for the triangle. However,
now it is fOlIl!ld that neglecting terms of the order of e in the
homogeneous solution (egs. (48)) is equivalent to neglecting
terms only of the order of & in the final expressions for the
torsional stiffness constants. Consequently, for the diamond
cross section a result which includes all terms of the order
of & can be obtained: by solving equations (49) and dropping
all higher order terms in the homogeneous solution. It is
consistent, now, to keep the & term in the particular solution.

The approximate general solution to equations (41) for
the diamond cross section becomes

=33 dne * S 1000 g rere(Ftatr) |

M 7\. 63)

K“A gc —G,ob’(l—l—e’)

2

The arbitrary constants A; and .4, are determined by sub-
stituting equations (63) into equations (62).

The stress function becomes

¢=G.0b* }i_‘{A (1 —3 ik, rﬁ)
%+E’—n’+e’(m-l—ﬁ+£2—n’>] (©0

If this expression for ¢ is substituted into equation (16) and
integrated, the moment can be calculated. The torsional
stiffness constants become

cto

Jri= 2KT*
- (65)
Jg_cto
where
8 2K
P*_ IK +€2<K2 2 l K l1 +6’§1A o > (66)

When equations (63) are substituted into the boundary
conditions (eqs. (62)) and terms of the order of € are
neglected, the following expressions are obtained for the
arbitrary constants:

T 1+Kpu 222+3Ku
" Bp \+/(15F6Kp)—60Ku
7
- 1+Ku 2M2+3Ku (67)

o=
2

“"Ein 2+(1516En—60En
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In the case where K approaches infinity an apprommute
solution for a solid section is obtained, and I'* is given by

lim T*=1—3¢ (68)

Kore

RESULTS AND DISCUSSION
PRESENTATION OF RESULTS

The results of the calculations outlined in this report are
presented in figures 6, 7, and 8. These figures show plots
of the torsional stiffness constants against cross-section
aspect ratio for various values of the parameter K. The
torsional stiffness can be expressed either in terms of the
shear modulus of the core material or the shear modulus
of the shell-wall material. The torsional stiffness constant
associated with the shear modulus of the core material oJ,
is plotted in parts (a) of figures 6, 7, and 8, whereas the
constant associated with the shear modulus of the shell-wall
material J; is plotted in parts (b) of these figures.

In figure 6 are shown the results of the exact solution of
the differential equation (14) with the boundary conditions
(20) for a rectangular cross section. In figures 7 and 8 are
shown the results of the approximate solutions (the Rayleigh-
Ritz method and the variational method in conjunction
with the boundary-layer technique) for the triangular and
diamond cross sections. A five ' parameter polynomial
was used in the Rayleigh-Ritz method.

ACCURACY OF APPROXIMATE METHODS

Solutions by the Rayleigh-Ritz and variational methods
also were obtained for the rectangular cross section. A
comparison of these results with the exact solution provides
an indication of the accuracy of the approximate methods.

A polynomial with only three parameters was used for
the Rayleigh-Ritz method in this comparison. The results
showed that for all aspect ratios and for K less than about
unity the stiffness given by Rayleigh-Ritz method is less
than 3 percent lower than the exact stiffness. It is belioved
that the five-parameter Rayleigh-Ritz method used for the
triangular and diamond cross sections should yield slightly
more accurate results. Of course the accuracy of the
Rayleigh-Ritz method can be improved for large values of
K by including more terms in the polynomial for ¢. How-
ever, the number of simultaneous equations which must be
solved increases with the number of unknown parameters.

The stiffness calculated by the variational method for
the rectangular cross section was less than 1 percent in error
for values of K greater than about unity and the aspect
ratio ffc less than about %. The boundary-layer technique
yielded a slightly more accurate solution to the differential
equations obtained for the rectangular cross section than for
equations (41) which arise for the triangular and diamond
cross sections. Thus the results of the variational method
for the triangular and diamond cross sections are probably
not quite as accurate as for the rectangular cross section.
It appears that for slender cross sections (small values of
fo/c) the variational method is more accurate for large
values of K and the Rayleigh-Ritz method is more accurato
for small values of K. .


http://www.abbottaerospace.com/technical-library

TORSION OF THIN-WALLED SHELLS WITH REINFORCING CORES 781

6 .
5
]
——
R
Q::\\t:\
Qti\\\\§ K
4 T — ]
ol
G Rayleigh -Ritz method
\N —— ———— Varlgtional method
~
3 ——
.‘\-L\\ B
T —— 1 e
——
2 —_———
— ——— —_—l 1 a
1 -t _10
v . < -——-——4._~T_ < . ® _
a
0 (0)
10
)
~—
\\‘
—
\\
9 \\ —
\ — —
.
’ \ \ ~——
\\
\\
’\ \\\ K
1
= \
7 . \
\ T~ —]
0001 \ |
6 [—
| I Ol
. 0 !
Bredt-- 001
0]
(b)
5
o} .05 .10 RE .20

/e

(a) Constant associated with shear modulus of core material.
(b) Constant associated with shear modulus of shell-wall material.
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In figures 7 and 8 the solid curves are results of the five-
parameter Rayleigh-Ritz method, and the dashed curves
show results of the variational method. The Rayleigh-
Ritz method certainly leads to a lower bound for the torsional
stiffness. The variational approach also leads to a lower
bound provided the boundary-layer technique yields a
sufficiently accurate solution to equations (41). From the
results on the rectangular cross section it appears reasonable
to assume that for {21 the variational method probably
gives a lower bound. Therefore, for any particular case
where K21, the higher of the two values of torsional stiff-
ness calculated by the two approximate methods is the more
accurate.

REMARKS ON AN ELEMENTARY CALCULATION

It is conceivable that a first approximation to the stiff-
ness of a foam-filled shell could be made simply by adding
the torsional stiffness of the core alone to that of the shell
alone and neglecting the stiffening effect which results from
bonding the core and shell together. Calculations were
made by this elementary procedure and the results are shown

in figure 9. The ratio J—'}M is the ratio of J; as calculated
I, th

by the elementary procedure (neglecting the bonding effect)
to J; as calculated by the theory of this report. It is seen
that for the rectangular cross section the result of the ele-
mentary calculation is never more than 5 percent lower
than the exact solution. For the triangular and diamond
cross sections, however, the elementary procedure does

783

not lead to such good results, and the discrepancy can be
as much as 25 percent.

CONCLUDING REMARKS

An approximate boundary-value problem is set up for the
Saint-Venant torsion of cylindrical thin-walled shells bonded
to a core which fills the interior of the shell and which is
made of a material different from that of the shell wall.
Solutions for the torsional stiffness are obtained for three
particular cross-sectional shapes—an exact solution to the
boundary-value problem for rectangular cross sections and
approximate solutions for slender triangular and slender
diamond cross sections. The approximate solutions are ob-
tained by the use of two energy procedures. These methods
may be applicable to other cross sections of practical interest.
The choice of approximate method for any particular prob-
lem depends on the range of parameters involved.

The stiffness obtained by the simple procedure of adding
together the individual stiffnesses of the core and the hollow
shell (neglecting the effect of the bond) yields results less
than five percent low for rectangular cross sections. For
slender triangular and diamond cross sections this elementary
approximation is generally not so good and in certain cases
it yields results which are considerably low.

LANGLEY AERONAUTICAL LABORATORY,
Narional ApvisorY COMMITTEE FOR ABRONAUTICS,
Lancrey F1ewp, Va., June 7, 1956.
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Fraure 9.—Comparison between the results for the torsional stiffness constant J; obtained from an elementary calculation and the present theory.
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