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THEORETICAL CALCULATION OF THE POWER SPECTRA OF THE ROLLING AND YAWING
MOMENTS ON A WING IN RANDOM TURBULENCE ?

By Jon M. EacrLesToN and FraANkLIN W. DIspBRICE

SUMMARY

The correlation functions and power specira of the rolling
and yawing moments on an airplane wing due to the three
components of continuous random turbulence are calculated.
The rolling moments due to the longitudinal (horizontal) and
normal (vertical) components depend on the spanwise distribu-
tions of instantaneous gust infensity, which are taken into
account by using the inherent properties of symmetry of iso-
tropic turbulence. The resulls consist of expressions for
correlation functions or spectra of the rolling moment in terms
of the point correlation functions of the two components of
turbulence.

Specific numerical calculations are made for a pair of correla-
tion functions given by simple analytic expressions which fit
available experimental data quite well. Caleulations are made
Jor four Uft distributions. Comparison 18 made with the
results of previous analyses which agssumed random turbulence
along the flight path and linear variations of gust velocity across
the span.

The rolling moment due to lateral (side) gusts, which is small,
18 expressed in terms of the instantaneous value of the gust near
the center line of the fuselage, 8o that the effect of spanwise
variation in gust intensity 18 ignored. The yawing moments
are considered to be proportional to the rolling moments with the
constants of proportionality given by simple aerodynamic
relations.

INTRODUCTION

The gust velocities acting on an airplane flying through
turbulent air are functions of position or time known only
in a statistical sense. Consequently, aerodynamic forces and
moments produced by the lifting surfaces of the airplane
can be known only in a statistical sense. If the statistical
characteristics of the turbulence are assumed to be invariant
with position along the flight path, flight through turbulent

air may be considered to be a stationary random process [

and the mathematical techniques developed for such pro-
cesses (see ref. 1, for instance) may then be used in this
problem.

This approach has been adopted in many papers on this
subject, among them references 2 and 3. Inasmuch as in
these papers the motions and forces associated with the
longitudinal degrees of freedom were of primary interest, the.
assumption was made, implicitly, that the gust intensity is
uniform along the span at any instant. However, for the

problem of analyzing the motions and forces associated
with the lateral degrees of freedom, this assumption is
inadequate, inasmuch as it implies that the vertical and
horizontal gusts produce zero rolling and yawing moments
on the wing. This problem has been treated in references 4
and 5 and elsewhere on the basis of the assumption that at
any instant the gust intensity varies linearly across the span.

A fundamental method of accounting for the lift on a wing
due to random variations of the gust velocities in both the
flight-path and the spanwise directions is given in reference 6
for the longitudinal response of an airplane in atmospheric
turbulence. The approach is based on the assumption that -
the turbulence is axisymmetric (according to ref. 7), so that,
at any arbitrary time or position in the turbulence, the
statistical characteristics of the turbulence encountered by an
airplane do not depend on the heading of the airplane. On
the basis of this assumption, the variation of gust intensity
across the span can be related to the variation of the gust
intensity along the flight path.

In the present report the approach of reference 6 is extended
to the calculation of the rolling and yawing moments on a
wing due directly to vertical gusts, longitudinal gusts (herein-
after referred to as horizontal gusts), and lateral or side
gusts. These moments are required as & first step in cal-
culating the motions of & complete airplane in atmospheric
turbulence; the moments due to the motions caused by these
input moments can be calculated by conventional methods
and will not be considered herein.

In the first part of the report, a theoretical analysis is made
defining the power spectra of the rolling and yawing moments
of & wing in terms of the statistical characteristics of the
atmospheric gust velocities. By using an analytical expres-
sion to define these characteristics, & numerical solution of
the lateral moments is presented in the last part of the report.

SYMBOLS

a=p T EY

b wing span

c wing chord

¢ wing mean aerodynamic chord

Ek), K(k) complete elliptic integrals of the second and
first kind, respectively, of modulus &

I longitudinal correlation function for iso-
tropic turbulence

F Fourier transform of f

18upersedes NACA Technical Note 3864 by John M. Eggleston and Franklin W. Diederich, 1966
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lateral correlation function for isotropic
turbulence

Fourier transform of g

indicial-response function of time only

indicial-response function of time and dis-
placement '

Fourier transform of two-dimensional corre-
lation function

2—1

modulus of elliptic integrals, 217

reduced frequencj, oL/U

modified Bessel functions of the second
kind

incomplete modified Bessel functions of the
second kind

section lift

integral scale of turbulence

rolling moment

rolling velocity

dynamic pressure

yawing velocity (used only in stability
derivatives) ; linear displacement between
any two points

wing area

time

mean forward velocity

displacement along the flight path

component of airplane velocity along posi-
tive Y-axis

three components of gust velocity (see fig.

1(a))
reference axes (see fig. 1(a))
chordwise distance
spanwise distance

nondimensional spanwise coordinate, %

angle of attack, radians

span influence function
integral weighting function

dummy variable of integration, y,*—y,*
atmospheric density
dummy variable of time

circular frequency, 27/Period

rolling-moment coefficient, Roumi‘sl'lgoﬂlent

yawing-moment co eﬁ'icieni;,Ya'wm;gZ ;; orent

__0C,
On'—a )
2U
o}
6,~2%
O30
20,
033:5—0—
U
0,=2%
°T
N correlation function
& power spectral density
Subscripts:
0 irim value
g gust component

A bar over a quantity denotes the mean value of the
quantity. The absolute value of & quantity is denoted by | |.

THEORETICAL ANALYSIS
PRELIMINARY CONSIDERATIONS

In this section expressions are derived for the power
spectra of the rolling and yawing moments of an unswept,
airplane wing or thin lifting surface of arbitrary plan form
due to flight through random atmospheric .turbulence.
Essentially, the procedure consists of expressing the rolling
moment at any arbitrary position.along the flight path in
terms of the gust velocity at that position, establishing the
correlation function between the rolling moments at any
two points along the flight path, and transforming this cor-
relation function into an expression for the power spectral
density. The power spectrum of the yawing moment is then
related to that of the rolling moment through simple aero-
dynamic relationships.

Assumptions.—The following assumptions are made in
the analysis:

(1) The turbulence is homogeneous and isotropic; that is,
the statistical characteristics of the turbulence are invariant
under & translation or rotation of the space axes (although
the results obtained for the vertical component of turbulence
require only the somewhat less restricting assumption of
axisymmetry).

(2) Time correlations are equivalent to space correlations
along the flight path—an assumption usually referred to as
Taylor’s hypothesis. (See ref. 7.)

(3) The chordwise penetration factor (the indicial-
response influence function) for the rolling and yawing
moments can be expressed as a product of a function of
distance along the flight path (or time) only and distance
along the span only.

(4) The wing considered herein is relatively rigid and, as
a result of the turbulent velocities, performs small motions
about a mean steady flight condition.
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The implication of these assumptions and the limitations

they impose on the results of the analysis are discussed in a

subsequent section of the report.

, Coordinate system and gust components.~—The system of
axes and the local velocity field relative to the lifting surface
are shown in figure 1 (a). The velocity at each point in the
field is resolved into components lying in the three planes of
an orthogonal set of axes, the X-axis of which is tangent at
every point to the flight path. Throughout this report these
three components are designated as follows: The component
alined with the X-axis is referred to as the horizontal gust
uy; the component alined with the Y-axis is referred to as
the side gust v,; and the component alined with the Z-axis
is referred to as the vertical gust w,.

As the wing moves through the local velocity field, the
random variations in the horizontal and vertical gust com-
ponents are defined both in the flight-path direction and in
the spanwise direction at every position along the flight path.
Random variations of these gust components across the
chord are taken into account by indicial-response-functions
and, hence, need not be considered separately.

The side gust component of the gust velocity field is
treated in only & limited manner. Neither the chordwise
nor the spanwise variations of v, are considered along the
flight path; rather, v, is assumed to act on the wing as a
point velocity with a variation only along the flight-path
direction. Contemporary aircraft exhibit such wide varia-
tions in distribution of dihedral across the span that it is
doubtful that & generalized analysis could be utilized. The
point or centroid analysis should be fairly accurate when the
dihedral distribution is predominant over only a small section
of the span near the fuselage. Such a distribution is ex-
hibited by an unswept wing with zero geometric dihedral
mounted very high or low on a fuselage. For a wing with
zero aerodynamic dihedral, this component could be neglected
completely.

Deflnition of gust correlation functions.—In order to define
random variations of the gust velocities both along the
flight path and across the span of the wing as it moves
through the turbulence, it is necessary to define the correla-
tion between any two velocities in the gust field through
which the wing passes. The space correlation function of a
velocity « is defined in terms of the distance » as

%,()=lim % f iu(rl)u(rl-i-r)dn @

Von Kdrmén and Howarth (ref. 8) have shown that, in
homogeneous isotropic turbulence, the correlation between

two velocity vectors a distance r apart can be defined in -

terms of two scalar functions f(r) and g(r) and that this
relationship is invariant with respect to rotation and reflec-
tion of the coordinate axes. These one-dimensional corre-
lation functions relate the paired velocity components
obtained by resolving the velocity vector at any two points
a distance r apart into two parts: The pair lying along the
straight-line path between the points are known as the
longitudinal components and the pair normal {0 the straight-
line path are known as the lateral components. These two
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pairs of components are pictorielly shown in figure 1(b).
Such velocity components may be measured in wind tunnels
downstream of a grid mesh. (See ref. 9.)

In reference 8, it is further shown that these correlation
functions are interrelated by the differential equation

r df (7-)

+I()=¢() @

By defining the variable » in the coordinate system of this
report and using the correlation tensor of reference 8, a two-
dimensional analysis of the turbulence as it affects the wing
may be made in terms of f(r) and g(r). The variable in the
correlation functions of the horizontal and vertical gust com-
ponents in the two-dimensional XY-plane of the wing is
given simply by

r=+/(82)*+ (8y)*=+(U7)*+ (a)? ®)

The correlation function of the horizontal gust components,
as derived from the correlation temsor of reference 8, is
defined in terms of z- and y-components of the present
analysis by the formula

o o b= o [ VDT o [+

ﬁ%g[m]} @

The relationship between the components is shown schemati-
cally in figure 2 (a).

In a like manner, the correlation function of the vertical
gust components affecting the wing, given in terms of the
mean-square value of the vertical gust velocity wg? may be

— — Longitudinal components, £(r/
b —

| l

Lateral components, g (r)

(a) Wing passing through three-dimensional turbulence.
(b) Components of turbulence as a funetion of distance r.

Figure 1.—Sign convention and stability axes of a wing passing
through a turbulent velooity field. Arrows denote positive direction,
where applicable.
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seen to be simply
T, (A2, Ay)=w7 g | (a2)*+ (Ay 2] - B

For the case of side gusts acting on a wing, the correlation
function would be defined in terms of Ax and Ay if the span-
wise correlation were considered. (See fig. 2(b).) Inasthuch
as the side gust is considered to act only at a point on the
span, Ay is zero, and the correlation function for the side
gust in terms of its mean-square value becomes -

2, (A7) =0z (Az) (6)

Although the mean-square value of each of the three gust
components is given sepamte identity, under the assumption
of isotropy

—_ 3

ui=pi=107 (7)

With the gust-velocity correlation functions thus defined,
the forces and moments due to antisymmetric components

) &y 1

Yo (x )
()

AN
N

N
3

Ay }

(b) .
(a)- Horizontal gust components.
(b) Side gust components.

Fiaure 2.—Schematic drawing of the relationship between the compo-
nents of horizontal and side gusts at any two arbitrary points.

REPORT 1321—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

of the gust-velocity field acting on a wing passing through
that field may be derived in terms of these correlation
functions.

ROLLING MOMENT DUE TO GUSTS

Vertical gusts.—The instantanmeous wing rolling moment
due to vertical gusts can be written in terms of an indicial-
response influence function A’(f,y) as

L :74
M(t)= f - f ¥ et ta)dydt ®)

According to assumption (3) of the section entitled ‘“Pre-
hmma.ry Considerations’ (see also the argument presentoed
in ref. 6), the function A’ (¢,y) can be expressed in the form

K (t,y) =h(t)v () (9)

where v(y) is a steady-state span influence function and A(¢)
contains the unsteady-lift effects. The rolling moment can
then also be written as

M= [ mwan [ A@we—tnay o)

If the correlation function for the rolling moment is calcu-
lated from equation (10) and a power spectrum for the
rolling moment is obtained by taking the Fourier transform
of the correlation function, the resulting expression may be
shown to consist of a product of two functions: One function
is the result obtained from quasi-steady considerations alone,
and the other is the absolute squared value of the unsteady-
lift function for sinusoidal gust penetration such as’ that
given by Sears in reference 10. Consequently, considera-
tion will be confined to an analysis using quasi-steady ox-
pressions for the rolling moment; that is, the lag in buildup
of lift across the chord of the wing due to the gusts is not
included.

In quasi-steady flow, the rolling moment of & wing due
to a variable angle-of-attack distribution across the span is
given by

Mx=QSb0[

172
— [ p@imeyay a1)

where section lift

y)=ciy)ge(y)
and local angle of attack due to gusts
ag=w,/U

Now, one theorem of linearized airfoil theory states that
the lift (or rolling moment) on a wing due to an arbitrary
spanwise angle-of-attack distribution is equal to the integral
over the entire wing of the product of the spanwise lift dis-
tribution due to & unit constant (or linearly varying) angle
of attack and the given arbitrary angle-of-attack distribu-
tion. Hence, the rolling moment is also given by

aS0= [ Bt dy (12
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This theorem is valid not only in steady but also in indicial
flow. (See reciprocity theorems of ref. 11.)

‘When the indicated substitutions are made, the rolling-
moment coefficient along the flight path is

—%, [ [a@e@ ™ wday)
G@=—* f o3 [ l—Czp'E—] U dy
_01
4U 7(1/*)101(5:1/*) dy* (13)
where y*=-"- b 2 and the steady-state lift distribution
= [c,(y*)c@*)]" 4 19

pertains to a linear antisymmetric angle of attack across the
span. It may be seen that, by virtue of its definition,
v(y*) must satisfy the relation

1
[ e prar—2 (15)
Horizontal gusts.—In analogy to the analysis of the pre-
ceding section, consideration will be confined to the quam—
steady case. When stability axes are used, a change in
forward velocity at any spanwise station increases the m
nitude but does not change the direction of the lift and drag

vectors, Thus, the horizontal-gust contribution to the
dynamic pressure is

Ag@)=3 p{a@) +UT—T*)

=3 p (s +20;)

_290%(11)

under the assumption that u,<«U. When this linearized
approximation is used, the lift on each section is proportional
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to the local angle of attack:

Lluy) &

Uw)

The rolling-moment coefficient due to horizontal-gust ve-

locities is thereby defined as

&

[ e o

where now

2= [c,(y*) c(y*)]?“'— G an

b4

The only difference in evaluating v(y*) for horizontal and
vertical gusts lies in the definition of the parameter having
8 variation of y* across the span; for the vertical gust, that
parameter is taken as the additional angle of attack and, for

the horizontal gust, that parameter is 2, %' The condition

that
L Yyt dy*=2

remains unchanged.

ANTISYMMETRIC SPAN INFLUENCE FUNCTION +(y*)

The antisymmetric span influence function y(y*) is defined
over the span so that any given distribution of y(y*) will
produce a unit rolling moment. These distributions refer to
the span loading due to a linear angle of attack a=y* for

the vertical gust or a linear leading-edge velocity 2«, %=y*

for the horizontal gust. Four basic variations of y(y®
have been considered with the proper constants so that
equation (15) is satisfied. The equations for the v(y*) vari-
ations considered are given in table I and plots of these
variations-are shown in figure 3(2). The names given to the
four distributions obtained by rolling the wing refer to the
distributions which would be produced by a uniform angle
of attack.

CORRELATION FUNCTION OF THE ROLLING MOMENT

Vertical gusts. —The autocorrelatlon function of the rolling moments due to vertical gusts at any two stations along the

path of the wing is defined as

X
Yo, =lm 5 [ Gl Cila) dn

18)

With the substitution of the expressmns for 0,(:::2) and C,(z,) as given by equation (13), the correlation function of equation

(18) becomes

o

~

’ . 1 rx G m . 1
‘I’c, (x2—2y) =]}-f1£1 X f—x TZ’}’ f_l Y(y1®) we(21, 1) dyr* f_l Y (Y2*) WelZo,y2*) dys*dzy

16U’f f '7(?/1 R hm 2Xf We(T1,91™) We (T3, Y5%) dey dyy™ dys*

16U3 f f Y(y®) vV (y*) ¥y o (Za— 2,y " —yn®) dy* dys*

(19)
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where it is assumed that the functions are convergent under
either order of integration. An expression is thus obtained
for the correlation function of rolling moment in terms of the
correlation function of vertical-gust velocity. In equation

(19),
¥, (22— 2 2/;*_2/1*)= lim _1_J‘X We(1,71*) W (2,y2%) d2
7 ) Yoo 2.X _y B g\L2y

is the same as the two-dimensional ecorrelation func-
tion defined earlier as equation (5) with z;—z;=Az and

A
?/2*—?/1*=AZ/*=_/:%'

By the proper substitution of variables, the double inte-
Is of equation (19) may be separated into the single
mtegral of the product of the integrated weighting functions
of v(y*) and the correlation function ¥, . Thus, with the

substitution of

33—:51=‘UT
X ye*—yt=n
equation (19) becomes
01,2 2
o0 =g | D) T, Orin) dn (20)
where
L .
r)= [ Ve Yt n) durt e
and

¥, Ur, =u7.'2g[w/ @+ 922)] (22)

Equation (22) may be recognized as being equivalent to
equation (5).

Horizontal gusts.—In an identical manner, the autocorre-
lation function of rolling coefficient due to horizontal gusts
at any two stations along the path of the wing is derived by
use of equations (16) and (18):

X
To ) =lim 5 [~ Cile) Cie) da

%20' 21 1
= 4U2’ f_lf_l'Y ™) Y @a®) Yo (23—, 52—y dy* dys*

With the same change of variables asin the preceding section,

ao2 OI 2

VU=t [ T VTt @3

where -

@ (oY
WT)%(,,_;),J‘[W/(UH(; '+

b 2
——(Uf 2 ><%,1 >2g[\/<m)*+\(%) |t e

\I'uS(UT: 7) =‘LL‘2

‘antisymmetric variation of y(y*). In table
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and equation (24) is now the-equivalent of equation (4).
The integral weighting function I'(y) is the same for both
the horizontal- and the vertical-gust contributions to their
rolling-moment correlation functions.

INTEGRAL WEIGHTING FUNCTION TI'(y)

The integral weighting function I'(y) as defined by equa-
tion (21) has been evaluated for the four distributions of
v(y*) given in table I. These values are listed in table II
and plotted against.g in figure 3(b). It may be shown that
the nature of the function 1s such that the relationship

v an=o (25)

must be satisfied for miy variation of I" which pertains to an
the elliptic
distribution is givén in terms of K (k) and E(k), which are
complete elliptic integrals of the first and second kind,
respectively, of modulus k=§;+:’7- The derivation of the
elliptic weighting funection is included in the appendix of
the report.

POWER SPECTRA OF THE ROLLING MOMENT

The power spectrum of the rolling-moment coefficient C,
is defined s the Fourier transform of the autocorrelation

TABLE I
VARIATION OF +(y%
Distribution @™
Rectangular 6y*
Ellipti 82 vy
ptic — gyl —y"
"
Parabolic 15y*(1—y*)
Triangular 24y*+(1—|y*)
TABLE II
INTEGRAL WEIGHTING FUNCTION I'(y)
Distribution () Limits
Rectangular 6(4—6n++) 0=9=2
. 512, | - -
Elliptic -1—3;3(24-11) [An(r—37—1) K& + 0=9=2
4+97—nO E(R)]
Parabolie o(84—336r-+28071— 420543y | 0=9=2
%(2—1017’+5n’+5n‘—317‘) 0=9=1
Triangular
%858(8—2011+107r’+511’—511‘+17‘) 1=9=2
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Antisymmetric span looding
30 <K\\ A Rectangulor
B Eiliptic
8 20\‘{A \ G Parabolic
= D, \ D Triongular

a4 'm0
7iy® O 0 X\\ K

-4 -10 Ad %

sl | ol® &\§7

8 - (o] | 20O 4 .8 1.2 16 20

* n
(a) Variation of span (b) Variation of integral
influence funection. weighting function.

T'1gurB 3.—Variation of span influence function v and integral weight-
ing function I for four types of loading.

function of C;:

%0, (0) =17 f 7 ¥, ) 57 () (26)

For the vertical g"usts, the power spectrum of the rolling-
moment coefficient may be found by substituting the
derived relationship for ¥e,(U7) given by equation (20) into
equation (26):

@®

‘I’o l("”)_ U~3

T [T, D dna@n)

0 2 2 ® o .
=81:£]3£ P(Tl)f_me lUU\I'wg(UT: ndU~)dy

0
~atn. “T(n) L (ﬁm dn @7)

Changing the order of integration here is permissible in-
asmuch as the integrals of the correlation function of w, are
convergent in both Ur and 5. The integral I,, is defined as

L(gpm)=_"

Similarly, the power spectrum of rolling-moment coefficient
due to the horizontal component of gust is obtained from
the substitution of equation (23) for the term e, (U7)
appearing in equation (26):

07y, (Ur,m dU) (28)

@20, 2 ra
200 =5og% |, T L(gp ) dn 29)
where the integral I, in equation (29) is defined as
L(gn)=| e g namy 60

957

Thus, for two of the three components of turbulent gust
velocities, the power spectrum of the rolling-moment co-

" efficient is dependent on the integration of a function of the

- steady considerations.

lifting distribution of the wing times & function which repre-
sents the Fourier transform of the correlation function of
the vertical and honzontal gust components over the wing
span.

As previously stated, these results are based on quasi-
Unsteady-lift effects can be taken
into account simply by multiplying the power spectral
density of the rolling moment due to each gustcomponent

we\[?
[)

given in reference 10.

by the function » where ¢ is the Sears function

APPROXIMATION FOR SIDE GUSTS

As pointed out previously, the side gust is treated here
only in an approximate manner; that is, the spanwise effect
is neglected. Based on this approximation, the rolling-

moment coefficient is defined as

Ci(@)=C;, %52 (31)
The correlation function is defined by
Gy
e, U7)= "’ o) (32)
and the power spectrum is defined by
Ci o
Boy (@) =—F7— G (o) (33)
where
Gw)= [ T g dU) (34)
=U &

RELATIONS BETWEEN THE YAWING AND THE ROLLING MOMENTS

No attempt is made herein to calculate directly the yawing
moment due to atmospheric turbulence. Because of the
more complicated nature of the phenomena which give rise
to drag, as compared with those which give rise to lift, such
an undertaking would be quite difficult. Furthermore, in
view of the fact that the yawing moments on the wing due
to turbulence are relatively small, a detailed analysis would
not generally be warranted. In this section, therefore, an
approximate procedure is outlined for obtaining the yawing
moments from the rolling moments.

The yawing-moment coefficient due to sideslip can be
expressed in the form

0u= Onp(a)ﬁ

where, in this case, « is the sum of the trim angle «, and the

instantaneous mean vertical-gust angle —

T2

T and where g is
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the instantaneous mean side-gust angle %: so that

%, (90 % 7
O=0ye) FH(522) T8

where the second term is of higher order and is neglected.
Similarly, differences in v, along the span give rise to higher
order terms.

The rolling moment can be expressed in the same form, so
that the relationship between the yawing and rolling mo-
ments due to side gusts is given by

C. (v)= (_g_na) . Ci(vp)

Is

(35)

Actually, this contribution to the yawing moment is generally
negligible and is included here primarily for the sake of
completeness.

For the yawing moments due to vertical and horizontal
gusts, similar reasoning may be employed. The yawing
moment in these cases arises from the antisymmetric part of
the instantaneous angle-of-attack distribution due to turbu-
lence, as does the rolling moment, so that the two moments
may be expected to be approximately proportional to each
other; that is,

a.

o.m=(g2) i @0
C,

o.w=(g) 0w @

In essence, these relations imply that the yawing moment
due to a given instantaneous spanwise gust distribution is
the same as the yawing moment due to a linear gust distribu-
tion which has the same rolling moment. The deviation of
the actual distribution from a linear one results in smell
differences in the vortex field and, thus, in small differences
in the induced downwash. These differences lead to a con-
tribution to the yawing moment which is believed to be small
and, hence, has been ignored.

In terms of their power spectra, the yawing moments are

defined as

C 2 )

2,0 =(g2) “ea

u‘ T ao g

Co\ ?

q>0,(w) = 013 ch(w) - (38)
g, \ 3

&, (@) =(-C_,p) P, (@) )
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The power spectra of the rolling moments are defined in the
preceding sections.

APPLICATION

APPROXIMATIONS TO THE ONE-DIMENSIONAL (POINT) CORRELATION
FUNCTIONS

In order to evaluate the effects considered in the preceding
part of the report, calculations will now be made by using
the results derived therein. These calculations will be based
on a simple analytical expression for the longitudinal point
correlation function which has been suggested in reference

" 12 on the basis of measurements in wind tunnels:

r

_d
Jr)=e * (39)

where L is the longitudinal scale of turbulence defined for
any longitudinal correlation function f(r) by

1= sy (40)

The characteristics of clear-air turbulence measured in
the atmosphere (ref. 13) may be shown to be reasonably well
represented by equation (39), with a value of L of approxi-
mately 1,000 to 2,000 feet. There are some theoretical
objections to this function—primarily the fact that it has a
nonvanishing slope as r—0 and, hence, that the associated
power spectrum does not decrease rapidly enough for very
short wavelengths. These conditions imply that the mean
square of the derivative of the gust velocity with respect to
the space coordinate is infinite. However, from available
measurements on atmospheric turbulence, it appears that
equation (39) remains valid to distances which are small
compared with the span of the airplane (on the order of
several inches), and the bebavior of the spectrum at very
short wavelengths is relatively unimportant because airplanes
cannot respond to them to any appreciable extent. There-
fore, in the absence of more reliable information all calcula-
tions described in this report are based on equation (39).

The corresponding lateral correlation function related to-
F() by equation (2) is found to be

_r
g(,.)=(1_12% e L (41)

A plot of the functions given by equations (39) and (41)
isshown in figure 4. Their respective power spectra, denoted
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figure 5, where it may be noted that the asymptotic slope as | wqure 5.—Power spectra of lateral and longitudinal components of
k’— o has a value of —2.0. isotropic atmospheric turbulence.

CALCULATIONS FOB. VERTICAL GUSTS

Rolling-moment correlation function.—When equation (41) is substltuted mnto equation (22) with r=q / (U-r)’—l—(lm)
the correlation function defined by equation (22) becomes

¥, Or =7 | 1~ AT+ () |e'%“’ o) (44)

Inasmuch as the evaluation of the rolling-moment correlation function, as such, is not necessary to the analysis of this report,
only limited consideration is given to the calculation of autocorrelation functions. Equation (20) has been evaluated in
closed form for the case of the rectangular distribution of the span influence function v(y*) as given in tables I and II:

%,(Ur>=3w£"2f: (4—6n2+n’>[1——,/ (Uf>a+(b” I W3,

30, — P
=g {40”+6+B")w/ﬁ”+7\’ F(12— 241267 VT — -
(AN 1202 — 3872\ 4-24N+-24) e -8\ [K, (8,0 — MK, (B”,V)] } ) (45)

460194—58——062
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where f{o and El are defined in reférence 6 as incomplete modified Bessel functions where

~ .4
K,(B’,X)=j;m A g=rcoshé cogh »odh (46)
and
) _Ur
F=g *=T

These two parameters represent the ratios of the distances b and Ur to the integral scale of turbulence L. The parameter g’
reflects the size of the wing span relative to the characteristic size of the turbulence and, as such, is one of the more important
parameters appearing in all the calculations involving spanwise correlation. It effectively scales the magnitude and shape
of the correlation functions and power spectra and, in the limit as 8/—0, the equations for the antisymmetric moments like-
wise go to zero inasmuch as no rolling or yawing moment will exist when a finite span shrinks to a point.

The parameter X is & measure of the flight-path distance relative to the characteristic size of the turbulence and, in the
limit as A—0, the correlation function must reduce to the mean square value of the rolling-moment coefficient; hence,

CP=%;, (\=0)

3wiC, ? ) )
=WP— [(8873+12p24-248'+24) 68 g —24]

Inasmuch as no adequate tables appear to be available for the functions %, and &, a numerical evaluation of equation’
(45) has not beenmade. However, an analysis of this correlation function with other approximations for f(r) indicates that
the effect of span loading is minor and that & reduction in 8’ attenuates the correlation function.

Evaluation of I,, (U:n).—For the vertical gust component, the integral definition of 7, <%.m> is given by equation (28)

whereas Yo ( Ur,7) is now defined by equation (44). The indicated integration may be performed in closed form as a function
of 4 and the reduced frequency parameter &’. Thus,

1 (gpm)=wz [ 70" [1— o +() | TG 4oz,

=wz2 { B'n ﬁﬂ[1+3(kl) i B'n } (48)
1+(WK°[ VIF® gy & | ST @Y |
where
oL
K=z

and K, and K, are modified Bessel functions of the second kind of order 0 and 1, respectively.

A plot of equation (48) is shown in figure 6 as a function of the-frequency parameter %/, for a range of values of g'5/2
from 0 to 1.0. Although the physical significance of the function I, is rather obscure, the p]ots are useful in the subsequent
numerical integration of the product of I, and T':

Power spectrum of rolling moment.—In general, the analytlcal solution of equation (27) for the power spectrum of the
rolling-moment coefficient due to vertical gusts, when possible, is a tedious process. Numerical integration by means of
either Simpson’s rule or some integration process of higher order is generally preferable to integration in closed form. How-
ever, the analytical evaluation of equation (27) for the case of a wing with rectangular span loading is given here in order to
illustrate some of the characteristics of the equations. After the indicated substitutions are made, equation (27) becomes

GwiL0,? s (& Blu+se
QCI(L")':_W’_L (4:_677+773) 1+(k/)2 Kﬂj [l_l_(k/)g]% Kl dﬂ
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LC, * a
%, 0) =g (P | Kot (i 16020— () Ko +

{26 [3— ()] +32a(1— (¥)] } Ki(a) +2a* [1 —3(") "] —32[1— (k')’]> (49)

where a=p8'+1+(k")?, F =w—UL,- and Ky(a) and K(a) are
modified Bessel functions of the second kind ? of argument
a. Equation (49) is plotted in figure 7 (2) as a function of
k' for a range of B’ between 0.03125 and 1.0.

For small values of frequency w (and hence %’) or scale
factor g/, equation (49) becomes poorly behaved because
the solution takes the form of small differences of high-order

2 Values for tho Integral of Ko may be found in several publications, ons of which is reference

14, tablo 2 (Zahlentafel 2). A comprehensive listing of other available mathematical tables
including theso Besse] functions i3 given In reference 15.
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terms. The reason for this may be seen by expanding the
Bessel functions in their power-series form and grouping
like powers of the variable a. The coefficients of the first
three terms of the power series ¢, 'a~2, and a° (which are the
predominant terms for values of ¢<{1) are identically zero.
Under these conditions, small computing errors or the lack
of significant figures will cause large inaccuracies in the
numercial evaluation of the function.

The difficulties just described may be overcome somewhat
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Figure 7.—Power spectra of rolling moment of wing due to vertical
: gusts.
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by evaluating equation (49) for the limiting case of k'=0:

18w2LC,? (50)

e =0=""rrgn

[(8"4-168") Ky (8) + (88" +328") Ky (8") +26"°—32]

When the Bessel functions are again expanded in powers of 8, only several terms are needed to evaluate the function at
small values of 8’. As before, the coefficients of all negative orders and the zero order of 8’ are identically zero.

The physical necessity that, as the span b approaches zero, the expression for the power spectrum ol the rolling-moment
coefficient must also approach zero ig satisfied by equation (49) inasmuch as the lowest order term with a nonzero coefficient
appearing in' the equation is a? (as pointed out above); that is, for 6—0,

®¢,(w) =~ (Comnstant) a*=0

In order to compute &, for the other three types of distribution of wing loading given in tables I and II, & numerical-

integration process involving Simpson’s three-point rule of integration was employed. The d};é)wer spectra _thus obtained
are plotted in figures 7 (b), (c), and (d). This method was also used for the rectangular lift distribution and was found to
give good agreement with the analytical results.
. t is of interest to note that whereas the power spectra of the vertical gust approach a logarithmic decrement of —2
(seo fig. 5), the rollinﬁ-moment power spectra shown in figure 7 approach a decrement of —3. At the low-frequency end of the
spectrum (long wavelengths) the power appears to approach a constant which is zero only when £, the ratio of span to scale
of turbulence, 18 zero. T

Some simplified approaches to the calculation of the rolling power of gusts (for example, ref. 4) lead to the result that
the spectrum of the rolling power of the vertical gust appears as the first derivative (slope) of the vertical-gust spectrum.
As allrlmyalbe set%n grom figure 7, such an approximation is justified only in a very small band of frequencies for wings having
small values of §’.

CALCULATIONS FOR HORIZONTAL GUSTS
Rolling-momenf correlation function.—When the expressions for () and g(r) given by equations (39) and (41) are sub-
— /13
stituted into equation (24) with r=‘/ (Uq-)’+<bz—’7> , the one-dimensional correlation function for horizontal gusts becomes

by -
¥, Ur, ) =3 | 157 ——’52—23—(1’3 V() (51)
2

The correlation function of rolling moment is obtained by inserting equation (51) into equation (23) and integrating. For
a rectangular distribution of v(y*), -

, i
S Suda2C; * (%) 1 fomr(EY
o U= | @) | 1o 2 FEVO(E) g,

U? o 2L \/ (U-r)f—l— <b2_1;>’

PIOTE 20, 2 3 . . \
=%—’{% (g N +2L (67 +6) VBN 38"+
N6 ]e Ve +"—4(>3+3x+3)e—h} . ' (52)
and
3, 2(7, 2 ’
a2  [(g°-4 38 +667+6) e —6] (63)

U
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As in the case of the vertical gust, the correlation function has not been calculated for the other three distributions of v(y*)
for the reasons already given.

Evaluation of I, (%: n>~—The evaluation of I,, as'defined by equation (30) for the case of the horizontal gust,is
given by the expression

@ (b o
G I b /@g—i(%’l)’ AV aw
*(7)

WL A s B[S - () s [ B | (58

where %’ _wﬁL’ and K, and K, are the modified Bessel functions of the second kind of argument = 1/1-!—(1:')
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The function given by equation (54) is plotted against %’
in figure 8 for values of g'7/2. Values taken from this plot
may be used in the numerical integration of the power
spectra of the rolling-moment coefficient.

- Power spectrum of rolling moment.—The power spectrum

of the rolling moment due to the horizontal components of
. turbulence acting on the wing has been determined by using
the expression for I, obtained in the preceding section and
the four distributions of the parametér I'() given in table IT.
The integral of equation (29) has been evaluated numerically
for all four cases of load distribution, and the resulting
variations of the power spectrum with frequency and 8’ are
plotted in figure 9. In addition, the analytical solutions for
the cases of rectangular and parabolic distributions are given
here and their numerical values were checked against those
obtained by the numerical-integration process. By use of
equation (54), the solution for the rectangular case is found

to be
. B8’y
F] Lq,’ 2
(I)cz(k')—_——f 4— Gﬂ'l‘ﬂs)l;/T_T)-K (ﬁ L -K)]
24u2La, 2C’, o
= T LT I:a3f Ey(x) dz+a*(3a +32)B:,(a)+

16@(@’—]—4)K1(a,)—64:| (55)
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where a=pg"y/14(£')? and k'= wUL The analytical solution

for the parabolic distribution is given by

o BORLEIO) o 25,3444 .77

(@7+3,42405+ 133, 63205+ 663,5520) K, (a) -+
(a+63a%) f * K@) de—1,12004-+32,2560— 663, 552]
0

(66
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Fiaune 9.—Power spectra of rolling moment due to horizontal gusts.

A comparison of the values obtained for equations (55)
and (66) and plots of the results obtained by the numerical-
integration process indicated no difference, and none is shown
in figure 9.

It is significant to observe that very little variation exists
in the power spectra of figure 9 for the four span loadings
considered. However, as compared with the rolling moment
due to vertical gusts (fig. 7), the rolling moment due to
horizontal gusts is relatively small for small values of trim
angle of attack. Although no exact expression for the ratio
of the power spectra of the rolling moments due to u, and w,
may be given without including 8’ and v, it may be seen
from figures 7 and 9 that, in general,

(I,Czlﬂ‘g 0.2
S A
q’c’,l"s Ay

(57)
where a, is given in radians.

CALCULATIONS FOR SIDE GUSTS

For the side gust considered, the correlation function of
the rolling-moment coefficient as given by equation (32)

becomes o
CloZ [, |0\ -F
¥ U =22 (1157 7

(58)

and the variation of this function with Ur/L is, of course,
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Figore 9.—Continued.

equal to the variation of equation (41) with », which is.
plotted in figure 4.

The power spectrum of the rolling-moment coefficient as
given by equation (33) with G(X’) given by equation (43)
becomes

CipL 143(K)?

2= @y P )
The variation of the spectrum with frequency k’=% 18

shown as the @(&’) curve of figure 5.

DISCUSSION

The purpose of this section is to discuss the implications
of the assumptions made in the analysis of this report, the
reasons for making these assumptions, and the application
of the results.

ASSUMPTIONS CONCERNING THE NATURE OF TURBULENCE

The turbulence was assumed to be homogeneous in order
to make the problem stationary in the statistical sense and
thus permit the use of the mathematical techniques developed
for such problems. In a practical sense, turbulence can be

Jhomogeneous only in & limited body of air. The assumption

thus implies that the dimension of this body of air along the

flight path is large compared with the distance traversed
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in the reaction time of the airplane. In the case of loads
studies this reaction time is of the order of the time to damp
to one-half amplitude, but, in the case of motion studies,
the reaction time may be much larger. Obviously, the
greater the body of air, the greater the reliability with
which the loads and motions can be predicted (in & statistical
sense) for one run through it. In general, turbulence at
very low altitudes, which may be influenced significantly by
the configuration of the ground, and the turbulence in
thunderstorms may not be sufficiently homogeneous for this
type of analysis, but other types of turbulence are likely to
be substantially homogeneous over sufficiently large distances.

Isotropy was assumed in order to permit the required
two-dimensional correlation functions to be expressed
simply in terms of the one-dimensional correlation functions.
For sufficiently short wavelengths all turbulence is isotropic
(see ref. 7), but for long wavelengths it can be isotropic only
if it is homogeneous (both in the plane of the flight path
and perpendiculer to it). (The condition of axisymmetry is
less restrictive inasmuch as it does not specify the variation
of the characteristics of the turbulence in the vertical
direction.) In practical problems, if the turbulence may be
assumed to be homogeneous, the conditions of isotropy are
likely to be satisfied sufficiently to permit the use of the
approach presented herein for all but very long wavelengths.
The wavelength at which this approach ceases to be valid
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Figuore 9.—Conecluded.

depends on the size of the body of air under consideration,
being longer for a large body.

Taylor’s hypothesis implies that the variation in gust
intensity that prevails along the flight path at any instant
will remain substantially the same until the airplane has
traversed the given body of air. The required correlation
funections for atmospheric turbulence are thus in the nature of
space correlation functions (rather than time correlation
functions) and have been considered as such. The statistical
characteristics of the turbulence are then independent of
the speed at which it is traversed. Clearly, the validity of
this hypothesis depends on the flying speed of the airplane
and it would be expected that, at very low speeds, the
hypothesis of Taylor becomes less valid and the results may
be less accurate. On the basis of present knowledge, no
definite lower limiting speed can be quoted. The effect
of finite flying speed on the gust correlation function can be
expected to be most pronounced for large distances, where
the correlation is weak. Thus, the effect on the various
spectra is likely to be small and to occur at the longest
wavelengths, where, as previously mentioned, the spectra
are somewhat uncertain for other reasons as well.

For practical purposes, the parameter L (the integral scale
of turbulence) used herein is & largely fictitious quantity,
inasmuch as it is, to & large extent, proportional to the values
of the gust spectra for infinite wavelengths. In view of the
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uncertainties in the values of the spectra at long wave-
lengths and the fact that the spectra in this region pre-
dominantly define the area under the integral, the parameter
L has little physical significance. Therefore, at present,
insufficient information is available to give an exact value
for L to be used in connection with the numerical results
calculated herein. However, on the basis of the measure-
ments such as those of reference 13, a value of 1,000 to 2,000
feet appears to be appropriate for the conditions of the
referenced tests. It is desirable to obtain more information
concerning the spectra of atmospheric turbulencé under a
wider range of conditions. More definite values could then
be deduced by fitting measured results by means of an
analytical expression of the type used here. - This expression
could be used as a means of obtaining a value of L by extrap-
olation of the measured results to infinite wavelengths (zero
frequency).

ASSUMPTIONS CONCERNING THE AERODYNAMIC FORCES

The fundamental assumption concerning the aerodynamic

forces is that they vary linearly with gust intensity. This
assumption implies that the ratio of the gust speed to the
flying speed must always be fairly small; if the aerodynamic
forces and moments tend to vary with gust intensity in a
nonlinear manner, as the wing yawing moments do for all
angles of attack and the other forces and moments do for
high angles of attack, the ratio of gust intensity to flying
speed must be very small—about 1/30 or less. However,
as previously mentioned, the wing yawing moments due to
gusts are likely to be quite small, so that some error in them
due to slight deviations from linearity is not likely to affect
appreciably the results of an analysis of the lateral motion.
Hence, for an airplane flying at small angles of attack and
at speeds of about 200 knots or more, in continuous turbu-
lence, the assumption of linearity should be valid; for flight
in severe thunderstorms, it is not likely to be valid, and, for
flight at high angles of attack, it is likely to be valid only for
light turbulence. . ’

The rigidity of the wing, which was mentioned in the
list of assumptions, enters only indirectly into the problem
considered herein. The results obtained here are valid
whether the wing is rigid or not. However, in the case of
flexible wings (the term ‘flexible” being used to describe
wings with deformations which give rise to appreciable
aerodynamic forces), certain additional information is
required. (See ref. 6.) This information may take the form
of span influence functions y(y) modified by static aero-
elastic effects, or may require certain cross-correlation
functions or cross spectra between the gust forces and the
dynamic forces, depending on the individual case.

The assumption that the indicial-response influence func-
tion A(f,y) can be written as a product of functions of time
only and distance along the span only is based on the reason-
ing of reference 6. This reasoning, in turn, is based on the
observation that, according to the available information for
the lift distributions due to sinusoidal motions (and, hence,
those due to indicial motion), the lift distribution tends to be
substantially invariant with frequency (or time) except for an
overall factor. Inasmuch as this information is confined to

'

067

unswept wings, this assumption may not be valid for swept
wings.
APPLICATION OF THE RESULTS

In this report the rolling moments and yawing moments
have been calculated for & wing due to the %, », and w com-
ponents of turbulence. , If the turbulence is isotropie, these
components are statistically independent at & point. In any
practical application, all three components are always present
and the wing rolling and yawing moments due to-the com-
bined action of the three components must be known. In
isotropic turbulence, the cross correlations between u# and w
and between » and w in the horizontal plane are zero, although
4 and v have a nonvanishing cross correlation. Thus, the
moments due to » and w can be added directly, but, if hori-
zontal-gust effects are to be taken into account, not only the
moments due to u calculated herein but also the moments
which arise from the cross correlation between % and » should
be added to the others. However, there is reason to believe
that the horizontal-gust effects on the lateral moments are
generally very small, so that neglect of this cross-correlation
effect is usually justified.

The rolling and yawing moments due to u, and w, con-
sidered herein are only those contributed by the wing but,
inasmuch as the lateral moments contributed by the fuselage
and tail as a consequence of these two components of gusts
are generally very small, the results given here may, in
general, be used to represent the lateral moments on a com-
plete airplane due to these two gust components.

Similarly, the rolling and yawing moments of & complete
airplane due to the s-component of gusts depend not only on
the wing contribution considered here but also on the con-
tribution of the vertical tail, which can be calculated in a
straightforward manner. For instance, a method of calcu-
lating the yawing moments and side force on a fuselage and
vertical fin due to side gusts is found in reference 16.

Although the contribution of the horizontal component of
gusts to the lateral moments appears to be small compared
with the other two components, it should be kept in mind
that the effect of this component increases as the square of
the trim angle of attack. (See eq. (57).) For conventional
airplanes in the landing configuration and for vertically rising
airplanes in the transitional stage, the effects of horizontal
gusts may well be predominant in calculations of the forces,
moments, and motions due to turbulence.

CONCLUDING REMARKS

The correlation functions and power spectra of the rolling
and yawing moments on an airplane wing due to the three
components of continuous random turbulence have been cal-
culated. The rolling moments due to the longitudinal
(horizontal) and normal (vertical) components depend on the’
spanwise distributions of instantaneous gust intensity, which
were taken into account by using the inherent properties of
symmetry of isotropic turbulence. The results consist of
expressions for the correlation functions and spectra of the
rolling moment in terms of the point correlation functions of
the two components of turbulence.
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Specific numerieal calculations were made for a pair of
correlation functions given by simple analytic expressions,
which fit available experimental data very well. Calcula-
tions were made for four lift distributions and the differences
in the results calculated for these distributions were small.
By comparison with the results calculated herein, the results
of previous analyses for which it was-assumed that random
turbulence along the flicht path and variations of turbulence
across the span were linear have been shown to be valid only
when the ratio of the span to the integral scale of turbulence
(about 1,000 to 2,000 feet) is small.

A comparison of the power spectra of the rolling moments
due to horizontal gusts and those due to vertical gusts showed
that the vertical gusts were predominant at small values of

L trim angle of attack (or trim lift coefficient); however, the

relative effect due to horizontal gusts increased as a function
of the square of the trim angle of attack.

The rolling moment due to lateral (side) gusts, which is
small, was expressed in terms of the instantaneous value of
the gust at representative points on the wing, so that the
effect of spanwise variation in gust intensity was ignored.
The yawing moments were considered to be proportional to
the rolling moments, the constants of proportionality being
given by simple aerodynamic relations.

LaANGLEY AERONATUTICAL LLIABORATORY,
NaTionan Apvisory COAMMITTEE FOR AERONATUTICS,
Lanerey Frewp, Va., September 6, 1956.

- APPENDIX

EVALUATION OF THE ELLIPTIC INTEGRAL WEIGHTING FUNCTION

The evaluation of the integral weighting function I' (y) involves the integral given by equation (21):

1—n
v = v vyt

For the case of the elliptic distribution of the additional span loading factor,

=Z i

and the integral weighting function to be evaluated becomes

2\& (17 :
' (n) =(3;> f_l (y*) (y*+0) V1—yPV1— (g0  dys*

Under the substitution

2+ 2yt

T

the integral may be written as

2—y

8

ra=(2) (35D [ @s—n Gotn) y1—Fos—ny 1o+ nrds

Inasmuch as 1—22=(1—2)(1+2),

o~ 020 Bt ) () (i) (o)

—@&mwwow%mfwwb»ﬂwwww

=&)Y e (trgn) (151) 4/ (1=255)(

With the notation k—%—g—_—_l_z
- 32
I ("7) =.F

1+52) (13 n)<1+?fl:fn>dx

=@+ [ (o= —AVI R ) D AR ds -
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where the integrand may be seen to be an even function of the variable z.

radical and expanding yields

Multiplying numerator and denominator by the

r)= e+ { B f

r____(l_k, s k’[(2+n)’+(2—n)2+n’]f ﬁ—u_k, s

(=t [

—kzr’) (1—=?) f m}

The integrals may be recognized as elliptic integrals in powers of z* for Whlch the closed-form solutlons ma.y be found in

reference 17, for example.

In terms of the standard elliptic integrals (in Jacobi’s notation) of modulus k ==~

+17

K®=|, T 0F

is defined as a complete elliptic integral of the first kind, and

E®) =£

is defined as a complete elliptic integral of the second kind. Tables of these integrals may be found in most mathematical
handbooks as well as in reference 17. In terms of these integrals, the solution for the integral weighting function is found

to be

P)=% Gt { L (6 k4 4k K — TR 8L BB —

B {@2+m)*+@2—n)

L0 1 4k K —2 0+ B+

o B gy — By —rE®) }

__ 512

=152 @) [dn(n* =31 —) K(k) + (4497’ —n) E(®)]
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