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AVERAGE PROPERTIES OF COMPRESSIBLE LAMINAR BOUNDARY LAYER
ON FLAT PLATE WITH UNSTEADY FLIGHT VELOCITY*

By FrankLiN K. Moore and SmioNn OSTRACH

SUMMARY

The time-average characteristics of boundary layers over a
flat plate in nearly quasi-steady flow are determined. The
plate may be either insulated or isothermal. The time averages
are found without specifying the plate velocity explicitly except
that it is positive and has an average value.

Each time average involves two groups of terms to the order
considered in the report, a time average of quasi-steady terms,
and terms related to the reduced frequency of the plate velocity
Jluctuations.

The quasi-steady terms differ from the values for steady flow
at the corresponding average velocity. These differences are
reinforced by the frequency dependent averages for adiabatic
wall temperature and heat-transfer rate. The effects oppose
one another in the case of skin friction.

The special case of harmonic velocity variation is considered,
and it i8 found that large amplitudes accentuate the importance
of the frequency-dependent terms.

Oscillating the wall to increase the heat-transfer rate 18 not
adrantageous if the power to oscillate the plate 18 accounted for.

INTRODUCTION

In many current problems of aerodynamics, unsteady
motions of & surface are important. The accelerating and
decelerating phases of missile flight and the intermittent
flow in an engine during unstable combustion are examples.
The nature of the boundary layer of these unsteady flows
may be studied with a view to determining friction drag,
surface temperature, and rate of heat transfer through the
surface. Usually, the boundary layer is so thin that it
responds almost instantly to temporal changes in flow con-
ditions. Thus, the time history of the boundary layer is a
succession of steady states, and such a boundary layer is
called quasi-steady. If the motion involves accelerations
which are particularly rapid, the quasi-steady description
may require correction.

In any case, it is often desired to assess the average effect
of fluctuations in flow conditions. For example, if an insu-
lated body is in motion with a speed that varies in time about
some average value, the average friction drag and the aver-
age surface temperature may differ from values appropriate
to steady motion at the average speed. Another example is
furnished by the speculation that the net performance of &
heat exchanger could be altered by imparting an unsteady
motion to the wall.

In the present study, as an idealized special case of the
foregoing type of problem, a semi-infinite flat plate is assumed
to be in motion parallel to its surface and normal to its
leading edge with a flight velocity U(t) that is always in
the same direction but has a magnitude that fluctuates with
time. The resulting boundary layer is assumed laminar and
compressible, and the surface is either insulated or at con-
stant temperature. The assumed Prandtl number is 0.72,
which is appropriate for air under normal conditions.

The boundary layer is assumed to be nearly quasi-steady.
The basic boundary-layer analysis is already available for
this problem in references 1 and 2, which treat the insulated
plate and the constant plate temperature cases, respectively.
The velocity profile in the boundary layer is found in the
form

Ll [P 0) H o) A+ - - - o)+ -]

®

where ¢ is the usual Blasius variable signifying parabolic
similarity in the boundary layer. (A complete definition
will appear in a subsequent section.) The function F(o)
is the Blasius function for steady motion of a flat plate.
The parameters {, govern deviations from quasi-steadiness:

r._l——-%ﬁdd—%,(p =123, ... )
In cases of flight at substantial speed, the factor U+
usually ensures that ¢, is & rather small quantity. The
functions F(o), fo(e), and fi(s) are available in reference 1.
A full list of symbol notation is provided in appendix A.

If the plate surface is insulated, the temperature profile
may be written as

0i=1_|_7_—2—_1M3 (Thr(a, fo 1) $25 - - +) (38')

where the “recovery factor”
r=R(o)+tao()+tm(a)+ . . . Firwl@+ . . - (3b)

and the functions B, 7o, and 7 are tabulated in reference 1.
If the plate is at & constant tempemture at Whlch heat trans-
fer takes place, reference 2 gives

t Bupersedes NACA Technical Notesssc, “Average Properties of Compressibls Laminar Boundary Layer on Flat Plate with Unsteady Flight Velocity,” by Franklin K. Moore and

8imon Ostrach, 1056.
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and provides the functions H, S, ke, 8, ki, and s;.

A study of the time-average properties of the flow repre-
sented by equations (1) to (4), when the speed of the plate®
U fluctuates with time, is described herein. The functions
Soo, oo, oo, 8nd 8 are required for this purpose, and, not
being available in references 1 and 2, are determined herein.

A previous report (ref. 3) studies the average rate of heat
transfer from an oscillating flat plate, but differs from the
present study in that the plate is doubly infinite and there
is no net motion through the surrounding fluid; on the
average, the plate is at rest. Appropriate comparisons are
made herein between the. results of the present study and
those of reference 3.

DERIVATION OF FORMULAS FOR AVERAGE PROPERTIES OF
BOUNDARY LAYERS

The stream function ¢ for nearly quasi-steady flows is
defined in references 1 and 2 as

¢=\‘0V,UXf(O', $or $15 8oy - - 2D (6)
where i
o= X - ®

The coordinates X and Y measured in a system with its

origin fixed at the leading edge of the plate are related to -

those (z,y) in & coordinate system which is stationary in
the fluid by (see sketches (2) and (b)): )

X=z+t fo ‘Uat )

v
Y= f L gy ®)
0 Po

Equation (8) is employed to make the momentum equatlon
independent of the energy equation. The velocity in the
X,Y-system is related to that in the z,y-system by

X, Y, I)=u(z,y,t) + U®) )

The constant C'is the proportionality factor in the assumed
viscosity-temperature variation.

8 8 . '
#_p'mo Om pmywo em (10)

2In the present problem, if compressibility is important, unsteadiness is restricted to enter
only through motion of the plate. Thus, In a corresponding wind-tunnel test the model
position would be varled mechanically and the tunnel flow would be held constant. The
analyses of references 1 and 2 for a compressible fluld would not apply for a fixed model in &
bulsing flow,
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This constant may be evaluated by matching equation (10)
with the Sutherland formula at some appropriate point, for
example, at the wall. Thus

6,+216° R
o= \/ (0,,+216° R D
The unsteady boundary-layer characteristics can be deter-
mined from equations (1) to (6).
FORM OF UNSTEADY BOUNDARY-LAYER CHARACTERISTICS

Insulated plate.—The unsteady boundary-layer charac-
teristics from which the average properties will be determined
are presented in this and the subsequent section in a more
extended form than in references 1 and 2. The wall shear

stress 'r,,,=</.l. %) may be obtained jn the following dimen-

sionless form from equations (1), (8), and (10), and from the
state equation for constant pressure (pf=Constant):

0= f;%’ [S [P+ 5uf5(0) + £550)+ 850+ ..
Lo
(12)

The displacement thickness §* may be defined? as

G*E!f (1-— =U—-)dy (13)

A ) Position of plate
of time /=0

I ﬁ_::r-—x

U(r)
—_—

(b}
(a) Coordinates fixed in fluid at rest.

(b) Coordinates fixed in plate.

3 The steady-flow definition of displacement thickness is adopted herein, Actually, tho
displacement effect of the boundary layer is not properly represented by this definition ifthe

. flow is unsteady. However, in reference 4 it i3 shown that the steady expression is part oftho

correct one, and becaunse this expression ylelds the correct quast-steady result its caloulation
i3 therefore warranted. -
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Upon application of equation (1), the state equation (pf=Constant), and equations (3) into (13) there results
5=, /@ﬁ’f{g_g@(zo—m—[:ofo(m)ﬂlfl(m)+s~sfoo(oo>+ c ] TR [ redet

[, rdok st rwdot ]} (14

where

’

m=(y—1)MZ (15)

Isothermal plate.—The dimensionless wall-shear-stress, or local-skin-friction coefficients for the case of heat transfer at

the plate, is identical in form with its counterpart for an insulated plate (eq. (12)). The constant C is evaluated by
assuming ‘that 6, in equation (11) is the adiabatic wall temperature for the insulated plate and the maintained iso-

thermal temperature in the heat-transfer case.

The displacement thickness for this case is obtained from equation (1), the state equation, and equations (4) and (13)

and is given by

gy [P {ii’ﬁ @o—F)—[fofol @) +ufi(@) + (=) - - 14
m[ L " Sdo+to L "o do+t1 L %o do+23 fo "o dot . . .:|+

20 [ L H do+o fo “hodott1 L “hdot 3 L “hdot - ‘. ]} (16)

where

p="0 "= an

The local rate of heat transfer is given by .

Using the definition of the Prandtl number, the state equa-
tion, and equations (4), (8), and (10) in equation (18) yields

g=—e (Ou—0.) 4| el {H' O+ 57(0)+
o[ KO-+ sO+ - [0 [ HO+

ZAOF - [ @7y sh @+ y ]}
(19

TIME AVERAGES FOR ARBITRARY YELOCITY FLUCTUATIONS

It is now assumed that the velocity fluctuates in a periodic

but otherwise arbitrary manner, that is,
U®) = Ung(ut) (20)

where » is the frequency of the fluctuations and g is an
arbitrary positive function so that

g=1 fo 7 o) dr=1 @1)

where
T=0t (22)

Substituting equations (20) and (22) into equation (2)
yields

W) ’
L = 29)
with the frequency parameter Q given by
X
=7 (24)

Therefore, for arbitrary fluctuations of the velocity, the aver-
age local skin friction coefficient to order Q* is obtained by
applying equations (20), (22), (23), and (24) to equation (12)
and integrating as in equation (21). Since for & periodic
funection, .

g"9'=0 - (25)

grg"=ng= " (g)* . (26)
the following equation results:

Gk 2l L [Ge [ momtol no+ .
2h0 |77 @)

According to the remarks in the previous section, equation
(27) holds for both the insulated and isothermal plates where
only the value of C differs.

In o similar manner the time averages of equations (14),

and also

-(16), and (19) are

= /-—EU;% X (Ff lim (20—F)+m* g2 f R do+
m Lo £ o

- o { Gttt |7+ me (5 [ ot

L ¥ o @)FW}) e

for the displacement thickness of the insulated plate;
2077 [ "B do-t-0r{ —| FA(=)Hu(=) [TV
m* (g Lmsl da+J;m 8podo ) g2 (g )2+

: ch(g-+fhlda+ fo " hoo do W}) (29)
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for the displacement thickness of the isothermal plate ;and

g=— s [Peleln (TS O+

o { [ 3O+ [7@T+

re | 350+ |77GY } ) (30)
for the average local heat-transfer rate of an isothermal plate
where

m=m*g —_

and

_Ux)?
o 31)

The average valué of the adiabatic wall temperature (. e.,
for the insulated plate) is also obtained in a similar manner
from equaﬁon (3) and is given by

214204 R<o>gﬂ+m[n(0>+rm(o>] -=(g'>2} 32

SECOND-ORDER SOLUTIONS

. In order to determine the average properties of unsteady
boundary layers to order Q2 it is evident from equations
(27) to (32) that the second-order (in ¢,) solutions (denoted
by double-zero subscript) must be known. These solu-
tions are determined in subsequent sections by extending the
results of references 1 and 2.

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS
The partial differential equations describing the unsteady
flow and heat transfer of compressible viscous fluids are
given in reference 1 as

‘I’Y:r‘l‘ Ve¥rr—V¥x¥ry =U’ (T ) + Cl’w‘l/nr (3 3)

and

Or+yrlix— BI'XBY:'—QBYY‘F e (1/’17)2 (34a)

In reference 2 it was found more convenient to write equa-
tion (34a) as

OrbsOx—YxOr=P=0rr b o ()t (34D)
where
o= :,:);m (35)
The appropriate boundary conditions on ¢ are
¥r(X, o, T)=y¢x(0,Y,T)=U(T) (362)
¥r(X,0,T)=¢(X,0,T)=0 (36b)

For the case of an insulated surface as treated in r.e,ference
1, the boundary conditions on 6 are

6(X,»,1)=6(0,Y,1)=4., (37a)
and

67(X,0,T)=0 (37b)

-~
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For an isothermal plate, equations (37) are replaced (seo
ref. 2) by

e(X)er)=e(0;Y7T)=O (383)
and also ’
- 0(X,0,7)=1 (38b)
SOLUTIONS

The methods of solutions for the insulated and isothermal
plate are identical to those in references 1 and 2, respectively,
but, in each case, the method is extended herem to yield
second-order results.

Insulated plate.—For the insulated plate the boundary-
value problem is defined by equations (33), (34a), (36), and
(87). For nearly quasi-steady flows the stream function
given by equation (5) and the temperature function given
by equation (3a) are substituted into equations (33), (34a),
(36), and (37) to yield

XU’ XU’ XU’
fcw+ffw=_8 ﬁ"'z(?’_ﬁ!—'l-X,gfaf.g‘m\')fv'*'z W’ o'fu_

2B IVI RIS P (39)
et Prirt o F Gysr (2 5 5 b S furt

7]{« g re 8 ux—§ Ty nZ:u fi f u’) (40)

‘ fa(é,i‘.)=2; Jol0,50)=5(0,{)=0 (41)
7(0,$)=7(,{n)=0 (42)

Introduction of equation (2) makes equations (41) and
(42) self-consistent (i. e., functions of ¢ and {, only). For
nearly quasi-steady flows, {,<1 (see refs. 1 or 2); there-
fore, the functions f and r can be expanded as follows:

Jo i) =F(o)+5fol0)+afila)+ . . o+ ful@d+ . . . +

Sofifu(e)+ . 43)
(0,8 =R(0) +soro(0) Fm(a)+ . . . +Fira(e)+ . .
Sofirm(o)+ . . . (44)

Substitution of equations (42) and (44) into equations (39)
to (42) and collection of terms independent of ¢ and those
multipled by ¢, and {; yield the three sets of equations solved
in reference 1. Since for the present purposes the next
higher order terms of equations (43) and (44) are needed
(see egs. (27) to (32), e. g.), the terms multiplied by {3 are
collected and ¥ield

Soo +Efao—4F foot5F" fu=—2fs2—f0) +f5(2¢—3f)  (45)

and )
4F'r ) =P7'[20'7't11+2f’07'0_ 5B foo—

oo+ Pr(Frog—
. 3rofo—Fifeo—3(f0)%  (46)
in addition to ’
Joo(®) =720(0) =fou(0) =0 (47)
and
700(0) =7oo() =0 (48)

The function F and its derivatives are available in reference
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5, and fo,ro and their derivatives are presented in reference 1.
Hence, the second-order functions f and 7o for the insulated
plate are defined by equations (45) to (48).

Isothermal plate.—Equation (45) holds for the isothermal
plate as well as for the insulated one. However, for the iso-
thermal plate, equations (34b) and (38) replace equations
* (34n) and (37). The temperature function given by equation
(4) is obtained by letting

G=h(¢7,§‘a)+2c ?;(11) ) 8(0'; g-u)
where
Lo, te) =H (o) +toho(o) + () + . . . +Ehn()+ .. .+
foflhol(ﬂ’)'l' .
and
8(o,¢n) =8(0) +e8o(0) Ftu81(0)+ . . . FE88l)+ . . . +
$of1801(0)

Substituting equation (4) into equations (34b) and (38)
yields those equations treated in reference 2 independent of
¢t and to order ¢, and {;.  To order {3 the following equations
are obtained:

B Pr(Fhia— AT hoe) = Pr(@ohi—3fho— 5B fuot
2hqfo—8hq) (49)

dlot Pr(Falg—4F'50) = Pr [2a33—5,s'jm—

Yishrt 2aofs—F" g (197 (50)
hoo(=) =heo(0) =0 (51)
() =60(0) =0 (52)

The functions on the right-hand sides of equations (49) and
(50) are given in references 1, 2, and 5.

Equations (45) to (52) thus define four boundary-value
problems for the functions fu, 7w, hx, 20d 8. These prob-
lems are solved for & Prandtl number of 0.72 by & numerical
integration method described in references 1 and 2. The
functions are presented in table I.

RESULTS FOR AVERAGE PROPERTIES OF UNSTEADY
BOUNDARY LAYER
The following formulas are obtained by substituting the
results of references 1 and 2 and those of the previous sec-
tion into equations (27), (28), (29), (30), and (32), re-
spectively:

0,=(0.6640)

%ﬂ [FR—(1.308) Q*g~5R3g" 3+ ...] (563)
For the insulated plate caée,
=(1.721)\F'% {a774-(0.645) m*g*B4-
07[(1.986)5~ "7+ (3.420)m¥g PG+ . .} (59)

—~£—1--(0.8480) %* [F+(5.051)Q% 33+ . ..]  (55)

and for the isothermal plate case,

5*=(1.721)

%X {(1+1.13 8)g7 2+ (0.1673)m*g* R+

0*[(1.986-+1.005 &) g+ (0.3112) m¥ g+ . . }

(56)
G=1(0.8211) ""Bw 0"@”“ = (7RG — (0.424) m*g*R—
22(0.8350) B9~ "Rg* - (0.7574) m*g—2g|+ ...} (57)

DISCUSSION OF QUASI-STEADY TERM

The leading terms (i.-e., terms independent of 2) of equa-
tions (53) to (67) reflect the nonlinear dependence of the
physical quantities on U in a quasi-steady situation. Under
the rest:mc,taon that g is positive, all these leadmg terms are,
of course, positive.

Obviously; in the completely steady insulated case, when
g=1, all the leading terms in the braces equal 1. In the
steady isothermal case, of course, only the factors involving
g became unity. In the general quasi-steady case, when
only the restriction that g=1 is applied (eq. (21)), the mag-
nitudes of the leading terms may be compared with unity
(the steady case) using a special case of the Schwartz ine-
quality (vef. 6), namely,

. ‘ = FBF’Z : (58)
If the choice m,h;o,l is made, equation (68) yields

=1 (59a)
For m,n=0,1/2, the result is
gr=<1 (59b)

For m, n=3/4, 1/4, ¢ g >F=1 and, therefore, in view of
equation (59b), yields

13

U
I\

1 (59¢)

I m=n=1/4, g2
(59b), yields

>1, which, together with equation

g1 (59d)
If m,n="5/4,1/4, then g g’">g""" and, therefore, in view
of equations (59b) and (59c), yields

\

gE>1 (59e)

Insulated surface.—Inspection of equations (53) to (55),
together with equations (59), shows that for the insulated
surface case, the quasi-steady values of C,, %, and 8, are
always greater than or equal to the correepondmg quantity
for uniform flow at the average velocity Un.

The foregoing effects are clarified by considering the aver-
age velocity profile. For example, suppose that for half of

. the time, g=1/2, and for the rest of the time, g=3/2, so that
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g=1 (fig. 1(a)); for incompressible flow, the average quasi-
steady velocity profile is

Slrar(Es)] o

The result appears in figure 1 (b); the dash-dot lines represent ’

the instantaneous quasi-steady profiles at the low and high
velocities, the dash line represents the Blasius profile for the
average (as if g=1), and the solid line is the average profile
from equation (60). The velocity from equation (60) is
greater than the Blasius value near the wall and less than
that value far from the wall. These profile differences are
more pronounced if the variation of stream velocity is more
extreme; if g=1/2 for nine-tenths of the time and if g=11/2
for the rest of the time (fig. 1(c)), then

Z_1rs F( = +1 5 (a,,‘/ﬁ)] (61‘)

The result appearsin figure 1 (d). The deviation of the aver-
age profile from the Blasius shape clearly implies increased
skin friction, and also suggests an increase of 3*.

Note that the effects just discussed can be determined
without fully specifying the function g. All that is needed
is & specification of the proportion of time during which the
various velocity values apply; in effect, & probability density
" distribution for velocity is sufficient. In deriving equations
(60) and (61), the illustrative velocity functions were chosen
for simplicity; of course, the present analysis would not
apply near the sudden velocity changes which were postulated.

| I
Velocity profile

Time average, &/Um
———-——— Instantaneous Blasius, u/U/({g=1/2)
——-——— |Instantaneous Blasius, v/U/(g=3/2)
—————— Blasius for steady flow, Un

I
/

Im

| .
E— (a) (b)

o} I [0} S 1.0

v/2% 5/ Uy, v/

(a) Distribution of plate velocity with time.
variation.

Moderate veloéity

(b) Boundary-layer velocity profile. Moderate velocity variation.
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Heat transfer.—If there is heat transfer at constant. wall
temperature, the quasi-steady value of §* from equation (56)
is greater than the Blasius value unless ® is nearly at its
maximum negative value, —1, which corresponds to & wall
temperature of absolute zero. The heat-transfer rate § must
be regarded as a function of & and m* (eq. (66)). The finer
cross-hatched plane of figure 2 denotes ¢ as a function of ®
and m* for the average U,(g=1). Positive ¢ denotes heat flow
out of the surface into the gas. If g is not always 1, then the
first term of equation (57), independent of m*, tends to di-
minish the magnitude of quasi-steady heat-transfer rate. The
second term, proportional to m* and independent of @,
always provides less heat flow out of the surface. The result
is sketched as the coarser crosshatched plane of figure 2.

Figure 2 indicates that variable stream velocity results in
increased heat transfer to the wall only in the case of 2 cooled
(¢<<0) wall, and even then only if m* has a value so that

mr> 8 1—g'®
’>'0 424 g‘”—-l (62)

in cases of negative ®. If >0, the condition of zero average
heat transfer is

' m¥=r- gm (63)
DISCUSSION OF FREQUENCY-DEPENDENT TERMS

Equation (53) indicates thaet average skin friction is

diminighed in proportlon to the square of the frequency.

The dominant factor in this effect is the response of the

boundary, layer to rate of change of acceleration (f7(0) in

[ I I
Velocity profile
Time aoverage, T/Up
——-—— Instontaneous Blasius, u/U{g=1/2)
——--—— Instontaneous Blaslus, v/ (g=11/72)
— ———— Blasius for steady flow, Un
3 .-
2
¥ 6 ] m
S
49 I
g X
2
|
L ( c ) - ( d )
[0} I [0} S [Ko)

/27 allUy,, utl

(¢) Distribution of plate velocity with time. Abrupt veloecity variation.

(d) Boundary-layer velocity profile. Abrupt velocity variation,

Figure 1.—Effect of pla.té velocity variation on profile of average velocity in boundary layer.
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8q. (27)). With respect to skin friction, the quasi-steady
term and the frequency term are in opposition. Subject to
the requirement that 2<{<1, a flat plate will experience
o diminished average drag if

F£r—1

Qﬂ ——
> (1.306) g—*/3g’3

(64)

Owing to the appearance of ¢’% in inequality (64), abrupt
velocity changes would favor drag reduction. -

Insulated surface.—The average value of §*, from equa-
tion (54), will increase with Q*. The adiabatic wall tem-
perature increases with Q* which reinforces the effect of the
quasi-steady term.

Heat transfer.—JFrom equation (57), the terms propor-
tional to Q? all reinforce the effects of the quasi-steady terms
with respect to the steady value. That is, the Q? term in &
reduced the magnitude of ¢ as does the quasi-steady term

gince g#<1, and the negative value of the 9? term in m* is

Heat transfer

) v

Fiaure 2—Effect of unsteady velocity on relation among average
heat transfer, temperature difference, and Mach number.
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consistent with the corresponding quasi-steady term since
g1

In the heat-transfer case, the Q? terms of 3* also reinforce
the corresponding quasi-steady terms, when the groups
depending on ® and m* are considered separately, just as in
the foregoing discussion of g.

BRESULTS FOR HARMONIC g()

It may often be of interest to evaluate equations (53) to
(57) when the function g is specialized to have harmonic
form

g=1l+4esin 7

where the restriction 0<{§<{1 is imposed so that flight
direction is not reversed.

Arbitrary e.—The various integrals are evaluated for arbi-
trary e in appendix B in the order of their appearance in
equations (53) to (57) with the following results:

L=l ITe ME®—(1—-9 KB (B10)
=i 4 [E®_

L= = | 7K | (B13)
i 2K®)

L=g717 alte B1)
L= g

1057y 14-€e(1—€)2
X[(B-+16e—6€) E(k)—2(3+4e—36) K (k)] (B15)

IL=F=1+5 ol

L= =—1+ ﬁl__g ®5)

r=gr2Ee gy ®2)

L= =21 (03 o0y By —8(1—9 K@) B1Y
@

Lomg g = — e El)—2 ®12)

here A e ®3)

and K and E are the complete elliptic integrals of the first
and second kind, respectively. The results are presented
in table IT.

Small e—In the event that ¢ is very small, to a first
approximation, each of the foregoing equations for arbitrary

- ¢ may be replaced by making the appropriate substitution

for IV in the formulas
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Fg1+iN(N—l) & B
. (66)
A=

¢ Near unity.—If ¢ is near unity, then k (eq. (B3)) is also
near unity, or k’=+1—k=1—c¢ is nea.rly zero; and the
asymptotic relations

K@)~ EQ)~1

4
< 1—¢
apply (ref. 7). Equations (65) become

—5 82 —_— 21,/— 1)
12 . —6/2 /2
Utins = B T 3r 1—e

— 42 4
—1/2 In

R s
242 1 4 13
10511' (1_5)2 1'1—5 8)

e AN

e o . L 2‘/1_2_ S SN

TE 22 =5 3242 :-w
g "’T: g
—7/2,,73
97" 1511'1—e< i 2>

g3rg" 2‘/—<1n T 2)

Thus, as e—>1, equations (53) to (57) show that the effect
of the Q? terms is greatly accentuated because their coeffi-
cients approach infinity from equations (67). For example,
equation (53) becomes

T->(0.6640) 4/ %ﬂ [(1.20)—(0.3918) = :| 68)

It should be noted that under these circumstances (e—1)
the higher order terms in Q2 become significant.

J

BREMARKS ON HEAT-TRANSFER PROBLEM

In a previous section it was shown that the heat-transfer
rate with an oscillating surface differs from that with a
surface in steady motion (see fig. 2). The relative merits
of the oscillations, however, depend upon the particular
configuration or application. For example, it has been
determined that a greater heat-transfer rate to a cooled
oscillafing wall can be obtained for ®<0 provided that
inequality (62) applies. This result suggests that, if one
wishes to increase the rate of heat abstraction from a gas
flow over a cooled surface (as, e. g., in a heat exchanger),
it may be advantageous to oscillate the surface mechanically
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in its own plane so that the relative stream velocity oscil-
lates. The power required to oscillate the plate should
properly be assessed to the system. Unless this power is
less than the additional heat transferred, no heat is ab-
stracted from the hot gas; also in this case that power could
be used directly to increase the energy obteined with the
surface fixed or in steady motion. Of course, if the oscilla~
tions were inherent to the system, the assessment would not
be required.

If the power required to oscillate the plate is taken into
account, the comparison is as follows: The excess of power
required beyond that corresponding to steady flow is given
by *

AP= [ Tri—Vuru@14X =5 0.T3 f (60— 0,Um]dX
(69

and the increment of heat transfer mto the wall owing to the
oscillation is

AQ=-—fo [(—qUn)] dX (70)
where X is the length of ‘the plate.
Equation (69) can be evaluated from equation (53),

because gC; is given by the same formuls as 0, with the
exponent of g increased by 1 wherever it appears in equation

(53):
AP=(0.6640) U3 /ng_.;} [%—

Equation (70) can be evaluated directly from equation (57),
setting g=1 to define ¢(U,):

AQ= 08211000 Ty 222 (1= a+

0.420)m*(gP—1)+0@)] (72)

The question is whether AQ>>AP. Therefore, equation
(71) is subtracted from equation (72) to yield

1+o0@)] (1)

AQ—AP=(0.8211)¢,0..poUn

OraXi(y  —mive
Um [(1_01/2)@, .

(0.385) (¢*2—1)m*+ @ (@9] (73)
Thus, if AQ—AP>>0,

0 g—1
n —1>(0.385)m"‘1 o (74)

If inequality (74) is ' to hold
the greatest value which 0.,/0,, can approach consistent with

—2—1 must be positive. Now,

‘TheturmulausedtorAPaeconntsfora]]thaEwerreqmmdtomnlntnlntbe late in flight.
Hon]ythatpowarrequlro@toosuﬂlatethephta a steady wind-tunnel flow or in o stationary

heat exchanger were desired, the formula AP-J. (U=U)redX would bo used, which

s less than that given In equation (69) in the amount f Tlro—ru(Um] dX. Equation

(69) is selected for discussion nthegroundsthatthsdiﬂmnmcﬂedwouldusmllybeohamod
asanenergyloasorapraoﬂmlalr 1ne system.
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heat flow into the surface is the insulated surface value from
equation (55). Thus, inequality (74) becomes

0.424m*E>

—1>0. 385m*i’6 — (76)

or,

= 97—1
_ 1.101g >1_?}72 (76)
It is doubtful that any reasonable function of g can be advised
to satisfy inequality (76). Inspection of table II shows that
inequality (76) cannot be satisfied by a harmonic function of
any amplitude.

For a stationary configuration, inequality (74) is computed
using the AP expression in footnote 4 and again the inequality
cannot be satisfied. Therefore, for air at normal conditions,
the power required to oscillate the plate would exceed the
extra heat transfer obtained by oscillation.

The results of the foregoing discussion may be compared
with the result of reference 3, wherein it was concluded that
oscillation of & doubly infinite plate in a fluid otherwise at
rest would also result in an increased heat transfer to the plate

groater than the extra power required only if -z-‘!>1.

CONCLUSIONS

The unsteady laminar boundary layer on a flat plate in
compressible flow has been analyzed for the case of time-
variable velocity of flight with a view to describing the

time-average characteristics of such & boundary layer. -

Flight velocity is assumed to vary slowly enough so that the
resulting boundary-layer flow is nearly, but not quite, quasi-
steady. The wall temperature has been assumed constant
both along the plate and in time; further analysis would be
required for the case of fluctuating surface temperature.
In order to obtain time averages, the expansions of flow
XU '(t) XU (2)
quantities must include terms in {p= T
and {% The terms for ¢, and &1 were t.aken from previous
work, while the {3 terms were obtained by numerical mtegra—
tion, and are presented in tabular form herein.
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The time-averages of skin friction and “displacement
thickness” are presented, as well as heat-transfer rate at the
surface, and for the special case of an ad.labatlc wall, the

Y LAYER ON FLAT PLATE

. surface temperature.

A significant amount of information may be obtained
without specifying U(t) beyond the requirements that U(t)
remain positive and have an average value U,. Each time
average involves two groups of terms to the order contem-
plated in the present report: A time average of quasi-steady
terms, and terms proportional to the inverse square of the
charactenstnc time of the velocity ﬂuctuatlon @. e., the
square of reduced frequency).

The quasi-steady terms differ from the values for steady
flow at the corresponding average velocity, owing to the
nonlinear dependence of the physical quantities on U(z).
In fact, especially for extreme variations of U(t) about the
mean value, the average velocity profile is steeper near the
wall and more gradual in its outer portion than the Blasius
profile which applies at each instant. Thus, in the quasi-
steady approximation, skin friction, “displacement thick-
ness,” and adiabatic wall temperatures are greater on the
average than for the case of constant velocity. The magni-
tude of the part of the heat-transfer rate that is independent
of Mach number is less in the quasi-steady approximation,
whereas the Mach number dependent part differs in the
direction of less heat out of the surface into the gas.

The differences cited are reinforced by the frequency
dependent averages for adiabatic wall temperature and heat-
transfer rate. The effects oppose one another in the case
of skin friction.

The various time averages are derived for the special case
of harmonic velocity variation. Large amplitude affects
chiefly the frequency-dependent terms, greatly accentuating
their importance.

The question discussed is whether it would be advantageous
to oscillate the surface of a heat exchanger in order to take
advantage of the increased rate of heat transfer to the wall,
and it is concluded that the heat-transfer advantage would
generally be vitiated by the power requirement for oscillating
the surface against the action of skin friction.

Lawis Friear Proruision LLABORATORY
NaTionar. Apvisory COMMITTEE FOR AERONAUTICS
CrevELAND, OHr0, September 6, 1966
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APPENDIX A
SYMBOLS

c constant defined by eq. (11) S relative velocity in X-direction
Cy local skin-friction coefficient Ug absolute velocity in z-direction
6 specific heat at constant pressure X coordinate along surface measured from leading edge
F related to stream function for flat plate in steady flow | =z coordinate along surface in system fixed in fluid
.1 functions related to stream function for unsteady (see sketch (2))

flat-plate flow, =0, 1, 2, 00, . . . Y coordinate defined by eq. (8)
g function related to plate velocity, defined by eq. (20) | ¥ coordinate normal to surface
H temperature function related to steady isothermal | v ratio of specific heats

flat-plate flow 5* displacement thickness
h,hy;  functions related to temperature for unsteady iso- | e amplitude of velocity fluctuations

thermal flat-plate flow, =0, 1, 2, 00, . . . ¢n dimensionless parameter, n=0, 1, 2, ... .(eq. (2))
k thermal conductivity coefficient 5] dimensionless temperature difference
M Mach number 0 temperature
m function related to Mach number, defined by eq. (15) | g absolute viscosity coefficient
m* constant defined by eq. (81) » kinematic viscosity coefficient
N general exponent p density
P power T dimensionless coordinate defined by eq. (6)
Pr Prandtl number . . . Yy [ U.
Q total heat-transfer along plate Tm dimensionless coordinate, - ov.X
q local beat-transfer rate T function related to time by eq. (22)
R function related to temperature for steady insulated | . "local wall shear stress

flat-plate flow 3 constant defined by eq. (17)
Ty functions related to temperature for unsteady in- | stream function

sulated flat-plate flow, i=0, 1, 2, 00, . . . (v} frequency parameter defined by eq. (24)

function related to temperature for steady iso- | frequency of velocity fluctuations
. thermal flat-plate flow Subscripts:

8,81 functions related to temperature for unsteady iso- | ,, .evaluation at wall (¥'=0)

thermal flat-plate flow, <=0, 1, 2, 00, . . . ® , evaluation in stream (Y—>w)
Ty time . Subscript notation for partial differentiation is used when
U stream or plate velocity in X-direction (see sketch | convenient. Primes denote ordinary differentiation.

(®)) Superscripts:
Un mean velocity: time average as defined in eq. (21)
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APPENDIX B

DETERMINATION OF INTEGRALS FOR HARMONIC OSCILLATIONS

Given that g(r)=1+-e¢ sin r, the various averages appear-
ing in the equations are to be found. The averages ¢~2 and

g'”* can quickly be expressed as complete elliptic integals by
replacing r by 2z and taking account of the symmetry of
the integrands:

g-1/2=_1_ h de __ 2 fﬁg dz E2K(k)

2 Jo Videsine wldedo J1—F2sin’z =+/1Fe

B1)

=s- f " 1 sinrdf=i71r+—f f N o
0 0

52_~V71r+f E® B2)
where

E=+2¢/(14¢) (B3)

and K (k) and E(k) are complete elliptic integrals of the first
and second kind, respectively (egs. (773.1) and (773.3), and
tables (1040) and (1041) of ref. 7).

With help from equations (858.3), (436.00), and (436.03)
of reference 7, these results are obtained:

Thus, equation (B7) can be evaluated knowing equation
(B6), which may be obtained from a recursion formula, as
follows: From integrating by parts,

3T 1 3
€ [* (14esin ™2 i

2
= costr dr——t L (1€ sin 7)
1]
XSiIl T dT=m [J;h(l—l-e sin T)N-I—z- d‘r-—-
or 3
J 7 (14-esin )72 df] (B8)
0

Combining equations (B7) and (B8) yields

1 T8 5
<N+g>(1—e’)gN4_2—2(N +2) gN*_z+<N+g>gN+2=0
(B9)

Substituting equations (B1) and (B2) into (B9) yields all
necessary relations for evaluating equations (B6) and (B7):

—-= 2
1 2 . & gsﬁ=3ﬂ_\‘ 1+ [4E_(1—G)K] (BlO)
F=s L (1+esin ) dr=1+5 B4)
—-= 2
—_— 3 [or . 1 §Pr=——1+¢[(23+9) E—8(1—¢) K] (B11)
g"’g"='—e— f (14esin 7) "2 cos®r dr=—1+4 (B5) 157
27 Jo Y1—é
The remaining averages are of the forms g‘3”g"=—%\/1+e (E—li-;-) (B12)
[ A . (N4l
g 2 Eg;j; (1+E 81N T) 2 dT (BG) 'g—_Tg_,g 4 < E K) (B13)
and also 3ry/14-e\1—¢
v € (7 in )V cos? —_ 4 142¢16¢ -,
g Ezwfo (1+esin )3 cost £ dr T s (e B K> B14)
1 (* . AN+E
=—(1—¢) —f (1+esin7)” "2dr T 2

27 Jo g2g’2 [(8+16e—6) E—2(3+4e—3) K]

1 [ o 10571+ (1—é)?
—l—; . (14esin7)" " 3dr (B15)
1 . NeE "The foregoing averages are presented in table IT as func-

27 Jo (Iesinr)2dr B | fions of e.
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TABLE I.—SECOND-ORDER S8OLUTIONS

rn r ’ ’ ”
4 Jo Jeo Jo T Tos heo heo 800 L)
0 1.08350 ] 0 0 1.51208 | —0.13182 ] 1.03328 0
.1 1.05201 10728 . 00539 —. 45403 1. 48921 —. 13245 ~.01321 . 60292 . 08043
.2 . 96750 . 20884 . 02126 —.7 1.42573 —. 13329 ~. 02649 .31413 . 12530
.3 . 84501 . 20052 (4677 | —1.04778 1.33275 —. 13283 - .12345 . 14850
.4 . 69821 .37683 .08071 | —1.22022 1.218768 —. 12066 ~. -—. 00100 . 16217
.5 . 53920 . 43876 .13162 | —1.32738 1. 09088 —-. 12273 - —. 08207 . 14773
.8 .37789 48460 .16782 | —1.37922 . 95513 —. 11146 - —. 13833 .1
.7 . 22196 . 51452 .21801 | —1.38395 . 81680 - ~.08778 -, 17062 12125
.8 07702 . 52936 27032 | —1.84855 . - - —. 19353 . 10297
.9 - . 53042 32342 | —L.27929 . - ~. 10286 —. 20673 .
1.0 —.16583 . 51832 37600 | —L.18215 .42474 —. 02857 —. 10696 —. 21111 . 06160
L1 —_ . —1.06312 .31232 - ~. 10855 —_ . 04093
1.2 —. 33452 . . 47530 - 21264 . 02116 ~. 10764 —. 19421 .02081
1.3 —. 38074 .43162 . - . . ~—. 10439 —. 17382
1.4 - . 30069 . 56147 - . 03582 . 06272 ~—. 00903 —. 14709 —.01373
~
1.5 —. 44309 34704 . 58837 —. 40408 —. 00077 . 07802 ~. 09199 ~. 11611 —. 02692
L6 - . 30245 . 63085 —.36120 —.04348 . 03895 - - -
L7 —. 43189 . 25847 . 63888 —. 24104 —. 07347 . 00341 ~. 07436 —.05113 —. 04381
1.8 - .21648 . 68261 —_13766 —. 09225 L0753 —. 068468 —. 02166 —. 04721
L9 —. 37091 17153 . 70228 - —.10164 . ~—. 05406 . 00333 —. 04800
20 - . 14254 . 71825 .01202 —. 10354 . —. 04562 . 02295 —. 04674
21 —. 28380 11182 . 73092 . - . 08314 —. 03600 . 03695 -
2.2 —. 23782 . . 74078 . 08680 - .07381 —. (02005 . 04565 -
2.3 —. 19386 . 06419 . 74883 . 10679 —_ . 06352 —.02216 . 04973 —. 03472
2.4 —. 15345 . 04688 . 75374 . —.07128 .05288 —. 016356 . 05009 -
2.5 —. 11804 . 03339 T5716 .11085 -—. 06005 .04278 —. 01156 4T —.02470
2.6 —. 08819 02304 . . 10287 —. 04934 . 03338 - . 04347 -
27 - . 01559 . 76247 .00172 - . 02507 —. 00486 - —.01813
2.8 - .01008 . . —. 03105 .01799 — . 03203 —.01258
2.9 —_ . . . - .0 —. 00121 . 02688 -
3.0 —. 02006 . 00392 . 76507 . 035335 —.01785 .00776 —. 00022 .02171 —. 00717
3.1 —.01271 .00223 . 78528 - 04207 —. 01309 . 00440 . 00038 . 01704 —. 00523
3.2 — . 00134 . 78557 .08233 - . 00200 . 00069 .01304 —. 00374
33 - . 00060 . 78555 02424 - . 00040 . 00081 . (] -
34 - . 00038 . 76566 .01774 —. 00449 - . 00080 . 4 —.00177
3.5 —.00116 .00018 . 76573 .01268 - —. 00111 .00071 . 00509 —.00116
3.6 - . 00006 . 78562 . 00888 —. 00191 —.00133 . 00059 . 00355 —_
3.7 —. 00015 .00013 78579 . 00604 —. 00117 —.00133 . 00046 . -
3.8 . 00009 —. 00003 . 76561 . 00403 - —. 00124 . 00033 .00164 -
3.9 . 00010 . 00014 . 76575 . - —. 00106 . 00022 . 00108 -
4.0 .00019 . . 76576 .00169 —.00013 - . 00012 . —. 00001
41 . 00021 .00013 . 78585 . 00106 . 00000 —.0007 . 00003 . . 00004
-] @ @ -2
Joo do=2.5490 f 100 do=1.0422 f Ao do=—0.1033 f 200 do=0.0713
0 0 0

. | 1 | I I I L I I I 3 Tio
0.2 1.00748 0. 02087 1. 00769 0.02269 1.020 0. 02058 0. 99747 1.03747 0.02168 0. 02050
4 1.03019 . 00673 103299 13704 1.080 09107 . 98980 1.14963 11282 . 08680
.6 1. 06872 . 20227 1.08539 71028 1. 180 . 24990 97522 1.33564 . 43430 . 22032
.8 1. 12432 . 961863 1. 20016 7. 28120 1.320 . 66663 . 95120 1. 59358 2.41368 40770
.9 1. 15638 2.38511 ‘1. 33236 63. 68454 1.405 1. 29413 93287 1,74880 10, 88546 . 79808
.85 1. 17004 5. 30960 1.47463 529. 649 1.45125 2, 20252 . 92025 1.83273 45, 84304 1.10872

2a
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