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MINIMUM WAVE DRAG FOR ARBITRARY ARRANGEMENTS OF WINGS AND BODIES !

By Rosxurt T. JonEs

SUMMARY

Studies of various arrangements of wings and bodies designed
to provide favorable wave interference at supersonic speeds lead
to the problem of determining the minimum possible value of the
wave resistance obtainable by any disposition of the elements of
an aircraft within a definitely prescribed region. Under the
assumplions that the lotal lift and the total volume of the aircraft
are given, conditions that must be satigfied if the drag is to be a

minimum are found. The report concludes with a discussion of

recent developments of the theory which lead to an improved
understanding of the drag associated with the production of lift.

INTRODUCTION

The losses associated with the production of a given lift in
frictionless flow are generally diminished by increasing the
mass of air entrained or influenced by the wing system. At
the same time, however, the loss due to friction becomes
greater when the exposed surface area of the wing is in-
creased. To minimize the resultant drag we thus require a
lifting system which effects the largest entrainment and yet
has the smallest exposed surface area.

At subsonic speeds the mass of air entrained depends only
on the Iateral dimensions of the wing and is not diminished by
concentrating the lift within a narrow chordwise dimension.
The fact that a lifting line perpendicular to the direction of
flight has such an extensive lateral influence must be con-
sidered a peculiarity of subsonic flow; it depends of course on
the unlimited propagation of the pressure field ahead of the
wing. At supersonic speed the lateral entrainment begins
only at the foremost points of the wing surface and is con-
fined to the interior of the rearward-sloping Mach waves from
this point. Finally, at extreme speeds for which Newtonian
flow may be envisioned, the mass of air affected is limited to
the mass coming directly into contact with the wing, so that
the area of influence is simply the frontally projected area of
the wing.

Another peculiarity of the subsonic inviscid flow is the
complete lack of resistance associated with the thickness of
the bodies or wings. At supersonic speeds, however, such a
component, of drag does arise and this drag appears in the
energy required for the continual extension of the wave
system.

Now the problem of mmumzmg drag at supersonic speeds
may be treated mathematically in several ways, depending
on the constraints adopted in the statement of the problem.
If, following Munk’s problem of the minimum induced
dmg at subsonic speeds, we impose & constraint merely on

! Bupersedes NAGA TN 3530 by Robert T, Jones, 1956.

the lift L and the span b of the wing, then we obtain the
same value for the drag at all Mach numbers, namely the
induced drag associated with ~the vortex wake. However
to achieve this value at supersonic speeds the wing would
be required to have an infinitely great length in the flight
direction so that the downward momentum associated with
the lift could be introduced gradually along the flight path,
without appreciable wave formation.

In order to put the problem of drag at supersonic speeds
in & definite form the present writer proposed (ref. 1) that
the outline or plan form S of the wing be adopted as a
constraint rather than single lengthwise or spanwise dimen-
sions. Thus for supersonic speeds we are led to consider
the distribution of a given total lift L over a specified plan
form §'in such a way as to minimize the drag D.

In the latter problem it is presupposed that the lifting
system is confined to a plane. However, the possibility
of favorable interference with three-dimensional arrange-
ments of airfoils and bodies should not be overlooked.
Thus, Busemann has shown (ref. 2) that the wave drag can
be completely canceled by reflection between the upper and
lower wings of a biplane. Later Ferrari (ref. 3) showed
that the drag of a body of revolution could be canceled by
the addition of a ring airfoil to catch the wave from the
nose and reflect it back to the tail.

The examples in which the wave cancellation is complete
are, however, limited to systems in which the net lift and
lateral force are zero. Nevertheless, examples cited by
Ferri (vef. 4), Lomax and Heaslet (ref. 5), and Graham
(vef. 6) indicate that the wave drag associated with the
lift can be diminished by various three-dimensional arrange-
ments of wings and bodies. These examples lead to & search
for some general statements or criteria regarding the drag
of such three-dimensional arrangements.

CONDITIONS FOR MINIMUM DRAG

To put the present question in & definite form it will be
assumed the airfoils and bodies are disposed in the interior
of a definite three-dimensional region R (see fig. 1). The
region R thus represents & geometrical constraint on the
dimensions of the saircraft. Three-dimensional problems
of & similar type have been considered by BE. W. Graham
and his colleagues (ref. 6) who give, for example, the optimum
distributions of lift in spherical and ellipsoidal regions.
Here we assume the total 1ift Z and the volume V to be
given. In a typical situation the lift Z will be produced
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Figure 1.—Conditions for minimum drag distributions of lift and
volume in region R.

by one or more airfoils while the volume V will represent
the internal volume of one or more bodies of revolution plus
the volume of the wing. The region R may then be thought
of as the region within which the parts of the aircraft may
be disposed so as to gain the maximum favorable interference.
From a slightly different standpoint, B merely represents
the maximum dimensions of the aircraft.” We shall be
especiglly interested in structures which minimize the
drag for the largest possible region, but which in themselves
occupy only & small part of this region. A
Suppose & region R together with a distribution of singu-
larities, such as sources or lifting vortices, is given (see fig. 1).
Then by Karman and Hayes’ theorem (ref. 7) the drag will
be unchanged by a reversal of the whole system. The
geomefry of the flow, including that of the airfoils and bodies,
will be changed by the reversal but the total lift and the
total volume will not. The drag for either direction of flow
may then be computed by means of a fictitious “combined
disturbance field” obtained by superimposing the disturb-
ances in forward and reversed motion. The perturbation
velocities in this combined field may be denoted by:

2u=u,t+u,
20=p,+}v,
2W=w,+w,

It may be shown that an arrangement of sources or lifting
elements, or their combination, which yields the minimum
drag is characterized by the following conditions

w=constant

=0 @
U
a—constant

throughout R.
If conditions (1) are satisfied, then the integrated drag of
the whole system will be given simply by

-
Dain=LE+oUV3E @
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The first term on the right-hand side of this expression will
be recognized as the drag arising from the rearward inclina-
tion of the lift vector, whereas the second term is simply the
product of the volume and the constant gradient of pressure
in the combined flow field.

These conditions may be verified by making use of a
“mutual drag relation” (ref. 1), essentially similar to the
well-known Ursell-Ward reciprocal relation, which connects
the drag of any two interfering distributions of singularities
in the combined flow field. According to this relation, the
drag of distribution A caused by the interference of a second
distribution B is equal to the drag added to B by the inter-
ference of A. Now let A be a disttibution within B, satis-
fying conditions (1), For B select a distribution having
zero total lift and zero total volume. If I?p is contained
within B, then the addition of B will amount simply to a
redistribution, without changing the given lift L or volume
V of A. The drag of A+ B may then be written in. short-
hand notation

D(A+B)=Ds+Duig+Dps+Dsp 3)

Then, since by the mutual drag relation Dyp=Dg,, this
equation may be written as

D(A+4B)=D.4+2Dps~+Dgp 4)
Here Dp, is the drag of B in the combined disturbance field
of A. Since w,=constant, v,=0 and (%>

0z/a
R,, this interference drag may be written simply us

=constant in

D= E%ﬂUVB(g—: ) ®)

However, since Lz and Vj are both zero Dy, vaniskes and
the added drag is that of distribution B alone, or Dyz. Now
the drag of an isolated system can never be negative, hence
D(A+B) cannot be less than D(A) under the conditions (1).

On the other hand, suppose, for example that the side-
wash 9, were not zero. A distribution of lateral forces
could then be found which would result in & negative inter-
ference drag, dominating the quadratic term Dyp, so that
the total drag could be reduced. Hence, if the drag of
distribution A actually is & minimum value, then conditions
(1) must be complied with. )

The question of uniqueness depends on the existence of
distributions of type B for which the drag is zero. Asshown
by Graham, such distributious exist in three dimensions
and hence the minimum drag corresponding to & given
region B may be achieved by a variety of arrangements.
In the case of a planar region, such as the plan form S of a
wing, distributions of lift or volume having zero drag do not
exist, and hence in these cases the optimum distributions are
unique.

o7 7 7 b
Since z—v=%, 5=%—‘; and g—l‘=%§, it can be seen that con-

ditions (1) do not agree with, the linearized flow equation
(1_M2)z’-u+.ﬁzw+au=0 (6)

in general, but only if
o, -
oz
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Since g—g is proportional to the drag per unit volume, one

concludes that the drag cannot be minimized in an absclute
sense unless the drag associated with the volume of the
system is zero, or unless the distribution of singularities is
continuous throughout R. Examples such as the Busemeann

biplane satisfy the condition %: =0.

It is interesting to note that conditions analagous to W=
constant and =0 were found by Munk in connection with
the vortex drag of lifting systems at subsonic speeds. In
that problem, the conditions apply to the two-dimensional
motion associated with the trace of the wing system in the
Trefftz plane. If the idea of superimposed disturbance
fields is utilized in the subsonic problem, one finds that the
cylindrical flow associated with the Trefftz plane extends
along the whole flight path, including the region R. Con-
ditions (1) thus apply at both subsonic and supersonic
speeds.

Munk’s condition of constant downwash and zero side-
wash were used by Hemke (ref. 8) to calculate the effective-
ness of end plates in reducing the vortex drag at low speeds.
In such problems the condition is usually imposed by the
statement that the trace of the airfoil system must move
downward as a rigid body. It will be interesting to see
how this condition might be used under more general cir-
cumstances. This application is illustrated in figure 2 for
an end plate on the tip of a wing.

With the wing in forward motion, the lateral velocity
v, at the surface of the end plate is simply the lateral slope
of the fin surface multiplied by the stream velocity. The
condition 3=0 implies that »,—=—o, and this condition is
obviously satisfied by keeping the geometry of the fin fixed
when the flow is reversed. At the same time, however,
recall that the distribution of lift and lateral force must be
kept the same in forward and reversed flow. Hence, the
problem of finding the optimum setting and camber for such
a fin is solved by finding that particular shape for which the
flow is exactly reversible, that is, the lateral pressure distri-
bution remains unchanged by a reversal of flow direction.
At first it seems impossible to satisfy such a requirement,
since, for example, the direction of the force on an inclined
surface is usually reversed by a reversal of the direction of
flow. However, the form of the adjacent wing surface
must, in general, change with the reversal, since ws<0 and
since the lift distribution on the wing must remain unchanged.
Then it is evident that the conditions might be satisfied if
the pressures on the fin surface were dominated by the wing
pressures through interference.

Recently W. Wilmarth (ref. 9) has found several examples
of wings with end plates which minimize the drag for certain
prismatic regions.

The conditions for minimum drag are of course simply the
result of the constraints adopted in the initial statement of
the problem, and these are to a certain extent arbitrary.
Nevertheless, experience shows that the study of such
problems is likely to disclose essential relations in their
clearest form,

With the aid of the combined flow field and the mutual
drag theorem, it is & relatively simple matter to extend the
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Fiaure 2.—Use of condition 5=0 to determine optimum setting of
vertical fin on wing tip.

constraints in various ways. Thus in the case of a planar
wing if both the total lift Z and the spanwise loading are
specified, minimum drag requires that % be constant along
chordwise strips, but may vary laterally. Here we have

B=f(y) ®)
In case the lengthwise loading is specified we have
w=f(x) )]

Again, if the first moment of the load distribution about the
¥ axis is specified

W=a,+ oz (10)
and so on.

If the conditions on the combined disturbance velocities
hold beyond the boundaries of the region R, then the drag
cannot be changed by extending the distribution of lift or
volume into the new region. In general, this will not be
the case, however, and the drag can be continually diminished
by increasing the dimensions of R. Thus in the case of a
monoplane wing a strong upwash appears beyond the wing
tips, indicating that the drag could be diminished by
increasing the span. Similarly, sidewash velocities appear
just above and below the planar region, and the drag could
be reduced by extending vertical fins, or ‘“fences” into this
region.

It must be admitted that the considerations have thus
far been rather abstract. A more concrete result would
yield the actual magnitudes of the drag associated with
various regions, as well as the shapes of the bodies or wings.
Although no direct method of calculation has been proposed,
numerous examples have been found. Thus reference 6
gives the optimum distributions of lift in spherical and
ellipsoidal regions.

A rough lower bound for the minimum wave drag associated
with any region may be obtained from Hayes’ formula (ref.
7) or the formula of Lomax (ref. 5). With these formulas a
spatial distribution of lift or volume may be resolved into
& number of equivalent linear distributions, the latter
obtained from the intersections of the region R by plane
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waves lying at various angles § around the z axis. The wave
drag of the system is then the sum of values for the linear
distributions integrated from §=0 to §=2x. The expression
for the wave drag of a single linear distribution is the same
(except for a constant factor) as the expression for the vortex
drag of a lifting line in subsonic flow. Thus, for & single
elliptically loaded lifting line of length I parallel to the flight
direction the wave drag is:

e M-—1 12
D, wau"‘“’z_ ;g_lz' (11)
This value may be used as an approximation for the wave
drag of any narrow wing lying near the center of the Mach
cone. Deviations are to be expected for wider wings;
however, these deviations are not very pronounced, as
figure 3 shows. In this figure values of the wave drag
obtained from exact theoretical formulas are compared
with the values given by the approximate expression (11).
The ‘“‘exact” values were obtained by superimposing uni-
formly loaded wings of elliptical plan form and are not the
minimum values for the resulting plan forms.

A sufficient condition for the wave drag of a lifting system
to have a minimum. value is that all the projected loadings,
in addition to the lengthwise loading, be elliptical. In tlus
case we obtain the formula

M—1 I?
Dlﬂa” g 2 ﬂ'g72 (12)
where
1 1 fﬁ sin® do
T OX: (1)

and /() is the projected length of the region R as defined in
figure 4 with 3=-\/M—1.

The value given by equations (12) and (13) is actually
attained by elliptic wings and by distributions of lift in
spherical or ellipsoidal regions (ref. 6). However, for

M2t 12
Dygve=K—=— > —z
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Fiaure 3.—Approximate expression for wave drag of lifting surface.
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Ficore 4.—Lower bound for wave drag associated with the reg,lon R
and the lift L.

triangular or swept wings of the type depicted in figure 3,
the values given by the simpler expression equation (11) are
more accurate.

Tu a recent paper (ref. 10) M. I. Kogan has pointed out
that determination of the minimum drag of a lifting surface
having no subsonic edges can be reduced to the solution of
Laplace’s equation in the two-dimensional region bounded
externally by the trace of the characteristic envelope, and
bounded internally by the vortex trace of the wing. In
addition to ¢,,~+¢.=0, the boundary condition that no
disturbance extend beyond the Mach cone corresponds to the
condition ¢=0 on the outline of the characteristic trace Sj

“(i. e., the outer rim of the Mach envelope in fig. 1) while the

condition of constant downwash corresponds to ¢,=constant
on the vortex trace.

The result given by Kogan has been derived independently
by E. W. Graham (ref. 11) and by G. N. Ward (ref. 12).
Graham makes use of the combined flow field, and shows
that fields which are two-dimensional throughout the
foterior of any given characteristic envelope, and which
satisfy the condition @,=w=constent on a vortex trace
passing through the region, can be constructed.

Such solutions correspond to our previous conditions (6)
and (7) and are not restricted to wings having supersonic
edges.

In Ward’s analysis the physical flow is used, but the drag
is calculated by using the forward-going surface of the
characteristic envelope as a control surface. Since ¢=0
there in the reversed flow, it can be seen that the values of ¢
in the real flow coincide with those in the combined flow on
this surface. By a projection of the disturbance velocities
on this surface, Ward reduces the integral for drag to Diri-
chlet’s integral, which is a minimum when the derived velocity
field satisfies Laplace’s equation.

Applications of this method to problems involving thick-
ness and volume have been given by M. A. Heaslet (ref. 13).
Problems in which both the lift and the center of pressure are
given have been treated by P. Germain (ref. 14).

These theoretical developments provide an interesting
intuitive picture of the drag associated with the production
of lift at supersonic speeds. At subsonic speeds the lifting
wing leaves in its wake a two-dimensional, essentially in-
compressible downwash flow bounded internally by the
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vortex wake, but unbounded externally. According to
Kelvin’s theorem such an incompressible downwash flow
satisfying ¢, -+¢.=0, minimizes the kinetic energy rela-
tive to all other streamline motions satisfying the same
boundary conditions. For a given lift, (or downward
momentum) the kinetic energy, and hence the drag, is
minimized when the wake moves with constant downwash.
At supersonic speeds we are led to consider not the flow in
the Trefftz plane at infinity, but the flow in the last charac-
teristic surface where the zone of influence lies entirely
behind the wing. The two-dimensional flow obtained by
projection on this surface will be limited laterally by its
intersection with the real Mach wave, where ¢ must vanish,
and will be bounded internally by the vortex wake on the
the trailing edge of the wing. This flow is certainly not in-
compressible in genernl. However, if the wing is to have
the minimum drag coosistent with the given span and with
the given limitations of the lateral zone of influence, then
by Kelvin’s theorem the flow must imitate the streamlines
of an incompressible lateral flow in this intervening limited
region. For a given total lift the vortex wake should again
move with constant downwash.

The condition ¢=0 on the rim of the characteristic
envelope is exactly the same as that imposed at the bound-
ary of an open-jet wind tunnel. Hence, we are led to com-
pare the action of the wing in supersonic flow with that of a
wing in a finite jet (fig. 5). Wings having small fore and
aft dimensions have a limited lateral entrainment, as shown
by the small cross sections of their equivalent incompressible
jets (see fig. 6).

In Munk’s theory of the minimum indueed drag the “area
of the additional apparent mass’’ associated with the vortex

trace of the wing plays an important role. Denoting this
area by S/, we have for the drag due to lift
1 I?
D=gtmsy 48

This formula actually applies in perfect fluid flow at all
speeds if Sy’ is replaced by S/, the additional apparent

F16urEe 5.—Equivalent incompressible jet for wing at supersonic speed.
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Figure 6,—Effect of fore and aft dimension of wing on area of lateral
entrainment.

mass of the wing in the limited jet determined by the Mach
waves. If the Mach number of the stream is reducéd, the
waves become more nearly vertical and the equivalent jet
expands laterally, reaching an infinite cross section at A/=1.0.
Below A=1.0 the wing is operating in unlimited flow and

we then have:
bﬂ

S/ == Z‘ (15)
which leads to -

On the other hand, at extremely high supersonic speeds, the
equivalent jet contracts into a narrow space around the
frontal projection of the wing. In this case the streamlines
of the downflow in the jet will be nearly straight and parallel,
as illustrated in figure 6, and the area S, will be substan-
tially equal to the area of the jet Sj.

In special cases the two-dimensional downflow in the
characteristic trace or jet S can be readily calculated. Thus
in the case of the elliptic wing the envelope of characteristics
has an elliptic cross section, with the vortex trace of the wing
extending between the foci. Now if & flat plate moves down-
ward (along z) in unlimited flow, the potential at the surface
of any confocal elliptic cylinder will be of the form ¢,=kz,.
Hence the boundary condition ¢=0 may be satisfied on any
such confocal ellipse by adding a uniform downwash through-
out its interior so that w=—k or po=—Fkz. When the down-
ward momentum of the resultant flow is computed, it is
found to correspond to a virtual mass with area S, given

by

1 1 1 1
Sw,'_ S] Sj _|_ Sj’+ Sw, (17)
where \
8o=" (18)
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Fiaure 7.—Effect of Mach number on lateral entrainment.

In the case of a long slender wing lying near the center
of the Mach cone (slender wing theory) the characteristic
trace will be circular. An elliptical lengthwise distribution
of lift then produces an incompressible downwash flow
resembling that of a dipole at the center of the circle. The
added downwash required to make =0 on this circular
boundary then yields our formula (11) for the wave drag.

If we try to find the surface loading or shape that corre-
sponds to the drag given by equation (14), we discover that
Kogan’s analysis has in fact carried us away from our origi-
nal problem in which the plan form of the wing (or the
region R occupied by the lifting system) was given. The
information given now councerns only the trace of the wing
and its characteristic envelope. Now, the relation between
the plan form of & wing and its characteristic trace is certainly
not unique. On the other hand the particular form of the
two-dimensional flow on the reversed characteristic surface
must require & unique distribution of lift in the plane of the
wing. Otherwise one could show by superposition that
planar distributions of lift having no drag would exist. It
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must be concluded therefore that of all the plan forms having
a given characteristic envelope, only those whose surface
area is extensive enough to enclose the required surface dis-
tribution of lift can achieve the minimum drag given by
equation (14).
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