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A VARIATIONAL THEOREM FOR CREEP WITH APPLICATIONS TO PLATES AND COLUMNS !

By J. Lyeun Sanpers, Je., Harver G. McCoums, Jr., and Froyp R. ScHLECHTE
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SUMMARY

A variational theorem s presented for a body undergoing
creep. Solutions to problems of the creep behavior of plates,
columns, beams, and shells can be obtained by means of the
direct methods of the calculus of variations in conjunction with
the stated theorem. The application of the theorem s illus-
trated for plates and columns by the solution of two sample

problems. <
INTRODUCTION

Interest in the various effects of creep in metals has
intensified in recent years in the aeronautical field because
of actual or envisaged operation of aircraft in an elevated-
temperature environment. Much experimental work has
been done to determine the creep stress-strain relations of
various metals at elevated temperatures, and much data
have been accumulated on the creep collapse of columns and
plates. Analytically, creep problems for beams, columns,
and plates are more difficult than the corresponding elastic
problems, because the creep stress-strain relations (which
generally include the possibility of elastic and plastic strains)
are nonlinear. One consequence of this nonlinearity is that
the distribution of the stresses through the thickness of the
beam, plate, or column is not nearly so simple as in the
elastic case. Mathematical analyses of these structural
components have often been restricted to simplified models
(H-section columns, for example) to avoid this difficulty.

No known systematic procedures have been devised for
reducing a given creep problem to a set of differential
equations, although some efforts have been made to develop
variational methods for use in attacking these problems
mathematically. Hoff (refs. 1 and 2) has suggested the use
of 2 minimum-complementary-energy principle based on an

analog between the creep-strain rates and the elastic strains ~

in & nonlinearly elastic body; however, elastic and plastic
strains are neglected and the method does not apply readily
to plate and column problems. Wang and Prager (ref. 3)
have given two general extremum principles (for a body
with elastic, plastic, thermal, and creep strains) analogous
to the minimum-complementary-energy and minimum-
potential-energy principles in elasticity. In the present
report, an analog of Reissner’s variational theorem in
elasticity (refs. 4 and 5) is formulated (for a body with
elastic, plastic, and creep strains), and special forms of it

are found to be convenient for handling creep problems of
plates, columns, beams, and shells. The use of the vari-
ational theorem presented herein is illustrated by applica-
tions to two creep problems: creep collapse of columns and
plate bending.

SYMBOLS

E Young’s modulus

I integral to be varied (see eq. (7))

1,115 integrals defined by equations (46)

Jy second invariant of stress-deviator tensor

M, M, radial and tangential bending moments,
respectively, per unit length

M, o, M, 0,M,, radial and tangential bending-moment
coefficients defined by equations (44)

P compressive load

P, buckling load for column

S surface of a body

S, part of surface where stresses are pre-

- seribed

Sy part of surface where displacements are
prescribed

T, surface traction

T, prescribed surface traction on S,

U displacement of neutral surface in z-di-
rection

U, displacement coefficient in z-direction
(see eqs. (28))

14 displacement of neutral surface in y-di-

) ‘ rection; also used as volume integral

w deflection of neutral surface in z-direc-
tion

Wo, W1 deflection coefficients (see eqs. (28) or
(44))

R radius of circular plate

b width of column

h thickness of column or plate

l length of column

m empirical constant in creep law

ny unit external normal to surface of un-
deformed body

empirical constant in creep law

lateral load intensity on circular plate

radial coordinate

S KR

! Bupersedes NACA Technical Note 4003 by J. Lyell Sanders, Jr., Harvey G. McOomb, Jr., and Floyd R. Schlechte, 1957.
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81 stress-deviator tensor
t time

U displacement in z-direction

Uy displacement vector

Uy prescribed displacement vector on S;

v displacement in y~direction

w displacement in z-direction

x,9,2 coordinates

Ve YynYey shear strains in zz-, yz-, and a:'y—dlrec-
tions, respectively

A amphtude of initial bow of column di-
vided by column thickness

3y Kronecker delta

€ strain, positive in tension

€ strain tensor

€1y noncreep portion of strain tensor

€ creep strain tensor

&€ radial and tangential strains, respec-
tively

€2,6y,€x strain in z-, ¢¥-, and z-directions, respec-
tively X

a angular coordinate

A empirical constant in creep law

u Poisson’s ratio

p=r/R )

o stress, positive in tension

o1, stress tensor

of,0f stresses defined in equation (27)

09,01 stress coefficients in equations (28)

61,0 radial and tangential stresses, respec-

tively
Dots over quantities denote differentiation with respect
to time, a single prime denotes the elastic-plastic part of the
strain, and a double prime denotes the creep part of the strain.

FORMULATION OF GENERAL VARIATIONAL THEOREM

For a body subject to creep, the equilibrium equations
and strain-displacement relations are the same as those for
an elastic body; the only difference in the mathematical
formulation of & creep problem is in the stress-strain relation.
In the present development, the nonlinear strain-displace-
ment relations and equilibrium equations are used because
of the intended application of the variational theorem to
collapse problems of columns and plates. However, the
strains are still assumed to be small, and the stress-strain re-
lations are written as for infinitesimal strains. The total
strain rate is separated into a creep part and a part which in-
cludes elastic and plastic effects. The creep part of the strain
rate is allowed to depend on time and on the stress deviator
but not on the stressrate or the first invariant of stress. In

AL

this report, the temperature of the body is assumed to be uni- .

form and constant in time.
In tensor notation, a simple example of the creep law
assumed is

=1 (Ja,t)84; @

where s;; is the stress deviator and oJ; is the second invariant

2
tion on the stress-strain relation for the elastic-plastic part

85815. For purposes of the present report, the only restric-
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of the strain is that the following relation hold (see ref. 6):

idéy=¢idoy, (@)
The equation for the components of finite strain is
1
€@=g (g, 72y, o, (U, 5) 3
or, in differentiated form,
. 1. , . ,
=g (ty, sy, 4~ br, (t0x, g, 1x, ) 4)
The equilibrium equation is .
[(Bixtus,D)opn] /=0 (8

The equation giving the surface traction 7j in terms of
stresses and displacements on the boundary is

T,=cr,k'n, (50,-"]"?1«1,;) (6)

where 7; is the unit external normal to the surface of the
undeformed body.

The components of the tensor ¢, are not true strains, and
neither are the components of the tensor ¢y true stresses.
However, the specific virtual work due to a virtual displace-
ment §u, 1s given by

W=0,0¢

Therefore, the tensor ¢;; may be considered to be the gener-
alized force conjugate to the generalized displacement
€. In reference 7, this tensor is called %y, and in reference
8 it is called of;.

As in many of the variational theorems of the mathemati-
cal theory of plasticity (see ref. 6), the variational theorem
to be stated here is for stress rates and strain rates; that is,
if the states of stress and strain throughout the body are
known at a given instant, then application of the variational
theorem singles out the stress rates or sirain rates that
actually occur from those rates of stress or strain considered
in the enunciation of the theorem. Thus, the operator &
in the formal process of taking the variations is applied only
to time derivatives of quantities and not to the quantities
themselves. Because of this, for example, éef;=0 because
&7, depends upon the state of stress but not upon the stress
rate. (See eq. (1).)

The quantity to be varied was constructed by an inverse
process guided by the form of Reissner’s theorem and the
first theorem of Wang and Prager. By trial and error, the
terms necessary to obtain the desired result were found for

the integral to be varied. Let T=T; be prescribed on the

part S, of the bounding surface S of & body and let =1
be prescribed on the remaining part S; of the boundary.
The variational theorem to be proved is =0 where

- 1. . 1,.., o
I=fv [ijo'u'l‘g Uz, {ut,j‘fij_i (fu+2€:1)0u dv—

f T, dS— f (u—) T dS  (7)
s, 84

" In the first term of the volume integral, ¢, is understood to
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be written in terms of displacements and velocities (eq-
(4)). In the third term of the volume integral, é;; is under-
stood to be written in terms of sfresses and stress rates,
whereas &, is written in terms of stresses.

The variation of I is given by

6I=fy [éﬁ&é‘u"‘ﬂ"ﬁﬁé”‘l‘a’tﬂglt 6?2«:_3’—‘

1. .., 1, Fyg-
§' 0'“661;‘_':2' (é;;+26:j)60'” dV—

fs. T ,dS— jS (@—iol - ToiddS ()

where 8¢;;=0 as previously noted. The second term in the
volume integral may be transformed by an integration by
parts. The following formula applies:

JV O'tﬁé”dV=L &,,n,(&a—f-uk,t) BugdS—
| Wontun ey sindv ®
The third term may also be integrated by parts; thus,

fv 0'”‘123;.1 51'Lk'j(lV=L a,,nﬂi“ Mkds—fv (‘Tu’dk,t),j Bdde (10)
By using equations (9), (10), and (2), equation (8) becomes

5= f , {é4,86 1y~ [(Buxttn, 1) 645], 3 Btx— (o, fily, o), , Sthx—

(et1étp)dc u}dV'l‘L (64my (Bt 1)+ oe i, (J61t e dS—

fs' T i, dS— Js,, ((i— i) T+ T 5i2)dS (1)
BI=fV{ (éu_‘éu—é:j) 30‘7”—67‘1¢% [(5“,-—}—114;, 1)0'”] _]}d-V“"
fs'(T,—’f’,)asz,dS— f | (—)sTds (12)

The coeflicient of each of the variations vanishes by virtue
of the stress-strain relations, equilibrium equations, stress
boundary conditions, and displacement boundary conditions,
respectively. Thus, it is proved that §I=0 for the stress
rates and strain rates that actually occur.

A term may be added to the volume integral to include the
effects of body forces if necessary. In some special cases,
the boundary integrals should be modified if boundary condi-
tions other than those on 7 or v, are imposed.

In the next section, a form for I appropriate for application
to thin-plate and column problems is developed.

THEORETICAL APPLICATION OF VARIATIONAL THEOREM
TO PLATE AND COLUMN PROBLEMS

The variational theorem proved in the preceding section
provides a powerful means for deriving an appropriate two-
626507—00-—0
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dimensional theory for thin plates subject to creep (or one-
dimensional theory for beams and columns) analogous to the
two-dimensional theory for thin elastic plates. If certain
simplifying assumptions are made about the dependence of
the various displacements and stresses on the z-coordinate
(measured normal to the middle surface), the integrations
with respect to z in the integral J may then be carried out.
The equations resulting from /=0 then involve only z, ¥,
and ¢ as independent variables.

In this report, the same simplifying assumptions with
regard to displacements are made that were made in the
elastic case. In particular, the Bernoulli-Euler hypothesis
is retained. This hypothesis can be regarded as a conse-
quence of the equilibrium equations and the strain-displace-
ment equations as applied to a thin plate. The transverse
shear stresses vanish on the surface of the plate and are
thus expected to be negligible (compared with inplane
stresses) throughout the thickness. By any of the common
stress-strain relations (elastic, plastic, or creep), it follows
that the transverse shear strains are negligible. If w is
assumed to be approximately independent of z, then from

) PLATES AND COLUMNS
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ow , Ou__
Y=oy T (13)
b'w bv
+ 3 (14)
it follows that
oW
u=U—z a‘ ‘ (15)
oW
r=V—z W (16)
w=W a7

where U, V, and W can now be identified as the displace-
ments of the middle surface. Equations (15), (16), and (17)
express the Bernoulli-Euler hypothesis.

A more rigorous treatment, in which the dependence of
the various quantities on the z-coordinate is deduced by
expanding them in powers of a thickuess parameter, might
be possible. In some derivations of plate equations, U, V,
and W are interpreted as weighted averages of u, v, and w.
(See refs. 4 and 9, for example.) However, the consequences
of assuming equations (15), (16), and (17) to be true are
expected to lead to accurate results for thin plates.

Equation (3) for the finite strains in terms of displacements
is simplified by dropping all nonlinear terms except those
‘containing powers or products of slopes. This simplification
leads to the Von Karman equations for an elastic plate.
The resulting equations for the strains are

oW
bz b.z’_l_ ( (18)
v
- aV aW ( 9
U oV_, W oWOW
e =" =g, Tor ~%% 5707 0z Oy (20)
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&=, =", =0 (21)

In order to be consistent with these approximations, only
terms containing powers or products of rates of slope are
retained in the second term of the volume integral in I.
(See eq. (7).)

Before the integration with respect to z can be carried out
in the expression for I, the dependence of the stresses upon z
must be assumed. Unlike the elastic case, the stresses do
not vary linearly through the thickness, even though the
strains do vary linearly. The particular advantage of the
generalized form of Reissner’s variational theorem for use in
the present problem is that approximations for the stresses
and strains can be made independently. Thus, there is no
necessity fo invert the sfress-strain relations in order fo
determine appropriate approximations for the stresses; in
fact, to invert the stress-strain relations would generally
be impossible.

Many possibilities exist for assuming the form of the
stresses as functions of z, and each possibility leads to a
different set of plate equations; thus, no particular system
of equations can be set up which can be called the creep
equations for a plate, column, or beam. Generally, it is
advantageous to assume the form of the stresses and dis-
placements as functions of z and ¥ also, in which case all
the integrationsin J may be performed. Setting the variation

of the resulting expression equal to zero leads to a set of

ordinary differential equations in which the independent
variable is the time. Further details of the application of the
variational theorem to -creep-collapse and creep-bending
problems of columns and plates can best be communicated
by means of examples, two of which are given in the followmg
sections.

EXAMPLE OF APPLICATION OF VARIATIONAL THEOREM
TO CREEP COLLAPSE OF COLUMNS

A simplified treatment of the problem of creep collapse of
the uniform, pin-ended, rectangular-section column shown
in figure 1 is given as the first example. The plastic part of
the strain is omitted, and the stress-strain relation is assumed
to be

é=%,—l—)\pt”'1cr‘” (22)

where the second term on the right includes the effects of
primary and secondary creep. The axial displacement u is
assumed to be given by

oW

u=U—z v (23)

L | % ™
x f==r =]
#

-~

P

4
A
-+

z z
Frgure 1.—Pin-ended rectangular-section column.
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and the axial strain e by

. _ou
T

D’W 1 (Z)W)

axg l (24)

In the present case, the following terfns enter into the
expression for I:

bU QWOW oW 3
Ties=0 "3z oz ° ozt
1 . . 1 (oW
g e e =50 (5?
L (25)

1,., ey 7? .
§ (eﬂ—l—?,e:f) 0'{5='20-‘IE+)\ptﬁ_‘0'0'u

(P is constant)

Ty dS=—PU(,1)=0
Sy J

Where U(0, t)=0. The special form of I for the column is

I_ﬂ:(bU awaw aﬂ +

% P <%¥) — %—xptﬂ-’&aﬂ] dv  (28)

For simplicity, the variation of ¢ in the z-direction is
assumed to be linear; thus,

=03+ ot 27)

The variation of displacements and stresses in the z-direction
is assumed as follows:

W=, sin 72 )
U=Uyz ‘
- (28)

0‘3:='b—h ag

P .o
0'1='b7_b' Ul,SmT

where h is the thickness of the column, b is the width, and
l is the length. The dimensionless quantities on the right-
hand sides of equations (28) are functions of time alone.
The integrations in I may be carried out, and the result is
(for m=3)

—rr [P (60'0Wom+ 61m+300W )-—_ (0'0’+'— o >+

b’;E sl Apt?—1E (,%)2 (a.,a&.,+

1
8 ‘700’1200"‘ ) °'l°'1+ 0% Ul)] @9)

where P. is the buckling load of the column. The system of
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differential equations to which the present approximate
analysis leads is obtained by equating to zero the partial
derivatives of I with respect to each of the dotted quantities;
thus, the result is

0.'0=O w
6&0Wo+% ¢1+-Bo,Wo=0

bLE -

- ; . (30)
6 % mm_ &0+_P‘ Uorkptp—lE <%> (0'03-[—% 0'00'12>=0

1P, . il PN/
Z’: —P- ﬁ%—'i‘ 0'1—')\2)tp lE(m) (-g 0’020'1+% 0'13>=0 J

The solution of this set of equations depends on the initial
conditions assigned. Suppose that the column has an initial
bow in the form of a half sine wave before the load P is
applied. If the load is assumed to be applied rapidly, but
not rapidly enough to introduce inertia effects, then the
initial conditions for the creep problem are those existing
immediately after the load is applied. If the initial bowis
given by

Tz

hA sm—l—

the initial conditions for the dimensionless quantities are

m0=—25]

P,
do(0)=—1 L 31
n(0)="2%

P

The problem can now be reduced to solving the following
equation for Wy:

(ri-swr e ) (reFne) o

Except for differences in notation, this equation is similar to
one given by Kempner (eq. (27) of ref. 10) for an idealized
two-element column problem solved by a colloeation method,
oxcept that the constant #% is replaced by 4 and p is replaced

by 1. IEquation (32) is easily integrated to give
P, 2
1 wa RO | -
9= P ;10g 270 Wi (0) (33)
mE(—— 14+ We °
bh, 5
’I}‘lhe collapse time #, is found by taking the limit as Wy— ;
thus,
1/p
2o [ os(B)]
____P°__ 34)
27A% (

to= E(gylog 1+
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The foregoing analysis is intended merely as an example;
more elaborate assumptions as to the stress variation through
the thickness and the variation of the several unkmowns
along the length of the column lead to systems of nonlinear
differential equations which may be solved by some numer-
ical method.

EXAMPLE OF APPLICATION OF VARIATIONAL THEOREM TO (;‘REEP
BENDING OF PLATES

For a second example, the bending of a simply supported
circular plate under & constant uniform load is considered.
(See fig. 2.) For simplicity, the analysis is restricted to the
time during which the deflections are small so that the linear
strain-displacement relations can apply. The general form
for I in this case is

= [aiu—p Grtoapsg (35)

Here, again, the effects of plasticity are neglected. The creep
law is that given by equation (1). The various terms in the
integrand must be specialized to apply to the present plate
problem. In polar coordinates the shear stress and shear
strain are zero from symmetry, and the remaining stresses

j‘

‘L -

U RS

h AN

ar
-

o

(oSS

z
Fiaurs 2—Simply supported cireular plate with lateral load.
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éij&ij_—_ér&r'l'ét&t (36)

If a linear strain distribution through the thickness is
assumed,

W . aW
e L 37
For the elastic part of the second term in equation (35)
1,. 1 aieg o -
5 éudiy=gz (00 —2u6,5) (38
For the creep part of the second term,
161 =f (D856 5=F(J2) Ja (39)
Further, it is assumed that the form of f is such that
E:jd' u—_-)\J 2"j 2 (40)

In this example, the exponent m is taken to be unity; this
assumption corresponds to the cubic law in the uniaxial stress
case. Then,

&b =g Moo =005, Cor—0 )+ (2o —0)] (1)

The variation of the stresses through the thickness is
assumed to be linear; thus,

_12M,=

0= h3 "

(42)

Doubtless, after creep is well established, the stress distribu-
tion cannot actually be linear in the thickness direction,
but, for purposes of this example, such an approximation is
sufficient. When integration in the z-direction is carried
out,

I f * f ’{ oMW+ NV

ol 3)+ 5 MR gy 02— 0,0, 0, 20—

+S2P (it~

M)+ MM~ ,>1}dpdo 43)

where R is the radius of the plate, p=r/E, and the primes
denote differentiation with respect to p. The following
expressions, based on the elastic solution for this problem,
are assumed for the displacements and moments:

W=h(1—p*)(Wo+p*W))
M, =Eh2M, o(1— )
M =ER@1,, o+ p*M,,1)

(44)
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Equations (44) are substituted into equation (43) and the
integrations carried out. Then, on equating to zero the
partial derivatives with respect to the dotted quantities, the
following equations are obtained:

M, o+2M, o+M,, =0 )
3Mr.o‘|‘Mz,1=0
. 2 . . .
Wk Wy —2 (—f}) (21, g— (B, o+ DL, )]
o 4B/ RY?
=2 —5 ('}—b') I

B\ . . . 2
Wo—3 (1) @1+ 3,1t =22 (2)T,

3V%+V171—6 (%‘)2(3Mt.0+2M1.1"—#M7. o)
10D (Y

- (45)

=6
where

@ L= [ p(1—) 21— (M3 —M,MAM3dp |

B L= [ o@M—M)MI—MMAMI - (@O)

(ER?) L= f @M, —M) (MM, MM dp
0 »

Equations (45) can be solved for the five dotted quantities
to give

ERGIE ST
= () [ unn+
300 1,11y |

(3I3—I1""I2)

W,=

- (47)

18AE3

Mr,o‘:ﬂ.fz,o:—% ﬂZ[t.l—-

where the expressions for [,, I;, and I; are

N
II—‘— (3Mt 0 —3Mt OaMt 1—3111'1 OMt 1 ﬂIl.la)

I2=/4£O (52‘4—1.03+9M1,02Ml,l+7ﬂl},0ﬂl¢.12+2l‘4},13) ( (48)
Ia— (140, *+382DM,,8*DM 1 +2TM,, o M, *+8 MM, 1“)

Equations (47) are a system of first-order nonlinear differ-
ential equations with time as the independent variable. The
initial conditions required to determine the solution are given
by the elastic solution to the loaded plate. (See ref. 11.)
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Thus,
_ g (B35t (1—w )
W"(O)—E(E) 16

_g(BY3(1—w)

W)= E’(ﬂ 16

My o(O)=M,,o(0) =1, (%) Ean
B\l

1.0=-3(3) 5"

Since Al 0=M, o and M, o(0)=M,,(0), it follows that
M, =M, Equations (47) with initial conditions of equa-
tions (49) can be integrated numerically by the modified
Euler method (ref. 12). Numerical calculations were made
for o plate having a ratio of radius to thickness of 50. The
value of £ used was 7.4 X 10° psi and the value of AE?® used
was 2.72 X 10° per hour. These values together with the
cubic uniaxial creep law correspond approximately to char-
acteristics of 2024-T3 aluminum alloy at a temperature of
600° F. (See ref. 2.) Results showing the time history of
the maximum deflection of a circular plate under lateral load
are presented in figure 3.

/

- (49)

l

| / -

/

/

| T |qr*
_&T:OJ
0 200 400 600 800 1,000 1,200
Time, hr

Fiaure 3.—Time history of maximum déflection of simply supported
circular plate under lateral load. %=50; material, 2024-T3 alumi-
num alloy at 600° F.
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CONCLUDING REMARKS

A variational theorem for creep has been formulated which
is an extension of a variational theorem developed by Reiss-
ner. Various systems of equations leading to approximate
solutions to problems of the creep behavior of plates, columns,
beams, and shells may be obtained by using direct methods of
the calculus of variations in conjunction with the stated
theorem. The application of the theorem is illustrated for
plates and columns by the solution of two sample problems.

LaNGLEY AERONAUTICAL LABORATORY,
NaTtionar, Apvisory COMMITTEE FOR AERONAUTICS,
Lanaerey Fierp, Va., March 6, 1967.
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