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THIN AIRFOIL THEORY BASED ON APPROXIMATE SOLUTION OF THE TRANSONIC FLOW
EQUATION *

By JorNn R. SprEITER snd ALBERTA Y. ALKSNE

SUMMARY

The present paper describes a method for the approximate
solution of the nonlinear equations of transonic small disturb-
ance theory. Although the solutions are nonlinear, the analysis
s sufficiently simple that results are obtained in closed analytic
Jorm for a large and significant class of nonlifting airfoils.
Application to two-dimensional flows with free-stream Mach
number near 1 leads, for instance, to general expressions for
the determination of the pressure distribution on an airfoil of
specified geomelry and for the shape of an airfoil having a
prescribed pressure distribution and gives, furthermore, the
correct variation of pressure with Mach number at Mach
number 1. For flows that are subsonic everywhere, the method
yields a pressure-correction formula that s more accurate than
the Prandil-Glauert rule and compares favorably with existing
higher approximations. For flows that are supersonic every-
where, the method yields the equivalent, in transonic approxi-
mation, of simple wave theory. Resulis obtained by application
of these general expressions are shown to correspond closely to
existing solutions and to experimental data for a wide variety
of airfoils.

INTRODUCTION

The difficulty of solving the nonlinear equations of motion
of a compressible inviscid gas has led to widespread use of
approximate methods in the practical solution of the prob-
lems of airfoil theory. The simplest and most versatile
approximate method is that based on & complete linearization
of the equations and stems from the pioneering work of
Munk, Prandtl, Glauert, Ackeret, and others (see refs. 1 and
2 for a résumé). Although this linear theory of compressible
flow has been extensively developed in recent years and is
widely used in aeronautical applications, it has two limita-
tions that are of significance in the present discussion. First,
lincarized theory gives only a first approximation that is
correct for airfoils of small thickness ratio. This limitation
is, in some respects, of continually diminishing significance as
the aeronautical engineer is forced to use thin wings and
slender bodies to avoid heavy penalties in wave drag. If the
airfoil is not sufficiently thin, however, corrections are neces-
sary and higher order theories have been developed to fill the
need (see ref. 3 for a résumé). Second, and more important
for the present discussion, linearized theory requires, in
general, that the Mach number be sufficiently removed from
unity that the flow is either purely subsonic or purely super-
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sonic. If both subsonic and supersonic velocities occur in
different parts of a single flow field, the flow is said to be
transonic and the results of neither linear theory nor the
existing higher order theories are, even qualitatively, in
agreement with the experimentally observed flows.

Transonic flows have been studied successfully by considera-
tion of a simplified, although still nonlinear, theory that was
originally conceived in an effort to provide a useful first
approximation for the pressures and forces on thin wings
and slender bodies in inviscid flows with free-stream Mach
number very near unity (see ref. 4 for a short résumé).
More recent developments described in references 5, 6, 7, 8,
and elsewhere have shown that the useful range of this theory
can be extended to include subsonic and supersonic flows if
slightly different approximations are employed in the deriva-
tion of the fundamental equations. Although the resulting
theory is commonly designated as transonic small disturbance
theory, or more briefly as transonic flow theory, it is actually
a unified theory for subsonie, supersonic, or transonic flow
around thin wings and slender bodies, and is moreover, the
simplest theory proposed to date that is capable of yielding
reliable results throughout that Mach number range.

This formulation of transonic flow theory provides a set
of equations that differs from that of linear theory by the
addition of one nonlinear term in the differential equation
for the perturbation potential and in the shock relation. If
the flow is purely subsonic or purely supersonic, solutions of
the equations of transonic flow theory can be sought by

" application of existing methods for approximating the solu-

tions of the exact equations of compressible inviscid flow.
If the flow is transonic, however, the results obtained by
application of these methods are at wide variance with those
observed experimentally and it is necessary to devise new
and appropriate methods of solution. Although methods of
the successive approximation type have recently been de-
veloped that can be applied to transonic flows (e. g., refs. 9
and 10), the principal method that has been employed in
the theoretical analysis of such flows involves the use of the
hodograph transformation by means of which the nonlinear
equation for the perturbation potential is transformed into
a linear differential equation of mixed elliptic-hyperbolic
type, the Tricomi equation. Although the resulting bound-
ary-value problem is still very difficult to solve, this method
has been applied with considerable success in the study of
transonic flow around wedge and flat-plate airfoils and a

509



TECHNICAL LI

ABBOTTAEROSPACE.COM

510 REPORT 1359—N.

number of specific results have been given in recent years
by Guderley and Yoshihara, Vincenti and Wagoner, Cole,
and others (see ref. 11 for a résumé). IExtension of this
method to permit calculation of transonic flows around
arbitrary airfoils with curved boundaries appears, however,
to be a difficult task.

The present analysis is based on a novel method of ap-
proximation that avoids most of the difficulties of existing
procedures while still preserving much of the nonlinear
effects in the solution. Sufficient simplicity is gained by
restricting attention to surface pressures and to flows that
are either purely subsonie, purely supersonie, or have a free-
stream Mach number near 1, that results can be obtained in
closed analytical form for both the direct problem of calcu-
Jating the pressure distribution on an airfoil of given shape,
and the inverse problem of calculating the shape of an airfoil
associated with a given pressure distribution. Inasmuch as
the magnitude of the errors introduced by use of the ap-
proximation procedures is not evaluated in all cases by
mathematical considerations, the usefulness and accuracy
of the results are demonstrated by the calculation of the
pressure distribution and drag for many different airfoil
shapes and by comparison with existing theoretical and

experimental results.

Of the theoretical results available for comparison, only
two are exact. They are the simple-wave solution for super-
sonic flows without shock waves, and the variation of pres-
sure with Mach number at Mach number 1. The present
method yields both of these results exactly within the
framework of transonic small disturbance theory.

Although the existing results mentioned above for wedge
airfoils at Mach number 1 contain certain approximations
beyond those implicit in the use of the equations of tran-
sonic flow theory, the influence of these approximations
appears to be minor and the results are generally considered
to be very nearly exact solutions of these equations. The
present method produces results for this case that are-in
substantial agreement with these previous theoretical re-
sults. In contrast to the hodograph methods, the necessary
steps are sufficiently simple, moreover, that results can also

be obtained for sonic and near sonic flow around arbitrary”

airfoils with curved boundaries. Since previous theoretical
information for such cases is meager, comparisons are made
with a large number of experimental results. In general,
the theoretical results found by application of the present
method lie within the range of experimental scatter of the
data.

In the subsonic range, no exact solutions are available for
flow around a thin airfoil. Comparisons are made, there-
fore, with pressure correction formulas, such as that of
Kérmdn-Tsien, and with higher approximations obtained
by iteration methods.

A simple heuristic account of the general method and
extensive discussion of the results are contained in the
main text. Additional details concerning the underlying

basis for the general procedures are contained in the Ap-
pendix.
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PRINCIPAL SYMBOLS

speed of sound
speed of sound in the free stream
P y

2

pressure coeflicient,

Mmz DR
LEACE R

4

chord

section pressure drag coefficient,

o
M2 (y+1)]'A
T5/3 Ce

pressure drag
M 3 v4-1)
U,

local Mach number

free-stream Mach number

exponent in the relations for airfoil ordinates
given by equations (56) and (61)

static pressure

free-stream static pressure

resultant local velocity

maximum thickness of profile

free-stream velocity

perturbation velocity components parallel o z
and z axes, respectively

value of u obtained by solution of equation (21)

value of u obtained by solution of equation (8)

value of 4 obtained by solution of equation (39)

value of 2 at which parabolic and hyperbolic
solutions are joined

Cartesian coordinates where z extends in the di-
rection of the free-stream velocity

value of z at which the local velocity is sonic

ordinates of the upper surface of the airfoil

gamma function

ratio of specific heats, for air vy=1.4

semiapex angle of Wedge airfoil

pressure gmdlent, 3—5
1—M 2—Fku
M 2—14+ku
ou
*3a
M 2—
M 2(vF1) "
free-stream density of air
thickness ratio, /¢
perturbation velocity potential
SUBSCRIPTS
values associated with critical Mach number
values associated with incompressible flow or with
M_,=0
values given by linearized compressible flow
theory
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M.=1 values associated with M _=1

Zimas values associated with maximum ordinate of air-
foil

£,=0  values associated with £,=0, or with M_=1

FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

Consider the steady flow of an inviscid compressible gas
past an arbitrary thin symmetrical nonlifting airfoil, and
introduce Cartesian coordinates z and z with the « axis paral-
lel to the direction of the free-stream, as illustrated in figure 1.

z
: )
Um !
— TS
0 c

Figure 1.—View of airfoil and coordinate system.

Let the free-stream velocity and density be U, and p., the
perturbation potential be ¢, and the perturbation velocity
components parallel to the z and 2 axes be ¢., or %, and ¢,, or
w, where the subscript indicates differentiation. The bound-
ary conditions require that the perturbation velocities vanish
at infinity, and that the flow be tangential to the wing sur-
face. The first condition indicates that ¢ i3 constant at
infinity. The latter condition can be approximated for
thin wings by

(pemo=U 22 1)

where Z represents the ordinates of the airfoil upper surface.
The pressure coefficient (, is likewise approximated to first
order by

C',E p—pm _2 (%3 _2 l

"12‘3 [JGB 2 Um Uco (2)

These relations are familiar from linear theory, but apply
equally for transonic thin airfoil theory. The differential
equation for ¢ is not the same as in linear theory, however,
but is

<l—ﬂlm2—Mm2 %ﬂ 50:) ¢n+¢81=0 (3)

where M, is the Mach number of the undisturbed flow and
v is the ratio of specific heats (1.4 for air). It is useful to
note that the coefficient of ., corresponds, in the present
approximation, to 1—142 where M is the local Mach number.

Knowledge of methods for obtaining solutions of equation
(3) is meager, not only because the equation is nonlinear,
but because it can change type (elliptic, hyperbolic), depend-
ing on the value of M, and ¢,. This change of type is an
essential feature of transonic flow, since subsonic flows are
represented by elliptic equations and supersonic flows by
hyperbolic equations. If both types of flow occur in a single
flow field, it is apparent that the differential equation must
change type. In the present case, the type of the equation

520507—80——34
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is recognized by the sign of the total coefficient of ¢., as
follows:

>0 elliptic (subsonic)
1-Mo-M , @
» <0 hyperbolic (supersonic)

An important quantity in the discussion of compressible
flows is the critical pressure coefficient C,_ associated with
the local occurrence of sonic velocity. The appropriate
relation is found by combination of equation (2) and the
relation obtained by equating the coefficient of ¢, in equation
(3) to zero, and is

 2(1—M,Y)
Ora— M3(v+1) (5)

In transonic and supersonic flows, it is also necessary, in
general, to provide an additional equation for the discon-
tinuous changes in velocity that occur at shock surfaces.
The necessary equations, when simplified to the form con-
sistent with the approximations of transonic flow theory,
reduce to

Y41 fu+u,
U, 2

l:l—M:—Mm’ )] (g 113) 4 (@g—1) =0

©)

Pa=Pp

where the subscripts @ and & refer to the values on the two
sides of the shock surface. With the exception of the
Appendix and minor references in the main text, equation
(6) is not employed explicitly in the following analysis and
discussion because attention is confined to (a) purely sub-
sonic flows in which no shocks occur, (b) purely supersonic
flows in which shock waves can be approximated with good
accuracy by isentropic compressions, and {(c) flows with
free-stream Mach number near 1 in which the shock waves
are situated either downstream or far upstream of the airfoil.
The remainder of the present paper is concerned with the
approximate solution of the preceding equations and with
comparison of the results obtained in specific applications
with existing theoretical and experimental results. Purely
supersonic flows are discussed first beeause the method of
approximation yields the exact equivalent, in transonic
approximation, of simple wave theory. Purely subsonic
flows are discussed next because of the close relationship
between the results for this and the preceding case. Ilows
with free-stream Mach number near 1 are treated last.

SUPERSONIC FLOWS
APPROXIMATE SOLUTION OF EQUATIONS

It is convenient in the analysis of supersonic flows to intro-
duce the symbol My as an abbreviation for the negative of
the coefficient of ¢,

xH=M,,,2—1+M°,2"(jF Lo =M 14 ku>0 @)

and rewrite equation (3) in the form:

—Ngzt =0 ®)
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It is now assumed that Az is neither zero nor infinite and that
it varies sufficiently slowly that its derivatives can be dis-
regarded so that it can be considered, temporarily, as a
constant. At this stage, the problem is equivalent to that
encountered in linearized supersonic airfoil theory (it is
identical if Nz is replaced by A _2—1) and the solution uy at
the airfoil surface is

. U,dZ
—— e dl 9
e g dz ®
Differentiation yields
dug [N A (10)

dr - Ppgdet

If, now, M _2—1-+ku is restored in place of Agy so that, in
effect, the local value for Az is used at each point and the
subscript H on u is dropped, equation (10) becomes

du U. &7z

dr M1tk de® ()

It is immediately apparent that a cerfain degree of arbi-
trariness is displayed in the preceding steps and that differ-
ent results will be obtained depending, for instance, on
whether A ,2—14%ku is substituted for Ay in equation (10)
as above, or in equation (9), or in other equations obtained
by further differentiation or integration of equation (9).
It is shown in the Appendix, however, that the error involved
in the preceding steps can be assessed exactly by examina-
tion of the remainder terms that have been omitted in
writing equations (9) and (10). The advisability of using
equation (11) is assured by the fact that the error is shown
to vanish, in the absence of shock waves, if Ay is replaced by
AL 2—1+4kvy in equation (10), but not in equation (9). This
conclusion becomes immediately evident, furthermore, upon
recognition of the fact that equation (11) is the counterpart,
in transonic small disturbance theory, of a fundamental
differential equation that occurs in the analysis of Prandtl-
Meyer and simple wave flows (see, e. g., ref. 12, p. 87 or
ref. 13, pp. 190 and 212). Equation (11) is a nonlinear
ordinary differential equation for « that can be solved
easily by separation of variables. The result is

5 3 iz
@(M:—Hzm) =—U.Z+C (12

where (' is a constant of integration. In applications of
equation (12) to flows that are supersonic everywhere,
perhaps the most logical method for the evaluation of this

constant is to use the expression between u and dZldx

provided at the leading edge by the transonic approximation
to the shock relation, that is by equation (6) with u, and w,
equated to zero, us 10 (U)swo, and w, to U_(dZ/dx)za0. The
result given by equation (12) with ¢ evaluated in this way
corresponds, to the degree of approximation afforded by
use of transonic small disturbance theory, to shock-expansion
theory. An alternative procedure that leads to a somewhat
simpler result possessing very nearly equal accuracy is to
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evaluate C by use of the result indicated by equation (9)
that =0 where dZ/dx=0 for any nonsingular Ay thus

= (M 1= 1)1 (13)

whence
/ 1 3, dZ PR
u=%{ — (M 32—1) +|:(IVI 3— 1)3”—§kU,—ZT } (14)

The corresponding relation for the pressure coefficient C, is
obtained by combination of equations (2) and (14), and is

2 2 2 —_—
Ozt { @e-n-{an-we

M3+ 1)%]"3} (15)

It should be noted that the restriction to supersonic flow
imposed in the evaluation of € and in the inequality of
equation (7) requires that equation (15) is to be applied only
to cases for which the quantity in square brackets, that is,
[(M_ 2—1)¥3—(3/2)M 2(v+1) (dZ[dx)], is positive.

COMPARISON WITH EXISTING HIGHER APPROXIMATIONS

Equation (15) is recognized, by comparison with equation
(3-15) of reference 3, page 387,2 as the precise equivalent,
in the transonic small disturbance approximation, of simple
wave theory for the surface pressure on an airfoil in super-
sonic flow. Exact simple wave theory is known, moreover,
to be perfectly adequate for all practical purposes up to a
Mach number of 3, which is considerably in excess of the
present range of interest. Within this Mach number range,
the results obtained by use of simple wave theory are almost
identical with those obtained by wuse of shock-expansion
theory. Comparisons of the variations of C, with dZ/dz in-
dicated by exact simple wave theory and by equation (15)

" are shown in figure 2 for several Mach numbers from 1 to 2.

As might be anticipated, the two sets of results are in close
agreement for Mach numbers near 1, and differ by an in-

. creasing amount with increasing Mach number.

Although the necessary calculations are very easy to ac-
complish in any given case, simple wave theory is not always
used in actual practice. Many calculations are based on
linear theory or Busemann’s second-order theory. Conse-
quently, an additional set of graphs is shown in figure 3 in
which the curves of figure 2 are repeated together with the
corresponding curves calculated by use of first- and second-
order theory. No comparisons are shown for /=1 becauso
the latter theories indicate infinite pressures. It can be seen
that equation (15) furnishes a better approximation than
linear theory throughout the entire range of variables shown
on figure 3 and a better approximation than second-order
theory for Mach numbers less than about 1.4. It can be

1 Compartson discloses that the quantity M, 3(y-+1) that appears in oquatlon (16) 13 repre-
sented by y+1 In equation (3-15) of reference 3. The difference 13 assoclated with a corre-
sponding differencs in the coefficient k of the nonlinear term of equation (3). Although the
two coefficients are identical at M4, =1, and might appear to be equally conaistent with the
other assumptions of transonie flow theory, it hag been shown in referances 6, 8, 7, 8, and else-
where that the approximation obtained by use of M o, 1(+11) s much the botter of the two for
Mach numbers other than 1.
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/ Eq (I5)
— — — Exact simple wave theory
4 ,/.
/
16 .08 0 -08 -6
a<z
dx

Fioure 2.—Comparison of results indicated by present theory and by
exact simple wave theory.

seen that second-order theory furnishes a very poor approxi-
mation for (', at Mach numbers approaching unity.

In order to explore this behavior further, two additional
curves labeled “third order” and ‘“fourth order,” calculated
using the formulas of references 14 and 15 are included on
the graph of figure 3, even though they must be interpreted
in & somewhat more restricted sense than the other curves.
To be more precise, the third-order curve is restricted to air-
foils for which dZ/dz is zero at the leading edge, and the
fourth-order curve to airfoils for which both dZ/dz and
d*Z[dz* are zero there. It is clear from this sketch that the
accuracy of second-order theory at Mach numbers near
unity is not improved by addition of higher order terms.
The explanation resides in the fact that the larger values of
[dZ/dz| shown on the graphs of figure 3 exceed the radius of
convergence of the power series expansion for C, for all but
the highest Mach number shown. With the noted restric-
tions on the leading edge, the higher order results of figure 3
are equivalent to the first few terms of a power series ex-
pansion, in terms of dZ/dx, of the expression for C, indicated
by exact simple wave theory. The radius of convergence

of the series depends, of course, on the Mach number and is .

given by the value of |dZ/dz| associated with the occurrence
of sonic flow or, in terms of the curves shown on figures 2 and
3, with the termination of the left end of the exact curve.
The failure of higher order theories at negative dZ/dx is thus
of purely mathematical origin and has no direct physical
significance,

3 Attentlon of those who refer to reference 15 13 ealled to the fact that the first term appearing

in the fonrth-order coctAelent as of equation (29) should be 2/3 rather than 1/3. ‘This term s
wrltten correctly in the numerical example given in equation (135).
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ADDITIONAL PROPERTIES OF APPROXIMATE SOLUTION

Equation (15) has some additional interesting properties
worth noting. Of the two major components of the right-
band side, the first is recognized upon comparison with
equation (5) as the expression for C,_,. Since the remaining
term is zero when C,=0,_, it follows that the expression for

the critical value for dZ/dz associated with the occurrence of
sonic velocity at a given Mach number M, is

(d _2(MA—1)%
dz

M+
It follows, furthermore, that & curve representing the varia-
tion of C, with M, for a given dZ/dz, and hence a given
point on the airfoil, approaches infinite slope as (', approaches
C

Per

An alternative form for equation (15) that is useful for
some purposes is the following which expresses (, in terms of
the linear-theory solution (,, rather than dZ/dz.

N

(16)

2(M..2

i {0

o — 2 4z
M1 dz

C’,—

where

This relation can be written in somewhat more concise form
if expressed in terms of the transonic similarity parameters

C, and £., thus
e [o(45

E [M (7+1)]% 0,,

(18)
where

£= M 2—1
=M+

and 7 refers to the thickness ratio. Critical values for C,
and O, -corresponding to the local occurrence of sonic

velocity are easily recognized to be the following:
— 4
OPL "=§ Eco

C,, =2., (19

SUBSONIC FLOWS
APPROXIMATE SOLUTION OF EQUATIONS
The procedure described in the preceding section will now

be applied to the analysis of subsonic flows. Thus, introduce
the symbol Ag as an abbreviation for the coefficient of ¢

As=1—14,, 2—Mﬁ+1 e=1—M2—F>0  (20)
and rewrite equation (3) as follows:
Aspzzt =0 1)

If it is again assumed that Ag is neither zero nor infinite and
that it varies sufficiently slowly that its derivatives can be
disregarded, the problem is equivalent to that encountered
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Frqure 3.—Comparison of results indicated by present theory and by the method of successive approximations for supersonic flow,

in linearized subsonic airfoil theory and the solution uz at
the airfoil surface is

U, (°dZjdt , u ..
. dt
e Pado £ ©°

e (22)

where the subscript ¢ refers to the values for Af_=0.
Differentiation yields

du 1 du,
T & @3

du

dz J1—M_*—ku d=

As in the previous discussion of supersonic flows, the error
terms are omitted in writing the preceding relations, but are
included in a more complete presentation of the equations

If, in the same manner as described for the supersonic case,
1—M_*—Fku is restored in place of Az so that, in effect, the

local value for Az is used at each point, and the subscript
E on u is dropped, equation (23) becomes

duy (24)
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given in the Appendix. Once again, the resulting relation is
o nonlinear ordinary differential equation that can be solved
readily by separation of variables \

— 2 (M) C (25)

In applications to flows that are subsonic everywhere, the
constant of integration C is evaluated by use of the result
indicated by equation (22) that u=0 where %,=0 for any
nonsingular Mg, thus

O=—= (I—M 7)1 (26)

In this way, the following relation is obtained between « and

1y
'ZL=—1 l—ﬂ[ 2——I (I—M 2)3/2'—"—' ku |
!, @ © 2 1

The corresponding relation for the pressure coefficient (), is
obtained by combination of equations (2) and (27) and is*

2 )3
T o (R S

s
M) 0, | }

@

(28)

where

P Y

In the same way as noted for supersonic flows following
equation (15), the restriction to subsonic flow imposed in the
evaluation of C and by the inequality of equation (20)
requires that equation (28) be applied only to cases where the
quantity in the square bracket is positive.

This result possesses several simple, but interesting,
properties. First of all, the leading term of an expansion
of equation (28) in a series involving ascending powers of
Cy, is precisely the familiar Prandtl-Glauert rule of linearized
subsonic compressible flow theory

Gy,

= i (@)

The coefficients of succeeding terms, however, do not agree ,
with those given by the method of successive approximation.
Next, the first of the two major componenis of the right-
hand member of equation (28) is recognized, just as in the
supersonic case, as the expression for the critical pressure
coefficient (. Since the remaining term is zero when
Cp="0,,, it follows that the expression for the critical value
for C,, associated with the occurrence of sonic velocity at
o given Mach number M, is

4 (1—M_ 9
3 M (v +1)
4 Attentlon is called to the fact that this same relation, except for replacement of M g 3(y-4-1)

by 41 for the same reasons as noted In footnote 2, has been found independently by Kusu-
kawn by application of the YWKB mothod of approximation to the equations of transonic

C,

Pta,

(30)

flow theory. This result, together with a number of applications, is published In the S8ep-
tember 1057 issue of the Journal of the Physical Soclety of Japan.

CHNICAL

ABBODTTAEROSPACE.COM

LIBRARY
HE TRANSONIC FLOW EQUATION

515

It may be noted that this value is just two-thirds of that
obtained by use of equation (5) together with the Prandtl-
Glauert Tule. It follows, furthermore, that a curve illus-
trating the variation of 0 with M, for a given C,, and
hence a given point on the airfoil surface, approaches mﬁmte
slope as C, approaches (,_. This latter behavior signifies
that & power series expansion of the result will only converge
for Mach numbers less than the critical. Last, the following
result is obtained if equation (28) is expressed in terms of the
subsonic linear theory solution (%, rather than C,,

—2(1—M,») 3 MY , T
Co=37 3F1) { |:I+ qoarE Pn:r } (31)

where
Ot
=
Vi—-M,

Note that the relation between C, and (,, indicated by
equation (31) for subsonic flows is precisely the same as
given by equation (17) for supersonic flows. It follows
immediately that the corresponding- expression in terms
of the transonic similarity parameters C, and £, given by
equation (18) applies to subsonic, as well as supersonic
flows. In order to illustrate the nature of the results
indicated by equation (18), a plot of the variation of C,
with £,, for various ), +/|£.]is shown in figure 4. Although
the remarkable symmetry about £,=0 is a consequence of
expressing the results in terms of the transonic similarity
parameters, the general symmetry remains, although in
somewhat distorted form, when (), is plotted as a function

of M, for constant C,, +/[I—1Z_%. Such a plot is shown

in figure 5.
-6
-4 Epp/isml/ \ T —
—2} / \ \‘—\4‘
=2 2 | |
& ol—0° 0
2 1] | 21
2"'—1-.\\\\ ~ —
q
)
S = = S o 2 3 4

Frcure 4.—Variation of reduced pressure coefficient, Cp, with the
similarity parameter, {,, for various values of ?5 ‘\/lsm]

COMPARISON WITH EXISTING HIGHER APPBOXIMATIONS

The remainder of the present section on subsonic flows is
concerned with an evaluation of the degres of accuracy
achieved by use of equation (28). This discussion is handi-
capped somewhat by the fact that all other theories for
subsonic flows around airfoils are also approximate and that
no exact solutions are known. Perhaps the most widely
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C,
-8 T T ‘ - I T 0p= ri 1 M pt
Cp I_MCD /\ ‘\‘ 1"— u:’ 4.’\‘ l_ju
R N Cp. /M-
! 35 W N I G (35)
=] r \ ] NI=BL 3+ (1M 20,
-4
-2 L/ \ T~
"] P~ —2 . . .
‘ — < | Replacement of M _? in the second term in the denominator
% o 0 I 0 by 2(1—1—DL_?) is consistent with assumption (¢) and
2 leads directly to the familiar expression for the Karman-
2 e Tsien rule
\ - /
4 LA AN P C,= Cox (36)
\\ \ \{ I—Mmz_l_(l— \} I-Mu:z) (OI’{/Z)

h Cp;,E;i(S)" This rule, in common with the Prandtl-Glauert rule and the
85 = 6 2 5 50 present result given in equatiqn (:‘28), ig termed @ pressure
Moo correction formula because C, is given in terms of (}, and

TFiGURE 5.—Variation of C, with 1M, for various values of(',L-\/|Mm2— il

used higher approximation is‘the Kzirmén—Tswn uie
refs. 3 and 16 for a résuméy) Although the tradltlona.l
derivation of the Kérmdn-Tsien rule is based on the hodo-
graph method, it is not without-imterest to observe that the
Kdrm#én-Tsien rule can be obtained by use of the present
procedures together with the three assumptions introduced
in the original derivation. These are: (a) that v can be
approximated by —1 in the expression for the speed of
sound, (b) that the perturbation velocities are small, and
(¢c) that the Mach number can be considered small in the
evaluation of additional effects of compressibility beyond
those indicated by linear theory. The starting point is
equation (3) with the coefficient of ¢, replaced by the approx-
imate relation for 1—Af?, where M is the local Mach num-
ber, afforded by use of assumptions (a) and (b). The
necessary relation can be derived from the energy equation
a? U 2
v—1

qa
T3 2

(32)

where
¢t=(U.+u)*+w
by setting y=—1, whence ‘ ;
a*=a,2—U_+¢
and

. 1—MM_ 2 1—M 2
1—3«[’—1-—?—1_34 M PIU LY 1M WU L) 33)

Note that this approximation does not permit the attain-
ment of A/=1 with finite ¢/U_ and with 3£_ different from
unity. Substitution of this relation for 1—A? in place of
Az in equation (23) and integration yields

M2
V142M /U, =i—M f;:+0 (34

The constant of integration is again evaluated by setting
u=0 where u,~=0, whence ¢ equals unity. Solution for
« and introduction of the relation between u and C, given
by equation (2) yields

M_ with no further dependence on airfoil shape. A com-
parison of the variations of C, with M, indicated by these
three relations is shown in figure 6. A great many other
pressure~correction formulas having widely varying proper-
ties have also been proposed in recent years. One that
yields results in closer agreement with equation (28) than
the Prandtl-Glauert or the Kérmdn-Tsien rule has been
given by Garrick and Kaplan in reference 17. A curve
Hlustrating their results is included on figure 6.

A second important method that has been used to obtain
higher approximations for subsonic pressure distributions on
thin airfoils is the method of successive approximation in
which the solution is expressed in & power series in thickness
ratio. In this method, the first term is the result given by
linear theory, and the coefficients of successive terms are
determined by iteration. Higher approximations cannot be

expressed in terms of (5, and M, in such a simple and uni-

o Coor - |\\ -G, Eq.(5)
Exact isentropic |~ “
| W /
-8 Eq.(28) \ y
===~==- Prandtl-Glouert [
— —— Kérmén-Tsien .
—_— Gorrick-KaplonM:/,c__f.\& ]
e L 7
S Y
-4 g /ﬁ\*
p— =]
G N
o]
4
T
~J - T
~.“ \ \
\\ ﬁ\
.8 - \
0 2 4 6 B 1.0
Mo

Figure 6.—Comparison of results indicated by present theory and by

various pressure correction formulas for subsonic flow,
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versal manner as with the pressure-correction formulas, but
depend on the airfoil shape in a more explicit manner. Al-
though a relatively simple and general procedure for the
evaluation of the second approximation has recently been
given by Van Dyke (ref. 18), the determination of the third
approximation has been accomplished for only a few special
shapes. One of these is the nonlifting symmetrical circular-
arc section for which the second approximation has been
given by Hantzsche and Wendt (ref. 19) and the third ap-
proximation by Asaka (refs. 20, 21, and 22).° Figure 7
shows a comparison of the variations of C, with A _ at the
midpoint of such an airfoil having & thickness ratio  of 0.10,
as indicated by equation (28) and by tbe first, second, and
third approximations. It can be seen that the results ob-
tained by use of equation (28) are identical to those given

~
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: Y I
\--TG. Ea.(5)
-6 \
Cp, Exact Isentropic- ;
|
Eq. (28)——? Q\»
-4 Circular-arc v=.10 21—
G —
ey
-.2
Ist order
- 20d
—_ 3rd
[ |
0 .2 4 6 .8 1.0
Moo

by the first approximation (or linear theory) for small Mach
numbers, but depart therefrom with increasing Mach num-
ber and are much closer to the higher approximations for
Mach numbers near the critical. It should be noted that
the curves labeled first, second, and third order represent
the results indicated by successive approximations to the
solution of the exact equation for inviscid compressible flow.
It is also of interest to compare the results indicated by
equation (28) with those indicated by successive approxima-
tions to the solution of the simplified equations of transonic
small disturbance theory. The latter results can be cal-
culated by use of the following expression, which is readily
derived from Asaka’s result by taking the limiting form con-
sistent with the approximations of transonic flow theory:

0__§ T 10 l (’Y'I"]-).Zlfm2 2
TTwI=M, \® 2) (=M

E(—%+g ln2>+ﬂl3(2—32-+4.908):|% A

=—2.5465 W/—l_ﬁ—o.mz ((11% e
2 4
0.6339 —fag'_"]{} ﬁf;“,, +... (37)

It can be seen that the curve in figure 8 indicated by equation
(28) is somewhat higher than even that representing the
third approximation, but evaluation of its accuracy remains
difficult because neither the exact solution nor an upper
bound for the results is provided by the classical method of
successive approximation. Attention is called to the fact
that recent developments in transonic flow theory permit; the
establishment of an upper bound by application of an alter-
native method of successive approximation that involves the
solution of quadratic, rather than linear, equations at each
step of the iteration process. This process, based on the
methods employed in reference 9. is described in the Appen-
dix, and additional results are given for the specific case
considered in figure 8.

# The results for the third spproximation given In the present report differ from those
obtainable directly from the expressions given in either reference 20 or 21 and 22 due to the
correction of some misprints. Thess corrections have been verified by correspondence with
the author, and sre published in the January 1958 issue of the Journal of the Physical Soclety
of Japan,

Figure 7.—Comparison of the variation of C, with A, at the mid-
point of a circular-arc airfoil, as indicated by present theory and by
application of the method of successive approximations to the exaot
equations for inviscid subsonic flow. -
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Figure 8.—Comparison of the variation of €, witb Af, at the mid-
point of a circular-arc airfoil in subsonic flow, as indicated by present
theory and by application of the method of successive approximations
- to the transonic equation.

FLOWS WITH FREE-STREAM MACH NUMBER NEAR 1

The analyses of supersonic and subsonic flows given in the
preceding sections have started by introduction of a symbol A
for the coefficient of ¢.; and the assumption that A is non-
singular and varies sufficiently slowly that it can be regarded
as a constant in the-initial stages of the analysis. Since the
results so obtained terminate if A=0, or physically if sonic
velocity occurs in the flow field, it is immediately clear that
some change is necessary to study flows with free-stream
Mach number near 1 where the transition from subsonic to
supersonic flow is an essential feature. The technique
adopted is to introduce the symbol A\, as an abbreviation for
the coefficient of ¢, rather than ¢,., thus

=MoL, <k Z & @)

whence equation (3) may be written as follows:

Pr— Nppr=—— (1 —Mmz)‘ip:z:fl’ (39)
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If attention is confined to flows with free-stream Mach
number 1 so that the right-hand side of equation (39) van-
ishes and if Ap is replaced by a constant, the resulting relation
given by equation (39) is a linear partial differential equation
of parabolic type that is familiar from the study of one-
dimensional unsteady conduction of heat. If approximate
solutions for flows with free-stream Mach number 1 are
sought in this way, the analysis proceeds through considera-
tions that are generally applied to parabolic differential
equations, and is, in some sense, intermediate between the
mixed elliptic-hyperbolic type of the transonic equation.
The idea of using the equation for heat conduction for the
study of transonic flows in this way is not new, but apparently
originated with Oswatitsch, who suggested it to Behrbohm
for the analysis of internal flows of nozzles (refs. 23 and 24)
The same idea has been applied more recently by Oswatitsch
and Keune (refs. 25, 26, and 27) to calculate the flow around
the forepart of slender bodies of revolution at free-stream
Mach number 1, and they have shown that the results are
in remarkable agreement with those measured on the front
half of a circular-arc body of revolution. Although the
parameter Ap is regarded throughout as a constant, and
various means are proposed for the selection of an appropriate
value, it develops that the numerical result for the pressures
on the forward part of typical smooth bodies of revolution
depends so slightly on the actual choice that almost any
reasonable value can be used for Ap.

If flows with free-stream Mach number different from
unity are considered so that the right-hand side of equation
(39) remains, and if Mp is again replaced by a constant, the
resulting differential equation is linear and is of elliptic or
hyperbolic type depending on whether the free-stream Mach
number, rather than the local Mach number, is less than or
greater than unity. Maeder and Thommen (ref. 28) have
suggested that this linearized equation, or its counterpart
in three dimensions, be applied, together with-a new and
arbitrary rule for the selection of a value for Ap, to calculate
the pressure distribution on complete bodies of revolution
and on airfoils in two-dimensional flows. The selection of
an appropriate value for Ap is much more critical for these
problems than for those discussed originally by Oswatitsch
and Keune, however, and the replacement of Ap by a constant,
results not only in serious loss of accuracy in many applica-
tions, but also in loss of certain essential general features of
the solution. In general, results obtained by replacing Ap,
or Jufox, with a constant appear to be remarkably accurate
if the resulting values calculated for ou/ox are, indeed, nearly
constant over most of the chord. If, on the other hand,
Oufdr varies substantially over the chord, no choice of a
single value for A, will suffice to provide & useful result.
This point is developed further in the course of the following
discussion and in the Appendix. Some criticisms of the
above procedure, although principally from a different point
of view, have appeared in & note by Miles (ref. 29).

In the present analysis, it is assumed once again that Ap
is nonsingular and that it varies sufficiently slowly that it
can be considered as a constant in the initial stages of the
analysis in which a nonlinear ordinary differential equation
is established for u on the airfoil surface. The final result
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for % is determined by integration of this differential equation
and restores, to a largé degree, the effects of the variation
of Mp along the chord. The result for the first stage of the
analysis requires the solution of equation (39) subject to the
boundary conditions given in equation (1) and can be ob-
tained by application of standard procedures. The solution
has two distinct forms depending on the sign of \p.-. The
form associated with positive A, is.appropriate for applica-
tion to regions where the flow is accelerating, whereas that
associated with negative A, may be appropriate for applica~
tion to regions where the flow is decelerating. The analysis
of accelerating flow will be developed first. The direct
problem in which the airfoil shape is specified and the pres-
sure distribution is sought, and the inverse problem in which
the pressure distribution is specified and the associated air-
foil shape is sought are discussed for each case.

' ACCELERATING FLOWS, DIRECT PROBLEMS

Approximate solution of equations for arbitrary airfoil
shape.—A relation for u at the airfoil surface derived by
consideration of equation (39) with positive Ap, the boundary
conditions stated in equation (i), and the form of Green’s
theorem associated with the left side of equation (39) (sce
Appendix) is

. U. 4 (=dZde , 1 d
Up /;)‘—de (—"—‘x_ dt— oy dl’f opfpdt
;d’Z/dE’ e ]__
1,/11-)? da: ,..m/x w/:c— £
10
v af eetete a0
where
[ Np(f—f)’
fr=—(1—M e, Up—‘/ (_ “”‘5’

The two alternative expressions for u, are completely equiv-
alent. The first is more concise and will be used in the
following equations, but the second is often somewhat sim-
pler to evaluate. If the free-stream Mach number is unity,
the double integral vanishes and u, can be calculated directly.
The result so obtained corresponds to that found by appli-
cation of Maeder and Thommen’s proposal of reference 28.
(It should be noted, however, that the general expression for
¢ given in reference 28 is incorrect owing to improper treat-
ment of plus and minus signs.)

If the free-stream Mach number is not unity, equation
(40) is an integral equation, and it might appear that little
progress toward a solution has been made. If attention is
confined to the vieinity of the airfoil and to Mach numbers
near unity, however, it is only necessary to approximate
eg well locally and it is sufficient to substitute Ap/k for o
or dufd¢ in the double integral. The integral can then be
evaluated and the following relationship results:

_(A=MAU, U, d (*dZjit,,
SIOFD Y dade o

If, once again, ku, is restored in place of Ap so that, in effect,
the local value is used at each point, and the subscript P on

(41)
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2 i3 dropped, a simple nonlinear ordinary differential equa-
tion is obtained for

(1-M U,

— U, d (*dZJdt
M A (y+1)

w/wk(du/d:v) dz J, J2—¢

Equation (42) can be written in the following form upon
rearranging the terms and squaring both sides.

I: A=M U, Pdu_ dZ/dz
M Ey+1) | dz b A (vF1D) ’(’H—l) da:

As in the other cases, equation (43) can be solved readily by

separation of variables, and the constant of integration can

be evaluated by introduction of the additional condition

that equation (41) provides the correct location z=z* for
the sonic point, or point where u=(1—Ma?) Us/Ma2(y+1).

a4 (42)

ds) (43)

The result is
l:u (1—3.3U ., 33U B ( f‘l dZ/cH;‘a7 )d
M, v+ 1) = M. ’(’Y'I‘l) RN L Ja, o
(44)
where x* is the value for z for which
d f *dzjdt
- dt=0 45)
= (

This method of evaluation of the constant of integration is
completely analogous to that employed in the analysis of
subsonic and supersonic flows, and is necessary in the analysis
of flows with free-stream Mach number near 1 in order to
avoid infinite pressure gradients at the point of sonic velocity
on smooth airfoils. This method, moreover, provides a
mechanism for the introduction of direct upstream depend-
ence on airfoil shape in the subsonic region, and its exclusion
in the supersonic region. The corresponding relation for the
pressure coefficient C, is obtained by combination of equa-
tions (2) and (44) and is

—2(1—M.?) 3 5 dZ|dE
Or= M2 (y+1) 2[‘7"Mm2('Y+1) \071Jo o — sds>d :l

46)

An alternative expression in terms of the transonic simﬂarity
parameter is

RUALES e L T
Ty

1d(Z[r)/dg _ =
J; '\,/Il_——f- df]dﬂ?l} _2$m+0750=0 (4:7)

The variation of C, with {= expressed by equation (47) is

exact, within the approximation of transonic small disturb-
ance theory, for flows with free-stream Mach numbers very
near unity, and is associated with the fact that the local

X

=~ wwy
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g

Fﬂ} uRE. 9.—View of single-wedge airfoil and principal dimensions.
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Mach number distribution on an airfoil is independent of
the free-strewmn Mach number at values of the latter near
unity. This phenomenon has been discussed previously in
references 30, 31, 6, and elsewhere.

Once C, is known, the pressure drag d can be readily
calculated by use of the following relation

d =

P 2 c
—U %
5 U

2

Ca=

(48)

0

Application to single-wedge airfoils.—Sufficient theoretical
and experimental results are available at the present time to
provide considerable insight into the accuracy and usefulness
of equation (48) or (47). The shape for which the greatest.
amount of information is available is the single-wedge
profile for which both theoretical and experimental pressure
distributions are available. Thus, consider a single-wedge
profile of maximum thickness ¢ and chord ¢/2 as illustrated
in figure 9. The ordinates of the airfoil upper surface are

}

and the semiapex angle 6 is equal, to the order of accuracy of
thin airfoil theory, to . Substitution of equation (49) for
Z into equations (45) and (46) provides that the sonic point
is at the shoulder (z*=¢/2) and that the pressure distribution
on the surface of the wedge at free-stream Mach numbers
near 1 is

C,=

Z=t§=1x for 0<a<lef2

A (49)
Z=t2=7c[2 for x>¢[2

x

15

A plot of the results for Mach number 1 is shown in figure
10 together with the corresponding theoretical results given
by Guderley and Yoshihara in reference 32. Although some
approximations are introduced in the course of the latter
analysis, the results are generally regarded as virtually an
exact solution of the equations of transonic small disturbance

(M2 v+1)Ps
.

C,=2t.—2 (,% (50)

Experiment ref 33

v 8=.10
// o Upper surfoce
3 Vi v o Lowér surfoce _|
[ /° - 8206
/ _ o Upper surface
/ M= 1 o Lower surface
I .
% 1 2 3 4 5

x/c

Fieurs 10.—Theoretical and experimental pressure distributions for
single-wedge airfoils at free-stream Mach number 1.
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N ‘Wagoner for Mach numbers slightly greater than unity
o ---::x&\“@\\\\\\\\\\\\\\k\\w (vef. 34), and by Yoshihara for Mach numbers slightly less
1.058._ ’ = than unity (ref. 35). The latter two sets of results were ob-
921\ /_//; /é'fjl tained by lengthy numerical calculations and, together with
T3 N [ _—1z== the results for Mach number 1, are generally regarded as
o AN s being very close to those that would be given by exact solu-
<™ e . . . . :
P /'\\)} /// . ..{;‘,:,x:\ tions of the equations of transonic smell disturbance theory.
J AN i g “ép 0 The results are plotted in terms of (,—2£= 8o that the pres-
/ // e A sure distributions for Mach numbers very near unity should
A P determine a single line. It can be seen that the variation
¥ / i ,«:::\:\" of 0, with £» indicated by equation (47) or (50) holds until
o / o N :faf:%gg the absolute value of £ is nearly one-half. At greater
[/ y/ 4l : “values, the results begin to tend toward those associated
3 7&:,’, / with purely subsonic or purely supersonic flows, and equa-
l 1y — g:: 2421 tions (47) and (50) are no longer applicable.
4 . .
;/ e — Ref 35 Experimental measurements of the flow around single-
4 / wedge profiles at free-stream Mach numbers both less than
It and greater than unity have been made by Liepmann and
Bryson and reported in references 30 and 31. Results were
obtained for three different profiles having semiapex angles
5 of 4%°, 7%°, and 10°. Plots of the experimental pressure
0 A 2 e 3 4 5 distributions-for the test Mach numbers closest to unity for

Figore 11.—Summary of other theoretical results for transopic flow
past single-wedge airfoils.

theory. Also included in figure 10 are experimental results
for M==1 obtained in the Langley annular transonic wind
tunnel and reported by Habel, Henderson, and Miller in
reference 33.

Since the comparisons shown in figure 10 indicate that
equation (50) provides an approximate solution for the pres-
sure distribution on a single-wedge profile at M«=1 that is
probably satisfactory for most purposes, and since the varia-
tion of C, with = given by equation (47) or (50) is exact,
within the framework of transonic small disturbance theory,
at M«=1, the principal question remaining in the evaluation
of the degree of approximation afforded by use of equation
(50) is to define the range of {=, or Mach number, over
which it applies. Accordingly, figure 11 has been prepared
to summarize the results.given previously by Guderley and
Yoshihara for Mach number 1 (ref. 32), by Vincenti and
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each profile are shown in figure 12 together with the theo-
retical pressure distribution calculated by use of equation
(50). Additional experimental data for other Mach numbers
are not included on figure 12 since those shown are already
for values of £, that are somewhat outside the range of valid-
ity of equation (50). Only the theoretical results given by
equation (50) are included since examination of the data
reveals that these results differ less from the theoretical re-
sults shown on figure 11, for Mach numbers near unity, then
the experimental curves differ from either set of theoretical .
curves, or even than the experimental curves differ among
themselves. Perhaps the most prominent discrepancy is
that which occurs near the shoulder. Theory indicates that
sonic velocity (C,—2£,=0) occurs at the shoulder, whereas
the experimental data, particularly that of Liepmann and
Bryson, consistently indicate that sonic velocity occurs for-
ward of the shoulder. It is interesting to observe that this
discrepancy is greatest for the thinnest airfoil tested.
The foregoing results may be contrasted with those ob-

tained by direct use of equation (41) in which case 0,—2%,

-2 -
g:4% =75 ) 8:10°
II f
0 PSR TTRRRRRAANN mv&\\{\\@i >
A LLLLUURRANS (AN =SS S S UL
“’ 4
3 1 /4
N T > —>5 < ol
S A AT g
» [ — Eqi50) L Z~]— Ea(50) = [— Eqis0)
| T | =
4 Experiment ref. 30 ///,’ Experiment ref. 30 / Experiment ref, 30
¥ o Moo — ’{ Eco Moo b Cw Me -1
-———-665 900 | | fF | - -688 860 | | | eee-- -424 892
—— 716 Li30 —_—— 779 1210 —— 636 1207
4 | | | | i 1 1 | |
0 N .2 .3 4 5 (0] A .2 3 4 5 (e} A .2 3 4 .5
x/c x/c x/c

Fiqurp 12.—Theoretical and experimental pressure distributions for three single-wedge airfoils at free-stream Mach numbers near 1.
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is found to be proportional to 1/y/Azz. It is clear from this
comparison that there is no-constant with which Ap can be
replaced that would provide a satisfactory solution for the
pressure distribution on a single-wedge airfoil at free-stream
Mach numbers near unity.

The pressure drag of single-wedge profiles at Mach num-
bers near 1 can be found easily by integration of equation
(48) with the relations given by equations (49) and (50)
substituted for Z and C,. The result is

2Ot o, +2<3> (4>—2§,,+1 758 (51)

where T represents the gamma function. This result com-
pares very favorably with the value of 1.75 for £ =0, or
Mach number 1, given by Cole in reference 36 as that ob-
tained by numerical integration of the pressure distribution
given by Guderley and Yoshihara in reference 32. Cole’s
own theory for the drag of a single-wedge airfoil at high
subsonic speeds, which is fundamentally somewhat less ac-
curate than Guderley and Yoshihara’s theory, gives the value
1.67 for £,=0.

Application to biconvex circular-arc airfoils.—In addition
to data for three single-wedge profiles, Bryson also gives in
reference 30 experimental results for transonic flow around
the front half of an 8.8-percent thick biconvex circular-arc
airfoil followed by a straight section as illustrated in figure
13. Since the pressure distribution on the curved portion

2= 21'6[% - (%)2]

£
2

0] '
T:-Z_f-:_oﬂa

Fioure 13.—View of a balf-circular-arc airfoil and principal dimensions.

of this profile is the same at Mach numbers near unity as
that on the front half of a complete circular-arc airfoil having
the same thickness ratio, and additional experimental data
are available for the latter airfoil although for other thickness
ratios, the following analysis is developed for a complete
biconvex circular-arc airfoil. It is moreover sufficient, in
thin airfoil theory, to approximate the ordinates Z for a cir-
cular-arc airfoil by those for a parabolic-arc airfoil, thus

-]
¢ \¢

where 7 is the thickness ratio as indicated in figure 14. Sub-

stitution of this relation for Z into equations (45) and (47)

yields the following result for the pressure distribution on
the airfoil surface.

— 2 13
7, =M= (;y’jd-l)] Op=250_2{11_2[ln<4§>_

sfa( )" o

(52)
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F1aurRe 14.—View of a complete circular-arc airfoil and principal
dimepsions.

Figure 15 shows a comparison of the pressure distributions
for Mach numbers near unity calculated by use of equation
(563) with those obtained from Bryson’s experiments with
the half airfoil. As for the single-wedge profile, the results
.are again plotted in terms of C,—2t_ since experimental
results are available only for Mach numbers somewhat
different from unity. It can be seem by comparison of fig-
ures 12 and 15 that the theoretical and experimental results
are in much better agreement for the front half of a circular-

“arc airfoil than for single-wedge profiles. Experimental

pressure distributions for transonic flow past four complete
biconvex circular-arc airfoils having thickness ratios of 6, 8,
10, and 12 percent have been given by Michel, Marchaud,
and Le Gallo in reference 37. Their results for Mach num-
ber 1 are plotted in figure 16 together with the theoretical re-
sults calculated by use of equation (53). These results are
presented in terms of C, because transonic theory indicates
that the pressure distributions for all four airfoils should then
define a single curve independent of the thicknessratio. Re-
sults for Mach numbers other than unity are not inéluded on
this plot because the variation of U,, with £, for small £., in-
dicated by equation (47) and subsequent relations is not only
simple but is amply verified by the preceding comparisons

: DONNY

&\\\\\\\\\\\\
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Fioure 15.—Theorstical and experimental pressure distributions for
half-circular-are airfoils at free-stream Mach numbers near 1.
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Fiauore 16.—Theoretical and experimental pressure distributions for
oircular-arc airfoils; M ,=1.

and by similar discussions elsewhere in the literature of tran-
sonic flow. It can be seen that the theoretical and experi-
mental results are in substantial agreement. The most
notable discrepancy is that found near the trailing edge, and
can be attributed to flow separation induced by boundary-
layer shock-wave interaction. It can also be seen that the
agreement between theory and experiment is not so good for
the complete airfoils, particularly the thinner ones, as for the
half airfoil. Part of the discrepancy for the complete airfoils
may possibly be attributed to the experimental technique in
which the airfoil is simulated by a bump on the tunnel wall
and is hence imbedded in the wall boundary layer. Some
comments on this method of testing have been given recently
by Carroll and Anderson in reference 38.

The pressure drag of circular-arc airfoils at Mach numbers
near 1 has been found by numerical integration of equation
(48) with the relations given by equations (52) and (53)
substituted for Z and C, and is

M, ’('H- DIy -

=4.77 (54)

The pressure drag of the front half can be evaluated in the
same way by changing the upper limit in equation (48) to
¢/2 and is

Ca=2¢,+1.13 (55)

The integrations required to determine the drag results
given in equations (54) and (55) were evaluated numerically
using Simpson’s rule together with an analytic determination
of the contribution of the region in the immediate vicinity
of the leading-edge singularity. Sufficiently fine intervals
were used that the resulting values are estimated to be ac-
curate to within about one digit in the third significant
figure, as judged by comparison with the results of similar
calculations made with wider intervals. It is mecessary to
use very fine intervals, particularly near the nose, to achieve

REPORT 1359 —INALiCiNAL AU Vil CULLuiiiLu FOR AERONAUTICS

such accuracy, and intervals as small as 0.00005¢ were used
In some cases.

Application to & family of airfoils having the point of
maximum thickness displaced aft of the midchord station,—
The primary object of this present section is to present some
comparisons of calculated and measured pressure distribu-
tions at Mach number 1 on a number of specific airfoils that
have the point of maximum thickness aft of the midchord
station. The experimental date are from reference 39 by
Michel, Marchaud, and Le Gallo, and are for members of
the family of airfoils having ordinates given by

=4 [i..(z)"]

Le \¢
where A and n are constants for each aifoil and = is greater
than unity. The values selected for A and n determine the

thickness ratio ~ and the location (z/c)z,,, of the point of
maximum thickness according to the relations

-0
rwea (-7 2

The biconvex circular-arc airfoils discussed in the preceding
section are special cases of the present family that corre-
spond to n=2. The point of maximum thickness is located
forward or aft of the midchord station depending on whether
7 is less than or greater than 2. The particular airfoils
tested by Michel, Marchaud, and Le Gallo are special cases
that correspond to either n=3.38 or 6.05 and have the point
of maximum thickness at 0.60 or 0.70 chord. As in the
earlier work by the same investigators on biconvex circular-
arc airfoils, the results were obtained by simulating the air-
foil by a bump on the tunnel wall and are again subject to
criticism regarding the influence of the wall boundary layer.

Substitution of equation (56) for Z into equations (45)
and (46) yields the following result for the pressure distribu-
tion on the airfoil surface for Mach number near unity:

g =Lt

o (AT

( )"“ | [T (n+ 1)}

e

JTm+D 3 }m ()\
1 T:e(n—l) 59
o)

where T represents the gamma function. If m is any posi-
tive integer greater than unity, the following relations are
uscful for evaluation of the gamma function:

(56)

(67)

24 (n—1)

,nn/(n—l) (58)

_2al(n+1)

(n—1)1‘< 1)
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T'(m)=1.23... (m—1)=(m—1)|,

r(mig)=ry-3-5e. (m=d), r<%>=‘7/_‘”

Substitution of n=2 in equation (59) reproduces equation
(83) for the pressure distribution on biconvex circular-arc
airfoils as a special case. Equation (50) for the pressure
distribution on a single-wedge airfoil can also be obtained
a8 o limiting case by setting n= « and noting that the chord
of the wedge is designated here as ¢ rather than ¢/2. Theo-
retical pressure distributions on the airfoils tested by Michel,
Marchaud, and Le Gallo are obtained from equation (59)
by substitution of the values 3.38 and 6.05 for n. Figures 17
and 18 show comparigsons of the theoretical and experimental
pressure distributions for M_=1 for the two groups of air-
foils. Except for the discrepancy near the trailing edge

I (1/2)=\=
(60)

which can again be attributed to boundary-layer shock-wave °

interaction, it can be seen that the theoretical and experi-
mental results are in at least qualitative agreement. Some
differences occur, however, in the levels of the pressure dis-
tribution curves. Comparison with the results for the
circular-are airfoils shown in figure 16 reveals that the same
trend is in evidence for those airfoils, although to a lesser
degree, and that the difference between the theoretical and
experimental results increases as the point of maximum
thickness moves rearward. It is not clear at the present
time whether this discrepancy is to be attributed principally
to the shortcomings of the theoretical or the experimental
results,

Application to & family of airfoils having the point of
maximum thickness forward of midchord station.—The test
program of Michel, Marchaud, and Le Gallo reported in
reference 39 and discussed in the preceding section also
included tests of each of the airfoils reversed in the wind
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Figune 17.—Theoretical and experimental pressure distributions for
airfoils having maximum thiockness at 0.60 chord; A, =1.
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Figure 18.—Theoretical and experimental pressure distributions for
airfoils having maximum thickness at 0.70 chord: M ,=1.

tunnel so that the point of maximum thickness is located
forward of the midchord station. The particular airfoils
tested are thus specific cases of the family of profiles de-
scribed by equation (56) with /¢ replaced by 1-—(z/c); that
is, the ordinates are

Z_4 [1_2_(1 _E>":| \
¢ c ¢
where A and n are again constants for each airfoil and # is

greater than unity. The values selected for A and n de-
termine the thickness ratio = and the location (z/c)z,, of

the point of maximum thickness according to the relations

(-2), =)

1__2A(n—1)

= pa/a-D)

(61)

(62)

(63)

Biconvex circular-arc airfoils are special cases of the present
family that correspond to n=2. The point of maximum
thickness is located forward or aft of the midchord station
depending on whether n is greater or less than 2. The
particular airfoils tested by Michel, Marchaud, and Le
Gallo are special cases that correspond to either n=3.38 or
6.05 and have the point of maximum thickness at 0.40 or
0.30 chord.

Since the integrations encountered when equation (61)
is substituted in equations (45) and (46) for the determination
of O, are more difficult than those encountered in any of
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the preceding esxamples, no general formula will be given
for arbitrary n. Two formulas of more restricted generality
are given, however. One is applicable when = is any integer
greater than unity, the other when 7 is one-half plus any
positive integer. The first is

N\
3 n-—-1
C,=2t.— [4 <1’; 1)] (n—l)’ln%—i—

2n—D Tt D 5 —————c T
= P(n—v)I‘(v+2)

1u—1

n—1 1
[P(n+ D>, 23
vl I’(n—-u)l"(v-l—%) =1

-
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1 =z )"
ra—pr(sty) T (©4)

¥

where the symbol |> is used to denote the difference between
the preceding expression with first z and then =* substltuted
for z, that is,

@5

=f(z)—f(z*)
where z*, the location of the sonic point, is found from

=1+ T Dyr e — T o
yﬂI‘(n-—v)l‘(v-l—-é-)

and T refers again to the gamma function. The second is

n 2377173 2n—2
Cy=tp—2| 2| 22 (n—1)%n 31(1—_>
=22 37| n1 =g\

A5 (o)

(1—@ln(1—-\/§)] [—2n(n—1) +£:if F(2n—2)]—|—[%+<1—l—%,‘/%)ln(l—l—\/@-l-(l—%\/g) ln(l— '

LG DG ) P

-y

—— +\/_ 1+m +

”—1+f )"“1( ___,, F n—%—u n
nlil 1-3)F (2”_2)23(217, 2:)2121(;:;'2—;,) (2n—2—yT c i:;g%)
s E F( )F(n ——l—v)n 5\, (1__>n - 1 (1——) s \[z LT |,
»=1 n—1+v ""‘ F n——l—v—p> n——-’rv—-p n———l—v— ¢ 1—-\:1/0
R e o AT O O WL ]| R
P
where B=——"__, and F($)= r \(5)/ _ Substitution of #=2 in equation (64) again reproduces

I )
Afttention is called to the fact that » and u are positive
integers so that when n==(3/2) all the summations drop out.

Again z* is the location of the sonic point and it is found
from

a2 1:?5

()05

equation (53) for the pressure distribution on biconvex
cireular-arc airfoils. Figures 19 and 20 show compansons of
the pressure distributions measured at Mach number 1‘by
Michel, Marchaud, and Le Gallo with those calculatedby
use of equations (64) and (65). The experimental results
shown in sketch (s) are for airfoils that have the point of
maximum thickness located at 0.40 chord corresponding to
a value for n of 3.38. Since results could not be calculated
analytically for this value for n, theoretical results are shown
for both n=3.0 and n=3.5. The corresponding locations for
the point of maximum thickness can be readily caleulated
using equation (62) and are 0.423 and 0.394 chord. Simi-
larly, the experimental results shown in figure 20 are for an
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Fraure 19.—Theoretical and experimental pressure distributions for
airfoils having maximum thickness near 0.40 chord; M, =1.
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TFigure 20.—Theoretical and experimental pressure distributions for
airfoils having maximum thickness at 0.30 chord: M = 1.

airfoil that has the point of maximum thickness located at
0.30 chord corresponding to a value for 7 of 6.05; whereas
the theoretical results are for airfoils that have the point of
maximum thickness located at 0.301 chord corresponding to
a value for 7 of 6.00. These results continue the trend noted
in the preceding section that the agreement between the
present experimental and theoretical results improves as the
location of the point of maximum thickness moves forward
along the chord. The principal discrepancy remaining is, in
fact, reduced to that near the trailing edge associated with
boundary-layer shock-wave interaction, and is therefore
beyond the scope of any inviscid theory.

ACCELERATING FLOWS, INVERSE PROBLEMS
Approximate solution of equations for given pressure
distribution.—Although all of the preceding discussion is

concerned with the calculation of the pressure distribution
on an airfoil of specified geometry, an equally important
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problem in many engineering situations is the design of an
airfoil to have a specified pressure distribution at a given
Mach number. This poses no new problem in the analysis
of purely subsonic or purely supersonic flows by the present
methods because the specification of C, permits the deter-
mination of (,, through application of equation (31) or an,
and the inversion problem is reduced to the familiar inversion
problem of linear theory. The necessary relation for flows
with free-stream Mach number near 1 can be derived from
consideration of equation (42) as an integral equation in
which % and du/dz are given and the unknown appears in
the integrand of a definite integral. This equation can be
inverted readily since it has the same form as the relation
encountered in the solution of Abel’s integral equation (see,
e. g., ref. 40, pp. 483—484). The inversion thus has the
form of Abel’s integral equation, and is the following in the
present application:

T

The desired relation for the ordinates Z(z) of the airfoil can
now be found by a second integration, and is the following
if it is assumed that Z is zero at the leading edge (x=0).

du dE

P (66)

e L O-MAU [F_ds
7=z \[fdxf[ MI0+D VT

where Z* is the ordinate at the point 2* where « is zero. It
is interesting to note that the two alternative expressions for
Z lead to identical results although the apparent regions of
dependence, as indicated by the limits on the integrals, are
quite different. The same result expressed in terms of

C,or C,is
1 MG FD(, (= 2(1—M_?) dC
Z=3 2 fo‘b’lﬁ [O’+14 M Fy+1) f_rl £
(68)
or
_dC, dt .
=7 [ @ 2&,)\/ e )

A simple application or check of these relations is furnished
by substitution for C, of the relation given in equation (50)
for single-wedge profiles, whence Z is found to be equal to
0z between z=0 and z=c/2. In the same way, substitution
of equation (53) for C, leads directly to equation (52) for
the ordinates of a circular-arc airfoil, ete. -

Application to airfoils with constant pressure gradient.—
An example that permits an additional comparison with an
existing theoretical result given by Guderley in reference 41,
is furnished by consideration of the problem of determining
the shape of an airfoil having a constant negative pressure
gradient at M _=1, thus

=1 o ﬁ) (“‘ (70)
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Fraure 21.—Shape of the forward part of an airfoil having & constant
pressure gradient at free-stream Mach number 1, as indicated by
present theory and by Guderley.

where A=—dC,[/d(z/c) is a positive constant. Substitution
of this relation for €, in equation (68) and integration leads
directly to the following result:

() 39)]

The special case considered by Guderley is obtained by
insertion of the values 2*/c=38/4 and A=6/5, whence equation
(71) reduces to

=@y VE[ 5]

Figure 21 shows a scale drawing of the profile calculated by
use of equation (72) and of that given by Guderley. It is
evident from the sketch that the present theory indicates
larger values for the ordinates Z than are given by Guderley.
Although the latter results are given only in graphical form,
and are hence difficult to determine with precision, the
two sets of values for Z appear to be related by a constant
ratio of approximately 9 to 8.°

The case considered by Guderley and discussed above
results in a shape that does not close at the stern. It can be
seen immediately from equa.tion (71), however, that a closed
airfoil will result if z*/c is equated to 2/5 in which case
equation (71) reduces to

e [ONCH)

A plot of the results is shown in figure 22.
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Fieure 22.—Shape of complete airfoil having a constant pressure
gradient at free-stream Mach number 1.

¢ This conclusion Is confirmed by a new solution in clozed analytic form given by Guderley
on page 239 of his book ‘“T'heorle Schallnaher Strdmungen” published by Springer-Verlag
in 1857. Guderley’s result has the same functional form as equation (72), but the coefiiclent
in the latter result iz greater by a factor 2/+/x#39.027/8, after correcting an obvious slip in
QGuderley’s final equation,

"OR ABRONAUTICS
DECELERATING FLOWS

Although it is clear that the preceding relations are not
appropriate for the analysis of flows with free-stream Mach
number near 1 that decelerate smoothly through sonic
velocity, it might appear that the proper expressions could
be derived by formal application of the procedures described
in the preceding section for positive Ap to the approximate
solution of equation (39) for negative A,. The analysis
leads, in the absence of contributions from shock waves, to
the following relation for % at the airfoil surface instead
of equation (40)

U
'\IV—TXP (-E

«dZjds ,
E '\[E -

Up=

dete 2 [ [Comrar a9

where

J=— (1 —Mmz)%b op=

Ar(z=D)?
;)‘P__e I(:—:) ]
dr(f—2)

The principal difference between the results for the two
cases is that the value of u(z) indicated by equation (74)
depends on conditions downstream of the point z, whercas
that indicated by equation (40) for positive A, depends on
conditions upstream of z. This difference is & fundamental
property of equation (39) and necessitates a change in the
argument required to disregard additional contributions
from shock waves, because now it is the oblicue shock waves
situated downstream, rather than upstream of z, that
furnish a contribution to u(zx). If, however, there are no
oblique shock waves downstream of z, or if the contributions
resulting from additional integrals over the shock surfaces
are disregarded so that equation (74) can be used as a
starting point in the analysis, the following result is obtained
by proceeding in a fashion analogous to that employed in
the derivation of equation (47) from (40):
n
} (75)

T zsm+z{ [£ ,ld(Zg/:)fE dx

‘The symbol z* agaiu refers to the location of tho sonic p'oint

and is equal to the value for x for which

cdZ[dE

E). (76)

dg=0

The corresponding relation for the shape of an airfoil asso-
ciated with a given pressure distribution at some free-siream
Mach number near unity can also be found and is the follow-
ing, again assuming that Z is zero at the leading edge:

‘“z\/_ f f(c' —2¢ )V/dC,/dE E gy

= 77
Jics 7)

No further use is made in this paper of equations (74)
through (77) for decelerating flows at free-stream Mach
numbers near 1. As will become more evident at a later
point in the present discussion, it would appear necessary to
use such formulas for the analysis of flows decelerating
through sonic velocity, but the region of dependence in these
relations is such as either to cast suspicions on their appli-
cability or to require the occurrence of exceptional coinci~
dences. On the other hand, two-dimensional flows that
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decelerate smoothly through sonic velocity appear to be very
exceptional physically. Further investigation is needed
before additional remarks can be made regarding the role of
the parabolic case with negative A\ in the analysis of tran-
sonic flows.

The next section will be concerned with an alternative
analysis of certain cases in which decelerating flows oceur.

COMBINATION OF ACCELERATING AND DECELERATING FLOWS

The calculation of the pressure distribution at Mach
numbers near 1 on an airfoil having such a shape that the
velocity increases over part of the chord and decreases over
the remainder cannot be accomplished by direct application
of any of the relations developed in the preceding sections.
On the one hand, the parabolic method described for flows
with free-stream Mach number near 1 permits the analysis
of flows that pass through sonic velocity, but fails when the
velocity gradient is zero. On the other hand, the elliptic
and hyperbolic methods described for subsonic and super-
sonic flows permit the analysis of flows with zero velocity
gradient, but fail if the local velocity is sonic. The break-
down in each case is associated with the fact that the basic
partial differential equation for each case, that is, equation
(8), (21), or (39), assumes a degenerate form when X is zero.
Such cases are, nevertheless, interesting and important since
they can oceur in practical applications, and the present
gection is concerned with their discussion. The procedure
adopted is based on the idea of joining together various of
the results derived in the preceding sections in such a way
that the failings associated with vanishing A are avoided,
rather than on a complete re-analysis of the problem from a
sufficiently general point of view to encompass the entire
problem in a single sweep.

In order to fix the ideas, consider the problem of calcu-
lating the pressure distribution at Mach number 1 on the
airfoil with cusped trailing edge illustrated in figure 23 for
which experimental data are available from reference 42 by
Michel, Marchaud, and Le Gallo. The front half of this
airfoil is the same as that of a biconvex circular-arc airfoil
having a thickness ratio of 0.10, but the rear half is shaped-
in such a manner that an inflection point is located at 0.75
chord and that the trailing edge angle is zero. The ordinates
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Freuone 23,—Experimental pressure distribution for an airfoil with
cusped trailing edge; M ,=1.
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Fieore 24.—Chordwise variation of ordinate, Z, and slope, %, for
the rear half of the airfoil shown in figure 23.

and slopes of the rear half of this airfoil are shown graphically
in figure 24. No analytic expression is given in reference 42
for the ordinates of the rear half.

The pressure distribution on the front part of the airfoil
where the passage through sonic velocity occurs can be
calculated by use of equations (45) and (46), since it does
not depend on the shape of the rear half of the airfoil. This
means that the pressure distribution on the front half of
the airfoil described above is given specifically by equation
(563) for z/c between 0 and . It is clear that the pressure
distribution on the entire rear half of the airfoil cannot be
determined by use of equations (45) and (46) because the
results so calculated indicate a point of zero pressure gradient
in the vicinity of the inflection point. Although this detail,
in itself, is not incorrect, it signals the breakdown of the
parabolic method that occurs when X is zero. Positive
evidence of the breakdown is provided by the fact that the
calculated pressures decrease downstream of the point of
zero pressure gradient rather than increase as indicated by
the experimental data shown on sketch (w) or by simple
considerations of supersonic flow. These results, further-
more, cannot be joined to those obtained by use of equations
(75) and (76) for the part of the airfoil downstream of the
point of zero pressure gradient because the two sets of equa-
tions do not indicate the same location for this point. This
situation should not be too surprising since the procedures
should not be expected to fail abruptly when X i3 precisely
zero, but gradually as \ approaches zero.

There exists another possibility for the determination of
the pressure distribution on the rear half of the present airfoil
by joining together solutions. It is to use the formulas
developed for supersonic flow, but with the final constant
of integration adjusted so that the pressure is equal, at the
point of connection, to that given by the solution for the for-
ward part of the airfoil. This procedure corresponds to the
use of simple wave theory for the calculation of the difference
in pressure between an arbitrary point on the rear of the air-
foil and the point of connection. In this way, the following
equation results for the pressures on the rear of the airfoil at
Mach numbers near unity:

bp—2em=—2{[—(@(x‘){2&ﬂu 2 [Z'(r)—z'<X)1}m

(78)

where Z’ refers to dZ/dz, and C,(X) is the value of C, at
z=X.
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The most convenient point for joining the two solutions
in the application described in figures 23 and 24 is at z/e=
0.50. Then the pressures on the forward half of the airfoil
can be calculated directly by use of equation (53), the values
. of (C,X) and Z’(X) are

To(X)=0, (—§>=25,,—2[7§T (—1+zn4):|”3, 7 (§>=o (79)

and the following expression results for the pressures on the
rear half of the airfoil at Mach numbers near unity:

E[M 2(v+1)]u3 =2t — [ /6 (—1+Ing)—3 dZ

27 dx
(80)
Figure 25 shows a comparison of the experimental pressure
distribution for Mach number 1 given by Michel, Marchaud,
and Le Gallo in reference 42 and the corresponding theo-
retical values caleculated using equations (53) and (80)
together with the values for dZ/dz given in figure 24. The
theoretical and experimental results bear about the same
relationship to each other as those shown previously for
biconvex circular-arc airfoils although effects of boundary-
layer shock-wave interaction extend over a larger fraction
of the chord of the cusped =airfoil. This difference is in
agreement with the results obtained from schlieren photo-
graphs and given in reference 42 that indicate that the shock
wave meets the airfoil, at Mach number 1, at 78-percent
chord for the cusped airfoil and at 95-percent chord for the
biconvex circular-arc airfoil of the same thickness ratio.

It is apparent that the pressures computed over the rear
half of the airfoil by using equation (80) will tend to be
somewhat too negative because the use of this relation cor-
responds to the use of simple wave theory and hence dis-
regards the influence of a family of incoming compression
waves arising from the sonic line. Some idea of the magni-
tude of this effect can be gained by examination of figure 26
which shows a comparison of the pressure distribution on
biconvex circular-arc airfoils at Mach number 1 calculated
using equation (53) for the entire airfoil, with those calcu-
lated using equation (78) for various fractions of the chord.
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F1GUurRE 25.~—Theoretical and experimental pressure distribution for
the airfoil shown in figure 23; Af,=1. .
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Ficure 26.—Comparison of pressure distributions for the rear part of
a circular-arc airfoil as indicated by the parabolic and hyperbolic
methods; M =1.

A. further example involving accelerating and decelerat-
ing flows at Mach number 1 is furnished by examining the
case of the symmetrical double-wedge airfoil of arbitrary
thickness ratio for which a solution has been given by
Guderley and Yoshihara in reference 32. Figure 27 shows
a plot of their result together with the corresponding result
calculated by the procedures described above. The result
for 0<2<¢e/2 is calculated by use of equation (50). That
for ¢/2<a<c is calculated by use of the following equation
which is obtained from equation (78) by equating C,(X) to
0, Z'(X) to 7, and Z'(z) to —7.

Cy=—2(3)*" | (81)

The difference between the two pressure distributions on
the rear half of the airfoil is again the result of the neglect, °
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Frauvre 27.—Comparison of the pressure distributions for a double-
L wedge airfoil as indicated by the present theory and by Guderley
g and Yoshihara; M =1
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in the present analysis, of the contribution of the family of
incoming compression waves arising from the sonic line.
It is evident from these three examples that the present
procedure of joining solutions is capable of yielding results
that are at least qualitatively correct and that, although
somewhat groater accuracy is undoubtedly desired, this
procedure may be useful until such time as a more general
analysis of accelerating-decelerating flows is accomplished.

COMPARISON OF RESULTS FOR MACH NUMBER 1 WITH
THOSE FOR OTHER MACH NUMBERS

The remainder of this report is concerned with the discus-
sion of some selected examples that illustrate the relation
between results for Mach number 1 and those for other
Mach numbers. This discussion is divided into two parts.
The first is concerned with comparisons of pressure distri-
butions on the same airfoil at different Mach numbers, and
the second with pressure drag.

PRESSURE DISTRIBUTION

Attention is directed in this section to comparisons, for a
number of airfoils, of the theoretical pressure distribution
for Mach number 1 with that for the highest Mach number
for purely subsonic flow and that for the lowest Mach num-
ber for purely supersonic flow. Pressure distributions for
these two Mach numbers, designated more briefly as the
lower and upper critical Mach numbers, respectively, are
of particular significance not only because they represent
the results associated with the bounds of the transonic
range, but also beciuse they are typical of the pressure
distributions for all pure'y subsonic or purely supersonic
flows. All of the theoretical results shown are calculated
by application of the general expressions derived in the
present paper.
same as discussed in deteil in the preceding section. Sub-
sonic pressure distributions are calculated by use of equa-
tion (28), and supersonic pressure distributions by use of
equation (15). The lower critical Mach number is deter-
mined from equation (30) by replacing C, tor with the most

negative value of C,, that occurs in each case, and solving

for M.
from equation (16) by replacing (dZ/dz)., with the value of
dZ[dx at the leading edge and solving for M.

Consider, first, the single-wedge airfoil for which the
pressure distribution at Mach number 1 is given by equation
(60) and illustrated graphically in figure 10. Figure 28
shows a comparison of this result for the specific case of
2 wedge having a semiapex angle 6 of 0.10 radians with
those for the upper and lower critical Mach numbers.
The lower critical Mach number is, of course, zero be-
cause the velocity is sonic at the corner for all free-stream
Mach numbers less than the upper critical. The pres-
sure distribution for Mach number 0 is given by

20

28, 2zfe
kil

1—2z/c

Cy=Cy= (82)

The three curves shown on figure 28 suffice to show that
the pressure distribution on a single-wedge airfoil at Mach

The results for Mach number 1 are the’

The upper critical Mach number is determined .
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Fieure 28.—Summary of pressure distributions for upper and lower
critical Mach numbers and for Mach number 1. Single-wedge
airfoil with a semiapex angle, 8, of 0.10 radian.

number 1 bears a much closer resemblance to that at the
lower critical Mach number than to that at the upper critical
Mach number. It is interesting to note, moreover, that the
difference between the pressure distribution at Mach num-
ber 1 and that at Mach number 0 is very nearly constant
across the chord.

Consider, next, the half circular-arc airfoil for which the
pressure distribution at Mach number 1 is given by equation
(53) and illustrated graphically in figure 15. Figure 29 shows
& -comparison of this result with those for the upper and
lower critical Mach numbers. The computation of the pres-
sure distribution for the lower critical Mach number involves
the use of the following expression for Cp, which is obtained

by integration of the auxiliary relation of equation (28) with
Z replaced by the expression given in equation (52) for
0<z<¢/2 and by 7¢/2 for 2>¢/2:

2zx/c

4 2
Cp=—ir |:1 +<1—?°’ 2L /c]

The results illustrated in figure 29 display a remarkable prop-
erty that the subsonic part of the pressure distribution at
Mach number 1 differs from the pressure distribution at the
lower critical Mach number by nearly a constant, and that
the supersonic part of the pressure distribution differs from
the pressure distribution at the upper critical Mach number

(83)

_ by nearly the same constant, although of opposite sign.
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FigurE 29.—Summary of pressure distributions for upper and lower
critical Mach numbers and for Mach number 1 for half-circular-arc
airfoils.

In order to investigate this difference further, the pressure
distributions at the upper and lower critical Mach numbers
have been calculated for the complete biconvex circular-arc
airfoil and each of the four related airfoils having maximum
thickness forward and aft of the midchord station for which
the results for Mach number 1 are shown in figures 16
through 20. The results are shown in figure 30. It can be

seen that the three pressure distributions for each airfoil-

bear the same general relationship to each other as noted
above, although the difference between the pressure distri-
butions is not always quite so constant as is observed for
the wedge and circular-are profiles.

PRESSURE DRAG

Once the pressure distribution is known for a given airfoil,
the pressure drag can be obtained directly by integration of
equation (48). The corresponding expression in terms of ¢,
and G, is

_DMLAADIR (1 A (2
e =0 c,,—2J; G d(c)

(89

Although the present theoretical results only permit the
calculation of pressure drag for Mach numbers near 1 and
for Mach numbers greater than the upper critical, these
results, together with existing theoretical and experimental
results, can be used to sketch the variation of pressure drag
with Mach number throughout the transonic range. The
airfoil for which the most information is available is, of
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course, the single-wedge profile for which an approximato
solution for Mach numbers less than 1 has been given by
Cole (ref. 36) and improved recently by Yoshihara (ref. 35),
that for Mach number 1 by Guderley and Yoshihara (ref. 32),
and that for Mach numbers greater than 1 by Vincenti and
Wagoner (ref. 34), and experimental data have been given
by Liepmann and Bryson (refs. 30 and 31). Figure 31 shows
2 plot of these results, all in terms of the reduced parameters
cqand £_ and recast into the form consistent with the present
formulation of the basic equations for transonic flow (see
ref. 5, 6, or 9 for additional information on this point),
together with the results computed by use of the present
theory. The new results are indicated by the solid lines, the
former by dashed lines and by data points. The short verti-
cal lines on the data points indicate Bryson’s estimate of the
experimental accuracy of the data. As can be seen, the only
point of difference between the present results and the pre-
viously existing results is at Mach numbers slightly in excess
of the upper critical, and results from the ecror incurred in
approximating the pressure jump through the bow shock
wave by simple wave theory (i. o., by eq. (15) rather than
eq. (6)). The positive slope of the drag curve at £,=0, or
Mach number 1 is in agreement with the result indicated by
equation (51) and is typical for airfoils that do not close at
the rear.

Figure 32 shows a summary of the comparable information
for the front half of 2 biconvex circular-arc airfoil followed by
a straight section, for which experimental data havebeengiven
by Bryson in reference 30. The theoretical values are again
indicated by o solid line, and the experimental values by
data points.” Although the amount of information available
is much less than for the single-wedge airfoil, the results for
both cases show striking similarity.

Results for half airfoils are not typical of those for complete
airfoils, however, as can be seen by comparison of the pre-
ceding results with the corresponding theoretical and ex-
perimental results illustrated in figure 33 for complete bicon-
vex circular-arc airfoils. The experimental results are thoso
given by Michel, Marchaud, and Le Gallo in reference 37
and are obtained by integration of equation (48) together
with experimental values for the pressure distribution. The
most prominent difference concerns the slope of the curve of
¢, versus £_ at £_=0, or Mach number 1, for which the samo
procedures that led to positive values for a half airfoil, lead
to zero slope for a complete airfoil. It can be seen that the
experimental data support these values of the slope in both
cases. Although the calculated values for drag are some-
what greater than those measured in the wind tunnel, most
of the discrepancy can be attributed to the local effects of
shock-wave boundary-layer interaction that occur nearthe
trailing edge. Because this phenomenon depends on Rey-
nolds number and may be of greatly diminished importance
at full-scale conditions, Michel, Marchaud, and Le Gallo in-

T The experimental values shown in figure 32 differ somewhat from those given originally
in figure 21 of reference 30 because of the correction of some Inaccuracles in the caletlation of
the drag from the experimental pressure distributions given In figure 20 of refercnce 30, Al-
though no explanation i3 known for the substantial negative drag indicated at suberitical
Mach numbers and its existence must be indicative of some shortcomings of the experlmental
technique, its occurrence is an unmistakable consequence of the measured pressure distribu-
tlon. That this ix so can be seen at a glance by comparison of the measured pressure distrl-
butfon with that indicated by linearized compressiblo flow theory, for which tho drag i3 zero,
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Fioore 30.—Summary of pressure distributions for upper and lower critical Mach numbers and for Mach number 1 for a series of airfoils with
different positions of maximum thickness,

troduced, in the discussion of their experimental results, the
concept of ‘‘extrapolated drag” to represent the drag that
would occur in the absence of separation. This quantity is
calculated by consideration of a pressure distribution that
differs from the experimental pressure distribution in the
vicinity of the trailing edge as a result of the replacement of
the pressures actually measured by those obtained by ex-
trapolation of the trends indicated at stations upstream of
the separation point. Accordingly, the values for “extrapo-
lated drag” given by Michel, Marchaud, and Le Gallo are
also shown on figure 33. As might be expected, the theo-
retical values for drag are in better agreement with the values
for “extrapolated drag” than with those obtained directly
from the actual measurements.

The results for biconvex circular-arc airfoils are typical of
those for other complete airfoils. Attention is called, how-
ever, to the fact that the experimental values given by
Michel, Marchaud, and I.e Gallo in reference 39 for the air-

foils that have the point of maximum thickness located for-
ward of the midchord station are not so reliable as those they
give for airfoils that have a more rearward location of the
point of maximum thickness. This reduction in accuracy
results from the facts that the method of testing and the
fixed spacing of the orifices tend to diminish the accuracy
with which the contribution of the region near the leading
edge can be evaluated, and that the contribution of this
region is, at the same time, of increased importance.

Figure 34 shows a summary of the calculated results for
the pressure drag of the two families of airfoils described by
equations (56) and (61) with values for n ranging from 1.5
to 6. For this range of n the airfoils described by equation
(61) have a range of location for the point of maximum thick-
ness that extends from about 0.30 to 0.55 chord, and those
described by equation (56) have a range of locations extend-
ing from about 0.45 to 0.70 chord. In addition to lines for



TECHNICAL LIBRARY

532 REPORT 1359—} ABBOTTAEROSRALE,S8M \OR AERONA'UTICS
4
Experiment ref 30 - 4] [:J
3 o .ﬁg» '
5] 7—%° S %
Eqsn ] / Ref 34
2 o 10° ~.
/ | \\
& / Ref 32
Ref 351 /
{ > '/
T A Ret 36 ,
o A e\
ik

0 8 | _ @ A

-l

-24 -20 -1.6 -1.2 -8 -4 0 4 .8 1.2 1.6 20

o
‘ i
TigurE 31.—Summary of theoretical and experimental results for the drag of single-wedge airfoils.
R ~
4
[ I
— Theory
o Experiment ref 30 + +
3 1 | <L J
_ v Y ' %
> ,/ \
& Eq(55)-.. /
| | / T ’
. SN
oo 8
o2 —20 -6 -2 -8 " ) 4 8 1.2 1.6 20 24 2.8

o

FIGURE 32.—Summary of theoretical and experimental results for the drag of half-circular-arc airfoils.

constant £_, which correspond to lines of constant Mach
number for a group of airfoils having the same thickness
ratio, a line is also shown for £, which corresponds to the
line for the lowest Mach number for which the flow is purely
supersonic. It can be seen that the variation of pressure
drag with the location of the point of maximum thickness at
Mach number 1 is quite different from that indicated by
lines of constant #_, or Mach number, for purely supersonic
flows, but is rather similar to that indicated by the line for
£, An interesting feature of the results for purely super-
gonic flow is that the drag is not the same in forward and

reverse flow, as is indicated by linearized compressible flow
theory (see ref. 43 or 44).

CONCLUDING REMARKS

It appears worthwhile, in conclusion, to summarize and
contrast the alternative discussions presented in the main
text and in the Appendix of the general procedures involved
in the approximate solution of all the problems treated in
this paper. The arguments presented in the Appendix are
based essentially on the idea of diminishing the importance
of the higher order terms, and hence concentrate on the
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6 contributions stemming from the double integral of the in-
Airfoils defined by €p=0 ) tegral equation appropriate for each case. The arguments
— Eq.(56) presented in the main text lead to the same conclusions, but
—= Eq.(61) are based essentially on the idea of linearizing the transonic
\\\\ e equation in a small region by rep'lacing part of' the nonlinear
5 ~<_ / term by a constant A\, and then introducing different values
T ————— £o15 for A for different points in the field. This procedure might
be considered equivalent, in some sense, to the replacement
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TFraore 34.—Summary of theoretical results for the drag of two fami-
lies of airfoils having various positions for the point of maximum
thickness.

of the original nonlinear equation by a different linear differ-
ential equation for each point. Results obtained by solution
of the equations at this stage depend, of course, on the choice
of A and must be assembled in order to determine the final
results. This step is accomplished in each case by putting
the results into such a form that a first-order nonlinear ordi-
nary differential equation is obtained upon substituting for
\ the quantity it originally replaced. At this point, the
equations encountered coincide with those obtained following
the procedures described in the Appendix and the remainder
of the analysis proceeds in identical manner. In the cases
considered herein, the differential equation is always of suffi-
ciently simple form that it can be integrated analytically and
the result expressed in closed analytic form. This integra-
tion implicitly introduces the assumption of continuity of the
velocity or pressure distribution and leads, upon evaluation
of a single constant of integration, to the final result.

AusEs AERONAUTICAL LLABORATORY
Narionan Apvisory COMMITTEE FOR AERONAUTICS
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APPENDIX A
REINSPECTION AND ANALYSIS OF METHOD OF APPROXIMATION

INTRODUCTION

The methods used in the main text of this paper are appeal-
ing for their brevity and for the efficiency with which approix-
mate solutions of the nonlinear equations of transonic flow
theory are found. These methods are not entirely satisfying
to the critical reader, however, because certain elements
appear to be arbitrary and there is no a priori way in which
the accuracy of the approximations can be judged. Both the
virtue and weakness of these procedures are the result of
introducing the essential simplifications at the beginning of
the analysis. If the introduction of approximations is
deferred to the end, the relations that occur in the initial
stages of the analysis are, of course, more complicated than
those presented in the main text. Consideration of these
relations is, however, essential for an understanding of the
basis for the method of approximation.

The following discussion of the approximate solution of
problems of transonic flow theory is based on consideration of
integral equations derived from the differential equations of
transonic flow theory by standard application of Green’s
theorem. Since the details of each of the three cases, hyper-
bolie, elliptic, and parabolic, are somewhat different, each
case is considered separately. - In each case, exact relations
are retained as long as possible and the approximations,
when infroduced, are seen to be closely related to those
employed in the method of successive approximations com-
monly used in the determination of higher approximations in
compressible flow theory. The following paragraphs will be
concerned at the outset with the derivation of integral equa-
tions for each of the three cases, and subsequently with the

discussion of the simplification and approximate solution of

these equations.

DERIVATION OF INTEGRAL EQUATIONS

All of the subsequent analysis proceeds from Green’s
theorem. There are many forms of Green’s theorem, but a
sufficiently general form for all of the present purposes is that
associated with the linear operator L(Q) defined as follows

(vef. 45, pp. 244-247):
L(9) =40, +9,, 1+ Be, (A1)

where A and B are constants. Green’s theorem states that
the following relation holds between any two arbitrary func-
tions © and ¢ having continuous first and second derivatives:

ﬂ WE(2)~ 9M(¢)]dB=_95[A< 20_oo0)

ByQ cos (mx):lds (A2)

in which K refers to_the interior of an a.rbltra.ry Tegion
bounded by the curve C, as shown in figure 35, 77 is called the
" adjoint differential operator

DY) =AY+ Yee— DY,

A represents the quantity

A=~/ A? cos (n,z)+cos?(n,z)

and 0/0v stands for a derivative in the direction », and can be
written as a linear differential operator.

g—?= Q.cos(v,z) + Q,c08(v,2)

The direction » is called the conormal, and its direction
cosines are related to those of the normal n according {o

A cos(v,x)=4A cos(n,z)

A cos(v,2) =cos(n,2)
HYPERBOLIC CASE

The initial step in the present derivation of the integral
equation appropriate for the discussion of the hyperbolic case
is to subtract Age., from both sides of equation (3), and to
write the resulting equation as follows:

(M 2—1+ku—\g) ore=Tn (A3)

The symbol Az refers to any positive finite constant. The
form of Green’s theorem associated with the linear operator

—)\H‘Pzz+‘l’u=

L(p)=Tu(p)=—Mapsr+us (A4)
will now be applied, whence
_='_'>‘H: §=0: TIH(?):ZH(QD) (A5)

The quantity € is now identified with the perturbation
potential ¢, and ¥ with an elementary solution of ﬂg(z,!/):O,

z

ds

Ficure 35.—Region of integration.
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in particular with the unit supersonic source ¢y defined as
follows:

1
y=og=4 Wy
0 for (z—8*<Ag(z—1)?

If the region R is so selected that the inequality expressed
in equation (A6a) holds throughout, equation (A2) reduces

to
~ [[Ba2ds= ([ ZatiR= [ [ faR
B B

in which Ay and vy refer to the special forms of A and »
consistent with equation (A4) or (A5), the running coordi-
nates of integration are £, and the field point at which ¢ is
to be evaluated is z,z. Equation (A7) is now applied to
the region indicated in figure 36. Note that the wing, wake,
and shock waves must be excluded from the region of inte-
gration. It should be noted that figure 36 is ouly a schematic
illustration to help define the quantities involved in equation
(A7), and that the shock wave, indicated as a detached bow
wave, might instead be attached to the leading edge, to the
trailing edge, or situated somewhere along the chord. The
single shock wave illustrated in figure 36 could, moreover,
be replaced by a complicated system of shock waves. The
region By may likewise be considered to consist of a single
region, or as the sum of a number of regions as typified by
adding to By the region situated upstream of the bow wave

for (z—§*2M\g(z—1)*  (Aba)

(A6b)

(A7)

Ve
/‘\
v
/ BN .
/5 YA revRe

Figure 36.—Region of integratiop for the hyperbolic case.

and within the dotted lines of figure 36. In any case, the
general considerstions remain the same, and the following
integral equation is obtained for ¢ at an arbitrary point z,z:

-‘P"‘,EMAB(,O riA(p(z—-\,ﬁ\;IZI)]_
2

1
90(17)2):':__2 ’AH 0 Yz 13 7
- /—. b¢ — 1 —
202238y ——— [ [fadBx  (A8)
2/ E!

1
2\/)\_5 Sr Ovg

526507—80——35

LIBRARY

apEoTAEROSPATE.cov THE TRANSONIC FLOW EQUATION 535
where
ai”_a("u Op; _
Abr_ >¢ ¢ Ap=p,—p;

in which » and [ refer to conditions on the upper and lower
sides of the wing and wake, where
520 _des O

bl’g— al’g b‘l’g

in which @ a.Ed b refer to conditions on the two sides of the
shock wave Sy, and where

Kg%= —-)\E—gig cos (n,x)—l—%—? cos (n,2)

ELLIPTIC CASE

The integral equation appropriate for the discussion of
the elliptic case can be derived by use of procedures analo-
gous to those described in the preceding paragraph for the
hyperbolic case. The initial step is to add Age.. to both
sides of equation (3), and to write the resulting equation as
follows:

)\E‘iozz'l—‘xpn: [AE— (1 _Mmi_ku] ‘PJ::=fE

As in the hyperbolic case, the symbol Az refers to any positive
finite constant. The form of Green’s theorem associated
with the linear operator

(A9)

E(GD) =EE(‘P)=)‘E¢P==+ Pz (A10)
will now be applied, whence
A=\s, B=0, M; (0)=Ls(p) (A11)

The quantity © is now identified with ¢, and ¢ with an
elementary solution of Mz(¥)=0, in particular the unit sub-
sonic source defined by the function

— =—i—— — )2 — 2
Y=oz - &lnwl(x £ rs(z—0)

In this way equation (A2) reduces to

—/ e ® - _
— fa Lo (o5 22 —0 32 ) do= f f osLs(0)dF= f fangdR
R B
(A13)

in which Az and vz refer to the special forms of A and »
consistent with equation (A10) or (A11), the running coor-
dinates of integration are £,{, and the field point at which ¢
is to be determined is z,z. If equation (A13) is now applied
to the region Rr surrounding the wing, wake, and shock
waves, as illustrated in figure 37, and the a priori assump-
tion is made that the perturbation field attenuates suffi-
ciently fast with distance to negate the contribution of the
surface integral over the large circle in the limit as the radius
goes to infinity, the following integral equation is obtained
for v at an arbitrary point z,z:

— [ (508 220—p, 2=
(p(:D,Z)-—J; (O‘EA ¢ Ag S5t

(A12)

dt+

(A14)

[ osEss 22 aSut [ [ontudRe
Sy Ve 2
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Figure 37.—Region of integration for the elliptic case. ¢

where Ay and A(Q¢/0¢) have the same meaning as in equa-
tion (A8), but where

a‘P a‘Pa a?’b

E)VE Ovg ' Ovg

in which a and b refer to conditions on the two sides of the
shock wave Sk, and where

Axbb —-)\E ot ? cos (a'z,,:::)+—g—§rJ cos (n,2)

PARABOLIC CASE

The initisl step in the derivation of the integral equations
appropriate for the discussion of the parabolic case is to
subtract Ape. from both sides of equation (3), and to write
the resulting equation as follows:

Pre— Nppz= (-Z‘Io,2—1)¢:x+ (kioz:_iki’)‘xp::f? (A15)

The symbol Ap refers again to a finite constant, which may
be either positive or negative. The form of Green’s theorem
associated with the linear operator

L(o)=Le(p)=¢u—Are: (A16)
will now be applied, whence
A=0, B=—%, Me(@)=¢utree.  (AIT)

The quantity @ is again identified with ¢, and ¢ with an
elementary solution of Mp(¥)==0, in particular with the

function
Ap
Var—p°

0 for

Ap(z—3)?

4e-8 ] for _-—’é >0 (A18a)

Y=0p=
<0 (A18Db)

This function assumes & role in the analysis of the parabolic
case that is analogous to that of the unit subsonic and super-
sonic sources in the elliptic and hyperbolic cases. In mathe-
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;matwal literature, the linear po.rtm.l differential equation

Lr(p)=0 with positive Ap arises in the study of heat con-
duction, and the function op is often referred to as & unit
heat source. If the region R is so selected that the inoquality
expressed in equation (A18a) holds throughout, equation
(A2) reduces to

bo'p
‘f I:A" op app_‘° o

— [[o:Trtpri= f f oefedR  (A19)
B R

in which Ap and »p refer to the special forms of A and »
consistent with equation (A16) or (A17), the running co-
ordinates of integration are £,¢, and the field point at which
¢ is to be determined is 2,2. It is apparent from the condi-
tion imposed on Rp, that Ap/(z—£) is greater than or equal
to zero, that two distinct subcases result depending on the
sign of Ap.

Positive Ap.—If Ap is positive, the reglon E» appropriate
for the application of equation (A19) is that part of spaco
upstream from the point z,z. Again the wing, wake, and
shock must be excluded from the region of integration, as
illustrated schematically in figure 38. If equation (A19) is

—Apapp COS (n,:c):lds

X
N

Fieurs 38.—Region of integration for the paraboli¢ case with A\p >0,

now applied to the region Rp, and it is assumed that the
perturbation field attenuates sufficiently fast with distance
to negate the contribution of the surface integral over the
outer boundary in the limit as the radius is increased to
infinity, the following integral equation is obtained for ¢ at
an arbitrary point z,z:

= fm orfoiBr

8p

(A20)
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where Ap and A(Q¢/d¢) have the same meaning as in equa-
tion (A8), but where
a¢_b¢a Opy

pr al’p pr

in which a ﬁild b refer to conditions on the two sides of the
shock wave Sp, and where

Jp 0y

Ap YT cos (n,z)

Negative Ap.—If Ap is negative, the region Rp appropriate
for the application of equation (A19) is that part of space
downstream. from the point z, z. If equation (A19) is ap-
plied to the region R surrounding the appropriate part of
the wing, wake, and shock waves, as illustrated in figure 39,
and the contribution of the surface integral over the outer
boundary vanishes as the radius is increased to infinity, the
following integral equation is obtained for ¢ at an arbitrary
point z,z:

99e

1 (° be)
otee)=s; | (oot 505
1 —_ o0\ = 1 -
x| or gy—P) Bty i fapfdep
P

where the symbols_have the same meaning~as in equation
(A20), except that S and E» now refer to those portions of
the shock waves and space situated downstream from z,z.

SOME PROPERTIES OF THE INTEGRAL EQUATIONS

di+

(A21)

Although the four integral equations derived in the pre-
ceding paragraphs and written explicitly in equations (AS8),
(A14), (A20), and (A21) are quite different in most respects,
they do possess a number of properties in common that are
of concern in the present discussion. Perhaps the most
obvious similarity is that each integral equation consists of
o term that involves integration over the wing and wake,
another term that involves integration over the shock waves,
and a third term that involves integration over the surround-
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Fieurs 39.—Region of integration for the parabolic case with A <0.
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ing space. The integrals extend over all space in the elliptic
case, but only over part of space in the parabolic and hyper-
bolic cases. It is important to realize that there is no direct
connection between the region of integration in each of the
integral equations and the region of dependence in the solu-
tion, or in the physical flow, and that these two regions may,
in fact, be distinctly different in some applications.

The first term in each integral equation involves a distri-
bution of sources o proportional to A(Qd¢/0¢) and doublets
O0/0¢ proportional to Ap. Since A(Jp/d¢) is equal, accord-
ing to the boundary condition given in equation (1), to
U_A(dZ]dx) and Ap is proportional to an z-wise integration
of the lift, it follows that the part of the term containing
sources is associated with the thickness distribution, and
that part containing doublets, with the effects of camber
and angle of attack. The latter part of the first term is zero
for all of the nonlifting airfoils discussed in the main text of
this paper. The first term in the elliptic and hyperbolic
cases is familiar in compressible flow theory because, upon
equating Agto 1—2_? or Az to M _2—1, itreduces to the well-
known solution for ¢ in the linearized theory of subsonic
and supersonic flow around thin airfoils.

The second term in each integral equation involves & dis-
tribution of sources ¢ proportional to A5(d¢/O¥) over any
part of the shock waves that is situated in what otherwise
would be part of the region of integration £. There is no
doublet distribution on the shock wave, as on the wing and
wake, because ¢ is continuous across the shock wave. Al-
though the contribution of the integral over the shock waves
is often difficult to evaluate because 5(Qp/0r) i8 unknown

- and must be determined as part of the solution, there are a

number of important applications in which this term either
vanishes completely, or contributes nothing to the values for
¢ along the chord of the airfoil. The simplest class of
problems for which this term vanishes is, of course, that in
which the flow is subsonic everywhere and is hence shock-
free. The contribution of this term will also vanish in parts
of the field even if shock waves are present, provided they
are situated entirely downstream of the region of integration
in the hyperbolic case or the parabolic case with positive
A\p, Or entirely upstream of the region of integration in the
parabolic case with negative Ap. The contributions of the
shock wave vanish in the above situations because the com-
plete term disappears from the integral equation. If the
term remsains, however, each element of the shock wave
provides a contribution to ¢ that depends upon its strength
and orientation. There are, moreover, certain directions in
which an element of a shock wave can be oriented that result
in no contribution to ¢ in the parabolic and hyperbolic
cases. Thus, in the parabolic case, the contribution vanishes
when the element of the shock wave extends perpendicular to

,the z axis, so that cos (n,z) in the second term of equation

(A20) or (A21) is zero. It is similarly evident from equation
(A8) that an element of a shock wave contributes nothing
to ¢ in the hyperbolic case if the direction cosines and velocity
components on the two sides of the shock wave satisfy the
relationship

cos (ny,2)
cO8 (7,)

u,,—’u, )
g wa_wb

(A22)
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This relation can be expressed completely in geometric terms
by combining it with the following equation that can be
derived from consideration of the fact that ¢ is continuous
across the shock ,
cos (My,2) W, —W,
cos (Ny,) U, —U,

(A23)

Thus, the contribution to ¢ vanishes if the element of the
shock wave is oriented so that

[cos (ny,2)

€08 (75,%) (A24)

=tan*(n,z)=MNz

If the same line of reasoning is applied to the elliptic case,
relations analogous to equations (A22) through (A24) occur
in which Ag is replaced by —Az. From such considerations
it would appear that the contribution to ¢ vanishes if the
element of the shock wave is oriented so that

cos (’nb,Z)

-~ Leos (ng,z (425)

=g

Since Ag i8 required to be a positive quantity, however, it is
clear that there is no orientation for which the contribution
vanishes. In the hyperbolic case, on the other hand, Ay is
required to be positive and there are always two particular
orientations for which an element of a shock wave contributes
nothing to ¢. It is interesting to note, before leaving the
discussion of the second term of each of the integral equa-
tions, that the particular orientation for which an element
of a shock wave provides no contribution to ¢ coincides in
all three cases, elliptic, parabolic, and hyperbolic, with the
directions of the characteristic lines of the associated form
of the linear partial differential equation, L(g)=0. The
reader should observe, however, that these characteristic
lines have no particular physical significance, inasmuch as
their existence and direction depend on an arbitrary choice
of a value for A

The third term in each integral equation involves integra-
tion of the effects of a distribution of sources ¢ proportional
to f over that part of space surrounding the airfoil that is
enclosed within the region of integration Z. The contribu-
tion of this term does not vanish, except in almost trivial
circumstances such as occur, for example, in the hyperbolic
case for points upstream of & bow wave provided Ay is
equated to M _2—1 so that fy is zero. Discussion of the
contribution of the third term in each integral equation will
consequently constitute the subject of much of the remainder
of this Appendix. An interesting property of each of the
integral equations that is worth noting before proceeding
to the more specific discussion of each case is that the inte-
grated strength of the sources in all space exterior to the
airfoil, including those distributed along the shock waves, is
equal, but opposite in sign, to the integrated strength of the
sources distributed along the entire chord of the airfoil.

SIMPLIFICATION AND APPROXIMATE SOLUTION OF
THE INTEGRAL EQUATIONS

No general methods are known for the analytical solution
of the integral equations given in equations (A8), (Al4),
(A20), and (A21). Although certain simplifications can be
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made by restricting attention to nonlifting cases, and to
cases in which the shock waves are not in the region of
dependence, the essential difficulties remain because the
integral equations are nonlinear, just as is the differential
equation from which they are derived. The principal method
that has been employed in the past for the solution of similar
problems is that of successive approximation in which ¢ is
expanded in & power series of some parameter such as the
thickness ratio, and the coefficients in this series are deter-
mined as the solution develops. The first approximation in
these methods is generally either the solution for linearized
compressible flow theory or for incompressible flow, and the
second and higher approximations are determined by itera-
tion procedures in which linear equations are solved at every
step. In practice, these methods have -been found very
difficult to apply to problems of compressible flow, and calcu-
lations of higher approximations than the second have, in
most cases, proved prohibitively lengthy. (See ref. 3 for a
résumd.) Serious questions of convergence remain in the
existing solutions of this type, and it is doubtful if the results
2pply when mixed subsonic-supersonic flow occurs.

Another type of successive approximation procedure which
involves the solution of quadratic equations with every
iteration step is described in reference 9 and applied to the
calculation of pressure distributions on circular-arc airfoils
for all Mach numbers up to unity. Although the calcula-
tions could only be accomplished after the introduction of
certain approximations, whose influence on the result is
difficult to ascertain, the general procedure appears to succeed
even with the occurrence of mixed flow.

The methods applied in the main text of this paper can be
considered as the first step of still another type of successive
approximation procedure in which certain nonlinear features
are incorporated into even the first approximation. This
procedure possesses the advantage of yielding results that
disclose much of the nonlinear effects in the first approxi-
mation, and of making unnecessary, in many applications,
the difficult task of iteration to determine higher approxi-
msations. A simple heuristic description of the analysis is
given in the main text. The following paragraphs are con-
cerned with a more detailed examination of the approxima-
tions involved in the analysis, and of the relationship between
the present approximation and the approximations previously
employed in the solution of problems of compressible flow.
Although it is apparent that much of the discussion could be
applied to lifting airfoils, attention is confined, as in the main
text, to symmetrical nonlifting airfoils for which the follow-
ing relations are to be applied in the first term of each
integral equation: ‘

20_opy 42
ASZ‘—ZU” dE

HYPERBOLIC CASE

Ap=0, (A26)

The first problem to be discussed is the approximate
solution of the integral equation given in equation (AS8) for
the hyperbolic case under the restrictions that the flow is
purely supersonic so that

M3—1+ku>0 (A27)
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Equation (A8) contains both a line integral over the shock
wave Sy and a double integral over the surrounding region
B The double integral can be integrated x-wise, however,
because the integrand is a perfect differential. This partial
integration results in a term that exactly cancels the line
integral on the shock wave and equation (A8) can be re-
written as follows:

@,2) fz-—w’xgm dZ
p(x)=—==
YAz
—-—f u(Mm’—l-l—Zc—u-)\H dy  (A28)
2\gJ> 2
The symbol > below the integral sign of the second term
indicates that the integration is to be carried over the lines

t=z—/Ag(|z—¢]) estending upstream from z,z. Differen-
tintion yields the following relations for « and du/ds:

u(m,z)=—%;z'(x—m2|>—
1
Pt f (M 1) (a20)
ouzr,z) U,

== 2" (z—~+Aale))—

beb’ f <M 145y )dg ‘(A30)

It should be noted that equations (A28), (A29), and (A30)
are all integral equations and that each is an exact relation
valid for any positive value of Mg.

The results of linearized supersonic flow theory, as well
as those of the counterpart, in the small disturbance theory
of transonic flow, of higher approximations can be reproduced
from any of the above equations upon equating Az to M *—1.
In this way, all contributions of first order are included in
the first term on the right and the contribution of the second
torm on the right is, at most, of second order. Thus, the
familiar expression of linearized supersonic flow theory
follows immediately upon disregarding the contribution
of the second term

o s

U. —
u(z,Z)=—ﬁ Z" (z—M_3—1|2])+0(u?) (A31)

Its counterpart, correct to second order in Z’, can be deter-
mined by application of the method of successive approxi-
mations in which the contribution of the second term is
approximated by replacing the unknown u by the first-order
approximation provided by equation (A31) and integrating.
In this way, the following result is obtained for points on
the airfoil.

U, dZ kU2

w/H;ETEEH(M;ily( f) +0 (dz> (A32)

Note that although the first- and second-order approxi-
mations for w are different in general, first-order theory is
sufficient to determine to second-order accuracy the point
where « vanishes, that is where dZ/dz=0. First-order

u(z,0)=
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theory, moreover, provides the exact location for the point
of zero « in the absence of shock waves, but this simple
result is true only to second order if there are shock waves
situated within the Mach forecone of the point (z,0).
Although the difficulties of integration are such that only
the first few steps of the method of successive approximation
can be evaluated in all but the simplest examples, the
method can, in principle at least, be repeated indefinitely
to establish the result accurate to any desired order. The
result for « on the airfoil surface appears in the form of a
powerseries involving ascending powers of (¢Z/dz)/ (M . —1)*7,
It is clear that a valid approximation is obtained provided
the absolute value of dZ/dz is sufficiently small at all points,

‘and the Mach number is not too close to unity. The

failure associated with excessive positive values for dZ/dx
usually occurs near the leading edge of the airfoil and is
associated physically with detachment of the bow wave
and the occurrence of local regions of subsonic flow. The
failure associated with excessive negative values for dZ/dx,
and clearly illustrated in figure 3 of the main text, usually
occurs near the trailing edge of the airfoil and is purely
mathematical in origin. In actual practice where only
the first term or two may be evaluated, the result fails to
provide adequate information regarding the ultimate con-
vergence or divergence of the series and the question must
be settled in each application by appeal to more exact solu-
tions. It is important to realize that these uncertainties
are not inherent in the integral equations given in equations
(A28) through (A30), but enter the analysis with the assump-
tion that the solution can be approximated satisfactorily
by application of the particular form of the method of
successive approximation described above.

The method of analysis employed throughout the main
text is equivalent, from the present point of view, to the first
step of a slightly different method of successive approxima-
tion that proceeds from consideration of the infinite set of
relations that result if different values are selected for Mg in
the determination of conditions at different points in space.
Analyses based on such a system of equations are more com-
plex, in general, than those based on a single equation, but
this increase in complexity is counterbalanced, in the present
applications, by the fact that approximations can be in-
troduced on the basis of local, rather than global, considera-~
tions. This fact makes possible the incorporation of some of
the higher order or nonlinear contributions, as well as all of
the first-order contributions, into the first term on the right
in each relation of the infinite set, thereby reducing the con-
tribution of the term containing the unkmnown u (£¢). If
a rule for the selection of Az can be found that achieves this
effect and if it can be expressed in analytic form, the infinite
set of relations can be expressed once again in the form of a
single equation; and the remainder of the analysis can pro-
ceed in & manner analogous to that described in the pro-
ceding paragraph for the classical method of successive
approximation.

The method employed in the analysis of the hyperbolic
case in the main text of this paper is equivalent to the first
step of a successive approximation procedure based on the
infinite set of equations for du/oz typified by equation (A30)
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with Ay equated to the local value of M, *—1+4ku(z,2) in
each relation. Although it would appear from cursory
examination of equation (A30) that the error incurred in so
doing would be of second order, it will be demonstrated
below that the result is actually accurate to second order and
that the error is, at most, of third order. Although equations
(A29) and (A30), upon which the remainder of the discussion
of the hyperbolic case is based, are exact within the approxi-
mations of transonic flow theory, they are not in the most
advantageous form for the following discussion because of
the presence of the integral in the second term of each rela-
tion. If, however, attention is confined to the evaluation of
the result at the airfoil surface to second-order accuracy,
and. to cases for which Ny is restricted to values that differ
from A .2—1 by, at most, & quantity proportional to u(z,z),
that is Ag=M.*—1+au(z,z), the integrals can be mtegra.ted
and the following relations result:

U, dzZ (M 1+—_“’> Foud) (A33)

wel=—r27 SEI—1)
oufz,0) U, d*Z  u(M_3—1+ku—ig)
0r  pedE e0La—D  To) (A3
It is now clear that the substitution of M.2—1-+ku for Ag In
equation (A34) yields
ou(z,0) U,
e mdﬂ et s

This result corresponds to equation (11) of the main text and
leads, upon integration and insertion of the suxiliary relation
that u vanishes where dZ/dz is zero, to equation (15) relating
C, and dZ/dz. This relationship is commonly designated as
that of simple wave theory. From the above discussion, it is
clear that equation (15) must be correct to at least second
order, as indeed simple wave theory is known to be for the
pressures on the surface of an airfoil. If there are no shock
waves in the region influencing conditions at the point (z,0),
the flow field is characterized by a single family of waves;
and it can be shown that the error term indicated in equation
(A35) vanishes completely. The resulting relation is thus
exact within the approximation of transonic flow theory. It
is interesting to observe that the use of the same relation for
Az in equation (A29) for u leads to >

U. dZ |  ku
M _i—1+kudz tiara—

and results in errors of second order if only the first term is
used.

There is another choice for Az that is not mentioned in the
main text that will remove the second-order error if only the
first term of equation (A29) or (A33) for « is used and that is
Ar=M*—1+4 (ku/2), since then -

40  (A36)

U, dZ

u=~__——kud:c
M-+

0(w?) (A37)
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This result is not the same as that of simple wave theory, but
is recognized upon rearranging so that

/ dz
U, MQ’ +_= —Umdx

as being the square root, with appropriate choice of sign, of
the shock relation given in equation (6) with u, and w,
equated to zero. The result obtained by use of equation
(A38) is thus equivalent to that obtained by equating the
pressure at each point of the airfoil surface to that on o
tangent wedge. Such a procedure has been proposed
previously and is sometimes called “tangent-wedge theory.”
Although the first two terms of the formal expansion of
either equation (A38) of tangent-wedge theory or equation
(14) of simple wave theory agree with the second-order
result obtained by use of the method of successive approxi-
mations and given in equation (A32), the results of either
simple wave theory or tangent-wedge theory are to be pre-
ferred in applications because they approximate the proper
termination of the solution when dZ/dz becomes too large,
and do mnot fail spuriously at larger negative values of
dZ/dx.

(A38)

ELLIPTIC CASE

The second problem to be discussed is the approximate
solution of the integral equation given in equation (A14)
under the restriction that the flow is purely subsonic so that

1—M_ *—ku>0 (A39)

This restriction implies that the integral over Sy is zero,
since there are no shock waves in a purely subsonic flow.
Thus, equation (A14) reduces to

o) =2 | angdHIIfsndE & (A40)

Differentiation yields the following relations for % and
oufox

w(,2) =20, %‘::ﬁfdf—l- f f fedgar  (Ad1)
a'u'(x,z) a O'EdZ b (12
D) . [ art f [1nSoarar 442

where

1
r =y @8 R0

bo'g 1 :U—E
0 orfag [E—H Rz~

Vog__ 1 (z—8—hs(e—p)?
OB 2yig [@— D T hs(z— O

fam {xa—u—M = lau(s,r)]}a“
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Equations (A40), (A41), and (A42) are all integral equations
and each is exact for any positive value for Az. The solu-
tion of any of these integral equations is complicated not
only because the relations are nonlinear, but also because
the kernel, designated by ox or its derivative, is infinite at
the point =z, {==z.

The familiar result of linearized subsonic flow theory can
be obtained from any of the above equations by replacing
Mz by 1—2M_2 and disregarding the contribution of the double
integral as being of higher order. The corresponding result,
correct to second order, can be obtained by application of
the method of successive approximations in which the
contribution of the double integral is approximated by
means of the first-order result to evaluate fz at each point.
Higher approximations can be obtained, at least in principle,
by repeated application of the same procedure except that
fr is evaluated at each step by use of the results of the next
lower approximation. In this way, an approximate expres-
sion for the solution is determined in the form of a truncated
power series. Although the difficulties of integration are so
great that few cases have been evaluated beyond the second
approximation, it appears that the process converges to the
desired solution for thin airfoils provided that certain well-
known difficulties associated with stagnation points are
properly accounted for and that, as in the hyperbolic case,
the Mach number is not too close to unity. Again the re-
sults provided by the method of successive approximation
indicate no definite limit for the Mach number. Compari-
gon with experimental results shows that the trends dis-
played by the results are generally confirmed for Mach
numbers less than the critical Mach number, but are es-
sentially refuted for greater Mach numbers.

It is interesting and informative to compare the results
obtained in the manner described above with those obtained
by application of an alternative version of the method of
guccessive approximations described in reference 9 that
involves the solution of quadratic rather than linear algebraic
equations at each step of the iteration process. The equation
fundamental to this discussion is obtained from equation
(A41) by again equating Mg to 1—M_? and integrating the

double integral by parts. In this way the following integral

equation is determined for u:

kou? dog dzZ u?(£,7) dog
1—M_? 5-2U°°f & % kff

u= oz dE o

dedg
(A43)

Although equation (A43) is completely equivalent to equa-
tion (A41), it is, in certain respects, superior from the point
of view of obtaining approximate solutions. This is because
the predominant effects of the region near the point z,z,
which form a major contribution to the value of the integral
in equation (A41), are furnished in equation (A43), by the
term involving the square of u standing outside the integral.
Although the difficulties of integration are as great or greater
than encountered in the classical method of successive approx-
imations and only the first few steps can be evaluated without
approximation in any specific application, certain general
features of the solution are clearly defined. In particular, it
is shown in the report version of reference 9 that the results

AL
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obtained for flows that are subsonic everywhere converge, in
the limit of an infinite number of iteration steps, to the same
result as ultimately obtained by application of the classical
method of successive approximation. Whereas there is con-
siderable doubt about the precise range of convergence of the
latter result, the result obtained by application of the quad-
ratic method of successive approximation clearly terminates
with the occurrence of sonic velocity somewhere in the flow.

- The termination of the solution is recognized by the dis-

appearance of real roots of the quadratic equation and is
apparent at every step of the iteration process. It is evident,
moreover, from comparison of the two sets of results that the
series expansion for the solution obtained by the classical
method of successive approximation converges only for purely
subsonic flows and that the results indicated for mixed or
transonic flows are false. These properties of the result
obtained by the quadratic method of successive approxima-
tion are consistent with the numerous arguments and proofs
for the nearly nonexistence of continuous shock-free transonic
flows that have been advanced in recent years. (See ref. 46
for a brief résumé.)

This difference in behavior can be readily illustrated if one
considers the expressions for the pressure coefficient at the
midpoint of & symmetrical circular-are airfoil that are obtain-
ed following the completion of the first two steps of each
iteration process. The result provided by use of the classical
method can be readily obtained from the third-order result
quoted in equation (37) of the main text and is

8  « /10 I\ (M2
TwfToM \@ 2) (M

The first term represents the result obtained if one consid-
ers equation (A41) and disregards completely the contribu-
tion of the double integral. The result is precisely that of
linearized compressible flow theory for the particular point
under discussion. The second term represents an approxima-
tion for the contribution of the double integral obtained by
replacing f5 for each point in space with the result provided
by linearized theory. The results obtained by application of
equation (A44) indicate that —C, increases indefinitely with
increasing value of 7/(1—M _%)32 and appear to apply for
mixed, or transonic, flows as well as for purely subsonic flows.
The corresponding results obtained by use of the quadratic
method of successive approximation are found by considera-
tion of equation (A43). A first approximation obtained by
disregarding completely the contribution of the double

8 M. (r+1).

integral is
=

2(1—M.%)
M2 (v+1)

and a second approximation obtained from the evaluation of

the contribution of the double integral by use of the result

provided by linearized theory for fz at each point is

Cp=

24-0(7%) (A44)

Cp=—m— 2t ‘r-H)(‘r’)] (Adb)

_20=MA[,
= M2 y+1) g
8 M2 t1D) 6 N\M. (y+D? '
\/ T a—yR T m ) =y 72+O(TS)J
(A46)
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The results obtained by application of either equation (A45)
or (A46) also indicate that —(, increases with increasing
values of 7/(1—AM %37 but that this frend terminates
when C, reaches the critical value associated with the
occurrence of sonic velocity, that is, when

. 20=M.Y
R TR oV @

At this point, the slope of a curve representing the variation
of ¢, with M is infinite. In spite of these distinet differ-
ences in behavior, it is important to note that a formal

power series expansion of equation (A46) in terms of +-

agrees to second order with equation (A44), and that this
agreement increases by one order of = upon the completion
of each additional iteration step. Results obtained follow-
ing completion of additional iteration steps continue to
follow the same trends. Those indicated by the classical
method never provide any information regarding the precise
range of convergence, and those indicated by the quadratic
method always terminate with the occurrence of sonic
velocity.

The method employed in the main text can be considered
as an alternative procedure devised in any attempt to im-
prove the quality of the first approximation and to diminish
thereby some of the necessity for the evaluation of higher
approximations. Before proceeding, it is important to recall
that equations (A40), (A41), and (A42) are all integral
equations valid for any positive value for Az; and that each
can be considered, in the same way as described for the
hyperbolic case, as a typical member of an infinite set of
relations that result if different values are selected for Az
in the determination of conditions at different points in
space. It appears plausible that an increase in the accuracy,
although not the mathematical order, of the first approxi-
mation might occur if Ag is equated not to simply 1—2Af,?
but to 1—M 2—Fku(z,z) because then the function fg in
the double integral of each integral equation reduces to
klu(z,z) —u(£,)](0ufot) and hence vanishes at the point
=z, {=2z where oz, Oag/0z, or d%s5[0z® are infinite. If this
procedure is applied to equation (A40) or (A41) for ¢ or u,
and only the contribution of the single integral is retained,
it is clear that the desired improvement will not be obtained
for all Mach numbers up to the critical because the function
V1—M_3—ku that appears in the denominator of each
term vanishes with the occurrence of sonic velocity, and the
numerator does not vanish simultaneously. It is interesting
to note, nevertheless, that the result for the pressure coeffi-
cient on the airfoil surface that is obtained in this way from
equation (A41), that is,

G, (2,0)
’\/1 —Mm 2+ kl27°" OP

corresponds to the use of the local, rather than free-stream,
Mach number in the Prandtl-Glauert rule; and that this
result is the counterpart, in transonic small disturbance
theory, of an approximation proposed by Laitone, Szebehely,
and Truitt (refs. 47 through 51). It is immediately apparent
that although this result differs from the Prandtl-Glauert

Cp(x,0)

C,(z,0)= (A47)
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Fraure 40.—Variation of C, with M, at the midpoint of a circular-arc
airfoil, as indicated by equation (A47), by present theory, and by
the method of successive approximations.

rule in the same direction as the higher order approximations,
the effects of compressibility are greatly overestimated at
points where the local velocity approaches sonic velocity.
A typical set of results illustrating this statement is shown
in. figure 40 in whicb are repeated the curves of figure 8
showing the variation of G, with M_ at the midpoint of a
10-percent-thick circuler-arc airfoil together with the corre-
sponding curve calculated by use of equation (A47).

The relations developed in the discussion of the elliptic
case in the main text do not encounter any such difficulties
as the local Mach number approaches unity. The difference
in behavior is a consequence of the fact that the latter
results are based on the equation for du/dz rather than that
for ¢ or u. That such a difference might occur can be seen
by examination of equation (A42). The denominator again
approaches zero as the local Mach number approaches 1,
but the numerator is always zero at the point of maximum
velocity. Since sonic velocity is first encountered with
increasing Mach number at the point of maximum velocity,
it is apparent that an indeterminate form occurs at the
critical Mach number and the possibility at least exists that
the gain sought by forcing fz to be zero at the point where
%ox/02? is infinite will be realized. That a gain in aceuracy,
although not the mathematical order, of the solution is
actually attained by this procedure is shown in the main
text by comparison with existing higher approximations.
Further confirmation of this conclusion is shown by the
comparison illustrated in figure 41 in which the curves of
figure 8 showing the variation with M _ of C, at the mid-
point of a 10-percent-thick circular-arc airfoil are repeated
together with the curves calculated by use of equations
(A45) and (A46) representing the first two approximations
furnished by the quadratic method of successive approxi-
mations.
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Fraure 41,—Variation of Cp, with M, at the midpoint of a circular-
arc airfoil, as indicated by present theory and by two alternative
methods of successive approximations.

PARABOLIC CASE

The third problem to be discussed is the approximate
solution of the integral equations for the parabolic case
under the restriction that the free-stream Mach number is
near unity. Two integral equations are given depending
on whether \p is positive or negative. Inasmuch as no use
is made in the main text of the equation for negative A\p, the
following remarks will be confined to the case for positive
Ap, for which the integral equation is given by equation (A20):

¢(x,z)=—2)‘—zﬂfz o= df - ffﬂ'pfdep

_}_ op Opy_ Ops
MeJs, T\OF Of

[_)\P(Z—n’
4(:—5)
“Vir@—p (95—5)

f = (M w— 1) ¢EE+ (kﬁf’if")\P) (23

cos (n,2)dS (A48)

where

The third term of equation (A48) represents the contribu-
tion of sources distributed along the surface of any part of
the shock system that is situated upstream of the point z,z.
This term has the property of effectively continuing the
source distribution of the first term smoothly through a
concave corner when the adjacent flow is supersonic. In
this way, the singularities in the velocity and pressure that
occur at such corners when the adjacent flow is subsonic are
replaced, when the adjacent flow is supersonic, by the dis-
continuous, but finite, jump associated with an oblique
shock wave. The contribution of this term vanishes if
no part of the shock system is situated upstream of z,z
or if the shock wave is parallel to the z axis. In that which
follows attention is confined to cases in which it is presumed
that one or both of these conditions are satisfied for all
points situated upstream of the trailing edge. The integral
over the shock waves thus contributes nothing to ¢ at any

526607—00——36
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point on the airfoil surface, and the remainder of the discus-
sion will proceed with considerations involving only the
first two terms of equation (A48), and with the correspond-
ing equation for u obtained therefrom by differentiation
with respect to z. These two equations reduce to the fol-
lowing forms for points on the airfoil surface (i. e., 2=0):

THE TRANSONIC FLOW EQUATION

_ 2dZ)d .1
o(z,0)= m r—ﬂi—f ffanPdRP (A49)
—_ Uw 0 dZ/dE P 1 oo P
unO=—r= o | f f 7r 224, (A50)
where

" x—) [ 4(1—'5) -
=Vz e Apt ] L L=

It can be seen from examination of the preceding relations
that the integral equations for the parabolic case are non-
linear and singular just as are the integral equations for the
elliptic case. The following discussion of the approximate
solution of the equations for the parabolic case will proceed,
therefore, through applications of considerations that are
very similar to those described in the discussion of the
elliptic case in the preceding section.

The results found by application of the linearized theory
for sonic flow described in references 23 through 28 follow
from equation (A49) or (A50) by equating f» to zero so that

U, d dZ/d.sd
NENCEN

and selecting & value for Ap. Various means have been
proposed for the selection of an appropriate value for Ap.
In reference 28, the only one of the above references that
pertains directly to two-dimensional flows, Maeder and
Thommen suggest that Ap be determined by equating it to
the value for £0u/0z, obtained by differentiating equation
(A51), that occurs at the point along the chord at which =
is a maximum in incompressible flow. As noted in the
main text in the discussion of the solution for the wedge,
the results obtained by application of this linearized theory
for sonic flow past thin airfoils may be at considerable
variance with other theoretical and experimental results.
A further illustration of this statement is provided in fig-
ure 42 in which the results given in figures 16, 18, and 19
for the circular-arc airfoil and the two related airfoils that
have the point of maximum thickness at 30- and 70-percent
chord are repeated together with the corresponding results
obtained by application of the procedures described in refer-
ence 28. It can be seen upon compa.rison of these results
with the experimental results shown in figures 16, 18, and
19 that the agreement between the pressure dlstnbutlon
calculated by application of the linearized theory for sonic
flow and that measured experimentally deteriorates as the
pressure gradient departs from a constant. It is apparent
from equation (A51) that the accuracy cannot be improved

w(z,0)= (A51)
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in any essential manner by the adoption of a different rule
for the selection of an appropriate value for Ap. This follows
from the fact that the entire curve representing the pressure
distribution is proportional to 1/4/Ar and can be altered
in scale, but not in form, by use of other values for Ap.
Posgibilities for iteration always exist, and it is conceivable
that improvements in accuracy could be attained by in-
serting the solution of linearized sonic¢ flow theory into the
terms involving fp in equation (A49) or (A50) to obtain a
second approximation, etc. To do so would be a laborious
task and there is always present a grave danger that the
process will diverge, or not converge sufficiently rapidly to
be useful, when the first approximation is as far from the
proper solution as may be inferred from figure 42 for the
airfoil with maximum thickness at 30-percent chord.

The procedures employed in the main text for the approx-
imate solution of the equations for the parabolic case closely
parallel those used for the approximate solution of the equa-
tions for the hyperbolic and elliptic cases. It is, conse-
quently, not surprizing that the following discussion of these
procedures from. the point of view of the integral equations
given in equations (A49) and (A50) is very similar to that
in the preceding sections of the Appendix. The general
considerations are the same in all three cases, but the para-
bolic case more closely resembles the elliptic case than the
hyperbolic case because of the singular nature of the kernel
in the double integral; that is, ¢» and ¢x approach infinity at
the point $=z, {=2. The expressions applied in the main
text follow from consideration of equation (A50) as a typical
member of an infinite set of relations that result if Ap is
replaced with the local value of kdufdz and the contribution
of the double integral is disregarded. At free-stream Mach
number 1, the function f» thus reduces to zero at the point
where op is infinite, and it again appears plausible that less
loss in aceuracy is incurred by disregarding the contribution
of the double integral than in alternative procedures in which
fp is not zero at this point. At free-stream Mach numbers
different from unity, f» is not zero although it can be made
as small as desired by approaching sufficiently closely to free-
stream Mach number 1. The results obtained by solution of
theremainingrelation, which is a first-order nonlinear ordinary
differential equation, are completely consistent with the

above remarks. The pressure distributions calculated by
use of only the first approximation are indeed in good accord
with existing theoretical and experimental results, and the
initial variation of C, with I/, at free-stream Mach number
1 is given exactly; but no indication is provided of the sub-
sequent variation of O, with M, at Mach numbers con-
siderably removed from unity.

If, on the other hand, the pressure distribution is calculated
by substitution of k¢, for M\p in equation (A49) and differen-
tiation of the resulting expression to obtain an equation for
u, the function in the double integral that corresponds to fp
in the above discussion does not vanish at the point =z,
¢=2 where the kernel is infinite. If the preceding discussion
can be considered to imply that the effective removal of the
singularity is important in the approximate solution of
singular integral equations, it may be anticipated that the
results obtained using equation (A49) will not, in general,
be so good as those obtained following the procedure em-
ployed in the main text.
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