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REPORT Ne. 19

PART 1.

THE GYROSCOPIC PARTICLE.
By A. F. Zamu.

INTRODUCTION.

The usual gyroscopic formuls apply only to & bOdE having kinetic

symmetry aboub its axis of rotation, and henoce offering a steady

resistance to steady precession or nutation. To treat the oase of

unsteady gyroscopic resistance, we may find in turn the periodic

stress in any ﬂ[l)gecessmg particle, or reg-u{a.r %lane group of particles;

%ﬁn in any three-dimensional rigid body, whether or not possessing
inetic s elry.

Particle in a rigid precessing bodgis—'l‘o find the rhythmic stresses
in & particle of a rigid gyroscope, first assume this steadily rotating
and precessing without tmnslg. tion, and let o, O, be the ar
speedg of rotation and precession. Also assume the cenfroid at the
origin of z, ¥, 2, as in fig. 1; and let the reference axes X, Y, Z, be
respectively the rotation axis, the nutation axis, the precession axis;
amil call by like names the reference planes normal fo these axes.
Then any particle distant y from the nutation plane has, parallel
to the rotation axis, the linear speed —y2= —rQeosq, and the linear
acceleration reQsina =2, r being the distance of the particle from
the rotation axis, and z its linear, « its angular distance from the
precession plane.! . .

About the axes of precession and nutation, therefore, the moments
of & particle of mass m are —myzeQ, mz?«Q2, and have the resultant
mriu(lsina about an axis perpendiculer to r and the axis of rotation.

For & group of three or four particles symmetrically spaced about
the axis of rotation, the resultant gyroscopic moment is easily seen,
from this expression, to be constant. general, the gyroscopic
torque is constant for any particle group havinémkinetio symmeiry
about the rotation axis, or whose fundamental ? ellipsoid is a surface
of revolution about that axis. For such symmetry Zmgyz=zero, and
the constant velue of the torque is Zmz*w@= Iu, where I=Zms.

If, now, motion of translation be added to the above specified
conditions it will not alter the values found for the gyroscopic mo-
ments, as may be inferred from the principle of the independence of

lnmm&mﬂhreﬁlmﬂmsmdemnmtymmm.
2 The fundamental ellipsoid i3 the reciprocal of the momental ellipsold referred to the center of
mmass and is & kind of space ploture of the moment of inertia. In fact, tha radius of nertia for any line
m%ammdmmmmdmﬁhmmtmnoammwmmm
gent plane.
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the motions of translation and rotation. Also, as is well known,
gﬁither linesr nor angular acceleration produces any gyroscopio

eot. '

If nutation, as well as precession, be assumed, the ensuing
soopic effects can be inferred from analogy to the case already treated.

Iltustrations.—Figure 1 shows graphically for one revolution the
above values of the linear velocity and acceleration of a particle in
a gyroscope. The graphs, drawn upon a cylinder, are both sine
curves but with a phase difference of one quadrant; that is, the accel-
eration of the particle is gﬁeatest when its speed alontﬁ the cylinder
is least, and vice versa. Hence, referring to the X direction only,
it appears thet every particle of a precessing g{;‘osco o performs
simple harmonic motion across its instantaneous plane of rotation.

- e
o
Perspective Reprasentation of * Purspective Reprasentolion of
Gyrescepia Velvsity of o Petiole im Gyresespis Accaleration of & Rarficle m.

Fias

Figure 2 shows graphically for one revolution the foregoing value
of the total gyroscopic moment of a particle, as also its rectangular
components. . .

Figure 3 shows graphically, for several groups of Ea.rtlcles sym-
metrically placed about the exis of rotation, both the component
moments of each particle about the axes of precession and nutation,
and the added particle moments for each group. The curves illus-
trate, what was seen analytically, that the component gyroscopic
moments of each individu pa,rticie of the group are represented by
sine square curves for the nutation axis, sine-cosine carves for the
precession axis, whereas the summation of the moments about these
axes, of all the particles, is zero or constant.for each group of par-
ticles except the binary one, for which the summation is variable
about both axes. The two-particle grou;i, or & uniform material
line joining the particles shown, has the resultant momentZmrwQsina,
whose extreme values are zero and JwQ, I being the moment of inertia
of the material aggregate about its center, i. 6., J=2Zms,
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Application to propellers.—From the foregoing analysis it appears,
using the same notation, that rigid and steadily precessing one-
dimensional ! propellers, and approximately also propellers with
straight narrow blades, are subject to the following laws:

1, Every blade is urged to simple harmonic motion, of the same
period as that of the shaft, across the instantaneous plane of rota-
tion, and hence sustains a reversal of gyroscopic stress twice each
revolution.

2. Every blade sustains a fluctuating gyroscopic moment whose
maﬁn.itude at the hub is Zmr'wQsinae, which at quadrant intervals in
each revolution has the successive values Iwf2, zero, JuwQ, zero.

3. The aggregate gyroscopic moment transmitted to the shaft-by
& two-blade Em‘iyeﬂer is varieble and at all instants equal to twice
that of one blade.

4, The aggregate gyroscopic moment transmitted to the shaft by
a steady running multiblade propeller is constant and at every instant—

uals the geometric sum of the varying moments of the individual
blades. For example, calling the maximum gyroscopic torque of
one blade of a propeller unity, the constant torcﬁue of a three-blade
gerew is 1.5; of a four-blade screw 2.0; of an n-blade screw n/2.

Particle in an elastic precessing body.—All ordinary gyroscopes are
practically rigid and in their ultimate parts are subject to the gyro-
scopic effects heretofore delineated. But propellers, more especially
nonmetal ones, possess considerable flexibility. Their blades con-
sequently yielti to the gyroscopic force so as to shift the cardinal
points of acceleration and velocity shown in figure 1. Also the
vibrations of flexible blades are cumulative under the pulsating
stresses, until the damping factors—air pressure and internal vis-
cosity—of the blade limit its rhythmic excursions. The damping
due to internal viscosity is sometimes great enough to raise the
temperature of the propeller considerably, especially at or near the
hub. No method of analysis is available to give an accurate estimate
of the straining effects in elastie blades.. But it is well enough known
how fatigue induced by rapidly fluctuating and especially rapidly
alternating ? stresses shortens the life of the material.

It can be shown by elementary mechanics that the period of
vibration of each particle of a rotating propeller blade, due to cen-
trifugal force alone, is equal to the period of rotation, whatever the
radial distance.! This property favors cumulative vibrations when
the disturbing forces have the same period as the propeller. The

oscopic force in a blade has been shown to have such a period.

e varying air pressure on. the blade has also that period in many
instances; for example, when the air flow toward the screw is oblique
to the axis, or when the air speed of approach is greater at one part
of & blade revolution than another. For this reason propeller blades
are sometimes designed to have under fiber stress alone a free
v%bra,tional frequency about 50 per cent greater than the frequency
of rotation.

i A one-dimensional propeller may be defined as a propeller composed of infinitely narrow blades sym-
meiri radiating from a point on the axis of rotation.” The blades will here be assumed atraight.

3 Etl.}me th; oscoplo stresses alternate, the blade streases also may alternate when the alr force slackens
a8 at low e,

3 8ince the radial acceleration of any particle I3 ref, the consequent frequency of vibration is—

1 re’
Neg\ 725
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PART 2.

THE GYROSCOPIC THREE-DIMENSIONAL BODY.

By A. F. Zamu
Theory of the equwvalent mass,—From the ic theory of a
particle fol[{)-ws that of a body. In analyzing the mouI())n of any given

rigid body it is alwaﬁposa lo, and sometimes more convenient, to
employ in place of actual f)ody &8 kinetic equivalent; that is, &
mass distribution which would, under the given system of forces,
have the same translation and rotation ss the actual body. For
example, suppose the given body to be specified by mass M and
princlpai moments of inertia 4, B, 0, at the centroid and choose for

ivalent body the point-mass distribution shown in figure 4, and
defined by the following equations in which a, b, ¢, are distances from
the origin of the equal point-masses {/6.

P +c=34/
@+A=3B/My . ..._(1)
@+ b =30/ M

Then, since the right members are given, the massless arms g, b, ¢,
and hence the required space distributions are fully determined, pro-
viding the arms be real.

To show that a, b, ¢, are always real, note from equation (1) that

a? =§3T{(C’—A+B), so that ¢ can not be imaginary unless A be
Erea.ter than C+B. Now if m be any particle at z, ¥, 2, of any rigid
o

dy.
¥ A=Zm (y’+z’)}
B=2m @+t e ceeee e (2)
C=2Zm (B +9°)

Hence, a.’=2%{ (C—A+B) =—%2‘mx’, which is always positive, i. e.,

@ is always real. Similarly & and ¢ are always real. Writin
Ima? = Uz gives @ = £ +3z;; similarly b = ++/32; ¢ = +43z,
where z,, ¥, ¥, are the radil of inertia referred to the principal planes.

the most general case of rotation about three axes, each particle
of the six-point equivalent mass exerts a gyroscopic torque whose
magnitude and direction may be found by the method employed
for a single gyroscopic particle. The component torques so found
can be compounded in the usual way to obtain the resultant torque.

887



888 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

A six-point equivalent mass has been used here as a convenience;
other distributions comprising fewer or more particles may obviously
be emplomd.

Ezamples—As illustration, suppose the model to represent a
gyrosoojxe rotatint% steadily ebout two axes only, say X end Z, its
centroid being either stationary or in motion, Then the masses at
a, ¢, taken together obviously exert no resultant moment, for they
have no gyroscopic acceleration, and any acceleration they may have
from therr translatory motion is, in magnitude and direction, the same
for both. From this it follows that such & rigid body has the same
%mscopic torque whether its mass be all in the plane of rotation

Z or not—that is, whether @ be zero or of any finite magnitude.
Hence the ?Tosco ic torques about Y and Z, of any rigid solid rotat-
ingabout X and Z may be derived from the treatment of & point mass
distribution in the Y Z plane, say, four equal particles spaced as
shown in figure 1, at b, b, ¢, c.

It has been proved above that a single particle of a gyroscope in
steady rotation end precession has about the nutation axis a torque
E‘roportional to the sine square of its angular distance from that axis,

our. equal particles symmetrically placed about the rotation axis
have, therefore, about the nutation axis a resultant torque which is
constant and equal to twice the maximum torque of one particle.
Hence any mass having kinetic symmetry sbout the rotation axis,
since it is the gyroscopic equivalent of & four-particle mass, has a
constant torque equal to twice the maximum of one such particle.
This generalization can, of course, be' derived algebreically from the
above-mentioned sine square law. '

Summary.—The foregoing treatment of the mass equivalent of a

igid body may be summarized as follows:
very rigid body has a mass equivalent whose motion under given
forces is the same as that of the body itself. In particular, any rigid
body hes as mass equivalent six equal particles suitably placed on its
principal centroidal axes and invariably connected by massless bonds.

A six-particle mass equivalent reduces to four particles for a plane
distribution; two for a rectilinear. The arms of the six-particle mass
eqfuivalent of any rigid body equal, respectively, its radii of inertia
referred to the reference planes, muitiphed by +3.

The gyroscopic torque about its centroid of any rigid body is
unaffected by igs ].i:nea.lc'l or angular acceleration or by thl;%il.near speed
of its centroid.
At any instant the gyroscopic torque of a rigid body is the resultant
of the torques of its equivalent mass particles.!
Application to an air screw.~—Figure 4 shows the equivalent mass,
derived from experimental data, for a standard Curtiss two-blade
ropeller, whose blades are notably deep and broad. From this
ggure we can judﬁe the comparative gg:scopic value of the distribu-
tion of the propeller mass in each of three axial directions, since
this value varies as the square of the arm lengths, a, b, ¢, and as the
products in pairs of the ar velocities, w;, w,, w,, about those
arms, Infact the ratios of the three maximum gyroscopic torques of
the pairs of point masses are as c%w,wy Pww,: @*wpw,. In practice
the angular velocities may have the values 150, 0.5, 0.5 radians per

1 As {s well known, the gyrosoopls ue of any icle equals its angular momentum times its de-
vhﬂm,orthomtodm&chmge%plmdmm
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second, thus making said torque ratios w,w/Pw.w,=65, and
0,0, /0% w0, =23100. The 1‘651.111;31'5 of the three component tarques
is ab most, therefore, only /T £ (1/65)7+ (1/23100)° times the major
one—that is, about one-eightieth of I per cent greater. The gyro-
scopic value of such a pr;?eﬂer, so running, may therefore with great
accuracy be equated to that of a pair of simple particles.

/
& a x

Conelusion.—From the foregoing treatmemnt it follows that all
modern air screws obejlr the Jaws found for plane groups of particles.
In particular the two-bladers exert on the shaft & rhythmic ﬁrrosct)pic
torque; the multibladers & steady one; both easily calculable

foreny
given conditions of motion and mess distribution,



