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TECHNICAL NOTE NO. 1080

SUVMMARY AND ANALYSIS OF DATA ON DAMPING IN YAW
AND PITCH FOR A NUMBER OF AIRPLANE MOIELS
By William E. Cotter, Jr.

STUMMARY

Damping data obtained from free-flight-tunnel tests
of 13 models have been summarlized and these results
have been snalyzed and compared with calculated results.
The contributions of the wing, flaps, fuselage, tail
surfaces, and power to the damping in pitch and yaw wers
studied. For complete models; falrly good agreement was
obtalned between experimental and calculated values for
powsr-off, flaps-neutrsl coniitions. Further research on
the effects of sidewash on the damping 1In yaw for power-
on and/or flaps-down conditions 1is needed. The damping
provided by a wing wlthout flaps was found to be small,
Peflectinn of full—span flaps noticeably increased the
damping in yaw. The contribution to damplng of the
fuselage was found to be negligible. The tall surfaces
of conventional designs contributed 70 to 90 percent of
the damping in yaw and pitch. Power application incresased
dampling both in yaw and in pitch. The Jdamping of tailless
designs was about one-third to ons-tenth that of conven-
tional designs. oo —

INTRODOCTION

Dynamlc-stabllity calculations for an airplane
require knowledge of valuses of the dampling-in-pitch
derivative Cmq (the pitching-moment coefficient due to

pltehing velocity) and the damping-in-yaw parameter Cnr

(the yawlng-moment coefficient due to yawing velocity).
At the present time, however, very little experimental
data on these derlvstives for modern alrplanes are
avallable.
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The 4d der tives . have been
amping ivatives Cmq and Cnr

measured in the Langley frae-flight tunnel during stabil-
ity iInvestigatlions as an ald in snalyzing the stabllity
characteristics of some models. These measurements are
summaerized herein to provide a source of experimental datas,
and .a limited sghalysls of the data and a comparlison with
calculated results are also preseunted, The values of

Cnr and Cmq were determined expsrimentally by the free-

oscillation method described in references 1 and 2. The
calzulations were made by the methods of references 2
to 6.

Data are presented for a rectangular wing snd for 13
comnlete alrplane models, filve of which are taillless
desligns. The term Ytalilless" refers to an cirnlasne with
no horizontal tall; howsver, suchk designs generslly Ilncor-
porate some tyne of verticel tall. The term "conventionall
In thils paper refers to ailrplanes other than tellless alr-

planes. Values of Cnr and 'Cmq over the normal 1lift

range are presented In most cases. The effects of tall
area, tall length, flap deflection, and power on the
damping in yaw =nd piltch are shown.,.

SYMBOLS

wing area, squsare feet

(2]

b wlng span, feet
c wing mean aerodynamlc chord, feetb
aspect ratio

taper ratio. (ratio of extended tip chord to chord
at plane of symmetry)

l geometric tall length feet (longitudinal distance
from center of gravity to tall center pressure);
positive when measured rearward '

effective tail length feet; when divided by the
velocity of the alrplane thils distance represents
time lag in growth of downwash and development of
11ft by tall
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lateral distance from center of gravlity to vertical
tail, feet )

vertical-teill area, square feet

horizontal-tail area, sguare feet

airspeed, feet per second

mass density of alr, slugs per cubic foot
pltching angular velocity, radlans per sscond
yawing angular velocity, radians per second
angle of attack of fuselage center line, degrees
engle of sideslip, radilans - |
angle of downwash at horizontal taill, dégrees
incidence of horlzontal tall, degrees

flap deflection, degrees

distance of aerodynamic center of the wing. from axis
of rotation, feet; positive rearward :

propeller diameter, feet

thrust coefficient EEE%%?)

pVv
11ft coefficient / ZEEt-
%pVZS
1ift coefficient due to wing angle of attack
Wing 1ift
<: %pVZS

e increment of 1ift coefficlent due to flap deflection

rofile drag

1ov2s
2p

profile-draé coefficient of wing <?
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increment of drag coefficlent due to vertical talls

Vertical-tail drag
%pves

increment of profile-drag coefficient due to flap

deflectlon -
yawing-moment coefficient /&awigg gomeni)
\ V=Sb
. 5P

=pV~Sc

pltching-moment cosfficlent (Pitchin% moment>
2

rete-of change of airplaﬁe 11ft coefficient with
angle of attack, per degree

rate of change of yawlng-moment coefficient with
angle of sidesllp, per radian an/bﬁ)

increment of Cnﬁ due to vertical tall, per radlan

&

rate of change of yawing-moment coefficlent with

yawing parameter rb/2V, per radlan (j :)
O5T7
2V

Increment- of Cp due to vertical tall, per radian

<ac

O5V/x

rate of change of pitching-moment coefflcient with
horizontal tall incicdence, pér radian

()
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rate of change of 11ft coefficient with piltching

parameter %%, for rogation about asrodynamic
oC
L

C
an.c.

center, per radlan

qc
627 a.c.l

Cm rate of change of pitching-moment coefficlent
q with pitching parameter gqc/2V, ggf rred to
m
- \qc
O3

Crm Cyn referred to the asrocdynamic center _—
da.c. a _ S

center of gravity, per radian

AC,, increment of C due to horizontasl tail

METHOLS
Test Tata

A1l the experimental dsta presented herein were
obtained from tests made in the Langley free-flight L
tunnel, which is described in reference 7. The apparatus
and teﬂting procedure used for the damping-lin-yaw tests
are explained in reference 2., Similar appsaratus and
Testing procedure were used to measure demping 1ln pitch.

Most of the dsta were obtalned from tests made as a
part of routine investigations on specific airplane
models. A Tew other tests were made to check exlsting
data and to supply missing informstion pertinent to the
present papver. Sketches of the specific models tested
are shown for each model in figures 1 to 12. Flaps are
shown in sketches of models that were tested with flaps
deflected and propellers are lncluded in sketches of

dels tested with power or with windwilling pronelle;s.
In addition, a rectangular wing of aspect ratio 6 was

teated to determine Cp..*
A T
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411 models wers mounted with the axls of rotation at
the center of gravity or as near the center of gravity as
was practlcsble for the particular model constructlion.
All tests were made within an effective Reynolds number
range from 200,000 to 300,000, The scope of the data 1s
glven in table I.

Corrections to Test Dsta

The damping-in-pitch parameter C at a constant

pltehing velocity for & complete model cannot be deter-
mined directly from oscillation tests (reference &)
because of the time lag between the formation of down-
wash at the wing and the action of the downwash on the
horizontal taill. In an oscillation test, this lag of
downwash causes the instanteneous effectlive angle of
attack of the tall to be greater than 1t -would be if the
wing were not present. The dawmping in pltch of the tall
consequently appears greater than it would in a test for
which the wing and taill angles of attack remaln constant
(such a8 1n tests by the whirling-arm method described in
reference 8). The damping in pitch measured in &n oscll-
lation test represents the damping that the airplane would
have in a rapii longitudinal oscillatlion heving a perioad
corresponiing to that used in the test, whereas the results
of the whirling~arm tests represent closely the Zamping of
a long-period oscillatlion or phugoid motlon. The following
formula (derived from a similsr formula from reference &)
was used to correct the damping messured in an osqillat%on
test for the increase in tsll angle of attack due to the
effects of lag of downwash and to isolate thereby the
damping due to constant pitching veloclty:

CmQ(total) - qu(tail of )
Cmg = ==

+ O
1+ g ~ ™M(ta1l orr)
a

where wvalues of Cmq in right-hand side of equation are

(L)

measured velues. Fqustion (1) is bassed on the assumpbion
that the laz of downwash at the tall 1is proportional to
the gesometric tail length. Refersnce 9, however, indl-
categ that in cases of unsteady 1lift—the effective tall
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length 1s in general greater than the geometric tail
length so that equation (1) becomes

Cmq< t )- o q(t )
total ail off
Cm.. = AWELSATL T, : + C (1la)
mg de 1 Md(tail off)
1 da L

The variation of angle of downwash with angle of attack

de /da can be determined from wind-tunnel force tests.

The results in refersence 9 show that the effective tall

length is equal to approximately 1.3 times the geometric

tall length for a tynical case. This ratio was used to

correct values of for the present paper
mq(tail on)

because the models with tail on (models 2 and 6) closely
simulsted the typical case. The effective tall length for
any other case can be calculated from referencs 9.

Investigations of models 1 and 3 revealed such smell
sidewash that the correction for lag of sidswash similar
to thet for the leg of downwash was negligible. Suffi-
cient data were not avallable for the other models to
determine sidewash; consequently, no attempts were made to
iInclude sidewash corrections in measurements of Cp,, for

these models 1n the present paper.

Calculations

Damping in yaw.- Calculations of the rotary damping
in yaw for an isolated wing were made by use of the
empirical formula from reference 2

A - -
CnI' = =0.33 l‘_-% CDO - 0-0206 - A15 6 - 12 5K> LZ (2)

For flaps deflected, the following formula from
references 2 and 6 was used:

1+3M) A

( )5 u3—<1-x>
2+2x)CDO - 0.33\ % ST o ACDof

+ KlCLw2 -+ K2 l‘CLf CL + Ka AlJLf

Cn.,. = =0.33

r
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where Kj, K2, and X3 are obtained from cherts given in
reference 6.

The increment of damping in yaw that is produced by -
the vertical taill located in the plane of symmetry was
calculated from the following formula from reference 2:

ACn,, = -2% AOng, (L)

For vertical tails located on the wing the following -

formula was used to calculate the tall contribution to Cn :
r

2
- ol -] r
ACnrt = -2 Aant L ACp, (5)

The derivation of equation (5) is given in the

appéndix. FPor talls at the wing tips % =_% and

equatlon (5) becomes v o-

ACny, = ~2f ACng = A0py (5a) <

For correlation with velues obtalned from the dampning
tests, which were made at low Reynolds number, values of
Cpg s ACDof’ and ACDt used in the present cslculations

were obtalned from force tests at comparsble Reynolds
numbers. Values of the static directlonal stability
provided by the vertical tall 'Acnﬁt used 1n the calcu-

latlons were also obtained from free-flight-tunnel force
tests.,

Damping In pitch.- The damping in pitch of an isolated
wing was calculated by use of references 5 and 10.
Reference 5 glves the variatlon of damping in uniform
pitching motion with geometric and eserodynamic character-
lstice and position of the axis of rotation for an .
lsolated wing; reference 10 gives the variatlion of damping
with oscillation frequency. The following formuls derived
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from reference 5 gives the value of G, for &n isolated
wing in uniform pitching motion: -4 "

. dc 2 o R
— X L (X
Cp. = - —) C 11kl (E (6)
mg = Oq, ., Can.c.(c_ Hoeg @/ . .
Values of C and C were obtalned from
M3a.c. Qa.c.

tables of reference 5 where In they correspond to —hqo
and hzo, respectively. In order to obtain damping at a

given fregquency, equation (6) was corrected for oscil-
letion effects by the data of figure 5 of reference 10.
This correction was applied by multiplylng the eguation by
the ratio of the oscillation damping parameter at the
gliven frequency to the circular-motion damping parameter.

The damping in pitch produced by the horizontal

tall ACmq was calculated from the formula
t
A
AC = 2ZC _ (7)
Mgy ¢ My
For all celculations the static derivative Cmi was

t
obtalned from force-test dsta.

RESULTS AND DISCUSSION.

A complets summary of the experimental results of the
damping tests for each model is presented in figures 1
to 12. The various confizurations tested _and the extent
of the investigation for each model ars given In table I.

Interpretatlion of Data s

Damping in yaw.- Because of the difference in .
Reynolds number between model tests and full-scale flight
values of profile drag for models are larger than those
for full-scale airplanes. The contribution of the profile
drag to the total damping in yaw, however, 1s small and
complete model tests are believed to give good qualitative
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indlcations of Cnr for full-scale alrplanes. The
incremental values of Cnr for the wing and flaps, will

fol:) appréciably larger then full~scale values because thoe
part of model demping due to profile drag 1s increased by
the low scale of the tests.

Damping in pitch.- Although the_ value of C is

g

dependent upon the wvalue of the lift-curve slope, values
of Cmq obtained 1ln the free-flight-tunnel tests are

believed to be directly applicable to full-scale configu-
ations. This conclusion 1s based on the fact that the
tall lift-curve slopes for the two conventional models
tested (models 2 and 6) were found to be approximatcly
equal to the tail lift-curve slopes obtalned on similar
models at higher Reynolds numbers. Changes in Ci due
q
to scale effect upon wing lift-curve slope will be
unimportant because of the small magnitude of the wing
damping.

Damping in Yaw

Contribution of wing to Cnr-- The results of

damping~in-yaw tests of several tailless models without
vertical talls and of a wing slone are presented in
figure 13, The Jdata of figure 13(a) show the damping in
yaw of a rectanguler wing of aspect ratilo 6 to be lower
than would be predicted from references 3 and L. (The
original valuses of Cnr presented in reference l are in

error and the errata sheet must be used for the correct
values.) The solid curve of flgure 13(a) represents
formula (2), which 1s an empiricsal formula developed in
reference 2 from these experimentsl data.

The results of damping-in-yaw tests of the tallless
models (figs. 13(b) to 13(d)) show Cj, to vary incon-~ .
r

sistently but to have values of the same order of magnl- _
tude as calculations from formula (2) although this "
formula 1s for an isolated wing. Formula (2) should,
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therefore, satisfactorily predict values of Cn for
r

tailless airplanes with the excention, of courss, of the
vertical-tall contribution. T

Contribution of flaps to C, .- Figure 1l shows the
e

effect of deflecting 50-percent-span flaps on OGCp for an
r

isolated wing. The test data and calculatlons made by usse
of equations (2) and (3) show flap deflection to give a
smell lncreasse in Cy at low 1ift coefflclents. At high

T .
1ift coefficlients the calculations indicate that flap N
contribution to Cn decreases with 1ift coefficlent, o

r _

which results In a negligible effect, and the data agree
with the calculated values except at a 1ift coefficlent of _
approximately 1l.6. TInasmuch as the total variation
in Cnr with flap deflection {(both experimental and BEEEEE o

calculated) 1is small; it 1s believed that normasl use of
partial-span flaps will not appreciably affect the damplng
in yaw.

Figure 15 shows the effect of deflecting full-span —
flaps.uoo upon the dampling-in-yaw characteristics of a o _
conventional and a tallless model, both without vertical R
tails. These data show that the full-spsn flaps give an

appreciable snd spproximstely constant contribution
to Cp over the entire 11ift range. - Values calculated
r

from equations (2) and (3) are in fairly good agreement o
wilth experimental results. : . - . : e

The effect upon Cp of deflecting an unusual flap
T

arrangement on & tailless model (model 10) is shown in .
figure 16. This flap arrangement consisted of a e
33-percent-span 1ift flap deflected downward 60° in - _
conjunction with 20-percent-span wing-tip pitch flaps L
deflected upward L0° rfor trimming purposes. The data show

that this arrangement increased Cnp, at low values of

1ift coefficient and reversed the variation of Cnr with

1ift coefficient. The sﬁallest'values of 'Cnr with flaps
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down were obtsined at the highest 11ft coefficlents.

The decrease 1in damping with 1ift coefficient is
belleved to occur as follows: At low angles of attack the
tip sections of the wing operate at negstive 11ft coef-
ficients when the plteh flaps are deflected upward. An
increase in the wing engle of attack, thersefore, increases
the 1ift and induced drag of the inboard sectians but
reduces the negative 11ft and induced drag of the tip
sections, Inasmuch as the moment arms of the tip sections
are greater than those of the inboard sectlons, the
effects of the tip sections predominate and prqoduce a net
decrease 1in Cnr with Increasing 1lift coefficient.

Contributlion of fuselags to Cp. o~ The results of

tests made to determlne the countribution of the fuselage
to damplng in yaw are presented in ficure 17. The tests
of the two lsolated fuselages 11lustrate the insignifi-
cance of fusslage danoin? The wing alone and vertical-
tail-off data for model i Indicate negligible effect of
fuselage 1nterference upon wing damping.

Experimental values of damping in yaw of various
wing-fuselage combinations compared with values calcu-
lated for the wing alone are given 1n figure 18. These
data also indicate that normal-slze fuselages have llttle
effect on Cn because the calculated and test wvalues do

not differ appreclably. Other tests reported in
reference 2 have also 1lndicated that the effect of a
normal-size fuselage 1s smsll, probably ranging

from Cp, = -0.003 to -0. 006. 1In general, therefore, the

contribution of the fuselage to Cnr may be expected to

be small and can be nsglected exceplt posslibly in cases in
which the fusslage 1s very large or hss flat sides.

Contribution of verticsasl tall to Cn .~ The results
r
in figure ]9 show calculated and experimental effects of
verylng the vertical-tall area and moment arm upon the
tail contribution to damping in ysw. The ddta show that
Cnr due to the tall increasses: approximately linearly

wlth tall area and as the square of the tail moment
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arm as predicted by theory. Test results and calcu-
lations made by equation (l;) indicate a slight reduction
In vertical-tall effectiveness as larger tails are used
(fig. 19), which may be due to an increasingly smaller
effective endplate provided by the horizontal tail.

Figure 20 shows the damping in yaw and static
directional stability contributed by several vertical
talls on model L. The data indicate that the contribution

of the tall to Cn when flaps are undeflected varies
r _ e _

approximately as the contribution of the tail to static
directional stability ACn‘3 and verifles the vglidity of
t

equation (lL). When flaps are deflected, however, the data
indicate that equation (l;) will not satisfactorily )
predict Cnr as measured 1n an oscillatlion test. Suffi-

cient force-test data on model I, were not available to
draw definite conclusions but perhaps flap deflection
introduced sidewash effects that mlight account for the
discrepancy between values of Cnr measured with flaps
£ _
down and values calculated from equation (l) Further
investigation of these effects appears to be necessary.

The effect of toe-in angle (the angle between
vertical-tail chord line and alrplane center llne) on
damping in yaw contributed by wing-tip vertical tails of
three tallless models 1s shown in flgure 21. The data _
and calculations from eguation (5a) for model 11 indicate
that an increase in tall contribution to Cnr and Cy,

is obtalned by toeing the tip fins inward. Calculations
for models 12 and 12A from equation (52) gave somewhat
lower wvalues of damping than sexperimental results.

Usually the tall contribution to Cnr is essen-

tlally constent over the 1lift range but the data for
model 7 (fig. 7) show a large variatlion. Inasmuch as

force tests indicated only & relatively small increase in

vertical-tall effectiveness with increasing 1ift coeffi-
clent the effects of lag of sidewash at the tall with this
unorthodox design appears to introduce significant changes
in the damping in yaw.
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The over-all correlation of test data with csalcu-
lated values for the tail contribution to Cnr from
equations (l1) and (5a) is summarized in flgure 22. The
e¥perimental results for power-off, flaps-up configu-
rations show reasonable asgreement with caelculated values
cver large ranges of 1lift coefficient, tall design, and
airplane type. Since no leg-of-sidewash correctlons have
been applisd to any of the experimental Cnr data, the
correlation between measured and calculated valuss
obtained in the tests is an indication that this Tactor 1sa
generally negliglble for the power-off, flaps-up condition,
The limlited amount of data avallable for power-on and
flaps~-deflected condlitions does not show satisfactory
agreement of calculated .and measured tall contributisn
to Cnr- Both of these conditlons probably introduce
sldewash effects upon the damping characteristlics of the
tall.

The relative magnitude of vertical-tall daemplng in
yaw for conventlional and tallless deslgns can be observed
from flgure 22. For tallless desligns the vertlcal-tail
contribution to damping 1s roughly of-the same magnitude
as the wing-alone contribution. (See figs. 9 to 12.)

For conventlonal deslgns, however, a high percentage
ranging from 70 to 90 psercent of the total damping in yaw
l1s due to the vertical tall. (See figs. 1 to 8.) Damping
in yaw of tallless airplanes range from about one-third to
one-tenth that of conventlonal designs.

Contribution of propellers and slipstream to Cp o~
r
Very llttle data are avellable concerning the effect of
power upon damping in yaw. For two tallless models, wind-
milling propellers increased the damping in yaw less than
10 percent of the wing-alone value. (See figs. 9 and 10.)

Power-on data for a single-sengine and a twin-engine
model are presentsed in figure 23. These data show an
increase in damping with thrust ccefficient. The increase
in Gnr with. thrust coefficlent 1s much greater with the

vertical tall on then with the. vertical tsll off and the
increase is not so great when the tail is located out of
the slipstream (model 5). The increased damping caused by


http://www.abbottaerospace.com/technical-library

NACA TN No. 1080 15

power effects appears, therefore, to result from the
increased airstream velocity over the tail, which gives
greater tall effectiveness. Further 1lnvestigation,
however, is required to clarify all the effects of power
upon the damping in yaw.

Damping in Pitch

Contribution of wing to C_ .- Vélues of C
mq mq
measured for three taellless models are shown in figure 2l.
These data indicate no consistent variation of Cm over
Q

the lift-cosefficient range tssted. Values of Cmq
calculated by the methods of references 5 and 10 as
described in the section of the present paper entitled
"Calculations" are also presented in figure 2l;. These
calculated values sre larger than the measured values for
all three models. Experiments have shown, howsver, that
variations of Cmq of this magnitude have negligible

effect on the flight characteristics. S

Contribution of flaps to C - The effect of flap

mq.
deflection upon the damping in piltch of a wing alone can
be seen from data for the all-wing bomber model in
flgure 10. These data show negligible effect of
deflecting flaps upon Cmq. Inasmuch as flap deflection

does not generally affect the lift-curve slope upon
which C,, is largely dependent, this result is to be
q

expected. - - T

Contribution of fuselage to Cp +- An indicatlon of

g
fuselage damping in pitch can be obtalned from C

Ny

tests since a symmetrical fuselage at zero angle of attack
has identical damping in piltch and yaw. The nondimensional
damping parameters Cp, and Cmq are based on the span b

and the mean aerodynamic chord ¢, respectively, so that

D

—

oy 2
AC = | ) AC
Mg (fuselage)  'C Ny (fuselage)
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On this basis, since most fuselages are approxiratsls
symmetriceael, the results for Cnr previously discugsed

fer fuselages 1indicats only a very small contribution of
the fuselage to the damping in pitch {(less than -0.2).

Contribution of horizontal tall to Cmgf- The
damping in pitchi cantributed by the horlzontal tall of
two models can be sesn in figures 2 and 4. These data
show that the tail 1s by far the most Iimportant
component of the alrplane contributing to Cr and that

q
talls of normal size mey be expected to provide 70
to 90 percent of the total damping in piteh of en air-
planse.

In figure 25 msasured values of horizontal-taill
damping in pitch sre compared with calculated values based
on equation (7). This comperison shows a falr agreement

' between calculated and measured results.

Contribution of propellers and slipstream to O, .-
q

Resulta of the effect of windmilling propeliers on Cmq

are very similar to the effect on Cn . Tests showed that
r

windmilling propellers increesed the damping in niteh of

two models by less than 10 pereent. (See figs. G and 10.)

The effect of power on Cmq for a twin-boom pusher

fighter airplane model is shown in figure 26. These data
show that, as might be expected with a pusher dssign,
power had negligible effect on the tall-off damping in
piteh but substantially incressed the tall contribution
to Cmq. FPor the tail-on condition increasing power

caused a higher value of Cmq, which is attributed to the-
greater tail effectiveness resulting from the increased
8llpstream velocity over the tail.
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CONCLUSIONS

The results of damping tests of 13 alrplane models
made 1n the Langley free-fllight tunnel, which are
summarized herein, and a comparison of these results with
calculated results indicated the following conclusions:

1. Measured and calculated values of damping in yaw
and in plitch for complete models were in satisfactory
agreement for power-off, flaps-neutral conditlons, S
Further research on the effects of sidewash on the damping
in yaw for power-on and/or flaps-down conditions 1is needed.

2. Wing-alone dampling was small and deflection of
60~psrcent-span flaps had 1little effect upon the damping
In yaw and pitch. ©peflection of full-span flaps, however,
increased the damping in yaw but did not affect the
damping in pitch. .

3. The contributlion of the fuselags to damping in
yaw and pitch weas generally negligible,

li. The teil surfaces contributed 70 to 90 percent of
the rotational damping of conventlonal alrplane designs.

5. Power tended to increase the tail effectiveness
and thereby to increase damping in yaw and pitch.

6. The rotstional damping of tailless alrplanes was
about one-third to one-tenth as large as that of conven-
tlonal desligns. : o ’

Langley Memorial Aeronautical Laboratory
Netional Advisory Commlittes for Asronautics
Langley Fleld, Va., March 27, 19L6
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APPENDIX
Damping in Yaw of #ing-Tip Vertlical Talls

The damping in yaw of wing-tip vertical tails may be
considered to consist of the followlng two components:

(1) Cnr due to change in effective angle of si@g-

8llp on the tails caused by the yewing velocity. This
damplng is similar to that produced by conventional
verticel talls and is given by equation (L)

_ ol
ACrpy = =25 MCng,

where 1 1s the front-and-beack tall length.
(2) Cnr due to the difference in drag of the two

tails resulting from velocity differences at the tails.
By deflinltion, the speed of the leadlng anl trailing talls,
respectively, can be expressed as

VL=V+1"y
and

VTZV—I’Y

Similarly the drag of the leading and trailing tails,
respectlvely, may be written

1 1 2
3 bCpy ZPSVL

and 5
1 1
5 8Cpy zPSVp
where ACD i1s the total drag coefficient of both
t .

vertical taills based on the wing area. Then the yawing
moment produced by the difference in drag on the two talls
can be expressed sas

= _[1 1 o ©
ANp = =i > ACDt 5pSVy

1 1 2
- 7 OCp, 3pSVq JY
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When V + ry and V -ry are substlituted for vy,

and VT{ and the expression is simplified

ANy = -% ACDt%pS(bryV)y = #ACpy osrVy”

Reductligon to coefficient form gives

AN -,
S, = T = 2 200y ()

2pV Sb
= Z‘ AGDt(%)
and differentiation with respect to 5% ylelds
0ACngy = aq,
S(rb/27) Ty

= Sh(g)zAth

Then the total tail damping produced by the change in
effective angle of sideslip and by the drag difference on
the talls may be expressed as

ACny, = -2 AOng, - )_,_(%>2
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Fig. 13a,d - ' NACA TN No. 1080
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Fig. 15a,b : NACA TN No. 1080
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NACA TN No. 1080 Fig. 18a,d
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NACA TN No. 1080 _ Fig. 22
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Fig. 23 ) MACA TN No. 1080
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NACA TN No. 108( ] Fig. 24a-c
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Fig. 25 NACA TN No. 1080
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